-
1 knowledge base
вчт. база знаний -
2 knowledge base
-
3 knowledge base
-
4 general knowledge base
-
5 knowledge
knowledge [ˈnɒlɪdʒ]1. nouna. ( = understanding, awareness) connaissance f• it has come to my knowledge that... j'ai appris que...• it's common knowledge that... il est de notoriété publique que...2. compounds* * *['nɒlɪdʒ]1) ( awareness) connaissance fto my certain knowledge he... — je sais de façon certaine qu'il...
2) ( factual wisdom) gen connaissances fpl; ( of specific field) connaissance f -
6 knowledge
совокупность фактов и отношений между ними, используемая для решения проблемы. Средством объективного выражения и фиксирования знания является язык, образующий особую знаковую системусм. тж. AI, common knowledge, declarative knowledge, epistemology, expertise, expert knowledge, expert system, fact, factual knowledge, heuristic knowledge, imperative knowledge, imperfect knowledge, implicit knowledge, knowledge acquisition, knowledge base, knowledge deployment, knowledge discovery, knowledge domain, knowledge elicitation, knowledge engineering, knowledge management, knowledge processing, knowledge representation, knowledge slice, knowledge worker, metaknowledge, representation language, subconscious knowledge, symbolic knowledge, technical knowledge, theoretical knowledge, working knowledgeАнгло-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > knowledge
-
7 base
1. сущ.1) общ. база; основа; основание ( в прямом и переносном смысле)These industries are crucial to the local economy and are called the economic base of the region. — Эти отрасли критически важны для местной экономики и называются "экономической базой [основой\] региона".
See:2)а) общ. база (основное место нахождения какой-л. организации, основное место проживания какого-л. лица и т. п.); опорный пунктб) эк. база (место, где компания размещает свой офис или завод; место, где располагается офис бизнесмена)3) эк. база (совокупность информации, каких-л. лиц или объектов, служащая основой для какой-л. деятельности)See:4) стат. база (значение показателя, выбранное за 100% при расчете индекса)5) маркc. базис (совокупность производственных отношений, определяемая уровнем развития производительных сил, определяющая остальные отношения в обществе (надстройку))See:6) бирж. база* (в техническом анализе: форма графика, в которой линия поддержки и линия сопротивления идут на сближение; это указывает на относительное равновесие спроса и предложения на рынке и на небольшую амплитуду колебаний котировок)See:2. гл.общ. базировать, обосновывать; основывать3. прил.1) эк. базовый, начальный (исходное значение какой-л. ставки, относительно которого затем расчитываются различные надбавки или вычеты)base price — базовая [базисная\] цена
Syn:basic 1. 5)See:2) стат. базовый, базисный (о значении показателя, выбранном за 100% при расчете индекса)let's take 2005 as our base year — давайте выберем в качестве базы 2005 г.
* * *. Also known as a Stop. In real estate leases tenants are often responsible for operating expenses of the building over a certain dollar amount, the base or stop. The base may be expressed in dollars per square foot, total dollars, or as a base year (in which case the base is the expense in the base year). Example - Expenses for a building are $9 per square foot in 1997. Madison Inc. has a base of $6. For 1997 Madison must pay $3 per square foot in Escalation. (Note, the computations can be much more involved.) For a net lease the base is zero. . Small Business Taxes & Management 2 . -
8 TKB
1) Сокращение: Task Builder2) Фирменный знак: Thomas K. Bradshaw, C. P. A.3) Образование: Tech- Know- Build4) НАСА: Technical Knowledge Base -
9 system
1) система || системный3) вчт операционная система; программа-супервизор5) вчт большая программа6) метод; способ; алгоритм•system halted — "система остановлена" ( экранное сообщение об остановке компьютера при наличии серьёзной ошибки)
- CPsystem- H-system- h-system- hydrogen-air/lead battery hybrid system- Ksystem- Lsystem- L*a*b* system- master/slave computer system- p-system- y-system- Δ-system -
10 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
-
11 KB article
A technical document in the Microsoft Knowledge Base accessible through Microsoft.com. -
12 language
ˈlæŋɡwɪdʒ сущ. язык а) (как способ и средство общения) речь to butcher, murder a language ≈ искажать язык to enrich a language ≈ обогащать язык to learn, master a language ≈ учить язык to plan a language ≈ регулировать язык to purify a language ≈ очищать язык (проведение некоторых мер по выведению из языка тех или иных пластов лексики или грамматических форм) to speak (in) a, to use a language ≈ говорить на языке to standardize a language ≈ стандартизировать язык international, world language ≈ международный язык, язык международного общения dead, extinct language ≈ мертвый язык language acquisition ≈ обучение языку language maintenance ≈ поддержание (знания) языка spoken language ≈ разговорный язык written language ≈ письменный язык native language ≈ родной язык foreign language ≈ иностранный язык national language ≈ национальный язык official language ≈ официальный язык second language ≈ второй язык universal language ≈ универсальный язык formal language ≈ язык официального общения idiomatic language ≈ язык, богатый идиомами nontechnical language ≈ нетехнический язык substandard language ≈ язык, не соответствующий языковой норме technical language ≈ технический язык ancient language ≈ древний язык classical language ≈ классический язык creolized language ≈ креолизованный язык living language ≈ живой язык modern language ≈ современный язык natural language ≈ естественный язык trade language ≈ язык торгового общения agglutinative language ≈ агглютинативный язык inflecting language ≈ флективный язык isolating language ≈ изолирующий язык synthetic language ≈ синтетический язык tone language ≈ язык с тоновым ударением б) (как знаковая система) sign language ≈ язык знаков artificial language ≈ искусственный язык finger language ≈ язык жестов, язык глухонемых в) (языковой или литературный стиль;
язык писателя) the language of Shakespeare ≈ язык Шекспира bad, coarse, crude, dirty, foul, nasty, obscene, offensive, unprintable, vile, vulgar language ≈ грубый, грязный, неприличный, оскорбительный, непечатный, вульгарный язык rough, strong, vituperative language ≈ грубый, бранный язык everyday, plain, simple language ≈ простой, повседневный язык flowery language ≈ цветистый язык (богатый метафорами, сравнениями и др. литературными тропами) colloquial, informal language ≈ язык неофициального общения, разговорный язык literary, standard language ≈ литературный язык abusive language ≈ брань, ругательства children's language ≈ детский язык diplomatic language ≈ дипломатический язык polite language ≈ вежливый язык rich language ≈ богатый язык Syn: wording г) (как способ кодирования) object, target language ≈ язык, на который переводят source language ≈ язык, с которого переводят (в машинном переводе) computer language machine language programming language язык - the Russian * русский язык - finger * язык жестов, язык глухонемых - living * живой язык - working * рабочий язык (в международных организациях) - the working *s of this committee are English and Russian рабочими языками этого комитета являются русский и английский - * arts (американизм) обучение чтению, письму, литературе, словесность (школьный предмет) - * shift переключение на другой язык (о говорящем на иностранном языке) - * department отдел переводов (ООН) - a degree in *s диплом об окончании филологического факультета или института иностранных языков - science of * языкознание речь - spoken * разгговорный язык;
устная речь - written * письменость;
письменный язык - articulate * членораздельная речь - literary * литературный язык - substandard * просторечие - he has a great command of * он прекрасно владеет языком, у него прекрасная речь характер языка;
стиль, слог - fine * изысканный язык, цветистый стиль - strong * сильные выражения - bad * сквернословие - * of poetry язык поэзии - business * деловая речь;
язык деловой переписки - * of law юридический язык - diplomatic * дипломатический язык - the * of Shakespeare язык Шекспира (дипломатическое) формулировка( компьютерное) язык программирования ЭВМ > not to speak the same * совершенно не понимать друг друга > they don't speak the same * они говорят на разных языках algorithmic ~ вчт. алгоритмический язык algorithmical ~ вчт. алгоритмическый язык applicative ~ вчт. функциональный язык artifical ~ вчт. искусственный язык artificial ~ вчт. искусственный язык assembler ~ вчт. язык ассемблера assembly ~ вчт. язык ассемблера authoring ~ вчт. язык для автоматизации творческой работы block-structured ~ вчт. язык с блочной структурой boolean-based ~ вчт. язык булевых операторов command ~ вчт. командный язык compiled ~ вчт. транслируемый язык compiler ~ вчт. язык транслятора computer ~ вчт. машинный язык computer-dependent ~ вчт. машинно-зависимый язык computer-oriented ~ вчт. машинно-ориентированный язык computer-sensitive ~ вчт. машинно-зависимый язык constraint ~ вчт. декларативный язык context-free ~ вчт. контекстно-свободный язык conversational ~ вчт. диалоговый язык conversational ~ вчт. язык диалога data definition ~ вчт. язык определения данных data description ~ вчт. язык описания данных data description ~ вчт. язык определения данных data ~ вчт. язык описания данных data manipulation ~ вчт. язык манипулирования данными data-base ~ вчт. язык базы данных data-query ~ вчт. язык запросов declarative ~ вчт. декларативный язык design ~ вчт. язык проектирования end-user ~ вчт. язык конечного пользователя extensible ~ вчт. расширяемый язык ~ язык;
речь;
finger language язык жестов, язык глухонемых foreign ~ иностранный язык formal ~ формальный язык frame ~ вчт. фреймовый язык high-level ~ вчт. язык высокого уровня host ~ вчт. включающий язык human ~ естественный язык language разг. брань (тж. bad language) ;
I won't have any language here прошу не выражаться inflected ~ флективный язык information retrieval ~ информационно- поисковый язык information retrieval ~ информационно-поисковый язык input ~ вчт. входной язык interactive ~ вчт. диалоговый язык interpreted ~ вчт. интерпретируемый язык kernel ~ вчт. базовый язык knowledge representation ~ вчт. язык представления знаний language разг. брань (тж. bad language) ;
I won't have any language here прошу не выражаться ~ стиль;
язык писателя;
the language of Shakespeare язык Шекспира ~ язык ~ язык;
речь;
finger language язык жестов, язык глухонемых ~ стиль;
язык писателя;
the language of Shakespeare язык Шекспира ~ of the case язык судебного делопроизводства legal ~ юридический язык legal ~ язык права low-level ~ вчт. язык низкого уровня machine ~ вчт. машинный язык machine-dependent ~ вчт. машинно-зависимый язык machine-independent ~ вчт. машинно-независимый язык machine-oriented ~ вчт. машинно-ориентрированный язык macro ~ вчт. макроязык macroinstruction ~ вчт. язык макрокоманд memory management ~ вчт. язык управления памятью meta ~ вчт. метаязык minority ~ язык национального меньшинства mnemonic ~ вчт. символический язык national ~ государственный язык native ~ вчт. собственный язык машины natural ~ вчт. естественный язык nonprocedural ~ вчт. непроцедурный язык object ~ вчт. объектный язык official ~ официальный язык original ~ исходный язык parallel ~ вчт. язык параллельного программирования predicate ~ вчт. язык предикатов problem statement ~ вчт. язык постановки задачи problem-oriented ~ вчт. проблемно-ориентированный язык procedural ~ вчт. процедурный язык procedural ~ процедурный язык procedure-oriented ~ вчт. процедурно ориентированный язык production ~ вчт. продукционный язык program ~ вчт. язык программирования programming ~ вчт. язык программирования query ~ вчт. язык запросов register transfer ~ вчт. язык межрегистровых пересылок regular ~ вчт. регулярный язык relational ~ вчт. реляционный язык representation ~ вчт. язык представлений restricted ~ вчт. упрощенная версия языка rule ~ вчт. язык правил rule-based ~ вчт. язык продукционных правил rule-oriented ~ вчт. язык логического программирования script ~ вчт. язык сценариев serial ~ вчт. язык последовательного программирования source ~ вчт. исходный язык source ~ cmp. исходный язык specification ~ вчт. язык спецификаций subset ~ вчт. подмножество языка symbolic ~ вчт. символический язык symbolic ~ comp. символический язык system ~ вчт. системный язык tabular ~ вчт. табличный язык target ~ вчт. выходной язык target ~ выходной язык target ~ объектный язык threaded ~ вчт. язык транслируемый в шитый код typed ~ вчт. широко используемый язык typeless ~ вчт. безтиповый язык unchecked ~ вчт. язык без контроля типов untyped ~ вчт. язык без контроля типов update ~ вчт. язык корректирующих запросов user ~ вчт. язык пользователя world ~ международный языкБольшой англо-русский и русско-английский словарь > language
-
13 advance
1. n продвижение, движение вперёд2. n воен. наступление3. n воен. продвижение от рубежа к рубежу4. n тех. опережение; упреждение, предварение5. n прогресс; успех; улучшениеindustrial advance — индустриальный прогресс, успехи промышленности
6. n повышение, рост7. n аванс; ссудаto pay in advance — платить заранее, выдавать аванс
8. n амер. предварительная подготовка, подготовительные мероприятия9. n заранее подготовленный репортаж10. n предварительно разосланный или розданный текст11. n воен. передовые силыto be in advance — идти вперёд, спешить
12. a передний, передовой, головной13. a предварительный, опережающий; забегающий вперёдadvance booking — резервирование ; предварительный заказ
14. v продвигаться, идти вперёд, наступать15. v воен. наступатьto advance at the double — продвигаться ускоренным шагом; наступать бегом
16. v двигать вперёд, продвигать17. v передвигать стрелки часов вперёд18. v способствовать; приближать, ускорять19. v делать успехи; продвигаться; развиватьсяmake advance — вносить аванс; делать предложение
20. v продвигать21. v повышатьthe bank has advanced the rate of discount to 15% — банк повысил процент учёта до 15%
22. v повышаться, возрастать23. v ссужать деньги24. v платить авансомdomestic cash advance — внутренний "наличный аванс "
25. v выдвигать26. v тех. наращивать27. v физ. опережатьСинонимический ряд:1. prior (adj.) antecedent; anterior; precedent; preceding; prior2. loan (noun) allowance; credit; loan3. progress (noun) advancement; anabasis; furtherance; headway; march; ongoing; proficiency; progress; stride4. progression (noun) approach; course; impetus; lead; moving forward; procedure; procession; progression; way5. promotion (noun) betterment; boost; enlargement; enrichment; gain; hike; improvement; increase; increment; jump; price rise; promotion; raise; rise6. proposal (noun) offer; offering; overture; proposal; proposition; suggestion; tender7. accelerate (verb) accelerate; bring forward; hasten; precipitate; quicken; speed up; update8. adduce (verb) adduce; allege; cite; lay; present9. come (verb) come; come along; get along; get on; march; move; proceed; progress10. improve (verb) flourish; grow; improve; increase; make progress; thrive11. loan (verb) lend; loan; offer12. move forward (verb) go forward; move forward; move on; push forward; set forward13. promote (verb) dignify; elevate; exalt; jump; prefer; profit; promote; raise; upgrade14. propose (verb) bring to view; broach; deliver; introduce; propose; propound; submit; suggest15. rise (verb) ascend; climb; mount; rise16. urge (verb) better; encourage; forward; foster; further; serve; urge17. before (other) ahead; before; beyond; going before; precedent; preceding; prepublicationАнтонимический ряд:degrade; demote; depress; halt; hesitate; hinder; oppose; recall; recede; retard; retreat; retrogress; return; stand; stop; withhold
См. также в других словарях:
Knowledge base — A knowledge base (abbreviated KB, kb or Δ[1][2]) is a special kind of database for knowledge management, providing the means for the computerized collection, organization, and retrieval of knowledge. Also a collection of data representing related … Wikipedia
Technical support — For technical support in finance, see Support and resistance. AT T Mobility provides technical support for some of its mobile phones through Device Support Centers. Technical support or tech support refers to a range of services by which… … Wikipedia
Knowledge Management — (KM) comprises a range of practices used by organisations to identify, create, represent, distribute and enable adoption of what it knows, and how it knows it. It has been an established discipline since 1995 [Stankosky, 2005] with a body of… … Wikipedia
Knowledge Centered Support — (KCS) is a methodology and a set of practices and processes that focuses on knowledge as a key asset of the customer/technical support organization. It was developed in 1992 by the Consortium for Service Innovation… … Wikipedia
Knowledge Transfer Partnerships — (KTP) is a part government funded programme to encourage collaboration between businesses and universities in the United Kingdom. KTP was launched in 2003, replacing the Teaching Company Scheme (TCS). The programme is funded by some 17 public… … Wikipedia
Knowledge integration — is the process of synthesizing multiple knowledge models (or representations) into a common model (representation).Compared to information integration, which involves merging information having different schemas and representation models,… … Wikipedia
base — A technical analysis tool. A chart pattern depicting the period when the supply and demand of a certain stock are in relative equilibrium, resulting in a narrow trading range. The merging of the support level and resistance level. Bloomberg… … Financial and business terms
Technical diving — Technical diver during a decompression stop. Technical diving (sometimes referred to as Tec diving) is a form of scuba diving that exceeds the scope of recreational diving (although the vast majority of technical divers dive for recreation and… … Wikipedia
Sheffield Central Technical School — The former Sheffield Central Technical School (CTS) was housed in the collection of buildings now called Leopold Square in the city centre of Sheffield England. The complex of buildings that were home to the school is bounded by Leopold Street,… … Wikipedia
Technical intelligence — In a pure military context, Technical Intelligence (TECHINT) is intelligence about weapons and equipment used by the armed forces of foreign nations (often referred to as foreign materiel).The related term, scientific and technical intelligence,… … Wikipedia
Technical analysis — Financial markets Public market Exchange Securities Bond market Fixed income Corporate bond Government bond Municipal bond … Wikipedia