Перевод: с английского на русский

с русского на английский

связанные+колебания

  • 41 vibration of system with variable characteristics

    1. параметрические колебания (в строительной механике и сопр. материалов)
    2. параметрические колебания

     

    параметрические колебания
    Колебания, связанные с периодическими изменениями параметров системы, например ее жесткости.
    [ http://www.isopromat.ru/sopromat/terms]

    Тематики

    • строительная механика, сопротивление материалов

    EN

     

    параметрические колебания
    Колебания, связанные с периодическими изменениями параметров системы, например ее жесткости.
    [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    Тематики

    • строительная механика, сопротивление материалов

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > vibration of system with variable characteristics

  • 42 seasonal fluctuations

    1. сезонные колебания

     

    сезонные колебания

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    сезонные колебания
    Сезонная компонента временного ряда, накладываемая часто на основную тенденцию, тренд. Строго говоря, термин “сезонные” не вполне точен, поскольку имеются в виду периодические колебания экономических показателей, не обязательно связанные с природно-климатическими условиями (они могут объясняться также техническими, экономическими, культурными факторами). Для учета С.к. применяются метод простых средних (в случаях постоянства общей тенденции), метод скользящей средней, которым элиминируется тренд (когда С.к. “правильны”, т.е. взаимно погашают друг друга на интервале сглаживания временного ряда) и другие, более сложные методы. Часто сезонные колебания приближенно описываются синусоидами и другими тригонометрическими функциями. Пример: сезонные колебания в электроэнергетике. Регулярные изменения спроса на электрическую и тепловую энергию в зависимости от месяца в году из-за погодных и других условий настолько хорошо изучены, что энергетики способны за год вперед прогнозировать помесячное потребление (а значит и производство) своей продукции.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > seasonal fluctuations

  • 43 seasonal variations

    1. сезонные колебания

     

    сезонные колебания

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    сезонные колебания
    Сезонная компонента временного ряда, накладываемая часто на основную тенденцию, тренд. Строго говоря, термин “сезонные” не вполне точен, поскольку имеются в виду периодические колебания экономических показателей, не обязательно связанные с природно-климатическими условиями (они могут объясняться также техническими, экономическими, культурными факторами). Для учета С.к. применяются метод простых средних (в случаях постоянства общей тенденции), метод скользящей средней, которым элиминируется тренд (когда С.к. “правильны”, т.е. взаимно погашают друг друга на интервале сглаживания временного ряда) и другие, более сложные методы. Часто сезонные колебания приближенно описываются синусоидами и другими тригонометрическими функциями. Пример: сезонные колебания в электроэнергетике. Регулярные изменения спроса на электрическую и тепловую энергию в зависимости от месяца в году из-за погодных и других условий настолько хорошо изучены, что энергетики способны за год вперед прогнозировать помесячное потребление (а значит и производство) своей продукции.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > seasonal variations

  • 44 population waves

    популяционные волны, волны жизни
    Колебания численности особей, характерные для любой популяции живых организмов; могут быть генетически обусловленными (тогда они, как правило, имеют упорядоченный, периодический, сезонный характер), а также могут быть результатом внешних биотических и абиотических воздействий; П.в. один из основных эволюционных факторов, играющих существенную роль в изменении концентрации мутаций и генотипов в популяции, а также в изменении направленности и жесткости естественного отбора; термин «волны жизни» предложен С.С.Четвериковым в 1905.
    * * *
    Популяционные волны, в. численности, в. жизни — присущие всем видам (см. Вид) периодические и непериодические изменения численности особей популяций, возникающие в результате влияния абиотических и биотических факторов, воздействующих на популяцию, и ведущие к изменению интенсивности естественного отбора и переменам в генетической структуре популяций. П. в. могут сопровождаться случайными и относительно быстрыми изменениями концентрации отдельных генотипов (см. Генетическое равновесие) внутри данной популяции, что важно для эволюции. Благодаря П. в. величина популяции через определенные интервалы времени уменьшается до минимума, что предоставляет большие возможности для случайных воздействий, а с восстановлением популяции уменьшается опасность ее случайного вымирания. П. в. ограничивает панмиксия. При территориальных перемещениях генотипы попадают в др. внешние условия и в связи с этим подвергаются др. селекционным воздействиям. Связанные с П. в. колебания частот генов дают во многих случаях возможность для достижения определенными генами таких концентраций, при которых действие отбора становится эффективным.

    Англо-русский толковый словарь генетических терминов > population waves

  • 45 dutch-roll oscillations

    Универсальный англо-русский словарь > dutch-roll oscillations

  • 46 TIME-SERIES ANALYSIS

    Анализ временных рядов
    Исследование статистических данных за прошлые годы с целью прогнозирования возможных тенденций в будущем. Рассмотрим график.   Графическое изображение дает представление об изменении статистических показателей  (объема продаж) за прошлые  6 лет. На графике можно выделить: а) долговременную тенденцию (см. Secular trend) изменения объема продаж - пунктирная линия идет постепенно вверх; б) циклические изменения (cyclical variations), которые обычно связаны с колебаниями экономической активности (см. Business cycle); в) сезонные колебания (seasonal variations) и г) нерегулярные колебания (irregular variations), связанные с непредсказуемыми случайными событиями. При анализе временных рядов пренебрегают влиянием указанных выше колебаний на временной ряд, пытаясь вывести общую будущую тенденцию. Для этого используют  регрессионный  анализ  (см.  Regression  analysis)  или скользящее среднее значение исследуемой переменной величины для сглаживания временного ряда. Когда общая тенденция определена, ее можно экстраполировать на будущее. На графике - это временной период t 1. Таким образом, экстраполяция является одним из методов прогнозирования, хотя точность такого прогноза во многом зависит от того, сохранится ли влияние перечисленных факторов на временные ряды  в будущем.  

    Новый англо-русский словарь-справочник. Экономика. > TIME-SERIES ANALYSIS

  • 47 flowmeter

    1. расходомер жидкости (газа)
    2. расходомер (в медицине)
    3. расходомер
    4. гидрологический расходомер

     

    гидрологический расходомер
    Гидротехническое сооружение для измерения расходов воды в открытых водных потоках по устойчивой однозначной зависимости расхода воды от напора над сооружением.
    [ ГОСТ 19179-73]

    Тематики

    Обобщающие термины

    EN

     

    расходомер
    Прибор для измерения расхода газов, жидкостей и сыпучих материалов
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    EN

    DE

    FR

     

    расходомер
    Устройство, которое показывает объемный расход определенного газа или газовой смеси
    [ ГОСТ Р 52423-2005]

    Тематики

    • ингаляц. анестезия, искусств. вентиляц. легких

    EN

    DE

    FR

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > flowmeter

  • 48 noise

    1. шумы
    2. шум прибора СВЧ
    3. шум
    4. помехи
    5. помеха
    6. поисковый шум

     

    поисковый шум
    Совокупность выданных при информационном поиске нерелевантных документов.
    [ГОСТ 7.73-96 ]

    Тематики

    Обобщающие термины

    EN

    FR

     

    помеха
    Воздействие, вызывающее искажения сигнала.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    помеха
    Сигнал, затрудняющий работу с информативными сигналами. Источниками помех могут быть структурная неоднородность материала, скачки напряжений питающей сети, несовершенство электроакустических преобразователей и т.п.
    Примечание
    Помехи в эхо-методе - сигналы, не связанные с задачами контроля и появляющиеся в зоне развертки в местах возможного появления информативных сигналов, а также воздействия любой природы (кроме тепловых шумов), искажающие информативные сигналы.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • автоматизация, основные понятия
    • электротехника, основные понятия

    EN

     

    помехи
    Возмущения в канале связи, искажающие передаваемый сигнал.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    помехи
    1. В теории информации — причина отклонений воспринятой информации от переданной по каналу связи источником этой информации. 2. В экономико-математическом моделировании П. часто рассматриваются как элемент модели, условно учитывающий вероятностное воздействие не включенных в модель величин, суммирующий эти случайные воздействия в виде дополнительного члена уравнений модели, т.е. как синоним терминов «ошибка», «остаток». Точнее, однако, определять П. как источник, причину ошибок модели. Элемент П. в уравнении появляется тогда, когда случайные воздействия на экономический объект не удается учесть непосредственно (а иногда, если это просто нецелесообразно из-за чрезмерного усложнения расчетов). Обозначается греческой буквой e или w. При записи модели в векторной форме e или w называют вектором помех.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    шум
    Нерегулярное или статистически случайное колебание.
    [ ГОСТ 26883-86]

    шум

    Всякий звук, который оценивается как нежелательный, мешающий, неприятный или вредный
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    шум
    1. Тепловые шумы преобразователя, входной цепи и элементов усилителя
    2. Беспорядочно распределенные сигналы на экране прибора, обусловленные отражениями от структуры материала или электрическими шумами аппаратуры
    [BS EN 1330-4:2000. Non-destructive testing - Terminology - Part 4: Terms used in ultrasonic testing]
    Примечание
    В зарубежной литературе не делают различия между шумом и помехой, обозначая все одним термином «noise»
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    шум
    Нежелательный сигнал, производимый электрическими цепями, работающими при температуре выше абсолютного нуля. Шум исключить невозможно, но можно его минимизировать.
    [ http://www.vidimost.com/glossary.html]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    шум прибора СВЧ
    шум

    Хаотические колебания, возникающие внутри прибора СВЧ.
    [ ГОСТ 23769-79]

    Тематики

    Синонимы

    EN

     

    шумы
    помехи
    искажения


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > noise

  • 49 natural

    ˈnætʃrəl
    1. прил.
    1) а) естественный, природный natural resources natural weapons - natural selection natural phenomena natural day die a natural death the term of one's natural life for the rest of one's natural life natural power natural law Syn: normal б) настоящий, натуральный, неискусственный;
    обычный, обыкновенный natural flowers natural teeth natural gas Ant: artificial;
    marvellous в) дикий, некультивированный natural growth natural steel г) присущий, врожденный with the bravery natural to him ≈ с присущей ему храбростью She has a natural ability to understand the motives of others. ≈ У нее была врожденная способность понимать причины поведения других людей. natural frequency Syn: innate Ant: acquired
    2) а) обычный, нормальный;
    понятный That comes natural to me. ≈ Для меня это естественно. It's natural to want a nice car. ≈ Желание иметь хороший автомобиль - вполне естественное. It's perfectly natural that children love ice cream. ≈ Совершенно нормально, что дети любят мороженое. б) естественный, непринужденный He is a very natural person. ≈ Он очень непосредственный человек. come natural to one
    3) естественный, относящийся к естествознанию natural philosopher - natural history - natural philosophy natural dialectics
    4) а) ист. и уст. свой, неусыновленный;
    рожденный в браке б) внебрачный, незаконнорожденный, побочный Syn: illegitimate, bastard
    5) мат. натуральный - natural logarithm - natural number
    2. сущ.
    1) а) что-л. естественное б) у негров: вид прически, оставляющий волосы в первозданном виде
    2) а) одаренный человек, самородок б) идиот от рождения;
    дурачок, предмет издевательств
    3) а) разг. самое подходящее, то, что нужно (для чего-л., в частности, о человеке) He is a natural for art. ≈ Он создан для искусства. He is a natural with any kind of engine. ≈ Он легко обращается с любыми механизмами. She proved to be a natural on camera. ≈ Она продемонстрировала умение держать себя естественно и непринужденно перед камерой. б) карт. в игре в очко: двадцать одно, сданное в первых двух картах;
    в других азартных играх: любая комбинация, дающая сразу окончательный выигрыш, тж. перен.
    4) а) муз. скрипичный ключ, ключ С б) муз. бекар (знак и связанные с ним действия) в) муз. белая клавиша( на любом клавишном инструменте)
    5) редк. гениталии (также мн.) Any female with the desire of fulfilling the functions of her natural. ≈ (Дж. Джойс, "Улисс",)
    6) археол. фундамент, пласт, лежащий под культурным слоем ∙ it's a natural! ≈ превосходно! кретин, идиот ( от рождения) - she is not quite a * она не круглая идиотка (разговорное) подходящий( для чего-л.) человек - Bob is a * for this job Боб как будто создан для этой работы( разговорное) самое подходящее - this job's a * for Jim эта работа как раз по Джиму - it's a *! превосходно!, как раз то, что нужно! (сленг) жизнь, земное существование - in all my * за всю (свою) жизнь (музыкальное) бекар (американизм) африканская прическа (без выпрямления и окраски волос) (американизм) "афро", прическа "под африканца";
    высокая прическа из мелких завитков естественный, природный - * forces силы природы - * grandeur and beauty величие и красота природы - * resourses природные богатства /ресурсы/ - * gas природный газ - * radioactivity естественная радиоактивность - * harbour естественная гавань - * day сутки - * weapons естественное оружие( кулаки, зубы) - * death естественная смерть - * year тропический год - * number (математика) натуральное число - * cover( военное) естественное укрытие - * seeding самосев, естественное обсеменение( о растениях) - * infancy (юридическое) детство( до 7 лет) - * loss /wastage/ (коммерческое) естественная убыль (усушка, утечка и т. п.) - * horizon (авиация) видимый горизонт - the * cause of a seeming miracle естественно-научное обьяснение кажущегося чуда - * economy натуральное хозяйство - animals living in their * state животные в естественных условиях земной, физический - * life земное существование - the * world этот свет, земное существование - imprisonment for the term of one's * life (юридическое) пожизненное заключение настоящий, натуральный - * wool натуральная шерсть - * flowers живые цветы - * teeth свои зубы - * complexion естественный цвет лица( без косметики) - * portrait портрет, точно передающий сходство;
    как живой - * scale( специальное) натуральная величина, масштаб 1:1 - * weight( коммерческое) натуральный вес( зерна) естественный, относящийся к естествознанию - * dialectics диалектика природы - * historian натуралист - * philosophy( устаревшее) физика;
    натурфилософия;
    философия природы обычный, нормальный;
    понятный - * mistake понятная /естественная/ ошибка - it is * for a baby to cry if it is hungry вполне понятно /естественно, нормально/, что ребенок плачет, когда он голоден дикий, некультивированный - * growth дикая растительность - * state первобытное состояние - the * man человек, каким его создала природа;
    (философское) естественный человек необработанный, не подвергшийся обработке - * steel незакаленная сталь врожденный, присущий - * gift врожденный дар - * linguist человек с врожденными способностями к языкам - * оrator прирожденный оратор - * fool дурак( от рождения) - with his * modesty со свойственной ему скромностью - it is * for a duck to swim утка обладает врожденными умением плавать непринужденный, естественный - it comes * to him это получается у него естественно /само собой/;
    это ему дается легко - it was a very * piece of acting актер играл очень естественно /правдиво/ побочный, внебрачный - his * son его побочный сын - her * brother ее побочный брат, побочный сын ее отца ( американизм) в стиле "афро" (о прическе) (геология) материнский - * rock материнская порода - * ground материк( физическое) собственный - * frequency собственная частота - * vibration собственные колебания ~ естественный, природный;
    to die a natural death умереть естественной смертью;
    the term of one's natural life вся жизнь for the rest of one's ~ (life) до конца своих дней;
    natural power силы природы ~ разг. самое подходящее;
    самый подходящий человек (для чего-л.) ;
    he is a natural for art он создан для искусства it comes ~ to him это легко ему дается;
    he is a very natural person он очень непосредственный человек it comes ~ to him это легко ему дается;
    he is a very natural person он очень непосредственный человек it comes ~ to him это получается у него естественно natural муз. бекар, знак бекара;
    it's a natural! превосходно! natural муз. бекар, знак бекара;
    it's a natural! превосходно! ~ внебрачный, незаконнорожденный;
    natural child внебрачный ребенок;
    natural son побочный сын ~ дикий, некультивированный;
    natural growth дикая растительность;
    natural steel незакаленная сталь ~ естественный, относящийся к естествознанию;
    natural history естественная история ~ естественный, природный;
    to die a natural death умереть естественной смертью;
    the term of one's natural life вся жизнь ~ естественный ~ идиот от рождения;
    дурачок ~ муз. ключ С ~ настоящий, натуральный;
    natural flowers живые цветы;
    natural teeth "свои" зубы ~ настоящий ~ натуральный ~ непринужденный, естественный ~ обычный, нормальный;
    понятный;
    natural mistake понятная, естественная ошибка ~ обычный ~ одаренный человек, самородок ~ понятный ~ природный ~ присущий;
    врожденный;
    with the bravery natural to him с присущей ему храбростью ~ разг. самое подходящее;
    самый подходящий человек (для чего-л.) ;
    he is a natural for art он создан для искусства ~ самородный ~ philosophy физика;
    natural philosopher физик;
    естествоиспытатель;
    natural dialectics диалектика природы ~ настоящий, натуральный;
    natural flowers живые цветы;
    natural teeth "свои" зубы ~ дикий, некультивированный;
    natural growth дикая растительность;
    natural steel незакаленная сталь ~ естественный, относящийся к естествознанию;
    natural history естественная история ~ обычный, нормальный;
    понятный;
    natural mistake понятная, естественная ошибка ~ selection биол. естественный отбор;
    natural phenomena явления природы ~ philosophy физика;
    natural philosopher физик;
    естествоиспытатель;
    natural dialectics диалектика природы philosopher: philosopher философ;
    natural philosopher физик;
    естествоиспытатель;
    philosophers, stone философский камень ~ philosophy физика;
    natural philosopher физик;
    естествоиспытатель;
    natural dialectics диалектика природы for the rest of one's ~ (life) до конца своих дней;
    natural power силы природы ~ resources природные богатства;
    natural weapons естественное оружие (кулаки, зубы и т. п.) resource: ~ (обыкн. pl) ресурсы, средства, запасы;
    natural resources природные богатства resources: natural ~ природные ресурсы ~ selection биол. естественный отбор;
    natural phenomena явления природы ~ внебрачный, незаконнорожденный;
    natural child внебрачный ребенок;
    natural son побочный сын ~ дикий, некультивированный;
    natural growth дикая растительность;
    natural steel незакаленная сталь ~ настоящий, натуральный;
    natural flowers живые цветы;
    natural teeth "свои" зубы ~ resources природные богатства;
    natural weapons естественное оружие (кулаки, зубы и т. п.) ~ естественный, природный;
    to die a natural death умереть естественной смертью;
    the term of one's natural life вся жизнь ~ присущий;
    врожденный;
    with the bravery natural to him с присущей ему храбростью

    Большой англо-русский и русско-английский словарь > natural

  • 50 Coriolis-coupled degenerate modes

    Универсальный англо-русский словарь > Coriolis-coupled degenerate modes

  • 51 coupled flexural vibrations

    Универсальный англо-русский словарь > coupled flexural vibrations

  • 52 microseismas

    микросейсмы (небольшие колебания почвы, не связанные с землетрясением)

    English-Russian aviation meteorology dictionary > microseismas

  • 53 coupled

    Англо-русский словарь по машиностроению > coupled

  • 54 lateral-directional mode

    форма бокового движения; вид боковых колебаний; pl. связанные боковые колебания

    Englsh-Russian aviation and space dictionary > lateral-directional mode

  • 55 air conditioning system

    1. система кондиционирования воздуха (спорт)
    2. система кондиционирования воздуха

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

     

    система кондиционирования воздуха
    СКВ

    Система, позволяющая контролировать температуру, а иногда влажность и чистоту воздуха в помещении или транспортном средстве.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    air conditioning system
    ACS
    System for controlling temperature and sometimes humidity and purity of the air indoor or in a vehicle.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > air conditioning system

  • 56 economic growth

    1. экономический рост

     

    экономический рост

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    экономический рост
    Объемная, количественная сторона развития экономической системы, характеризующаяся расширением ее (системы) масштабов. Не единственная, но наиболее распространенная мера Э.р. - темпы изменения валового национального дохода (или валового внутреннего продукта, или иного показателя объема производства) в расчете на душу населения (с учетом изменения цен). На протяжении истории человечества темпы Э.р. отдельных стран и в целом мирового хозяйства варьировались в широких пределах, возрастая или снижаясь в зависимости от социально-экономического устройства, международных отношений стран (война или мир), темпов научно-технического прогресса, демографических процессов и других обстоятельств Отсюда следует вывод, что у каждого общественного устройства (феодализм, капитализм и т.д.) есть свой предел Э.р., и что достижение экономикой СССР уровня, предельного для социалистического роста, привело к длительному застою, а затем, на переломе 1980-х — 1990-х годов — к крушению социалистической системы. Этот вывод (гипотезу) высказал Е.Гайдар еще в 1997 году в книге «Аномалии экономического роста» (Гайдар Е.Т. Собр.соч. в 15 томах, том 2.). На рассмотренные здесь долговременные поступательные тенденции Э.р. в условиях рыночной экономики неизбежно накладываются колебания, в том числе разного рода экономические циклы, образующие последовательность подъемов и спадов производства — от «длинных волн» Д.Кондратьева, до сезонных колебаний (См. Экономические циклы). В статистике общая тенденция Э.р., на фоне которого происходят разного рода флюктуации, называется трендом. Основные типы экономического роста: Устойчивый, длительный Э.р.. Изучавший этот тип Э.р. американский экономист У.Ростоу отметил, что он часто наблюдается в странах, только начавших с низкого уровня процесс экономического развития. При этом последовательно растет ВВП на душу населения, создаются новые рабочие места, наращиваются инвестиции и повышается благосостояние населения. Нулевой рост. Концепция нулевого Э.р. возникла как реакция на обострившиеся в ХХ столетии экологические проблемы, связанные с антропогенным загрязнением среды обитания людей и углубляющимся исчерпанием ресурсов Земли. Ряд экологов, экономистов и политиков (в основном — европейских) выдвинули идею нулевого роста, при котором, по их мнению, эти проблемы могут быть решены. Если в развитых странах эта концепция и находит определенный отклик, то, естественно, ее не приемлет население «молодых» развивающихся стран. Равновесный сбалансированный рост - такой рост экономики, при котором темп прироста запасов всех продуктов на протяжении рассматриваемого промежутка времени — постоянный (по другому определению — при котором темпы развития отраслей или секторов экономики внутренне согласованны. Подробнее см.. Равновесный сбалансированный рост. Экстенсивный и интенсивный Э.р. — см. Интенсивный тип экономического роста, Экстенсивный тип экономического роста. Э.р. требует выделения для него части общественных ресурсов в ущерб потреблению. Темпы Э.р. определяются при прочих равных условиях объемом накоплений. и экономической эффективностью их инвестирования в производство. Качество Э.р. в конечном счете определяется той ценой, которую общество вынуждено платить за этот рост. Подробнее см. в статье Качество экономического роста. Устойчивых факторов, которые реально влияют на экономический рост, немного. Например, очень важны экономические и политические институты — права собственности, вообще качество правовой системы, финансовая система. На рост влияют также географические и исторические факторы, предопределяющие уровень развития институтов: расположение страны ( климат, доступ к торговым путям), колониальное прошлое, язык и религия, этническая неоднородность, наличие природных ресурсов. Исследователи обнаружили, что изобилие природных ресурсов (и преобладание их доли в экспорте страны) плохо влияет на рост, оказывая негативное воздействие в первую очередь на качество экономических институтов. Качество образования положительно влияет на рост. См. также: Качество экономического роста, Кризисы в экономике, Рост в годовом исчислении, Современный экономический рост, Темпы роста,Теории экономического роста.
    [ http://slovar-lopatnikov.ru/]

    EN

    economic growth
    An increase over successive periods in the productivity and wealth of a household, country or region, as measured by one of several possible variables, such as the gross domestic product. (Source: ODE)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > economic growth

  • 57 economical growth

    1. экономический рост

     

    экономический рост

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    экономический рост
    Объемная, количественная сторона развития экономической системы, характеризующаяся расширением ее (системы) масштабов. Не единственная, но наиболее распространенная мера Э.р. - темпы изменения валового национального дохода (или валового внутреннего продукта, или иного показателя объема производства) в расчете на душу населения (с учетом изменения цен). На протяжении истории человечества темпы Э.р. отдельных стран и в целом мирового хозяйства варьировались в широких пределах, возрастая или снижаясь в зависимости от социально-экономического устройства, международных отношений стран (война или мир), темпов научно-технического прогресса, демографических процессов и других обстоятельств Отсюда следует вывод, что у каждого общественного устройства (феодализм, капитализм и т.д.) есть свой предел Э.р., и что достижение экономикой СССР уровня, предельного для социалистического роста, привело к длительному застою, а затем, на переломе 1980-х — 1990-х годов — к крушению социалистической системы. Этот вывод (гипотезу) высказал Е.Гайдар еще в 1997 году в книге «Аномалии экономического роста» (Гайдар Е.Т. Собр.соч. в 15 томах, том 2.). На рассмотренные здесь долговременные поступательные тенденции Э.р. в условиях рыночной экономики неизбежно накладываются колебания, в том числе разного рода экономические циклы, образующие последовательность подъемов и спадов производства — от «длинных волн» Д.Кондратьева, до сезонных колебаний (См. Экономические циклы). В статистике общая тенденция Э.р., на фоне которого происходят разного рода флюктуации, называется трендом. Основные типы экономического роста: Устойчивый, длительный Э.р.. Изучавший этот тип Э.р. американский экономист У.Ростоу отметил, что он часто наблюдается в странах, только начавших с низкого уровня процесс экономического развития. При этом последовательно растет ВВП на душу населения, создаются новые рабочие места, наращиваются инвестиции и повышается благосостояние населения. Нулевой рост. Концепция нулевого Э.р. возникла как реакция на обострившиеся в ХХ столетии экологические проблемы, связанные с антропогенным загрязнением среды обитания людей и углубляющимся исчерпанием ресурсов Земли. Ряд экологов, экономистов и политиков (в основном — европейских) выдвинули идею нулевого роста, при котором, по их мнению, эти проблемы могут быть решены. Если в развитых странах эта концепция и находит определенный отклик, то, естественно, ее не приемлет население «молодых» развивающихся стран. Равновесный сбалансированный рост - такой рост экономики, при котором темп прироста запасов всех продуктов на протяжении рассматриваемого промежутка времени — постоянный (по другому определению — при котором темпы развития отраслей или секторов экономики внутренне согласованны. Подробнее см.. Равновесный сбалансированный рост. Экстенсивный и интенсивный Э.р. — см. Интенсивный тип экономического роста, Экстенсивный тип экономического роста. Э.р. требует выделения для него части общественных ресурсов в ущерб потреблению. Темпы Э.р. определяются при прочих равных условиях объемом накоплений. и экономической эффективностью их инвестирования в производство. Качество Э.р. в конечном счете определяется той ценой, которую общество вынуждено платить за этот рост. Подробнее см. в статье Качество экономического роста. Устойчивых факторов, которые реально влияют на экономический рост, немного. Например, очень важны экономические и политические институты — права собственности, вообще качество правовой системы, финансовая система. На рост влияют также географические и исторические факторы, предопределяющие уровень развития институтов: расположение страны ( климат, доступ к торговым путям), колониальное прошлое, язык и религия, этническая неоднородность, наличие природных ресурсов. Исследователи обнаружили, что изобилие природных ресурсов (и преобладание их доли в экспорте страны) плохо влияет на рост, оказывая негативное воздействие в первую очередь на качество экономических институтов. Качество образования положительно влияет на рост. См. также: Качество экономического роста, Кризисы в экономике, Рост в годовом исчислении, Современный экономический рост, Темпы роста,Теории экономического роста.
    [ http://slovar-lopatnikov.ru/]

    EN

    economic growth
    An increase over successive periods in the productivity and wealth of a household, country or region, as measured by one of several possible variables, such as the gross domestic product. (Source: ODE)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > economical growth

См. также в других словарях:

  • СВЯЗАННЫЕ КОЛЕБАНИЯ — свободные колебания связанных систем, состоящих из взаимодействующих одиночных (парциальных) колебат. систем. С. к. имеют сложный вид вследствие того, что колебания в одной парциальной системе влияют через связь (в общем случае диссипативную и… …   Физическая энциклопедия

  • СВЯЗАННЫЕ КОЛЕБАНИЯ — собственные колебания в сложной колебательной системе с 2 и более степенями свободы, которую можно рассматривать как совокупность нескольких связанных систем с 1 степенью свободы каждая (напр., 2 связанных колебательных контура) …   Большой Энциклопедический словарь

  • связанные колебания — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN related waveforms …   Справочник технического переводчика

  • связанные колебания — собственно колебания в сложной колебательной системе с двумя и более степенями свободы, которую можно рассматривать как совокупность нескольких систем с одной степенью свободы каждая, взаимодействующих между собой. * * * СВЯЗАННЫЕ КОЛЕБАНИЯ… …   Энциклопедический словарь

  • связанные колебания — susietieji svyravimai statusas T sritis fizika atitikmenys: angl. coupled oscillations vok. gekoppelte Schwingungen, f rus. связанные колебания, n pranc. oscillations accouplées, f …   Fizikos terminų žodynas

  • связанные колебания — susietieji virpesiai statusas T sritis fizika atitikmenys: angl. coupled oscillations vok. gekoppelte Schwingungen, f rus. связанные колебания, n pranc. oscillations accouplées, f …   Fizikos terminų žodynas

  • связанные колебания координат системы — связанные колебания Колебания обобщенных координат системы, когда колебания одних координат обязательно сопровождаются колебаниями других координат. [ГОСТ 24346 80] Тематики вибрация Синонимы связанные колебания EN coupled oscillations DE… …   Справочник технического переводчика

  • Связанные колебания координат системы — 134. Связанные колебания координат системы Связанные колебания Колебания обобщенных координат системы, когда колебания одних координат обязательно сопровождаются колебаниями других координат Источник: ГОСТ 24346 80: Вибрация. Термины и… …   Словарь-справочник терминов нормативно-технической документации

  • Связанные колебания —         Собственные колебания в сложной системе, состоящей из связанных между собой простейших (парциальных) систем (см. Связанные системы.). С. к. имеют сложный вид вследствие того, что колебания в одной парциальной системе через связь влияют на …   Большая советская энциклопедия

  • СВЯЗАННЫЕ КОЛЕБАНИЯ — собственные колебания в сложной колебат. системе с двумя и более степенями свободы, к рую можно рассматривать как совокупность неск. связанных, т. е. взаимодействующих друг с другом, систем с одной степенью свободы каждая (напр., 2 колебат.… …   Большой энциклопедический политехнический словарь

  • СВЯЗАННЫЕ КОЛЕБАНИЯ — собств. колебания в сложной колебат. системе с двумя и более степенями свободы, к руго можно рассматривать как совокупность неск. систем с одной степенью свободы каждая, взаимодействующих между собой …   Естествознание. Энциклопедический словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»