Перевод: с английского на русский

с русского на английский

возникает

  • 1 напряжение возникает

    Большой англо-русский и русско-английский словарь > напряжение возникает

  • 2 перенос возникает

    Большой англо-русский и русско-английский словарь > перенос возникает

  • 3 arises

    Возникает

    Большой англо-русский и русско-английский словарь > arises

  • 4 emanates

    возникает
    проистекает

    Новый англо-русский словарь > emanates

  • 5 ensues

    возникает
    проистекает

    Новый англо-русский словарь > ensues

  • 6 recurs

    возникает
    проистекает

    Новый англо-русский словарь > recurs

  • 7 emanates

    возникает
    проистекает

    English-Russian smart dictionary > emanates

  • 8 ensues

    возникает
    проистекает

    English-Russian smart dictionary > ensues

  • 9 recurs

    возникает
    проистекает

    English-Russian smart dictionary > recurs

  • 10 RP

    1. частота ремонта
    2. удаленная точка
    3. точка, в которой пересекаются источники многоадресной передачи и члены групп
    4. релейная защита
    5. рекомендуемые технологии
    6. рекомендуемые методы
    7. реактивная мощность (вар)
    8. реактивная мощность
    9. радиологическая защита
    10. проект ядерного реактора
    11. программа обеспечения надёжности
    12. правила выполнения работ
    13. относительное (ксеноновое) отравление ядерного реактора
    14. небуферизованный отчет (функциональная связь)
    15. исполнитель маршрутизации
    16. армированный пластик

     

    армированный пластик

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    исполнитель маршрутизации
    Вычислительный объект, который связан с зоной маршрутизации и обеспечивает абстрактное представление услуги маршрутизации для зоны маршрутизации (МСЭ-T G.709/ Y.1353).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    относительное (ксеноновое) отравление ядерного реактора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    правила выполнения работ

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    программа обеспечения надёжности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    проект ядерного реактора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    радиологическая защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    реактивная мощность
    Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника.
    [ ГОСТ Р 52002-2003]

    ПРИРОДА РЕАКТИВНОЙ МОЩНОСТИ

    Реактивная мощность возникает только в сетях переменного тока.
    Реактивная мощность имеет следующую природу.
    При прохождении по проводнику (по электричекой цепи) переменного тока возникает переменный магнитный поток, изменяющийся с частотой протекающего тока. Вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная электродвижущая сила (эдс), которую называют эдс самоиндукции.

    Эдс самоиндукции имеет реактивный характер. Это означает, что при увеличении тока в цепи эдс самоиндукции будет направлена против эдс источника питания и таким образом будет противодействовать увеличению тока. И наоборот, при уменьшении тока в цепи эдс самоиндукции будет поддерживать убывающий ток (правило Ленца).

    В цепи переменного тока непрерывно возникает эдс самоиндукции, поскольку ток в цепи непрерывно изменяется.

    Эдс самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (т. е. от индуктивности элементов этой цепи, т. е. от числа витков, наличия стальных сердечников).

    ДОПИСАТЬ

    Недопустимые, нерекомендуемые

    Тематики

    Близкие понятия

    Действия

    Синонимы

    Сопутствующие термины

    EN

     

    реактивная мощность (вар)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    рекомендуемые методы

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    рекомендуемые технологии

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    защита
    Совокупность устройств, предназначенных для обнаружения повреждений или других анормальных режимов в энергосистеме, отключения повреждения, прекращения анормальных режимов и подачи команд или сигналов.
    Примечания:
    1) Термин «защита» является общим термином для устройств защиты или систем защиты.
    2) Термин «защита» может употребляться для описания защиты целой энергосистемы или защиты отдельной установки в энергосистеме, например: защита трансформатора, защита линии, защита генератора.
    3) Защита не включает в себя оборудование установки энергосистемы, предназначенное, например, для ограничения перенапряжений в энергосистеме. Однако, она включает в себя оборудование, предназначенное для управления отклонениями напряжения или частоты в энергосистеме, такое как оборудование для автоматического управления реакторами для автоматической разгрузки и т.п.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    релейная защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    релейная защита

    релейная защита электрических систем
    Совокупность устройств (или отдельное устройство), содержащая реле и способная реагировать на короткие замыкания (КЗ) в различных элементах электрической системы — автоматически выявлять и отключать поврежденный участок. В ряде случаев Р. з. может реагировать и на др. нарушения нормального режима работы системы (например, на повышение тока, напряжения) — включать сигнализацию или (реже) отключать соответствующий элемент системы. КЗ — основной вид повреждений в электрических системах как по частоте возникновения, так и по масштабам отрицательных последствий. При КЗ наступает резкое и неравномерное понижение напряжения в системе и значительное увеличение тока в отдельных её элементах, что в конечном счёте может привести к прекращению электроснабжения потребителей и разрушению оборудования. Применение Р. з. сводит вредные последствия КЗ к минимуму.

    Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.

    Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.

    Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов "распознавания" защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.

    Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).

    4608


    На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.

    4609

    В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.

    В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце "своего" и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
    Э. П. Смирнов.
    [БСЭ, 1969-1978]

    НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ

    В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
    Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
    Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.

    Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
    Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
    Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

    Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
    Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.).

    В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
    Первоначально в качестве подобной защиты применялись плавкие предохранители. Однако по мере роста мощности и напряжения электрических установок и усложнения их схем коммутации такой способ защиты стал недостаточным, в силу чего были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

    Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.
    При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

    При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.
    В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.

    К основным устройствам такой автоматики относятся:

    • автоматы повторного включения (АПВ),
    • автоматы включения резервных источников питания и оборудования (АВР),
    • автоматы частотной разгрузки (АЧР).

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

     

    точка, в которой пересекаются источники многоадресной передачи и члены групп
    Передаваемые из источников многоадресной передачи пакеты распространяются через маршрутизатор RP в начале многоадресной передачи (МСЭ-Т J.283).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    удаленная точка
    Опорная точка, в которой выходной сигнал функции приемника завершения трассы на окончании двусторонней трассы подается на вход ее функции источника, с целью передачи информации на удаленный конец. (МСЭ-T G.806).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    частота ремонта

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > RP

  • 11 imaginary power

    1. реактивная мощность
    2. полная мощность

     

    полная мощность
    Величина, равная произведению действующих значений электрического напряжения и электрического тока на входе двухполюсника.
    [ ГОСТ Р 52002-2003]

    полная мощность
    Произведение действующих значений напряжения и тока, относящихся к одному и тому же входу
    [ОСТ 45.55-99]

    кажущаяся мощность

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Недопустимые, нерекомендуемые

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    реактивная мощность
    Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника.
    [ ГОСТ Р 52002-2003]

    ПРИРОДА РЕАКТИВНОЙ МОЩНОСТИ

    Реактивная мощность возникает только в сетях переменного тока.
    Реактивная мощность имеет следующую природу.
    При прохождении по проводнику (по электричекой цепи) переменного тока возникает переменный магнитный поток, изменяющийся с частотой протекающего тока. Вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная электродвижущая сила (эдс), которую называют эдс самоиндукции.

    Эдс самоиндукции имеет реактивный характер. Это означает, что при увеличении тока в цепи эдс самоиндукции будет направлена против эдс источника питания и таким образом будет противодействовать увеличению тока. И наоборот, при уменьшении тока в цепи эдс самоиндукции будет поддерживать убывающий ток (правило Ленца).

    В цепи переменного тока непрерывно возникает эдс самоиндукции, поскольку ток в цепи непрерывно изменяется.

    Эдс самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (т. е. от индуктивности элементов этой цепи, т. е. от числа витков, наличия стальных сердечников).

    ДОПИСАТЬ

    Недопустимые, нерекомендуемые

    Тематики

    Близкие понятия

    Действия

    Синонимы

    Сопутствующие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > imaginary power

  • 12 circulating power

    1. реактивная мощность

     

    реактивная мощность
    Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника.
    [ ГОСТ Р 52002-2003]

    ПРИРОДА РЕАКТИВНОЙ МОЩНОСТИ

    Реактивная мощность возникает только в сетях переменного тока.
    Реактивная мощность имеет следующую природу.
    При прохождении по проводнику (по электричекой цепи) переменного тока возникает переменный магнитный поток, изменяющийся с частотой протекающего тока. Вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная электродвижущая сила (эдс), которую называют эдс самоиндукции.

    Эдс самоиндукции имеет реактивный характер. Это означает, что при увеличении тока в цепи эдс самоиндукции будет направлена против эдс источника питания и таким образом будет противодействовать увеличению тока. И наоборот, при уменьшении тока в цепи эдс самоиндукции будет поддерживать убывающий ток (правило Ленца).

    В цепи переменного тока непрерывно возникает эдс самоиндукции, поскольку ток в цепи непрерывно изменяется.

    Эдс самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (т. е. от индуктивности элементов этой цепи, т. е. от числа витков, наличия стальных сердечников).

    ДОПИСАТЬ

    Недопустимые, нерекомендуемые

    Тематики

    Близкие понятия

    Действия

    Синонимы

    Сопутствующие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > circulating power

  • 13 reactive power

    1. реактивная мощность (вар)
    2. реактивная мощность

     

    реактивная мощность
    Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника.
    [ ГОСТ Р 52002-2003]

    ПРИРОДА РЕАКТИВНОЙ МОЩНОСТИ

    Реактивная мощность возникает только в сетях переменного тока.
    Реактивная мощность имеет следующую природу.
    При прохождении по проводнику (по электричекой цепи) переменного тока возникает переменный магнитный поток, изменяющийся с частотой протекающего тока. Вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная электродвижущая сила (эдс), которую называют эдс самоиндукции.

    Эдс самоиндукции имеет реактивный характер. Это означает, что при увеличении тока в цепи эдс самоиндукции будет направлена против эдс источника питания и таким образом будет противодействовать увеличению тока. И наоборот, при уменьшении тока в цепи эдс самоиндукции будет поддерживать убывающий ток (правило Ленца).

    В цепи переменного тока непрерывно возникает эдс самоиндукции, поскольку ток в цепи непрерывно изменяется.

    Эдс самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (т. е. от индуктивности элементов этой цепи, т. е. от числа витков, наличия стальных сердечников).

    ДОПИСАТЬ

    Недопустимые, нерекомендуемые

    Тематики

    Близкие понятия

    Действия

    Синонимы

    Сопутствующие термины

    EN

     

    реактивная мощность (вар)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > reactive power

  • 14 wattless power

    1. реактивная мощность

     

    реактивная мощность
    Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника.
    [ ГОСТ Р 52002-2003]

    ПРИРОДА РЕАКТИВНОЙ МОЩНОСТИ

    Реактивная мощность возникает только в сетях переменного тока.
    Реактивная мощность имеет следующую природу.
    При прохождении по проводнику (по электричекой цепи) переменного тока возникает переменный магнитный поток, изменяющийся с частотой протекающего тока. Вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная электродвижущая сила (эдс), которую называют эдс самоиндукции.

    Эдс самоиндукции имеет реактивный характер. Это означает, что при увеличении тока в цепи эдс самоиндукции будет направлена против эдс источника питания и таким образом будет противодействовать увеличению тока. И наоборот, при уменьшении тока в цепи эдс самоиндукции будет поддерживать убывающий ток (правило Ленца).

    В цепи переменного тока непрерывно возникает эдс самоиндукции, поскольку ток в цепи непрерывно изменяется.

    Эдс самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (т. е. от индуктивности элементов этой цепи, т. е. от числа витков, наличия стальных сердечников).

    ДОПИСАТЬ

    Недопустимые, нерекомендуемые

    Тематики

    Близкие понятия

    Действия

    Синонимы

    Сопутствующие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > wattless power

  • 15 conscience

    n
    1. совесть;
    2. сознание; форма обобщенного отражения действительности;
    3.

    conscience, public - общественное сознание;

    4. сознательность; высокая мораль;
    5. область психики, включающая ощущение, память, мысленное восприятие;

    conscience, class - классовое сознание; возникает как результат идентификации индивидов с представителями определенного класса;

    conscience, daily - обыденное сознание; сознание людей в повседневной жизни;

    conscience, false - ложное сознание; возникает как результат идентификации индивидов с социальной группой, к которой он фактически не принадлежит;

    conscience, group - групповое сознание; возникает как результат идентификации индивидов с определенной социальной группой;

    conscience, mass - массовое сознание; отражение массами различных сторон социальной реальности;

    conscience, social - общественное сознание; отражение в духовной деятельности людей интересов конкретных социальных групп, этносов, общества в целом; 6) в психоанализе - компонент психики, включающий все, что индивид осознает (в противоположность предсознательному и бессознательному); 7) состояние человека, позволяющее ему отдавать себе отчет в своих действиях.

    * * *
    сущ.
    1) совесть;
    2) сознание; форма обобщенного отражения действительности;
    3) сознательность; высокая мораль;
    4) область психики, включающая ощущение, память, мысленное восприятие;

    Англо-русский словарь по социологии > conscience

  • 16 rise

    1. I
    1) too weak to rise слишком слаб, чтобы встать /подняться/; he rose and walked over to greet me он встал /поднялся/ и подошел ко мне поздороваться
    2) what tune do you usually rise? в котором часу /когда/ вы обычно встаете;
    3) a plane (a balloon, a lift, etc.) rises самолет и т.д. поднимается; bubbles (the fish, etc.) rise пузырьки и т.д. поднимаются (на поверхность); the lake rose and spread over the fields озеро вышло из берегов и затопило поля; the mercury /the glass, the barometer/ is rising барометр поднимается the mist /the fog/ is rising туман поднимается /рассеивается/; the bread has risen тесто поднялось /подошло/; the bread won't rise тесто никак не подходит /не поднимается/; yeast makes dough rise от дрожжей тесто поднимается; blisters rise волдыри появляются; what time does the sun rise? в котором часу /когда/ восходит солнце?
    4) prices and costs (demands, etc.) rise цены и т.д. растут; his anger (one's wrath, one's temper, heat, fever, etc.) rises его гнев /раздражение/ и т.д. растет /усиливается/; at this news my spirits rose от этой новости у меня поднялось /улучшилось/ настроение; his temperature is rising у него поднимается /растет/ температура; her voice rose она повысила голос; a wind (a breeze, a gale, etc.) rises ветер и т.д. усиливается; his colour rose он покраснел
    5) the people rose народ восстал
    6) where does the Nile rise? откуда берет начало /где начинается/ река Нил?; a storm began to rise начала разыгрываться буря; a rumour rose возник слух; a feud rose разгорелась вражда
    7) rise and come forward in the world приобретать вес и влияние в обществе; a man likely to rise человек с будущим, человек, который далеко пойдет
    2. II
    1) rise in some manner rise abruptly (reluctantly, majestically, unanimously, obediently, etc.) резко /внезапно/ и т.д. вставать (на ноги) /подниматься/; he fell never to riseI again он упал и больше уже не поднялся
    2) rise at some time rise early (very early, late, etc.) вставать рано и т.д.; the sun hasn't risen yet солнце еще не взошло
    3) rise in some manner the ground rose sharply поверхность земли /почва/ резко /круто/ поднялась the road began rising gradually дорога начала постепенно подниматься, начался пологий подъем (на дороге); the smoke from our fire rose straight up in the still air в неподвижном воздухе дым от нашего костра поднимался прямо вверх; the river is rising fast вода в реке быстро подымается /прибывает/; rise at some time new buildings are rising every day с каждым днем растут /подымаются/ новые здания; weeds rose overnight за ночь выросли сорняки; the fog rose at last наконец туман рассеялся; the curtain's already risen занавес уже поднялся, спектакль уже начался
    4) rise at some time the news made our spirits rise once again от этого сообщения у нас снова испортилось настроение; his passion rose from day to day с каждым днем страсть его становилась сильней
    3. III
    1) rise so many times they say a drowning man rises three times говорят, что утопающий всплывает /поднимается/ на поверхность три раза
    2) rise some distance the tree rises 20 feet дерево достигает высоты в 20 футов; the mountain rises a thousand feet эта гора возвышается на тысячу футов; the river (the flood, etc.) lias risen five feet вода в реке и т.д. поднялась на пять футов; rise for some amount rise two feet (one per cent, etc.) возрастать /увеличиваться/ на два фута и т.д.
    3) rise to some age usually in the Continuous she is rising twelve ей скоро будет двенадцать
    4. IV
    1) rise smth. at some time he did not rise a fish (a bird, etc.) all day за весь день он не поймал ни одной рыбы и т.д.
    2) rise some amount [for smth.] sugar has risen a penny a pound сахар подорожал на пенни за фунт
    5. XIII
    1) rise to do smth. rise to welcome smb. (to applaud, to answer, to help them, etc.) встать /подняться/, чтобы приветствовать кого-л. и т.д.
    2) rise to be smb. rise to be a general дослужиться до генерала, стать генералом; rise to be a partner (deputy to the Reichstag, President of the Republic, etc.) выдвинуться и стать компаньоном и т.д.
    6. XV
    1) the moon rose red взошла красная луна
    2) the morning rose fair and bright наступило хорошее утро
    7. XVI
    1) rise from smth. rise from one's knees (from one's feet, from a chair, etc.) подняться с колен и т.д., she was unable to rise from her seat она не смогла /была не в состоянии/ встать с места; rise from [the] table встать из-за стола, закончить еду; rise from one's dinner встать из-за стола после обеда; rise from the book with a feeling of satisfaction встать после чтения книги с чувством удовлетворения; he looks as though he had risen from the grave он выглядит так, словно встал из гроба; rise off /from/ smth. a bird (an aeroplane, an airship, etc.) rises from /off/ the ground птица и т.д. поднимается /взлетает/ с земли; smoke (vapour, mist, etc.) rises from the valleys дым и т.д. поднимается из долин; bubbles rose from the bottom of the lake со дна озера поднимались пузырьки; rise in (to) smth. a bird (an airship, a kite, the smoke, etc.) rises in (to) the air (into the sky, etc.) птица и т.д. поднимается в воздух и т.д.; the sun rises in the east солнце всходит на востоке; cork rises in water в воде пробка не тонет /всплывает наверх/; rise over smth. the sun rose over the wood солнце взошло /поднялось/ над лесом; rise on smth. the horse rose on its hind legs лошадь встала на дыбы; the hair rose on his head у него волосы встали дыбом; rise to smth. rise to one's feet встать /подняться/ на ноги; rise to one's knees подняться на колени (из лежачего положения); rise to the surface всплывать на поверхность
    2) rise at some time rise at dawn (in the morning, etc.) вставать /просыпаться/ на рассвете и т.д.; he rose at 7 and went to bed at 10 он встал в семь и лег спать в десять; rise with smth. rise with the sun вставать с восходом солнца /= с петухами/
    3) rise in (on, behind, above, etc.) smth., smb. rise in the foreground (in the distance, behind the school, out of a flat plain, from the very waterside, etc.) возвышаться /подниматься/ на переднем плане и т.д.; rise above the neighbouring peaks (above sea-level, above the sea, etc.) возвышаться над соседними вершинами и т.д.; houses are rising on the edge of town на краю города вырастают /поднимаются/ дома; a range of hills rose on our left слева от нас тянулась гряда холмов; a hill rises behind the house позади дома возвышается холм; the immense building rose before our eyes огромное здание подымалось у нас перед глазами: a picture (an idea, a thought, a lovely vision, a scene, etc.) rises before /in/ the /one's/ mind (in /before, within/ smb., etc.) в воображении и т.д. возникает картина и т.д., rise to smth. rise to a thousand feet (to a height /to an altitude/ of 60 feet, etc.) подниматься /возвышаться/ на тысячу футов и т.д.; rise to the highest level подняться на высший /самый высокий/ уровень; the tears rose to his eyes на глазах у него появились слезы; rise in some direction a road (a path, a line, a surface, the land, etc.) rises in this or that direction дорога и т.д. поднимается в этом или том направлении; a stately castle rose to the west of the town к западу от города возвышался величественный замок; a blister has risen on my heel на пятке у меня вскочил волдырь; rise at some time the curtain will rise at 8 занавес поднимется /откроется/ в восемь часов
    4) rise after smth. the river is rising after the heavy rain после сильного дождя уровень воды в реке поднимается /повышается, растет/; rise to smth. rise to six shillings the ounce (to l
    3)
    to a much higher price, etc.) возрастя /подняться/ в цене до шести шиллингов за унцию и т.д.; sugar has risen to twice its old price цена на сахар поднялась вдвое; his voice rose to a shriek голос его сорвался на крик; his language does not rise to the dignity of poetry его язык не достигает уровня подлинного поэтического языка; rise to the occasion оказаться на высоте положения; she always rises to an emergency в трудные моменты она умеет собраться; rise to one's responsibilities справиться со своими обязанностями; rise to the requirements оказаться способным отвечать предъявляемым требованиям; rise beyond smth. his expense rose beyond his expectations расходы у него выросли сверх его ожиданий; rise in smth. rise in anger (in excitement, in joy, etc.) подниматься /повышаться/ в гневе /раздражении/ и т.д. (о голосе); this author's style rises in force of expression стиль этого автора становится все более выразительным; rise with (at) smth. interest rises with each act of the play с каждым актом интерес к пьесе возрастает; his anger rose at that remark при этих словах в нем вспыхнул гнев; rise above smth. rise above prejudices (above petty jealousies, above mediocrity, above events, above the commonplace, etc.) быть выше предрассудков и т.д. || rise to /at/ the /a/ bait /to the fly/ попасться на удочку, клюнуть на что-л.; rise to it поддаться на провокацию
    5) rise in smth. rise in rebellion /in revolt/ поднять восстание; rise in revolution начать революцию; rise against smth., smb. rise against oppression (against nations, against an oppressor, against the government, against the tyrant, etc.) восставать против угнетения и т.д.; they rose against their cruel rulers они восстали /подняли восстание/ против своих жестоких правителей; rise against a resolution (against a bill, etc.) выступать против резолюции и т.д.; my whole soul /being/ rises against it все мое существо восстает против этого; rise at smth. my gorge rises at the thought при одной лишь мысли об этом я чувствую отвращение
    6) rise from (in) smth. the river rises from a spring (in the hills, in its bed, in a mountain, etc.) река берет свое начало из родника и т.д.; a quarrel (trouble, a difficulty, etc.) rises from a misunderstanding (from misapprehension, from mere trifles, etc.) ссора и т.д. возникает из-за того, что люди не понимают друг друга и т.д.; a sound of laughter rises in the next room в соседней комнате возникает /раздается/ смех; Tokyo rose from the ashes Токио поднялся из пепла; rise between smb. a quarrel rose between them между ними возникла ссора
    7) rise to smth. rise to a top position (to premiership, to great power, to supremacy, to a height of prosperity, to the rank of a first-class military power, etc.) достичь ведущего положения и т.д.; rise to greatness стать великим человеком /знаменитостью/; he rose to importance at an early age он выдвинулся еще в молодые годы; he rose to eminence at Paris as a journalist and author в Париже он стал знаменитым журналистом и писателем; he rose to international fame almost overnight он внезапно приобрел мировую известность; rise from smth. rise from a low position (from nothing, etc.) подняться из низов и т.д., выбиться в люди и т.д.; rise from the ranks стать офицером; rise from smb., smth. to smb., smth. rise from errand boy to president ( from small beginnings to take one's place among the first merchants of the city, from obscurity to national fame, etc.) подняться /продвинуться/ от рассыльного до президента и т.д.; rise in smth. rise in status занять более высокое положение; rise in.the world преуспеть, выбиться в люди; rise [immensely] in one's (smb.'s) estimation (in one's (smb.'s) opinion, in the scale of usefulness, etc.) [значительно] вырасти в своих собственных (в чьих-л.) глазах и т.д.; rise by smth. rise by merit only продвинуться в жизни только благодаря своем [собственным] заслугам
    8. XIX1
    rise like smth.
    1) tile building rose like a dream здание возникло, как сновидение
    2) rise like a phoenix from its ashes возродиться, как [птица] феникс из пепла
    9. XXI1
    rise smth. in some time the river rose thirty feet in eight hours за восемь часов вода в реке поднялась на тридцать футов; rise smth. in (to) smth. the Eiffel Tower rises 100 feet in (to) the air Эйфелева башня поднимается ввысь на сто футов
    10. XXV
    rise as...
    1) the men all rose as we came in когда мы вошли, все мужчины встали
    2) the path rises as it approaches the woods (the house) у леса (у дома) дорога подымается /идет вверх/; his voice rose as he saw their faces lengthening голос у него зазвучал громче, когда он увидел, как у них вытягиваются лица

    English-Russian dictionary of verb phrases > rise

  • 17 fault

    1. ток повреждения
    2. сверхток
    3. сброс
    4. сбой
    5. разлом
    6. повреждение (цепи, линии, устройства)
    7. повреждение (во взрывозащите)
    8. повреждение
    9. ошибка
    10. отказ
    11. ненормальный режим работы
    12. неисправность
    13. неисправное состояние
    14. нарушение
    15. короткое замыкание
    16. дизъюктивное нарушение
    17. дефект
    18. выход из строя
    19. аварийное сообщение

     

    аварийное сообщение
    -

    Параллельные тексты EN-RU

    The system offers diagnostic and statistics functions and configurable warnings and faults, allowing better prediction of component maintenance, and provides data to continuously improve the entire system.
    [Schneider Electric]

    Система (управления электродвигателем) предоставляет оператору различную диагностическую и статистическую информацию и позволяет сконфигурировать предупредительные и аварийные сообщения, что дает возможность лучше планировать техническое обслуживание и постоянно улучшать систему в целом.
    [Перевод Интент]

    Various alarm notifications are available to indicate a compromised security state such as forced entry and door position.
    [APC]

    Устройство может формировать различные аварийные сообщения о нарушении защиты, например, о несанкционированном проникновении или об изменении положения двери.
    [Перевод Интент]


    Тематики

    EN

     

    выход из строя

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    выход системы из строя
    вследствие отказа аппаратного или программного обеспечения либо средств связи
    [Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. © 1998-2007 гг., Э.М. Пройдаков, Л.А. Теплицкий. 13,8 тыс. статей.]

    выход из строя
    -

    [Интент]

    Единичные выходы из строя в процессе испытаний элементов электронной техники (микросхем, электровакуумных и полупроводниковых приборов, конденсаторов, резисторов, кварцевых резонаторов и т.д.), а также ламп накаливания и предохранителей не могут служить основанием для прекращения испытаний, если это не вызвано недостатком конструкции прибора.

    При повторных выходах из строя тех же элементов испытания следует считать неудовлетворительными.
    [ ГОСТ 24314-80]

    При выходе из строя отдельно стоящих вентиляторов на двигателях мельниц, дымососов, мельничных вентиляторов, вентиляторов первичного воздуха и т.д. необходимо при первой возможности, но не позже чем его допускается заводской инструкцией, отключить двигатель 6 кВ для ремонта вентилятора охлаждения двигателя.
    [РД 34.20.565]

    Судовая электрическая сеть, предназначенная для передачи электроэнергии при выходе из строя линий электропередачи силовой сети или исчезновении напряжения
    [ ГОСТ 22652-77]

    Тематики

    Синонимы

    EN

     

    дизъюктивное нарушение
    Относительное перемещение частей пластов вдоль плоскости их разрыва (геол.)
    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    EN

     

    короткое замыкание
    Случайное или намеренное соединение резистором или импедансом со сравнительно низким сопротивлением двух или более точек в цепи, нормально находящихся под различным напряжением.
    Случайное или намеренное низкоимпедансное или низкоомное соединение двух или более точек электрической цепи, нормально находящихся под разными электрическими потенциалами. (вариант компании Интент)
    МЭК 60050(151-03-41) [2].
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    короткое замыкание
    Случайный или преднамеренный проводящий путь между двумя или более проводящими частями, принуждающий различия электрических потенциалов между этими проводящими частями становиться равными или близкими к нулю.
    Короткое замыкание обычно возникает в аварийном режиме электроустановки здания при повреждении изоляции токоведущих частей, находящихся под разными электрическими потенциалами, и возникновении между этими частями электрического контакта, имеющего пренебрежимо малое полное сопротивление. Короткое замыкание также может быть следствием ошибочных действий, совершаемых персоналом при монтаже и эксплуатации электроустановки здания, когда соединяют между собой проводящие части, которые в нормальном режиме находятся под разными электрическими потенциалами.
    Короткое замыкание характеризуется током короткого замыкания, который, многократно превышая номинальный ток электрической цепи, может вызвать возгорание её элементов и явиться причиной пожара в здании. Поэтому в электроустановках зданий всегда проводят мероприятия, направленные на снижение вероятности возникновения короткого замыкания, а также выполняют защиту от короткого замыкания с помощью устройств защиты от сверхтока.
    [ http://www.volt-m.ru/glossary/letter/%CA/view/27/]

    короткое замыкание
    Случайное или преднамеренное соединение двух или более проводящих частей, вызывающее снижение разности электрических потенциалов между этими частями до нуля или значения, близкого к нулю.
    [ ГОСТ Р МЭК 60050-195-2005]

    короткое замыкание
    КЗ

    замыкание, при котором токи в ветвях электроустановки, примыкающих к месту его возникновения, резко возрастают, превышая наибольший допустимый ток продолжительного режима
    [Методические указания по защите распределительных электрических сетей напряжением 0,4-10 кВ от грозовых перенапряжений]

    EN

    short-circuit
    accidental or intentional conductive path between two or more conductive parts forcing the electric potential differences between these conductive parts to be equal to or close to zero
    Source: 151-03-41 MOD
    [IEV number 195-04-11]

    FR

    court-circuit
    chemin conducteur accidentel ou intentionnel entre deux ou plusieurs parties conductrices forçant les différences de potentiel électriques entre ces parties conductrices à être nulles ou proches de zéro
    Source: 151-03-41 MOD
    [IEV number 195-04-11]

    Параллельные тексты EN-RU

    A short-circuit is a low impedance connection between two conductors at different voltages.
    [ABB]

    Короткое замыкание представляет собой низкоомное соединение двух проводников, находящихся под разными потенциалами.
    [Перевод Интент]

    Тематики

    Синонимы

    • КЗ

    EN

    DE

    FR

     

    нарушение
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    fault
    Another term for offense.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    неисправное состояние
    Состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации.
    [ ГОСТ 27.002-89]
    [ОСТ 45.152-99]

    неисправное состояние
    неисправность

    По ГОСТ 13377-75
    [ ГОСТ 24166-80]

    неисправное состояние
    Состояние системы тревожной сигнализации, препятствующее реагированию системы на наличие опасности в соответствии с требованиями стандартов.
    [ ГОСТ Р 50775-95]
    [МЭК 839-1-1-88]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

     

    неисправность
    отказ в работе

    Состояние машины, характеризующееся неспособностью выполнять заданную функцию, исключая случаи проведения профилактического технического обслуживания, других запланированных действий или недостаток внешних ресурсов (например, отключение энергоснабжения).
    Примечание 1
    Неисправность часто является результатом повреждения самой машины, однако она может иметь место и без повреждения.
    Примечание 2
    На практике термины «неисправность», «отказ» и «повреждение» часто используются как синонимы.
    [ ГОСТ Р ИСО 12100-1:2007]

    неисправность

    Состояние оборудования, характеризуемое его неспособностью выполнять требуемую функцию, исключая профилактическое обслуживание или другие планово-предупредительные действия, а также исключая неспособность выполнять требуемую функцию из-за недостатка внешних ресурсов.
    Примечание - Неисправность часто является следствием отказа самого оборудования, но может существовать и без предварительного отказа.
    [ГОСТ ЕН 1070-2003]

    неисправность
    Состояние технического объекта (элемента), характеризуемое его неспособностью выполнять требуемую функцию, исключая периоды профилактического технического обслуживания или другие планово-предупредительные действия, или в результате недостатка внешних ресурсов.
    Примечания
    1 Неисправность является часто следствием отказа самого технического объекта, но может существовать и без предварительного отказа.
    2 Английский термин «fault» и его определение идентичны данному в МЭК 60050-191 (МЭС 191-05-01) [1]. В машиностроении чаще применяют французский термин «defaut» или немецкий термин «Fehler», чем термины «panne» и «Fehlzusstand», которые употребляют с этим определением.
    [ ГОСТ Р ИСО 13849-1-2003]

    Тематики

    EN

    DE

    FR

     

    ненормальный режим работы электротехнического изделия
    Режим работы электротехнического изделия (электротехнического устройства, электрооборудования), при котором значение хотя бы одного из параметров режима выходит за пределы наибольшего или наименьшего рабочего значения.
    [ ГОСТ 18311-80]


    К ненормальным относятся режимы, связанные с отклонениями от допустимых значений величин тока, напряжения и частоты, опасные для оборудования или устойчивой работы энергосистемы.

    Рассмотрим наиболее характерные ненормальные режимы.

    а) Перегрузка оборудования, вызванная увеличением тока сверх номинального значения. Номинальным называется максимальный ток, допускаемый для данного оборудования в течение неограниченного времени.
    Если ток, проходящий по оборудованию, превышает номинальное значение, то за счет выделяемого им дополнительного тепла температура токоведущих частей и изоляции через некоторое время превосходит допустимую величину, что приводит к ускоренному износу изоляции и ее повреждению. Время, допустимое для прохождения повышенных токов, зависит от их величины. Характер этой зависимости показан на рис. 1-3 и определяется конструкцией оборудования и типом изоляционных материалов. Для предупреждения повреждения оборудования при его перегрузке необходимо принять меры к разгрузке или отключению оборудования.

    б) Качания в системах возникают при выходе из синхронизма работающих параллельно генераторов (или электростанций) А и В (рис. 1-2, б). При качаниях в каждой точке системы происходит периодическое изменение («качание») тока и напряжения. Ток во всех элементах сети, связывающих вышедшие из синхронизма генераторы А и В, колеблется от нуля до максимального значения, во много раз превышающего нормальную величину. Напряжение падает от нормального до некоторого минимального значения, имеющего разную величину в каждой точке сети. В точке С, называемой электрическим центром качаний, оно снижается до нуля, в остальных точках сети напряжение падает, но остается больше нуля, нарастая от центра качания С к источникам питания А и В. По характеру изменения тока и напряжения качания похожи на к. з. Возрастание тока вызывает нагревание оборудования, а уменьшение напряжения нарушает работу всех потребителей системы. Качание — очень опасный ненормальный режим, отражающийся на работе всей энергосистемы.

    в) Повышение напряжения сверх допустимого значения возникает обычно на гидрогенераторах при внезапном отключении их нагрузки. Разгрузившийся гидрогенератор увеличивает частоту вращения, что вызывает возрастание э. д. с. статора до опасных для его изоляции значений. Защита в таких случаях должна снизить ток возбуждения генератора или отключить его.
    Опасное для изоляции оборудования повышение напряжения может возникнуть также при одностороннем отключении или включении длинных линий электропередачи с большой емкостной проводимостью.
    Кроме отмеченных ненормальных режимов, имеются и другие, ликвидация которых возможна при помощи релейной защиты.

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

     

    отказ
    Нарушение способности оборудования выполнять требуемую функцию.
    Примечания
    1. После отказа оборудование находится в неисправном состоянии.
    2. «Отказ» является событием, в отличие от «неисправности», которая является состоянием.
    3. Это понятие, как оно определено, не применяют к оборудованию объекту, состоящему только из программных средств.
    4. На практике термины «отказ» и «неисправность» часто используют как синонимы.
    [ГОСТ ЕН 1070-2003]
    [ ГОСТ Р ИСО 13849-1-2003]
    [ ГОСТ Р МЭК 60204-1-2007]

    отказ
    Событие, заключающееся в нарушении работоспособного состояния объекта.
    [ ГОСТ 27.002-89]
    [ОСТ 45.153-99]
    [СТО Газпром РД 2.5-141-2005]
    [СО 34.21.307-2005]

    отказ
    Событие, заключающееся в нарушении работоспособного состояния машины и (или) оборудования вследствие конструктивных нарушений при проектировании, несоблюдения установленного процесса производства или ремонта, невыполнения правил или инструкций по эксплуатации.
    [Технический регламент о безопасности машин и оборудования]

    EN

    failure
    the termination of the ability of an item to perform a required function
    NOTE 1 – After failure the item has a fault.
    NOTE 2 – "Failure" is an event, as distinguished from "fault", which is a state.
    NOTE 3 – This concept as defined does not apply to items consisting of software only.
    [IEV number 191-04-01]
    NOTE 4 - In practice, the terms fault and failure are often used synonymously
    [IEC 60204-1-2006]

    FR

    défaillance
    cessation de l'aptitude d'une entité à accomplir une fonction requise
    NOTE 1 – Après défaillance d'une entité, cette entité est en état de panne.
    NOTE 2 – Une défaillance est un passage d'un état à un autre, par opposition à une panne, qui est un état.
    NOTE 3 – La notion de défaillance, telle qu'elle est définie, ne s'applique pas à une entité constituée seulement de logiciel.
    [IEV number 191-04-01]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    повреждение
    Повреждение любого элемента, разделения, изоляции или соединения между элементами, не являющихся неповреждаемыми по МЭК 60079-11 [8], при проведении испытаний на искробезопасность.
    [ ГОСТ Р МЭК 60050-426-2006]


    Тематики

    EN

     

    повреждение (цепи, линии, устройства)
    -

    [Интент]

    Тематики

    EN

     

    разлом

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    fault
    A fracture or a zone of fractures along which there has been displacement of the sides relative to one another parallel to the fracture. (Source: BJGEO)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

     

    сбой
    Самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора.
    [ ГОСТ 27.002-89]
    [ОСТ 45.153-99]
    [СТО Газпром РД 2.5-141-2005]

    сбой
    Ненормальный режим, который может вызвать уменьшение или потерю способности функционального блока выполнять требуемую функцию.
    Примечание
    МЭС 191-05-01 определяет «сбой» как состояние, характеризуемое неспособностью выполнить необходимую функцию, исключая неспособности, возникающие во время профилактического ухода или других плановых мероприятий, либо в результате недостатка внешних ресурсов. Иллюстрация к этим двум точкам зрения показана на рисунке [ ИСО / МЭК 2382-14-01-10].
    3743
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    Обобщающие термины

    EN

     

    сброс
    Разрывное нарушение, при котором сместитель падает в сторону опущенного крыла (висячее крыло опущено относительно лежачего).
    [ Словарь геологических терминов и понятий. Томский Государственный Университет]

    Тематики

    • геология, геофизика

    Обобщающие термины

    EN

     

    сверхток
    Любой ток, превышающий номинальный
    МЭК 60050(441-11-06).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]
    [ ГОСТ Р 50345-99( МЭК 60898-95)]

    сверхток
    Электрический ток, превышающий номинальный электрический ток.
    Сверхток представляет собой любой электрический ток, величина которого превышает номинальный ток какого-либо элемента электроустановки здания или используемого в ней электрооборудования, например: номинальный ток электрической цепи, допустимый длительный ток проводника, номинальный ток автоматического выключателя и т. д. В нормативной и правовой документации различают два основных вида сверхтока – ток перегрузки и ток короткого замыкания.
    Появление сверхтока в каком-либо элементе электроустановки здания может привести к его перегреву, возгоранию и, как следствие, к возникновению пожара в здании. Поэтому в электроустановках зданий выполняют защиту от сверхтока.
    [ http://www.volt-m.ru/glossary/letter/%D1/view/59/]

    сверхток
    сверхток в электротехническом изделии
    Ток, значение которого превосходит наибольшее рабочее значение тока электротехнического изделия (устройства).
    [ ГОСТ 18311-80]

    сверхток
    Электрический ток, превышающий номинальный электрический ток.
    Примечание - Для проводников номинальный ток считается равным длительному допустимому току.
    [ ГОСТ Р МЭК 60050-826-2009]

    Сверхток может оказывать или может не оказывать вредные воздействия в зависимости от его величины и продолжительности. Сверхтоки могут возникать в результате перегрузок в электроприемниках или при повреждениях, таких как короткие замыкания или замыканиях на землю
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    сверхток
    Любой ток, превышающий номинальное значение. Для проводов номинальным значением является допустимый ток.
    [ ГОСТ Р МЭК 60204-1-2007]

    EN

    overcurrent
    electric current exceeding the rated electric current
    NOTE – For conductors, the rated current is considered as equal to the current-carrying capacity
    [IEV number 826-11-14]


    over-current
    <>current exceeding the rated current
    <>[IEC 61095, ed. 2.0 (2009-02)]


    over-current
    electric current the value of which exceeds a specified limiting value
    [IEV number 151-15-28]
    [IEV number 442-01-20]

    FR

    surintensité, f
    courant électrique supérieur au courant électrique assigné
    NOTE – Pour des conducteurs, on considère que le courant assigné est égal au courant admissible.
    [IEV number 826-11-14]


    surintensité
    courant supérieur au courant assigné
    [IEC 61095, ed. 2.0 (2009-02)]
    [IEV number 442-01-20]
    surintensité, f
    courant électrique dont la valeur dépasse une valeur limite spécifiée
    [IEV number 151-15-28]

    Параллельные тексты EN-RU

    The design of LV installations leads to basic protection devices being fitted for three types of faults:

    • overloads
    • short-circuits
    • insulation faults
    [Schneider Electric]

    Низковольтные электроустановки должны быть оснащены устройствами защиты трех типов:

    • от перегрузки;
    • от короткого замыкания;
    • от токов утечки.

    [Перевод Интент]

    Примечание
    .
    Слово fault в данном случае пришлось опустить, поскольку:
    - его нельзя перевести как "неисправность", т. к. возникновение 
    перегрузки ( overload) не является неисправностью;
    - его нельзя перевести как "сверхток", т. к. ток утечки не является сверхтоком
    .

    The chosen switchgear must withstand and eliminate faults at optimised cost with respect to the necessary performance.
    [Schneider Electric]

    Выбранная аппаратура распределения должна иметь такие характеристики, чтобы рентабельно выдерживать и ограничивать сверхтоки.
    [Перевод Интент]

     

    Тематики

    Синонимы

    EN

    DE

    FR

     

    ток повреждения
    Ток, возникающий в результате пробоя или перекрытия изоляции.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    ток повреждения
    Ток, который протекает через данную точку повреждения в результате повреждения изоляции.
    [ ГОСТ Р МЭК 60050-826-2009]

    EN

    fault current
    current resulting from an insulation failure, the bridging of insulation or incorrect connection in an electrical circuit
    [IEC 61439-1, ed. 2.0 (2011-08)]

    fault current

    current which flows across a given point of fault resulting from an insulation fault
    [IEV number 826-11-11]

    FR

    courant de défaut
    courant résultant d'un défaut de l'isolation, du contournement de l’isolation ou d’un raccordement incorrect dans un circuit électrique
    [IEC 61439-1, ed. 2.0 (2011-08)]

    courant de défaut, m

    courant s'écoulant en un point de défaut donné, consécutivement à un défaut de l'isolation
    [IEV number 826-11-11]

    Тематики

    EN

    DE

    • Fehlerstrom, m

    FR

    • courant de défaut, m

    3.7.2 повреждение (fault): Повреждение любого элемента, разделения, изоляции или соединения между элементами, не являющимися по настоящему стандарту не повреждаемыми, от которых зависит искробезопасность цепи.

    Источник: ГОСТ Р 52350.11-2005: Электрооборудование для взрывоопасных газовых сред. Часть 11. Искробезопасная электрическая цепь "I" оригинал документа

    3.16 неисправность (fault): Состояние объекта, характеризующееся неспособностью исполнять требуемую функцию, исключая время профилактического технического обслуживания или других запланированных действий, или простои из-за недостатка внешних ресурсов

    Примечание - Неисправность часто является результатом отказа объекта, но может существовать и без отказа.

    Источник: ГОСТ Р 51901.6-2005: Менеджмент риска. Программа повышения надежности оригинал документа

    3.6 неисправность (fault): Состояние элемента, характеризующееся неспособностью исполнять требуемую функцию, исключая период технического обслуживания, ремонта или других запланированных действий, а также из-за недостатка внешних ресурсов.

    Примечание - Неисправность часто является результатом отказа элемента, но может существовать и без предшествующего отказа.

    Источник: ГОСТ Р 51901.5-2005: Менеджмент риска. Руководство по применению методов анализа надежности оригинал документа

    3.5 неисправность (fault): Состояние объекта, когда один из его элементов или группа элементов проявляют признаки деградации или нарушения работы, что может привести к отказу машины.

    Примечания

    1 Неисправность часто является следствием отказа, но может иметь место и при его отсутствии.

    2 Состояние объекта не рассматривают как неисправное, если оно возникло вследствие запланированных процедур или нехватки внешних ресурсов.

    Источник: ГОСТ Р ИСО 13379-2009: Контроль состояния и диагностика машин. Руководство по интерпретации данных и методам диагностирования оригинал документа

    3.3 неисправность (fault): Состояние объекта, при котором он не способен выполнять требуемую функцию, за исключением такой неспособности при техническом обслуживании или других плановых мероприятиях или вследствие нехватки внешних ресурсов.

    Примечания

    1 Неисправность часто является следствием отказа объекта, но может иметь место и без него.

    2 В настоящем стандарте термин «неисправность» используется наряду с термином «отказ» по историческим причинам.

    Источник: ГОСТ Р 51901.12-2007: Менеджмент риска. Метод анализа видов и последствий отказов оригинал документа

    3.1.30 ошибка (fault): Разность между погрешностью весоизмерительного датчика и основной погрешностью весоизмерительного датчика (см. 3.1.34).

    Источник: ГОСТ Р 8.726-2010: Государственная система обеспечения единства измерений. Датчики весоизмерительные. Общие технические требования. Методы испытаний оригинал документа

    3.6 дефект (fault): Неисправность или ошибка в компоненте технического обеспечения, программного обеспечения или системы

    [МЭК 61513, пункт 3.22]

    Примечание 1 - Дефекты могут подразделяться на случайные, например, в результате ухудшения аппаратных средств из-за старения, и систематические, например, ошибки в программном обеспечении, которые вытекают из погрешностей проектирования.

    Примечание 2 - Дефект (в особенности дефект проекта) может остаться необнаруженным в системе до тех пор, пока не окажется, что полученный результат не соответствует намеченной функции, то есть возникает отказ.

    Примечание 3 - См. также «ошибка программного обеспечения» и «случайный дефект».

    Источник: ГОСТ Р МЭК 62340-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Требования по предотвращению отказов по общей причине оригинал документа

    3.2 неисправность (fault): Состояние объекта, когда один из его элементов или группа элементов проявляет признаки деградации или нарушения работы, что может привести к отказу машины.

    Примечание - Неисправность может привести к отказу.

    Источник: ГОСТ Р ИСО 17359-2009: Контроль состояния и диагностика машин. Общее руководство по организации контроля состояния и диагностирования оригинал документа

    3.17 дефект (fault): Неисправность или ошибка в компоненте технического обеспечения, программного обеспечения или системы.

    [МЭК 61513, пункт 3.22]

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.6.1 сбой (fault): Ненормальный режим, который может вызвать уменьшение или потерю способности функционального блока выполнять требуемую функцию.

    Примечание - МЭС 191-05-01 определяет «сбой» как состояние, характеризуемое неспособностью выполнить необходимую функцию, исключая неспособности, возникающие во время профилактического ухода или других плановых мероприятий, либо в результате недостатка внешних ресурсов. Иллюстрация к этим двум точкам зрения показана на рисунке 4 [ИСО/МЭК 2382-14-01-10].

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.22 дефект (fault): Дефект в аппаратуре, программном обеспечении или в компоненте системы (см. рисунок 3).

    Примечание 1 -Дефекты могут быть результатом случайных отказов, которые возникают, например, из-за деградации аппаратуры в результате старения; возможны систематические дефекты, например, в результате дефектов в программном обеспечении, возникающих из-за ошибок при проектировании.

    Примечание 2 - Дефект (особенно дефекты, связанные с проектированием) может оставаться незамеченным, пока сохраняются условия, при которых он не отражается на выполнении функции, т.е. пока не произойдет отказ.

    Примечание 3 - См. также «дефект программного обеспечения».

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    4.10.1 ошибка (fault): Разность между погрешностью показаний и погрешностью прибора.

    Источник: ГОСТ Р ЕН 1434-1-2011: Теплосчетчики. Часть 1. Общие требования

    Англо-русский словарь нормативно-технической терминологии > fault

  • 18 decision tree

    1. дерево решений

     

    дерево решений
    Граф - схема, отражающая структуру задачи оптимизации многошагового процесса принятия решений. Ветви дерева отображают различные события, которые могут иметь место, а узлы (вершины) - состояния, в которых возникает необходимость выбора.
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    дерево решений

    Способ представления процесса принятия решения, имеющий вид ответов на серию вопросов, образующих древовидную структуру.
    [ http://www.morepc.ru/dict/]

    дерево решений
    Граф, схема, отражающая структуру задачи оптимизации многошагового процесса принятия решений. Применяется в динамическом программировании и в других областях для анализа решений, структуризации проблем. Ветви дерева отображают различные события, которые могут иметь место, а узлы (вершины) - состояния, в которых возникает необходимость выбора. Причем узлы различны — в одних выбор из некоторого набора альтернатив осуществляет сам решающий (руководитель, лицо, принимающее решения), в других выбор от него не зависит. В таких случаях говорят, что выбор делает «природа», а руководитель может только оценить вероятность того или иного ее «решения». Д.р. применяется тогда, когда количество альтернатив и количество шагов принятия решений ограниченно (конечно). Принцип использования этого метода покажем на простом примере. Предположим, возникла необходимость построить цех для выпуска новой продукции. Можно построить большой цех — мощностью 200 тыс. т продукции в год и стоимостью 1 млрд. руб. Если спрос на продукт будет большой, завод получит прибыль в 1 млрд. руб., строительство цеха окупится за год. Но если спрос будет меньше, допустим, только на 100 тыс. т, то прибыль составит уже лишь 500 млн. руб.: если же товар совсем «не пойдет», завод понесет убытки в 1 млрд. руб. Возникает второй вариант: строить меньший цех — мощностью 100 тыс. т и стоимостью 500 млн. руб. Тогда при высоком и малом спросе прибыль будет равна 500 млн. руб., а при отсутствии спроса убыток составит 500 млн. руб. Все это можно показать на схеме (рис.Д.2). Получается шесть возможных вариантов последствий двух возможных решений. Какое же из них выбрать? Это зависит от вероятностей того или иного состояния будущего спроса: чем больше вероятность высокого спроса, тем разумнее, очевидно, будет предпочесть вариант строительства крупного цеха. Но задача осложнится еще больше, если сформулировать ее иначе: спрос на продукцию будет, как предполагается, расти постепенно. Что при этом лучше: строить сразу большой цех или же малый, но через некоторое время (если спрос действительно окажется большим) реконструировать его? Такие задачи также решаются методом Д.р. Приведенный пример характерен для структуры задач динамического программирования с конечным числом решений. Как видим, здесь сначала осуществлялся выбор последнего по времени решения, а затем, при движении в направлении, обратном течению времени, выбирались все остальные решения вплоть до исходного (см. Беллмана принцип оптимальности). Рис. Д.2 Дерево решений Спрос: б — большой, м — малый, о — отсутствие спроса
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > decision tree

  • 19 SPD

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > SPD

  • 20 surge offering

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > surge offering

См. также в других словарях:

  • возникает — (не) возникает сомнения • действие, субъект, начало возникает возможность • существование / создание, субъект, начало возникает вопрос • существование / создание, субъект, начало возникает впечатление • существование / создание, субъект, начало… …   Глагольной сочетаемости непредметных имён

  • возникает вопрос — нареч, кол во синонимов: 1 • спрашивается (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • возникает сомнение в добропорядочности — нареч, кол во синонимов: 1 • тень падает (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • не возникает — (не) возникает сомнения • действие, субъект, начало …   Глагольной сочетаемости непредметных имён

  • ситуация общения, в которой возникает рассуждение-размышление — 1) Ситуация общения, которая предполагает обращенность автора речи к читателю или слушателю, а также к самому себе, что связано с желанием разобраться в ряде проблемных вопросов. Основной задачей общения здесь становится выражение мнения,… …   Словарь лингвистических терминов Т.В. Жеребило

  • Мороз по коже — возникает неприятное ощущение от страха. — ФСВЧиЭ …   Термины психологии

  • Зубна́я боль — возникает в результате поражения зубных или окружающих зуб тканей, при невралгии тройничного нерва, а также при ряде общих заболеваний. Чаще всего она сопровождает Кариес зубов и его осложнения (Пульпит, периодонтит, периостит). Для… …   Медицинская энциклопедия

  • ЛУЧЕВАЯ БОЛЕЗНЬ — возникает в результате воздействия на организм человека ионизирующего излучения. Клинические проявления болезни зависят от суммарной дозы излучения, а также от ее распределения во времени и в теле человека. В зависимости от характера… …   Энциклопедический словарь по психологии и педагогике

  • Соплодие — возникает у таких растений, у которых цветки собраны в густые плотные соцветия и у которых развившиеся плоды плотно касаются один другого, так что все соцветие превращается как бы в один, сложный плод; таков, напр., плод у фигового дерева, так… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ОТВЕТСТВЕННОСТЬ МЕЖДУНАРОДНЫХ ОРГАНИЗАЦИИ — возникает из нарушений ими международных обязательств, вытекающих из договоров и других источников международного права. Международные организации несут ответственность за несоблюдение или неисполнение уставных и других обязанностей, за… …   Энциклопедический словарь экономики и права

  • ЛУЧЕВАЯ БОЛЕЗНЬ — возникает при воздействии на организм повышенных доз ионизирующей радиации. Л. б. может возникнуть в результате внеш. облучения, а также при попадании радиоактивных в в внутрь организма. Л. б. сопровождается поражением центр, нервной системы,… …   Большой энциклопедический политехнический словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»