Перевод: с английского на русский

с русского на английский

элемент+модели+(

  • 81 homomorphism

    1. гомоморфизм

     

    гомоморфизм

    [[http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]]

    гомоморфизм
    Понятие математики и логики, означающее такое соотношение между двумя системами, что: а) каждому элементу и каждому отношению между элементами первой системы соответствуют один элемент и одно отношение второй (но не наоборот); б) когда для ряда элементов первой системы выполняется некоторое отношение, то и для соответствующих элементов второй системы выполняется соответствующее отношение (рис.Г.1). Принято говорить, что вторая система (как совокупность элементов и отношений) представляет собой гомоморфный образ (отображение), модель первой системы, называемой оригиналом (прообразом). Сходство модели с оригиналом всегда неполное. Модель лишь приближенно отражает некоторые свойства оригинала. Причем реальная система может иметь различные гомоморфные ей модели. Таким образом, понятие гомоморфизма является фундаментальным теоретическим обоснованием моделирования, в том числе и экономико-математического. Рис. Г.1 Гомоморфизм А — оригинал; B — гомоморфное отображение
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > homomorphism

  • 82 power management

    1. энергоменеджмент
    2. управление электропитанием
    3. контроль потребления электроэнергии

     

    контроль потребления электроэнергии
    контроль энергопотребления


    [Интент]

    Тематики

    Синонимы

    EN

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > power management

  • 83 transformation

    1. трансформация
    2. преобразование (в кибернетике)
    3. переданная информация
    4. отображение

     

    отображение
    Логическая связь набора значений (например, сетевых адресов в одной сети) с объектами другого набора (например, адресами в другой сети). 
    [ http://www.lexikon.ru/dict/net/index.html]

    отображение
    С самой общей точки зрения это правило, по которому элементам одного множества ставятся в соответствие элементы другого множества. Поэтому иногда говорят, что отображение — это кортеж, состоящий из трех элементов: множества определения, множества значений и закона преобразования первого множества во второе. О. какого-либо множества в множество действительных или комплексных чисел обычно называют функцией, хотя иногда термин «функция» употребляют вообще как синоним слова «О». Если О. f ставит в соответствие элементу x ? A элемент f (x) ? B, то f (x) называют образом x, а x — прообразом f (x). Каждому О. соответствует обратное О. f-1 (x), ставящее в соответствие каждому образу его прообраз. Если любому прообразу соответствует единственный образ, то О. называется однозначным; если, кроме того, любому образу соответствует единственный прообраз, то О. называется взаимно однозначным. Например, функция y = x2 есть однозначное О. числовой оси на множество положительных чисел, но так как каждому положительному числу y соответствуют два числа ±?y то эта функция не взаимно однозначная. Пример взаимно однозначной функции: y = x. В экономике встречаются О., ставящие в соответствие единственному элементу много других. Например, простое бюджетное ограничение (см. Бюджетная линия) записывается так: x1p1 + x2p2 = z. Единственному значению дохода z соответствует в этом случае бесконечное число возможных значений затрат x1, x2. Такие О. называют соответствиями, многозначными функциями или точечно-множественными О. В экономико-математических исследованиях чаще всего используются О. одного многомерного пространства V в другое, U. Такие О. называются вектор-функциями, так как элементы каждого из этих пространств — векторы. Над векторами можно производить определенные действия: векторы можно складывать: a + b и умножать на скаляр: ?a. Поэтому очень большую роль играют О., сохраняющие эти операции: L(a + b) = L(a) + L(b), L(aa) = ?L(a). Такие О. называются линейными. Их называют также линейными операторами. Множество элементов из V, образом которых при линейном О. оказывается нуль пространства U, называется ядром линейного отображения L и обозначается Ker L.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    переданная информация

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    преобразование (в кибернетике)
    Изменение значений переменных, характеризующих систему, например, превращение переменных на входе предприятия (живой труд, сырье и т.д.) в переменные на выходе (продукты, побочные результаты, брак). Это пример П. в ходе вещественного процесса. В кибернетике особую роль играют информационные процессы, которые состоят из множества П. информации. Надо отметить, что источниками информации могут быть при этом и вещественные процессы (факт изготовления детали — вещественное событие, а соответствующая запись в наряде или другом документе — событие информационное). Решение задачи, разработка модели, передача сведений о выполнении плана — все это примеры П. информации. На практике оно производится различными способами обработки данных. См. также Процесс. Приведем некоторые важные преобразования информации, применимые в различных областях экономико-математического моделирования, распознавания образов, построения и использования баз данных. Допустимые преобразования. — такие, которые не выводят преобразуемые объекты за пределы рассматриваемого класса. Преобразования. подобия — изменение характеристик моделируемого объекта посредством умножения его параметров на такие величины, которые делают математическое описание, если оно имеется, тождественным для модели и для моделируемого объекта. Тождественное преобразование. — такое, которое сохраняет преобразуемый объект неизменным (оно, очевидно, всегда допустимо). Обратное преобразование (выполненное после прямого) возвращает объект в исходное состояние.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    трансформация
    Перенос (без участия вируса) генетической информации в клетку изолированной ДНК или ДНК, включенной в состав плазмиды
    [ http://www.dunwoodypress.com/148/PDF/Biotech_Eng-Rus.pdf]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > transformation

  • 84 entity

    ['entɪtɪ]
    1) Общая лексика: (что-л.) реально существующее, (что-л.) реальное, величина, вещь, данность, единица, лицо, нечто объективно, нечто реально существующее, организм, реальное существование (в метафизике), самостоятельное подразделение, субъект (АД), существо, существование, сущность, организация (АД), юридическое лицо, единство, структура, образование (автономное)
    2) Компьютерная техника: графический примитив, примитив, элемент
    3) Разговорное выражение: объект
    5) Философия: бытие
    6) Техника: категория
    9) Математика: суть, существе
    14) Дипломатический термин: субъект (права и т.п.)
    15) Психология: объективное, реальность
    21) ЕБРР: субъект
    23) Программирование: сущностный
    24) Кабельные производство: хозяйственное подразделение
    25) юр.Н.П. орган
    28) Интернет: сущность-машина протокола (Термин OSI для протокольной модели. Сущностью уровня является выполнение функций уровня в одной компьютерной системе, доступа к нижележащему уровню, и обеспечения услуг для вышележащего уровня)
    29) Тенгизшевройл: (legal) организация
    30) Военно-политический термин: территориально-государственное образование

    Универсальный англо-русский словарь > entity

  • 85 G

    1) [gain]
    б) коэффициент усиления; коэффициент передачи
    в) выигрыш; увеличение
    г) коэффициент усиления антенны ( в данном направлении); максимальный коэффициент усиления антенны
    2) [gate]
    а) логический элемент, ЛЭ; (логическая) схема; проф. вентиль; шлюз
    б) селекторный импульс, стробирующий импульс, строб-импульс
    г) затвор (напр. полевого транзистора)
    д) пп управляющий электрод (напр. тиристора)
    3) [Gauss] гаусс, Гс
    4) [generator]
    б) вчт порождающая функция
    в) формирующее устройство, формирователь
    г) вчт (программа-)генератор
    5) [giga-]
    а) гига…, Г, 109
    б) вчт гига…, Г, 230
    6) [green]
    б) сигнал зелёного (цвета), З-сигнал, G-сигнал
    7) [grid]
    а) сетка (1. электрод электронного прибора 2. деталь химического источника тока или солнечной батареи 3. решётка (конструкционный или декоративный элемент); решётчатая конструкция 4. координатная сетка 5. сетка для интерполяции или аппроксимации функций 6. географическая сетка; градусная сетка)
    в) сеть (напр. станций)
    г) электрическая сеть; сеть линий электропередачи
    8) [ground]
    9) (допустимое) буквенное обозначение i-го (2≤i≤26) логического диска, съёмного устройства памяти или компакт-диска ( в IBM-совместимых компьютерах)
    10) стандарт МСЭ для телевизионного вещания в метровом диапазоне длин волн, стандарт G
    - G sharp

    English-Russian electronics dictionary > G

  • 86 G

    1) сокр. от gain
    б) коэффициент усиления; коэффициент передачи
    в) выигрыш; увеличение
    г) коэффициент усиления антенны ( в данном направлении); максимальный коэффициент усиления антенны
    2) сокр. от gate
    а) логический элемент, ЛЭ; (логическая) схема; проф. вентиль; шлюз
    б) селекторный импульс, стробирующий импульс, строб-импульс
    г) затвор (напр. полевого транзистора)
    д) пп. управляющий электрод (напр. тиристора)
    3) сокр. от Gauss гаусс, Гс
    4) сокр. от generator
    б) вчт. порождающая функция
    в) формирующее устройство, формирователь
    г) вчт. (программа-)генератор
    5) сокр. от giga-
    а) гига..., Г, 109
    б) вчт. гига..., Г, 230
    6) сокр. от green
    а) зелёный, К, G (основной цвет в колориметрической системе RGB и цветовой модели RGB)
    б) сигнал зелёного (цвета), З-сигнал, G-сигнал
    7) сокр. от grid
    а) сетка (1. электрод электронного прибора 2. деталь химического источника тока или солнечной батареи 3. решётка (конструкционный или декоративный элемент); решётчатая конструкция 4. координатная сетка 5. сетка для интерполяции или аппроксимации функций 6. географическая сетка; градусная сетка)
    в) сеть (напр. станций)
    г) электрическая сеть; сеть линий электропередачи
    8) сокр. от ground
    9) (допустимое) буквенное обозначение i-го (2≤i≤26) логического диска, съёмного устройства памяти или компакт-диска ( в IBM-совместимых компьютерах)
    10) стандарт МСЭ для телевизионного вещания в метровом диапазоне длин волн, стандарт G
    - G sharp

    The New English-Russian Dictionary of Radio-electronics > G

  • 87 CCR

    1) Commitment, Concurrency, Recovery - фиксация, параллельность и восстановление [транзакций], сервисный элемент (протокол) CCR
    в эталонной модели взаимодействия открытых систем OSI - элемент прикладного уровня, используемый для создания непрерываемых (атомарных) операций в распределенных системах, преимущественно для реализации транзакций с обоюдным (двухфазным) контролем завершения (two-phase commit), для поддержки распределённых баз данных
    см. тж. CASE
    2) Current Cell Rate - текущая скорость ячеек
    3) computer-controlled retrieval - автоматизированный поиск информации
    4) central control room - центральный пункт управления - см. control room

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > CCR

  • 88 IE

    1. показатель ухудшения качества оборудования
    2. информационный элемент
    3. инспекции и санкции
    4. импульсное электропитание
    5. иммуноэлектрофорез

     

    иммуноэлектрофорез
    Лабораторный метод.
    [Англо-русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.]

    Тематики

    • вакцинология, иммунизация

    EN

     

    импульсное электропитание
    прерывистое электропитание


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

     

    инспекции и санкции

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    информационный элемент
    (МСЭ-Т Н.225).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    показатель ухудшения качества оборудования
    Скалярная величина, присвоенная элементу сети и указывающая на ожидаемый рост ухудшения качества (уменьшение показателя оценки характеристик передачи R), которая обусловливается типом ухудшения. Выражается в единицах показателя оценки характеристик передачи R. Показатели ухудшения качества являются составными частями общего показателя оценки характеристик передачи R E-модели (МСЭ-Т P.10/ G.100).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > IE

  • 89 input - output model

    1. межотраслевой баланс

     

    межотраслевой баланс
    МОБ

    Каркасная модель экономики, таблица, в которой показываются многообразные натуральные и стоимостные связи в народном хозяйстве. Анализ МОБ дает комплексную характеристику процесса формирования и использования совокупного общественного продукта в отраслевом разрезе. Покажем это на простейшем примере стоимостного баланса. В основу его схемы положено разделение совокупного продукта на две части, играющие различную роль в процессе общественного воспроизводства, — промежуточный и конечный продукт (см. табл. 1). Выделенная часть таблицы МОБ составляет его первый раздел (первый квадрант МОБ). Это — шахматная таблица межотраслевых материальных связей. Она характеризует текущее производственное потребление. В строках и столбцах в одинаковом порядке перечислены одни и те же отрасли материального производства от 1-й до n-й; показатели, помещенные на пересечениях строк и столбцов, представляют собой величины межотраслевых потоков продукции и в общей форме обозначаются xij, где i и j соответственно номера отраслей производителей и потребителей. Например, число x32 на пересечении третьей строки и второго столбца говорит о том, что отрасль, обозначенная номером 3, произвела (или должна произвести, если баланс — плановый) для отрасли номер 2 продукцию стоимостью x32. Если обозначить количество продукции одной отрасли, необходимой для производства единицы продукции другой отрасли, через aij, а через xj — объем продукции отрасли-потребителя, то межотраслевой поток отраслей i и j составит aijxj. Показатели aij называются коэффициентами прямых затрат. Во втором разделе баланса (в таблице справа от первого) показывается структура конечного продукта, в третьем (он расположен под первым) — формирование его стоимости как суммы чистой продукции и амортизации. Конечный продукт отрасли i принято обозначать yi. В четвертом разделе показываются элементы перераспределения и конечного использования национального дохода. Одна из важнейших предпосылок модели МОБ — линейность связей — состоит в том, что выпуск продукции предпола гается пропорциональным прямым затратам предметов труда и ТАБЛИЦА живого труда, т.е. если прямые затраты увеличить вдвое, то и выпуск (валовой продукции) вырастет тоже вдвое, а если в выпуске данного продукта участвует несколько отраслей, то этот выпуск оказывается линейной (пропорциональной) функцией всех прямых затрат. Линейность связей, разумеется, упрощение реальной экономической действительности. На самом деле связи сложнее. Однако линейность принимается условно, ради упрощения процесса расчетов по межотраслевому балансу, поскольку при этом модель можно представить как систему линейных уравнений, методы решения которой хорошо известны в математике. Ведутся также поиски путей большего приближения МОБ к действительности путем отказа, в той или иной форме, от предпосылки линейности. В принципе возможны два метода оценки продукции в МОБ: по ценам производителей (учитывающим затраты на производство) и по ценам конечного потребления (учитывающим также затраты, связанные с реализацией продукции). На практике в основном применяется второй из этих методов. Стоимостный МОБ строится в разрезе «чистых» отраслей (см. Чистые и хозяйственные отрасли в межотраслевом балансе, Агрегирование) в сопоставимых средних ценах реализации продукции. Для расчета стоимостного баланса, построенного по указанной схеме, применяется экономико-математическая модель, которая представляет собой систему линейных уравнений: В матричной записи она выглядит еще компактнее: AX + Y = X где X — вектор-столбец объемов производства; Y — то же конечного продукта; A = [aij] — матрица коэффициентов прямых затрат. Эту систему принято называть уравнением Леонтьева. Решение системы относительно X позволяет выявить объем продукции каждой отрасли, необходимой для получения запланированного количества конечной продукции (Y), или, наоборот, определить конечный продукт по данным о валовом продукте. Как видим, принимается ли в уравнении за неизвестное X или Y, зависит от постановки задачи. Процесс ее решения связан с расчетом коэффициентов полных затрат (bij) продукции i-й отрасли на единицу продукции j-й отрасли (о методах их расчета см. Коэффициенты полных материальных затрат). Включив их в указанное выше уравнение, преобразуем его в следующее: или в матричной форме: X=BY. Таким образом, получим решение относительно X. Если известны коэффициенты bij, можно делать расчеты различных вариантов планового или прогнозного баланса, исходя из заданного количества конечного продукта общественного производства. Выбор из ряда вариантов МОБ на плановый (прогнозный) период одного «лучшего» в принципе позволил бы оптимизировать план (прогноз), однако методы оптимизации МОБ недостаточно разработаны. В планировании бывш. СССР применялся не только подобный статический стоимостный баланс, но и динамические балансы, натуральные балансы, натурально-стоимостные балансы и другие виды МОБ. Создание метода МОБ было крупным этапом в развитии экономико-математических исследований не только в СССР, но и во всем мире. Первый в истории отчетный баланс народного хозяйства СССР, построенный в виде шахматной таблицы межотраслевых связей, был рассчитан за 1923/24 хозяйственный год. Но тогда вычислительные возможности и состояние математической науки не позволили развить этот метод настолько, чтобы можно было включить его в практику народнохозяйственного планирования. Главным же препятствием явился произвол Сталина, не понявшего значения работ отечественных экономистов и прекратившего их. Многие наиболее талантливые ученые были подвергнуты репрессиям, уничтожены физически. За рубежом же новое направление успешно развивалось. Большой вклад в экономико-математическую разработку метода «затраты-выпуск» (термин, который применяется на Западе для обозначения того же понятия) внес В В.Леонтьев, американский экономист, лауреат Нобелевской премии по экономике. В СССР работы в этом направлении возобновились в середине 60-х годов под руководством акад. В.С.Немчинова. Проводились экспериментальные расчеты в экономических районах, был создан ряд модификаций МОБ страны, в том числе балансов материальных, стоимостных, балансов труда. Материалы отчетных балансов публиковались в статистических сборниках. За разработку и внедрение МОБ в практику группа советских экономистов в 1968 г. была удостоена Государственной премии СССР. В ее составе — акад. А.Н.Ефимов (руководитель работы), Э.Ф.Баранов, Л.Я.Берри, Э.Б.Ершов, Ф.Н.Клоцвог, В.В.Коссов, Л.Е.Минц, С.С.Шаталин, М.Р.Эйдельман. Переход к рыночной экономике и связанная с ним перестройка практики народнохозяйственного планирования ни в коем случае не умаляет значения МОБ как мощного инструмента анализа, прогнозирования, а также планирования (в частности, индикативного) социального и экономического развития страны. См. также: Агрегирование, Балансовая модель, Главная диагональ таблицы межотраслевого баланса, «Затраты-выпуск», Значащий элемент матрицы МОБ, Квадрант межотраслевого баланса, Конечное потребление, Конечный продукт (народнохозяйственный), Конечный продукт отрасли, Косвенные затраты, Коэффициенты комплексных затрат, Коэффициенты полных материальных затрат, Коэффициенты прямых затрат, Коэффициенты распределения, Матричный мультипликатор, Межотраслевые потоки, Межпродуктовый баланс; Натурально-стоимостной баланс, Натуральный межотраслевой баланс, Нулевые элементы матрицы МОБ, Отчетный межотраслевой баланс, Плановые коэффициенты прямых затрат, Плановый межотраслевой баланс, Продуктивность матрицы, Промежуточный продукт, Размерность межотраслевого баланса, Районный межотраслевой баланс, Сопряженнные отрасли, Стоимостная матрица, Стоимостной межотраслевой баланс, Столбец межотраслевого баланса, Строка межотраслевого баланса, Технологическая матрица, Треугольная матрица МОБ, Чистые и хозяйственные отрасли в межотраслевом балансе, Шахматная таблица, Элемент таблицы МОБ.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > input - output model

  • 90 I. O.

    1. межотраслевой баланс

     

    межотраслевой баланс
    МОБ

    Каркасная модель экономики, таблица, в которой показываются многообразные натуральные и стоимостные связи в народном хозяйстве. Анализ МОБ дает комплексную характеристику процесса формирования и использования совокупного общественного продукта в отраслевом разрезе. Покажем это на простейшем примере стоимостного баланса. В основу его схемы положено разделение совокупного продукта на две части, играющие различную роль в процессе общественного воспроизводства, — промежуточный и конечный продукт (см. табл. 1). Выделенная часть таблицы МОБ составляет его первый раздел (первый квадрант МОБ). Это — шахматная таблица межотраслевых материальных связей. Она характеризует текущее производственное потребление. В строках и столбцах в одинаковом порядке перечислены одни и те же отрасли материального производства от 1-й до n-й; показатели, помещенные на пересечениях строк и столбцов, представляют собой величины межотраслевых потоков продукции и в общей форме обозначаются xij, где i и j соответственно номера отраслей производителей и потребителей. Например, число x32 на пересечении третьей строки и второго столбца говорит о том, что отрасль, обозначенная номером 3, произвела (или должна произвести, если баланс — плановый) для отрасли номер 2 продукцию стоимостью x32. Если обозначить количество продукции одной отрасли, необходимой для производства единицы продукции другой отрасли, через aij, а через xj — объем продукции отрасли-потребителя, то межотраслевой поток отраслей i и j составит aijxj. Показатели aij называются коэффициентами прямых затрат. Во втором разделе баланса (в таблице справа от первого) показывается структура конечного продукта, в третьем (он расположен под первым) — формирование его стоимости как суммы чистой продукции и амортизации. Конечный продукт отрасли i принято обозначать yi. В четвертом разделе показываются элементы перераспределения и конечного использования национального дохода. Одна из важнейших предпосылок модели МОБ — линейность связей — состоит в том, что выпуск продукции предпола гается пропорциональным прямым затратам предметов труда и ТАБЛИЦА живого труда, т.е. если прямые затраты увеличить вдвое, то и выпуск (валовой продукции) вырастет тоже вдвое, а если в выпуске данного продукта участвует несколько отраслей, то этот выпуск оказывается линейной (пропорциональной) функцией всех прямых затрат. Линейность связей, разумеется, упрощение реальной экономической действительности. На самом деле связи сложнее. Однако линейность принимается условно, ради упрощения процесса расчетов по межотраслевому балансу, поскольку при этом модель можно представить как систему линейных уравнений, методы решения которой хорошо известны в математике. Ведутся также поиски путей большего приближения МОБ к действительности путем отказа, в той или иной форме, от предпосылки линейности. В принципе возможны два метода оценки продукции в МОБ: по ценам производителей (учитывающим затраты на производство) и по ценам конечного потребления (учитывающим также затраты, связанные с реализацией продукции). На практике в основном применяется второй из этих методов. Стоимостный МОБ строится в разрезе «чистых» отраслей (см. Чистые и хозяйственные отрасли в межотраслевом балансе, Агрегирование) в сопоставимых средних ценах реализации продукции. Для расчета стоимостного баланса, построенного по указанной схеме, применяется экономико-математическая модель, которая представляет собой систему линейных уравнений: В матричной записи она выглядит еще компактнее: AX + Y = X где X — вектор-столбец объемов производства; Y — то же конечного продукта; A = [aij] — матрица коэффициентов прямых затрат. Эту систему принято называть уравнением Леонтьева. Решение системы относительно X позволяет выявить объем продукции каждой отрасли, необходимой для получения запланированного количества конечной продукции (Y), или, наоборот, определить конечный продукт по данным о валовом продукте. Как видим, принимается ли в уравнении за неизвестное X или Y, зависит от постановки задачи. Процесс ее решения связан с расчетом коэффициентов полных затрат (bij) продукции i-й отрасли на единицу продукции j-й отрасли (о методах их расчета см. Коэффициенты полных материальных затрат). Включив их в указанное выше уравнение, преобразуем его в следующее: или в матричной форме: X=BY. Таким образом, получим решение относительно X. Если известны коэффициенты bij, можно делать расчеты различных вариантов планового или прогнозного баланса, исходя из заданного количества конечного продукта общественного производства. Выбор из ряда вариантов МОБ на плановый (прогнозный) период одного «лучшего» в принципе позволил бы оптимизировать план (прогноз), однако методы оптимизации МОБ недостаточно разработаны. В планировании бывш. СССР применялся не только подобный статический стоимостный баланс, но и динамические балансы, натуральные балансы, натурально-стоимостные балансы и другие виды МОБ. Создание метода МОБ было крупным этапом в развитии экономико-математических исследований не только в СССР, но и во всем мире. Первый в истории отчетный баланс народного хозяйства СССР, построенный в виде шахматной таблицы межотраслевых связей, был рассчитан за 1923/24 хозяйственный год. Но тогда вычислительные возможности и состояние математической науки не позволили развить этот метод настолько, чтобы можно было включить его в практику народнохозяйственного планирования. Главным же препятствием явился произвол Сталина, не понявшего значения работ отечественных экономистов и прекратившего их. Многие наиболее талантливые ученые были подвергнуты репрессиям, уничтожены физически. За рубежом же новое направление успешно развивалось. Большой вклад в экономико-математическую разработку метода «затраты-выпуск» (термин, который применяется на Западе для обозначения того же понятия) внес В В.Леонтьев, американский экономист, лауреат Нобелевской премии по экономике. В СССР работы в этом направлении возобновились в середине 60-х годов под руководством акад. В.С.Немчинова. Проводились экспериментальные расчеты в экономических районах, был создан ряд модификаций МОБ страны, в том числе балансов материальных, стоимостных, балансов труда. Материалы отчетных балансов публиковались в статистических сборниках. За разработку и внедрение МОБ в практику группа советских экономистов в 1968 г. была удостоена Государственной премии СССР. В ее составе — акад. А.Н.Ефимов (руководитель работы), Э.Ф.Баранов, Л.Я.Берри, Э.Б.Ершов, Ф.Н.Клоцвог, В.В.Коссов, Л.Е.Минц, С.С.Шаталин, М.Р.Эйдельман. Переход к рыночной экономике и связанная с ним перестройка практики народнохозяйственного планирования ни в коем случае не умаляет значения МОБ как мощного инструмента анализа, прогнозирования, а также планирования (в частности, индикативного) социального и экономического развития страны. См. также: Агрегирование, Балансовая модель, Главная диагональ таблицы межотраслевого баланса, «Затраты-выпуск», Значащий элемент матрицы МОБ, Квадрант межотраслевого баланса, Конечное потребление, Конечный продукт (народнохозяйственный), Конечный продукт отрасли, Косвенные затраты, Коэффициенты комплексных затрат, Коэффициенты полных материальных затрат, Коэффициенты прямых затрат, Коэффициенты распределения, Матричный мультипликатор, Межотраслевые потоки, Межпродуктовый баланс; Натурально-стоимостной баланс, Натуральный межотраслевой баланс, Нулевые элементы матрицы МОБ, Отчетный межотраслевой баланс, Плановые коэффициенты прямых затрат, Плановый межотраслевой баланс, Продуктивность матрицы, Промежуточный продукт, Размерность межотраслевого баланса, Районный межотраслевой баланс, Сопряженнные отрасли, Стоимостная матрица, Стоимостной межотраслевой баланс, Столбец межотраслевого баланса, Строка межотраслевого баланса, Технологическая матрица, Треугольная матрица МОБ, Чистые и хозяйственные отрасли в межотраслевом балансе, Шахматная таблица, Элемент таблицы МОБ.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > I. O.

  • 91 intersectoral balance

    1. межотраслевой баланс

     

    межотраслевой баланс
    МОБ

    Каркасная модель экономики, таблица, в которой показываются многообразные натуральные и стоимостные связи в народном хозяйстве. Анализ МОБ дает комплексную характеристику процесса формирования и использования совокупного общественного продукта в отраслевом разрезе. Покажем это на простейшем примере стоимостного баланса. В основу его схемы положено разделение совокупного продукта на две части, играющие различную роль в процессе общественного воспроизводства, — промежуточный и конечный продукт (см. табл. 1). Выделенная часть таблицы МОБ составляет его первый раздел (первый квадрант МОБ). Это — шахматная таблица межотраслевых материальных связей. Она характеризует текущее производственное потребление. В строках и столбцах в одинаковом порядке перечислены одни и те же отрасли материального производства от 1-й до n-й; показатели, помещенные на пересечениях строк и столбцов, представляют собой величины межотраслевых потоков продукции и в общей форме обозначаются xij, где i и j соответственно номера отраслей производителей и потребителей. Например, число x32 на пересечении третьей строки и второго столбца говорит о том, что отрасль, обозначенная номером 3, произвела (или должна произвести, если баланс — плановый) для отрасли номер 2 продукцию стоимостью x32. Если обозначить количество продукции одной отрасли, необходимой для производства единицы продукции другой отрасли, через aij, а через xj — объем продукции отрасли-потребителя, то межотраслевой поток отраслей i и j составит aijxj. Показатели aij называются коэффициентами прямых затрат. Во втором разделе баланса (в таблице справа от первого) показывается структура конечного продукта, в третьем (он расположен под первым) — формирование его стоимости как суммы чистой продукции и амортизации. Конечный продукт отрасли i принято обозначать yi. В четвертом разделе показываются элементы перераспределения и конечного использования национального дохода. Одна из важнейших предпосылок модели МОБ — линейность связей — состоит в том, что выпуск продукции предпола гается пропорциональным прямым затратам предметов труда и ТАБЛИЦА живого труда, т.е. если прямые затраты увеличить вдвое, то и выпуск (валовой продукции) вырастет тоже вдвое, а если в выпуске данного продукта участвует несколько отраслей, то этот выпуск оказывается линейной (пропорциональной) функцией всех прямых затрат. Линейность связей, разумеется, упрощение реальной экономической действительности. На самом деле связи сложнее. Однако линейность принимается условно, ради упрощения процесса расчетов по межотраслевому балансу, поскольку при этом модель можно представить как систему линейных уравнений, методы решения которой хорошо известны в математике. Ведутся также поиски путей большего приближения МОБ к действительности путем отказа, в той или иной форме, от предпосылки линейности. В принципе возможны два метода оценки продукции в МОБ: по ценам производителей (учитывающим затраты на производство) и по ценам конечного потребления (учитывающим также затраты, связанные с реализацией продукции). На практике в основном применяется второй из этих методов. Стоимостный МОБ строится в разрезе «чистых» отраслей (см. Чистые и хозяйственные отрасли в межотраслевом балансе, Агрегирование) в сопоставимых средних ценах реализации продукции. Для расчета стоимостного баланса, построенного по указанной схеме, применяется экономико-математическая модель, которая представляет собой систему линейных уравнений: В матричной записи она выглядит еще компактнее: AX + Y = X где X — вектор-столбец объемов производства; Y — то же конечного продукта; A = [aij] — матрица коэффициентов прямых затрат. Эту систему принято называть уравнением Леонтьева. Решение системы относительно X позволяет выявить объем продукции каждой отрасли, необходимой для получения запланированного количества конечной продукции (Y), или, наоборот, определить конечный продукт по данным о валовом продукте. Как видим, принимается ли в уравнении за неизвестное X или Y, зависит от постановки задачи. Процесс ее решения связан с расчетом коэффициентов полных затрат (bij) продукции i-й отрасли на единицу продукции j-й отрасли (о методах их расчета см. Коэффициенты полных материальных затрат). Включив их в указанное выше уравнение, преобразуем его в следующее: или в матричной форме: X=BY. Таким образом, получим решение относительно X. Если известны коэффициенты bij, можно делать расчеты различных вариантов планового или прогнозного баланса, исходя из заданного количества конечного продукта общественного производства. Выбор из ряда вариантов МОБ на плановый (прогнозный) период одного «лучшего» в принципе позволил бы оптимизировать план (прогноз), однако методы оптимизации МОБ недостаточно разработаны. В планировании бывш. СССР применялся не только подобный статический стоимостный баланс, но и динамические балансы, натуральные балансы, натурально-стоимостные балансы и другие виды МОБ. Создание метода МОБ было крупным этапом в развитии экономико-математических исследований не только в СССР, но и во всем мире. Первый в истории отчетный баланс народного хозяйства СССР, построенный в виде шахматной таблицы межотраслевых связей, был рассчитан за 1923/24 хозяйственный год. Но тогда вычислительные возможности и состояние математической науки не позволили развить этот метод настолько, чтобы можно было включить его в практику народнохозяйственного планирования. Главным же препятствием явился произвол Сталина, не понявшего значения работ отечественных экономистов и прекратившего их. Многие наиболее талантливые ученые были подвергнуты репрессиям, уничтожены физически. За рубежом же новое направление успешно развивалось. Большой вклад в экономико-математическую разработку метода «затраты-выпуск» (термин, который применяется на Западе для обозначения того же понятия) внес В В.Леонтьев, американский экономист, лауреат Нобелевской премии по экономике. В СССР работы в этом направлении возобновились в середине 60-х годов под руководством акад. В.С.Немчинова. Проводились экспериментальные расчеты в экономических районах, был создан ряд модификаций МОБ страны, в том числе балансов материальных, стоимостных, балансов труда. Материалы отчетных балансов публиковались в статистических сборниках. За разработку и внедрение МОБ в практику группа советских экономистов в 1968 г. была удостоена Государственной премии СССР. В ее составе — акад. А.Н.Ефимов (руководитель работы), Э.Ф.Баранов, Л.Я.Берри, Э.Б.Ершов, Ф.Н.Клоцвог, В.В.Коссов, Л.Е.Минц, С.С.Шаталин, М.Р.Эйдельман. Переход к рыночной экономике и связанная с ним перестройка практики народнохозяйственного планирования ни в коем случае не умаляет значения МОБ как мощного инструмента анализа, прогнозирования, а также планирования (в частности, индикативного) социального и экономического развития страны. См. также: Агрегирование, Балансовая модель, Главная диагональ таблицы межотраслевого баланса, «Затраты-выпуск», Значащий элемент матрицы МОБ, Квадрант межотраслевого баланса, Конечное потребление, Конечный продукт (народнохозяйственный), Конечный продукт отрасли, Косвенные затраты, Коэффициенты комплексных затрат, Коэффициенты полных материальных затрат, Коэффициенты прямых затрат, Коэффициенты распределения, Матричный мультипликатор, Межотраслевые потоки, Межпродуктовый баланс; Натурально-стоимостной баланс, Натуральный межотраслевой баланс, Нулевые элементы матрицы МОБ, Отчетный межотраслевой баланс, Плановые коэффициенты прямых затрат, Плановый межотраслевой баланс, Продуктивность матрицы, Промежуточный продукт, Размерность межотраслевого баланса, Районный межотраслевой баланс, Сопряженнные отрасли, Стоимостная матрица, Стоимостной межотраслевой баланс, Столбец межотраслевого баланса, Строка межотраслевого баланса, Технологическая матрица, Треугольная матрица МОБ, Чистые и хозяйственные отрасли в межотраслевом балансе, Шахматная таблица, Элемент таблицы МОБ.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > intersectoral balance

  • 92 magnetic

    1) магнитный

    2) магнетик
    3) магнитноактивный
    4) ферромагнетик
    5) магнетический
    6) магнитен
    ac magnetic bias
    hard magnetic
    magnetic amplifier
    magnetic attraction
    magnetic bar
    magnetic bearing
    magnetic bias
    magnetic blow-out
    magnetic bridge
    magnetic card
    magnetic cartridge
    magnetic characteristic
    magnetic circuit
    magnetic clutch
    magnetic compass
    magnetic compression
    magnetic confinement
    magnetic contactor
    magnetic copying
    magnetic core
    magnetic cycle
    magnetic declination
    magnetic deflection
    magnetic drive
    magnetic drum
    magnetic equator
    magnetic etching
    magnetic field
    magnetic film
    magnetic flux
    magnetic gas analyzer
    magnetic head
    magnetic heading
    magnetic induction
    magnetic inductometer
    magnetic ink printing
    magnetic insulation
    magnetic intensity
    magnetic ion
    magnetic latch
    magnetic leakage
    magnetic line
    magnetic linkage
    magnetic material
    magnetic memory
    magnetic meridian
    magnetic modulator
    magnetic moment
    magnetic multiaperture
    magnetic particle
    magnetic permeability
    magnetic pinch
    magnetic polarization
    magnetic pole
    magnetic potential
    magnetic powder
    magnetic printer
    magnetic printing
    magnetic pyrite
    magnetic recorder
    magnetic recording
    magnetic rectifier
    magnetic reversal
    magnetic separation
    magnetic separator
    magnetic shell
    magnetic sound
    magnetic starter
    magnetic tape
    magnetic transition
    magnetic trap
    magnetic vector
    magnetic yoke
    soft magnetic
    transverse magnetic

    beneficial magnetic aging<phys.> стабилизация магнита, стабилизация магнитная


    collapse of the magnetic fieldисчезновение магнитного поля


    composite magnetic circuitсложный магнитопровод


    core-type magnetic circuitмагнитопровод стержневого типа


    cylindrical magnetic domain<comput.> домен магнитный цилиндрический


    detrimental magnetic agingсостаривание магнита


    establish magnetic fieldвозбуждать магнитное поле


    guiding magnetic fieldведущее магнитное поле


    hard magnetic material — магнитно-жесткий материал, <phys.> материал магнитнотвердый


    magnetic blow-out coilкатушка магнитного дутья


    magnetic bubble domain<comput.> домен магнитный плоский


    magnetic center punchмагнитный разметчик центров


    magnetic collar locatorмагнитный локатор муфт


    magnetic contactor switchмагнитный контактор


    magnetic core arrayкуб запоминающего устройства


    magnetic core matrixматрица на ферритовых сердечниках


    magnetic core planeферритовая матрица


    magnetic difference of potentialмагнитное напряжение


    magnetic disk memoryпамять на магнитных дисках


    magnetic disk recorderмагнитофон на дисках


    magnetic displacement vectorвектор магнитной индукции


    magnetic drum memoryпамять на магнитном барабане


    magnetic field energyэнергетика магнитного поля


    magnetic field strengthнапряженность магнитного поля


    magnetic flux collapsesмагнитный поток спадает


    magnetic flux density<phys.> индукция магнитная


    magnetic head coreсердечник магнитной головки


    magnetic head gapрабочий зазор магнитной головки


    magnetic head gap widthширина зазора магнитной головки


    magnetic line of forceмагнитная силовая линия


    magnetic model suspensionмагнитная подвеска модели


    magnetic moment of a bodyмагнитный момент тела


    magnetic multiaperture elementмногодырочный магнитный элемент


    magnetic north lineполуденная линия


    magnetic particle methodметод магнитного порошка


    magnetic potential differenceразность магнитных потенциалов


    magnetic quantum numberмагнитное квантовое число


    magnetic radio bearingмагнитный радиопеленг


    magnetic release deviceмагнитный расцепитель


    magnetic reversal centerзародыш перемагничивания


    magnetic sound headмагнитный звуковой блок


    magnetic sound trackмагнитная фонограмма


    magnetic tape recordingрегистрация на магнитную пленку


    magnetic tape transportмеханизм подачи магнитной ленты


    magnetic tape volumeтом на магнитной ленте


    magnetic transition temperatureмагнитная точка Кюри


    magnetic variation unitблок отработки магнитных вариаций


    multipath magnetic circuitразветвленный магнитопровод


    nuclear magnetic resonance<phys.> резонанс магнитный ядерный


    proton magnetic resonance<chem.> резонанс протонный магнитный


    reversible-polarity magnetic amplifier<comput.> усилитель магнитный реверсивный


    shell-type magnetic circuitмагнитопровод броневого типа


    single-path magnetic circuitнеразветвленный магнитопровод


    soft magnetic material — магнитно-мягкий материал, <phys.> материал магнитномягкий


    spin magnetic momentспиновый магнитный момент


    transverse magnetic wave< radio> волна поперечная магнитная


    tube of magnetic fluxтрубка магнитной индукции

    Англо-русский технический словарь > magnetic

  • 93 MAT locus

    Локус генома дрожжей, определяющий тип спаривания, - элемент «кассетной» модели cassette model.

    Англо-русский толковый словарь генетических терминов > MAT locus

  • 94 MAT (mating type) locus

    Генетика: МАТ-локус (локус генома дрожжей, определяющий тип спаривания, - элемент "кассетной" модели)

    Универсальный англо-русский словарь > MAT (mating type) locus

  • 95 MAT locus

    Генетика: (mating type) МАТ-локус (локус генома дрожжей, определяющий тип спаривания, - элемент "кассетной" модели), mating type locus

    Универсальный англо-русский словарь > MAT locus

  • 96 dashpot

    1) Техника: амортизатор, гаситель гидравлического удара, гаситель гидроудара, гидравлический амортизатор, демпфер (карбюратора), дроссель, катаракт, пневматический амортизатор, успокоитель, цилиндр демпфера (карбюратора)
    3) Автомобильный термин: буфер (воздушный), глушитель (воздушный или масляный, колебаний)
    4) Горное дело: воздушный буфер
    5) Нефтепромысловый: масляный буфер
    8) Пластмассы: поршень
    9) Оружейное производство: воздушный( масляный) буфер

    Универсальный англо-русский словарь > dashpot

  • 97 identity

    [aɪ'dentɪtɪ]
    1) Общая лексика: идентичность, индивидуальность, личность, личный, опознавательный, опознание, особенности, отличительные черты, отождествление, подлинность, природа, своё "я", тождественность, тождество, удостоверение личности, единичный (например об элементе группы), тождественность (товарных знаков), конгруэнтность (фигур), лицо, фирменный стиль, самовосприятие, самосознание
    2) Геология: идентификация
    3) Военный термин: вид и партия (боеприпасов), принадлежность, класс и тип (кораблей)
    5) Дипломатический термин: сущность
    7) Политика: национальное лицо, национальная самобытность (напр.: preservation of cultural heritage and identity)
    9) Вычислительная техника: единичная матрица
    10) Иммунология: (иммунологическая) абсолютное (иммунологическое) родство
    11) Парфюмерия: сходство
    14) Сетевые технологии: именование
    15) Автоматика: обозначение, наименование (напр. модели станка)
    16) юр.Н.П. самоличность (of a witness, prisoner, etc.)
    17) Психоанализ: индивидуума
    20) Логистика: назначение
    21) Ценные бумаги: отличительные признаки
    22) Майкрософт: удостоверение

    Универсальный англо-русский словарь > identity

  • 98 mathematic model element

    Универсальный англо-русский словарь > mathematic model element

  • 99 mating type locus

    Генетика: МАТ-локус (локус генома дрожжей, определяющий тип спаривания, - элемент "кассетной" модели)

    Универсальный англо-русский словарь > mating type locus

  • 100 n-entity

    Универсальный англо-русский словарь > n-entity

См. также в других словарях:

  • элемент модели — 3.4 элемент модели: Важная составляющая физической системы, описываемой моделью. Источник: ГОСТ Р ИСО 14837 1 2007: Вибрация. Шум и вибрация, создаваемые движением рельсового транспорта. Часть 1. Общее руководство …   Словарь-справочник терминов нормативно-технической документации

  • элемент модели данных — 3.1.8 элемент модели данных (Data Model Element; DME): Составной элемент или элемент данных. Источник …   Словарь-справочник терминов нормативно-технической документации

  • элемент — 02.01.14 элемент (знак символа или символ) [element <symbol character or symbol>]: Отдельный штрих или пробел в символе штрихового кода либо одиночная многоугольная или круглая ячейка в матричном символе, формирующие знак символа в… …   Словарь-справочник терминов нормативно-технической документации

  • элемент данных — 3.4 элемент данных: Смысловой элемент информации, прослеживаемый на стыке между картой и устройством сопряжения, для которого определены наименование, описание логического содержания, формат и кодирование. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Модели нейронных сетей (neural network models) — Модели, включающие сети нейроноподобных элементов, приобрели известность в психологии и родственных дисциплинах, когнитивной науке и нейробихевиоральной науке. Такие модели появились тж под предметными заголовками коннекционистских моделей и… …   Психологическая энциклопедия

  • элемент — Обобщенный термин, под которым в зависимости от соответствующих условий может пониматься поверхность, линия, точка. Примечания 1. Элемент может быть поверхностью (частью поверхности, плоскостью симметрии нескольких поверхностей), линией (профилем …   Справочник технического переводчика

  • элемент внешнего ориентирования (фотограмметрической) модели — Один из геометрических параметров, определяющих положение, ориентацию фотограмметрической модели объекта в системе координат объекта фотограмметрической съемки и ее масштаб. [ГОСТ Р 51833 2001] Тематики фотограмметрия …   Справочник технического переводчика

  • Элемент — [element] первичная (для данного исследования, модели) составная часть сложного целого. См. Элемент множества, Элемент системы …   Экономико-математический словарь

  • элемент системы — Активный компонент компьютерной системы/сети. Например, автоматизированный процесс или множество процессов, подсистема, человек или группа людей, которые обладают отличительным набором функций (МСЭ Т Х.1141). [http://www.iks… …   Справочник технического переводчика

  • элемент —         ЭЛЕМЕНТ (лат. elementum) член ряда, часть целого, термин античной философии. Первоначально буквы. Разные тексты порождаются одним и тем же набором букв (Лукреций). Графическое (буквенное) изображение Э. сродни использованию в тех же целях …   Энциклопедия эпистемологии и философии науки

  • Элемент системы — [element of a system] часть системы, которая рассматривается без дальнейшего членения как единой целое, его внутренняя структура не является предметом исследования. Выбор элемента как первичной единицы определяется характером и задачами модели… …   Экономико-математический словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»