Перевод: с английского на все языки

со всех языков на английский

программное+обеспечение+системы

  • 101 operation system software

    1. операционное системное программное обеспечение

    3.26 операционное системное программное обеспечение (operation system software): Программное обеспечение, выполняемое на целевом процессоре во время работы, такое, например, как драйверы и сервисы входа/выхода, управление прерываниями, планировщик, драйверы связи, библиотеки прикладных программ, диагностирование во время работы, управление резервированием и смягченной деградацией.

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    Англо-русский словарь нормативно-технической терминологии > operation system software

  • 102 pre-developed software - PDS

    1. ранее разработанное программное обеспечение

    3.42 ранее разработанное программное обеспечение (pre-developed software - PDS): Часть программного обеспечения, которая уже существует и доступна как коммерческий или запатентованный продукт.

    [МЭК 60880-2, пункт 3.1]

    Примечание - Ранее разработанное программное обеспечение можно разделить на: программное обеспечение общего назначения, которое не разрабатывалось для определенного оборудования, и программное обеспечение, интегрированное в компоненты оборудования, которое применяется совместно с оборудованием.

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > pre-developed software - PDS

  • 103 redundancy

    1. физическое резервирование
    2. резервные компоненты
    3. резервирование источника бесперебойного питания
    4. резервирование (дублирование)
    5. резервирование
    6. избыточность резервирование
    7. избыточность (кодирования)
    8. избыточность
    9. избыток
    10. долговременная маркировка

     

    избыточность
    Существование средств в дополнение к средствам, которые могут быть достаточны функциональному блоку для выполнения требуемой операции, данным для представления информации.
    Пример
    Примерами избыточности являются дублирование функциональных компонентов и добавление битов четности.
    Примечания
    1. Избыточность используется в первую очередь для повышения надежности или работоспособности.
    2. Определение в МЭС 191-15-01 является менее полным [ИСО/МЭК 2382-14-01-12].
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    EN

     

    избыточность (кодирования)
    Характеристика кодирования информации, обеспечивающая повышение вероятности безошибочного считывания штрихового кода или передачи информации.
    Примечание
    В символе штрихового кода высота штрихов обеспечивает вертикальную избыточность, допуская существование множества возможных путей поперечного сканирования символа, из которых теоретически достаточно лишь одного для полного декодирования символа.
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    Тематики

    EN

    DE

    FR

     

    избыточность резервирование
    Наличие в объекте более чем одного средства, необходимого для выполнения требуемой функции.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    EN

    redundancy
    in an item, the existence of more than one means for performing a required function
    [SOURCE: 191-15-01]
    [IEV ref 448-12-08]

    FR

    redondance
    existence, dans une entité, de plus d'un moyen pour accomplir une fonction requise
    [SOURCE: 191-15-01]
    [IEV ref 448-12-08]

    Тематики

    EN

    DE

    • Redundanz, f

    FR

     

    резервирование
    Применение дополнительных устройств и систем или элементов устройств и систем оборудования для того, чтобы в случае отказа одного из них выполнять требуемую функцию в распоряжении имелось другое устройство (или элемент устройства), готовое выполнять эту функцию.
    [ГОСТ ЕН 1070-2003]

    резервирование
    Способ обеспечения надежности объекта за счет использования дополнительных средств и (или) возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функции.
    [ ГОСТ 27.002-89]
    [ОСТ 45.153-99]
    [СО 34.21.307-2005]

    резервирование
    Использование более чем одного устройства или системы, или одной части (узла) устройства или системы для того, чтобы в случае возможного отказа одного из них в ходе выполнения своей функции в распоряжении находился другой, для обеспечения продолжения вышеупомянутой функции.
    [ ГОСТ Р МЭК 60204-1-2007]

    В первый период эксплуатации при постепенном росте нагрузки допускается установка одного трансформатора при условии обеспечения резервирования питания потребителей по сетям низшего напряжения.

    Однотрансформаторные подстанции могут быть также применены для питания электроприемников II категории, если обеспечивается требуемая степень резервирования питания по стороне низшего напряжения при отключении трансформатора
    [НТП ЭПП-94]

    Тематики

    Действия

    Сопутствующие термины

    EN

    DE

    FR

     

    резервирование (дублирование)
    (ITIL Service Design)
    Использование одной или нескольких конфигурационных едениц для обеспечения отказоустойчивости.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    redundancy
    (ITIL Service Design)
    Use of one or more additional configuration items to provide fault tolerance. The term also has a generic meaning of obsolescence, or no longer needed.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    резервирование ИБП
    Методы построения системы бесперебойного питания, направленные на обеспечение бесперебойного электроснабжения нагрузки даже при возникновении неисправности ИБП или какой-либо его функциональной части. ИБП может иметь резервированные внутренние блоки (модульный ИБП) или резервирование достигается благодаря использованию нескольких ИБП, включаемых параллельно или последовательно
    [ http://www.radistr.ru/misc/document423.phtml с изменениями]

    EN

    redundancy
    A method based on using one or more extra backup modules, which enable normal system performance even in case of system failures. For example, redundancy is achieved by feeding a consumer of 1KVA by means of two 1KVA rated UPS systems connected in parallel, hence single unit failure does not affect load performance.
    [ http://www.upsonnet.com/UPS-Glossary/]

    Тематики

    Синонимы

    EN

     

    резервные компоненты
    Резервные компоненты, используемые для обеспечения бесперебойной работы устройства или системы. При выходе из строя основного модуля, его функции автоматически берет на себя резервный. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

     

    физическое резервирование

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    3.4 избыточность (redundancy): Наличие средств в дополнение к средствам, которые могут быть достаточны функциональному блоку, для выполнения требуемой операции или данным для представления информации.

    ПРИМЕР - Примерами избыточности являются дублирование функциональных компонентов и добавление битов четности.

    Источник: ГОСТ Р 53195.4-2010: Безопасность функциональная связанных с безопасностью зданий и сооружений систем. Часть 4. Требования к программному обеспечению оригинал документа

    7.1. Резервирование

    Redundancy

    Способ обеспечения надежности объекта за счет использования дополнительных средств и (или) возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функции

    Источник: ГОСТ 27.002-89: Надежность в технике. Основные понятия. Термины и определения оригинал документа

    3.15 резервирование (redundancy): Использование альтернативных (одинаковых или неодинаковых) конструкций, систем и элементов таким образом, чтобы все они могли выполнять требующуюся функцию независимо от эксплуатационного состояния или отказа любого из них.

    (Глоссарий МАГАТЭ по вопросам безопасности:2007)

    Источник: ГОСТ Р МЭК 61226-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Классификация функций контроля и управления оригинал документа

    3.7 резервирование (redundancy): Использование альтернативных (одинаковых или неодинаковых) конструкций, систем или элементов таким образом, чтобы все они могли выполнять требующуюся функцию независимо от эксплуатационного состояния или отказа любого из них.

    (МАГАТЭ NS-G-1.3)

    Источник: ГОСТ Р МЭК 60709-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Разделение оригинал документа

    3.29 резервирование (redundancy): Использование альтернативных (одинаковых или неодинаковых) конструкций, систем или компонентов таким образом, чтобы все они могли выполнять требующуюся функцию независимо от эксплуатационного состояния или выхода из строя любого из них.

    [Глоссарий МАГАТЭ NS-G-1.3]

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.3.10 избыточность (redundancy): Существование средств в дополнение к средствам, которые могут быть достаточны функциональному блоку для выполнения требуемой операции, данным для представления информации.

    ПРИМЕР - Примерами избыточности являются дублирование функциональных компонентов и добавление битов четности.

    Примечания

    1. Избыточность используется в первую очередь для повышения надежности или работоспособности.

    2. Определение в МЭС 191-15-01 является менее полным [ИСО/МЭК 2382-14-01-12].

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.49 резервирование (redundancy): Способ обеспечения надежности объекта за счет использования дополнительных средств и/или возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функций.

    [МАГАТЭ 50-SG-D8]

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.15 резервирование (redundancy): Использование альтернативных (одинаковых или неодинаковых) конструкций, систем и элементов таким образом, чтобы все они могли выполнять требующуюся функцию независимо от эксплуатационного состояния или отказа (выхода из строя) любого из них.

    [Глоссарий безопасности МАГАТЭ, Версия 2.0,2006]

    Источник: ГОСТ Р МЭК 62385-2012: Атомные станции. Контроль и управление, важные для безопасности. Методы оценки рабочих характеристик измерительных каналов систем безопасности оригинал документа

    04.02.27 долговременная маркировка [ permanent marking]: Изображение, полученное с помощью интрузивного или неинтрузивного маркирования, которое должно оставаться различимым, как минимум, в течение установленного срока службы изделия.

    Сравнить с терминологической статьей «соединение» по ИСО/МЭК19762-11).

    ______________

    1)Терминологическая статья 04.02.27 не связана с указанной терминологической статьей.

    <2>4 Сокращения

    ECI интерпретация в расширенном канале [extended channel interpretation]

    DPM прямое маркирование изделий [direct part marking]

    BWA коррекция ширины штриха [bar width adjustment]

    BWC компенсация ширины штриха [barwidth compensation]

    CPI число знаков на дюйм [characters per inch]

    PCS сигнал контраста печати [print contrast signal]

    ORM оптический носитель данных [optically readable medium]

    FoV поле обзора [field of view]

    Алфавитный указатель терминов на английском языке

    (n, k)symbology

    04.02.13

    add-on symbol

    03.02.29

    alignment pattern

    04.02.07

    aperture

    02.04.09

    auto discrimination

    02.04.33

    auxiliary character/pattern

    03.01.04

    background

    02.02.05

    bar

    02.01.05

    bar code character

    02.01.09

    bar code density

    03.02.14

    barcode master

    03.02.19

    barcode reader

    02.04.05

    barcode symbol

    02.01.03

    bar height

    02.01.16

    bar-space sequence

    02.01.20

    barwidth

    02.01.17

    barwidth adjustment

    03.02.21

    barwidth compensation

    03.02.22

    barwidth gain/loss

    03.02.23

    barwidth increase

    03.02.24

    barwidth reduction

    03.02.25

    bearer bar

    03.02.11

    binary symbology

    03.01.10

    characters per inch

    03.02.15

    charge-coupled device

    02.04.13

    coded character set

    02.01.08

    column

    04.02.11

    compaction mode

    04.02.15

    composite symbol

    04.02.14

    contact scanner

    02.04.07

    continuous code

    03.01.12

    corner marks

    03.02.20

    data codeword

    04.02.18

    data region

    04.02.17

    decodability

    02.02.28

    decode algorithm

    02.02.01

    defect

    02.02.22

    delineator

    03.02.30

    densitometer

    02.02.18

    depth of field (1)

    02.04.30

    depth of field (2)

    02.04.31

    diffuse reflection

    02.02.09

    direct part marking

    04.02.24

    discrete code

    03.01.13

    dot code

    04.02.05

    effective aperture

    02.04.10

    element

    02.01.14

    erasure

    04.02.21

    error correction codeword

    04.02.19

    error correction level

    04.02.20

    even parity

    03.02.08

    field of view

    02.04.32

    film master

    03.02.18

    finder pattern

    04.02.08

    fixed beam scanner

    02.04.16

    fixed parity

    03.02.10

    fixed pattern

    04.02.03

    flat-bed scanner

    02.04.21

    gloss

    02.02.13

    guard pattern

    03.02.04

    helium neon laser

    02.04.14

    integrated artwork

    03.02.28

    intercharacter gap

    03.01.08

    intrusive marking

    04.02.25

    label printing machine

    02.04.34

    ladder orientation

    03.02.05

    laser engraver

    02.04.35

    latch character

    02.01.24

    linear bar code symbol

    03.01.01

    magnification factor

    03.02.27

    matrix symbology

    04.02.04

    modular symbology

    03.01.11

    module (1)

    02.01.13

    module (2)

    04.02.06

    modulo

    03.02.03

    moving beam scanner

    02.04.15

    multi-row symbology

    04.02.09

    non-intrusive marking

    04.02.26

    odd parity

    03.02.07

    omnidirectional

    03.01.14

    omnidirectional scanner

    02.04.20

    opacity

    02.02.16

    optically readable medium

    02.01.01

    optical throw

    02.04.27

    orientation

    02.04.23

    orientation pattern

    02.01.22

    oscillating mirror scanner

    02.04.19

    overhead

    03.01.03

    overprinting

    02.04.36

    pad character

    04.02.22

    pad codeword

    04.02.23

    permanent marking

    04.02.27

    photometer

    02.02.19

    picket fence orientation

    03.02.06

    pitch

    02.04.26

    pixel

    02.04.37

    print contrast signal

    02.02.20

    printability gauge

    03.02.26

    printability test

    02.02.21

    print quality

    02.02.02

    quiet zone

    02.01.06

    raster

    02.04.18

    raster scanner

    02.04.17

    reading angle

    02.04.22

    reading distance

    02.04.29

    read rate

    02.04.06

    redundancy

    03.01.05

    reference decode algorithm

    02.02.26

    reference threshold

    02.02.27

    reflectance

    02.02.07

    reflectance difference

    02.02.11

    regular reflection

    02.02.08

    resolution

    02.01.15

    row

    04.02.10

    scanner

    02.04.04

    scanning window

    02.04.28

    scan, noun (1)

    02.04.01

    scan, noun (2)

    02.04.03

    scan reflectance profile

    02.02.17

    scan, verb

    02.04.02

    self-checking

    02.01.21

    shift character

    02.01.23

    short read

    03.02.12

    show through

    02.02.12

    single line (beam) scanner

    02.04.11

    skew

    02.04.25

    slot reader

    02.04.12

    speck

    02.02.24

    spectral response

    02.02.10

    spot

    02.02.25

    stacked symbology

    04.02.12

    stop character/pattern

    03.01.02

    structured append

    04.02.16

    substitution error

    03.02.01

    substrate

    02.02.06

    symbol architecture

    02.01.04

    symbol aspect ratio

    02.01.19

    symbol character

    02.01.07

    symbol check character

    03.02.02

    symbol density

    03.02.16

    symbology

    02.01.02

    symbol width

    02.01.18

    tilt

    02.04.24

    transmittance (l)

    02.02.14

    transmittance (2)

    02.02.15

    truncation

    03.02.13

    two-dimensional symbol (1)

    04.02.01

    two-dimensional symbol (2)

    04.02.02

    two-width symbology

    03.01.09

    variable parity encodation

    03.02.09

    verification

    02.02.03

    verifier

    02.02.04

    vertical redundancy

    03.01.06

    void

    02.02.23

    wand

    02.04.08

    wide: narrow ratio

    03.01.07

    X dimension

    02.01.10

    Y dimension

    02.01.11

    Z dimension

    02.01.12

    zero-suppression

    03.02.17

    <2>Приложение ДА1)

    ______________

    1)

    Источник: ГОСТ Р ИСО/МЭК 19762-2-2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 2. Оптические носители данных (ОНД) оригинал документа

    Англо-русский словарь нормативно-технической терминологии > redundancy

  • 104 application function

    1. прикладная функция

    3.2 прикладная функция (application function): Функция системы контроля и управления по выполнению задачи, связанной с контролируемым процессом, а не с функционированием самой системы.

    [МЭК 61513, пункт 3.1]

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.1 прикладная функция (application function): Функция системы контроля и управления по выполнению задачи, связанной с контролируемым процессом, а не с функционированием самой системы.

    [МЭК 60880, пункт 2.1, модифицировано]

    Примечание 1 - См. также «функция контроля и управления», «система контроля и управления», «прикладное программное обеспечение».

    Примечание 2 - Прикладная функция является обычно одной из функций контроля и управления.

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > application function

  • 105 courseware

    4) Вычислительная техника: обучающие программы, обучающие системы, программное обеспечение( для) программирования обучения, программное обеспечение автоматизированного обучения, программное обеспечение программированного обучения

    Универсальный англо-русский словарь > courseware

  • 106 verification

    1. проверка (подлинности)
    2. долговременная маркировка
    3. верификация (штрихового кода)
    4. верификация (с точки зрения электробезопасности)
    5. верификация (проверка)
    6. верификация (доказательство правильности)
    7. верификация (в менеджменте качества)
    8. верификация

     

    верификация
    контроль
    проверка

    Установление соответствия принятой и переданной информации с помощью логических методов [http://www.rol.ru/files/dict/internet/#].
    [ http://www.morepc.ru/dict/]

    верификация
    (ITIL Service Transition)
    Деятельность, которая гарантирует, что новая или измененная ИТ- услуга, процесс, план или другой результат - полный, точный, надежный и соответствует своей спецификации проектирования.
    См. тж. подтверждение; приёмка; подтверждение и тестирование услуг.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    verification 
    (ITIL Service Transition)
    An activity that ensures that a new or changed IT service, process, plan or other deliverable is complete, accurate, reliable and matches its design specification.
    See also acceptance; validation; service validation and testing.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    Синонимы

    EN

     

    верификация
    Подтверждение посредством представления объективных свидетельств того, что установленные требования были выполнены.
    Примечания
    1. Термин "верифицирован" используют для обозначения соответствующего статуса.
    2. Деятельность по подтверждению требования может включать в себя:
    - осуществление альтернативных расчетов;
    - сравнение спецификации на новый проект с аналогичной документацией на апробированный проект;
    - проведение испытаний и демонстраций;
    - анализ документов до их выпуска.
    [ ГОСТ Р ИСО 9000-2008]

    Тематики

    EN

     

    верификация (доказательство правильности)
    контроль
    проверка


    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    Синонимы

    EN

     

    верификация (проверка)
    1. Процесс определения соответствия качества или характеристик продукта или услуги тому, что предписывается, предопределяется или требуется. Верификация тесно связана с обеспечением качества и контролем качества. верификация компьютерной системы computer system verification Процесс, имеющий целью обеспечить, чтобы данный этап в жизненном цикле системы удовлетворял требованиям, введенным на предыдущем этапе. верификация модели model verification Процесс, имеющий целью определить, правильно ли отображает данная вычислительная модель искомую концептуальную модель или математическую модель. Верификация системного кода system code verification Анализ кодирования источника на предмет его соответствия описанию в документации системного кода. 2. Подтверждение на основе объективных свидетельств того, что установленные требования были выполнены. См. валидация (аттестация). Соответствующий статус – ‘верифицировано’. Верификация может включать такие операции, как: осуществление альтернативных расчетов; сравнение научной и технической документации по новому проекту с аналогичной документацией по апробированному проекту; проведение испытаний и демонстраций; и анализ документов до их выпуска.
    [Глоссарий МАГАТЭ по вопросам безопасности]

    Тематики

    EN

     

    верификация
    Подтверждение выполнения требований путем исследования и сбора объективных свидетельств.
    Примечания
    1. Адаптировано из ИСО 8402 путем исключения примечаний.
    2. В контексте настоящего стандарта верификация представляет собой выполняемую для каждой стадии жизненного цикла соответствующей системы безопасности (общей, E/E/PES систем и программного обеспечения) путем анализа и/или тестирования демонстрацию того, что для используемых входных данных компоненты удовлетворяют во всех отношениях набору задач и требований для соответствующей стадии.
    Пример
    Процесс верификации включает в себя:
    - просмотр выходных данных (документов, относящихся ко всем стадиям жизненного цикла систем безопасности) для того, чтобы убедиться в соответствии задачам и требованиям соответствующей стадии, с учетом конкретных входных данных для этой стадии;
    - просмотр проектов;
    - тестирование проектируемых продуктов для того, чтобы убедиться, что они работают в соответствии с их спецификациями;
    - проверка интеграции, реализуемая внешними тестами, для всех систем, образующихся покомпонентным добавлением к исходной системе, и необходимая для того, чтобы убедиться, что все компоненты работают вместе в соответствии со спецификацией.
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    EN

     

    верификация (штрихового кода)
    Техническая процедура измерения показателей символа штрихового кода, в процессе которой определяется их соответствие требованиям, предъявляемым к символу.
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    Тематики

    EN

    DE

    FR

     

    проверка (подлинности)
    верификация

    Процесс сопоставления субъекта с заявленными о нем сведениями. В частности процедура сравнения подписи, созданной с помощью частного ключа, с соответсвующим открытым ключом.
    [ http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=5048]

    Тематики

    Синонимы

    EN

    4.55 верификация (verification): Подтверждение (на основе представления объективных свидетельств) того, что заданные требования полностью выполнены [3].

    Примечание - Верификация в контексте жизненного цикла представляет собой совокупность действий по сравнению полученного результата жизненного цикла с требуемыми характеристиками для этого результата. Результатами жизненного цикла могут являться (но не ограничиваться ими): заданные требования, описание проекта и непосредственно система.

    Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа

    4.23 верификация (verification): Процесс, в результате которого приходят к заключению, что два изображения принадлежат одному и тому же человеку; сопоставление 1:1 («один к одному»).

    Примечание - Термины и соответствующие определения к ним установлены только для использования в настоящем стандарте.

    Источник: ГОСТ Р ИСО/МЭК 19794-5-2006: Автоматическая идентификация. Идентификация биометрическая. Форматы обмена биометрическими данными. Часть 5. Данные изображения лица оригинал документа

    4.24 верификация (verification): Подтверждение на основе представления объективных свидетельств того, что установленные требования были выполнены [3].

    Примечание - Верификация в контексте жизненного цикла системы является совокупностью действий по сравнению полученного результата жизненного цикла системы с требуемыми характеристиками для этого результата. Результатами жизненного цикла могут являться (но не ограничиваются только ими) установленные требования, описание проекта и непосредственно система.

    Источник: ГОСТ Р ИСО/МЭК 15288-2005: Информационная технология. Системная инженерия. Процессы жизненного цикла систем оригинал документа

    3.36 верификация (verification): Подтверждение экспертизой и представлением объективных доказательств того, что конкретные требования полностью реализованы.

    Примечания

    1 В процессе проектирования и разработки верификация связана с экспертизой результатов данной работы в целях определения их соответствия установленным требованиям.

    2 Термин «верифицирован» используется для обозначения соответствующих состояний проверенного объекта. (См. 2.17 title="Управление качеством и обеспечение качества - Словарь").

    Источник: ГОСТ Р ИСО/МЭК 12207-99: Информационная технология. Процессы жизненного цикла программных средств оригинал документа

    3.18 верификация (verification): Подтверждение посредством предоставления объективных свидетельств того, что установленные требования были выполнены.

    [ИСО 9000:2005]

    Примечание - В качестве синонима может использоваться термин «проверка соответствия».

    Источник: ГОСТ Р ИСО/МЭК 27004-2011: Информационная технология. Методы и средства обеспечения безопасности. Менеджмент информационной безопасности. Измерения оригинал документа

    2.22 верификация (verification): Подтверждение на основе анализа и представления объективных свидетельств того, что установленные требования выполнены.

    Примечание - При проектировании и разработке верификация означает процесс анализа результатов предпринятой деятельности с целью определения соответствия установленным к этой деятельности требованиям ([4], подпункт 3.8.4).

    Источник: ГОСТ Р ИСО 14971-2006: Изделия медицинские. Применение менеджмента риска к медицинским изделиям оригинал документа

    3.8.4 верификация (verification): Подтверждение посредством представления объективных свидетельств (3.8.1) того, что установленные требования (3.1.2) были выполнены.

    Примечания

    1 Термин «верифицирован» используют для обозначения соответствующего статуса.

    2 Деятельность по подтверждению требования может включать в себя:

    - осуществление альтернативных расчетов;

    - сравнение спецификации (3.7.3) на новый проект с аналогичной документацией на апробированный проект;

    - проведение испытаний (3.8.3) и демонстраций;

    - анализ документов до их выпуска.

    Источник: ГОСТ Р ИСО 9000-2008: Системы менеджмента качества. Основные положения и словарь оригинал документа

    2.18 верификация (verification): Подтверждение посредством предоставления объективных свидетельств того, что установленные требования выполнены.

    Примечание - Верификация это набор действий, с помощью которого происходит сопоставление характеристик системы или элемента системы с установленными требованиями к характеристикам. Верификация может охватывать установленные требования, описание проекта и саму систему.

    Источник: ГОСТ Р ИСО 9241-210-2012: Эргономика взаимодействия человек-система. Часть 210. Человеко-ориентированное проектирование интерактивных систем оригинал документа

    2.35 верификация (verification): Систематический, независимый и документально оформленный процесс оценки утверждения по ПГ на соответствие согласованным критериям верификации.

    Примечание - В некоторых случаях, например при верификациях первой стороной, независимость может быть продемонстрирована невозложением на какое-либо лицо ответственности за подготовку данных и представление соответствующей информации по ПГ.

    Источник: ГОСТ Р ИСО 14064-1-2007: Газы парниковые. Часть 1. Требования и руководство по количественному определению и отчетности о выбросах и удалении парниковых газов на уровне организации оригинал документа

    2.28 верификация (verification): Систематический, независимый и документально оформленный процесс оценки утверждения по парниковым газам (2.10) на соответствие согласованным критериям верификации.

    Примечание - В некоторых случаях, например при верификациях первой стороной, независимость может быть продемонстрирована невозложением на какое-либо лицо ответственности за подготовку данных и представление соответствующей информации по ПГ.

    Источник: ГОСТ Р ИСО 14064-2-2007: Газы парниковые. Часть 2. Требования и руководство по количественной оценке, мониторингу и составлению отчетной документации на проекты сокращения выбросов парниковых газов или увеличения их удаления на уровне проекта оригинал документа

    2.36 верификация (verification): Систематический, независимый и документально оформленный процесс оценки утверждения по ПГ (2.11)на соответствие согласованным критериям верификации (2.33).

    Примечание - В некоторых случаях, например при верификации первой стороной, независимость может быть продемонстрирована невозложением на какое-либо лицо ответственности за подготовку данных и представление соответствующей информации по ПГ.

    Источник: ГОСТ Р ИСО 14064-3-2007: Газы парниковые. Часть 3. Требования и руководство по валидации и верификации утверждений, касающихся парниковых газов оригинал документа

    3.1.22 верификация (verification): Подтверждение на основе представления объективных свидетельств того, что установленные требования были выполнены.

    [ИСО 9000, статья 3.8.4]

    Источник: ГОСТ ИСО 14698-1-2005: Чистые помещения и связанные с ними контролируемые среды. Контроль биозагрязнений. Часть 1. Общие принципы и методы оригинал документа

    3.116 верификация (verification): Экспертиза, призванная подтвердить, что деятельность, изделие или услуга соответствуют заданным требованиям.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.17 верификация (verification): Комплекс операций для проверки испытательного оборудования (например, испытательного генератора и соединительных кабелей), а также для демонстрации того, что испытательная система функционирует.

    Примечание - Методы, используемые для верификации, отличаются от методов калибровки.

    Источник: ГОСТ Р 51317.4.2-2010: Совместимость технических средств электромагнитная. Устойчивость к электростатическим разрядам. Требования и методы испытаний оригинал документа

    3.26 верификация (verification): Процесс определения, соответствует ли качество продукта или услуги установленным требованиям.

    [Справочник по безопасности МАГАТЭ, Издание 2.0, 2006]

    Источник: ГОСТ Р МЭК 62340-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Требования по предотвращению отказов по общей причине оригинал документа

    3.7 верификация (verification): Подтверждение на основе объективных данных, что установленные требования были выполнены.

    Примечание 1 -Адаптированный термин по ИСО 9000:2005, пункт 3.8.4 [1].

    Примечание 2 - См. рисунок 1.

    Примечание 3 - Данный термин часто используют совместно с термином «валидация», и оба термина составляют аббревиатуру «V&V» (верификация и валидация).

    Источник: ГОСТ Р ИСО 11064-7-2010: Эргономическое проектирование центров управления. Часть 7. Принципы оценки оригинал документа

    2.141 верификация (verification): Подтверждение на основе представления объективных свидетельств того, что установленные требования были выполнены.

    Примечание - При аттестации (верификации) документированной системы контроля (2.70) могут использоваться методы текущего контроля и аудита, методики и проверки, в том числе случайный отбор проб и проведение анализа.

    [ИСО 14698-1:2003, статья 3.1.22]

    Источник: ГОСТ Р ИСО 14644-6-2010: Чистые помещения и связанные с ними контролируемые среды. Часть 6. Термины оригинал документа

    3.43 верификация (verification): Подтверждение экспертизой и предоставлением иного объективного свидетельства того, что результаты функционирования соответствуют целям и требованиям, определенным для такого функционирования.

    [МЭК 62138, пункт 3.35]

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.18 верификация (verification): Подтверждение экспертизой и представление иного объективного доказательства того, что результаты функционирования отвечают целям и требованиям, определенным для такого функционирования (ИСО 12207).

    [МЭК 62138:2004, определение 3.35]

    Источник: ГОСТ Р МЭК 60987-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Требования к разработке аппаратного обеспечения компьютеризованных систем оригинал документа

    3.8.1 верификация (verification): Подтверждение выполнения требований путем исследования и сбора объективных свидетельств.

    Примечания

    1. Адаптировано из ИСО 8402 путем исключения примечаний.

    2. В контексте настоящего стандарта верификация представляет собой выполняемую для каждой стадии жизненного цикла соответствующей системы безопасности (общей, E/E/PES систем и программного обеспечения) путем анализа и/или тестирования демонстрацию того, что для используемых входных данных компоненты удовлетворяют во всех отношениях набору задач и требований для соответствующей стадии.

    ПРИМЕР - Процесс верификации включает в себя:

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.8.4 верификация (verification): Подтверждение посредством представления объективных свидетельств (3.8.1) того, что установленные требования (3.1.2) были выполнены.

    Примечания

    1 Термин «верифицирован» используют для обозначения соответствующего статуса.

    2 Деятельность по подтверждению требования может включать в себя:

    - осуществление альтернативных расчетов;

    - сравнение спецификации (3.7.3) на новый проект с аналогичной документацией на апробированный проект;

    - проведение испытаний (3.8.3) и демонстраций;

    - анализ документов до их выпуска.

    Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь

    3.2.59 верификация (verification): Подтверждение на основе представления объективных свидетельств того, что установленные требования были выполнены.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    5.1 верификация (verification):

    в контексте маркировки и декларирования: Подтверждение посредством предоставления объективных свидетельств выполнения установленных требований.

    [ИСО 14025:2006];

    в контексте парниковых газов: Систематический, независимый и документально оформленный процесс (6.4) для оценки утверждения по парниковым газам (9.5.2) на соответствие согласованным критериям верификации (5.12).

    Примечание - В некоторых случаях, например при верификациях первой стороной, независимость может быть продемонстрирована свободой от несения ответственности за подготовку данных и представление информации по парниковым газам.

    [ИСО 14065:2007]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    3.3.7 верификация (verification): Систематический, независимый и документально оформленный процесс оценки утверждения по ПГ на соответствие согласованным критериям верификации.

    Примечания

    1 В некоторых случаях, например при верификациях первой стороной, независимость может быть продемонстрирована невозложением на какое-либо лицо ответственности за подготовку данных и представление соответствующей информации по ПГ.

    2 В соответствии с ИСО 14064-3:2006, статья 2.36.

    Источник: ГОСТ Р ИСО 14065-2010: Газы парниковые. Требования к органам по валидации и верификации парниковых газов для их применения при аккредитации или других формах признания оригинал документа

    04.02.27 долговременная маркировка [ permanent marking]: Изображение, полученное с помощью интрузивного или неинтрузивного маркирования, которое должно оставаться различимым, как минимум, в течение установленного срока службы изделия.

    Сравнить с терминологической статьей «соединение» по ИСО/МЭК19762-11).

    ______________

    1)Терминологическая статья 04.02.27 не связана с указанной терминологической статьей.

    <2>4 Сокращения

    ECI интерпретация в расширенном канале [extended channel interpretation]

    DPM прямое маркирование изделий [direct part marking]

    BWA коррекция ширины штриха [bar width adjustment]

    BWC компенсация ширины штриха [barwidth compensation]

    CPI число знаков на дюйм [characters per inch]

    PCS сигнал контраста печати [print contrast signal]

    ORM оптический носитель данных [optically readable medium]

    FoV поле обзора [field of view]

    Алфавитный указатель терминов на английском языке

    (n, k)symbology

    04.02.13

    add-on symbol

    03.02.29

    alignment pattern

    04.02.07

    aperture

    02.04.09

    auto discrimination

    02.04.33

    auxiliary character/pattern

    03.01.04

    background

    02.02.05

    bar

    02.01.05

    bar code character

    02.01.09

    bar code density

    03.02.14

    barcode master

    03.02.19

    barcode reader

    02.04.05

    barcode symbol

    02.01.03

    bar height

    02.01.16

    bar-space sequence

    02.01.20

    barwidth

    02.01.17

    barwidth adjustment

    03.02.21

    barwidth compensation

    03.02.22

    barwidth gain/loss

    03.02.23

    barwidth increase

    03.02.24

    barwidth reduction

    03.02.25

    bearer bar

    03.02.11

    binary symbology

    03.01.10

    characters per inch

    03.02.15

    charge-coupled device

    02.04.13

    coded character set

    02.01.08

    column

    04.02.11

    compaction mode

    04.02.15

    composite symbol

    04.02.14

    contact scanner

    02.04.07

    continuous code

    03.01.12

    corner marks

    03.02.20

    data codeword

    04.02.18

    data region

    04.02.17

    decodability

    02.02.28

    decode algorithm

    02.02.01

    defect

    02.02.22

    delineator

    03.02.30

    densitometer

    02.02.18

    depth of field (1)

    02.04.30

    depth of field (2)

    02.04.31

    diffuse reflection

    02.02.09

    direct part marking

    04.02.24

    discrete code

    03.01.13

    dot code

    04.02.05

    effective aperture

    02.04.10

    element

    02.01.14

    erasure

    04.02.21

    error correction codeword

    04.02.19

    error correction level

    04.02.20

    even parity

    03.02.08

    field of view

    02.04.32

    film master

    03.02.18

    finder pattern

    04.02.08

    fixed beam scanner

    02.04.16

    fixed parity

    03.02.10

    fixed pattern

    04.02.03

    flat-bed scanner

    02.04.21

    gloss

    02.02.13

    guard pattern

    03.02.04

    helium neon laser

    02.04.14

    integrated artwork

    03.02.28

    intercharacter gap

    03.01.08

    intrusive marking

    04.02.25

    label printing machine

    02.04.34

    ladder orientation

    03.02.05

    laser engraver

    02.04.35

    latch character

    02.01.24

    linear bar code symbol

    03.01.01

    magnification factor

    03.02.27

    matrix symbology

    04.02.04

    modular symbology

    03.01.11

    module (1)

    02.01.13

    module (2)

    04.02.06

    modulo

    03.02.03

    moving beam scanner

    02.04.15

    multi-row symbology

    04.02.09

    non-intrusive marking

    04.02.26

    odd parity

    03.02.07

    omnidirectional

    03.01.14

    omnidirectional scanner

    02.04.20

    opacity

    02.02.16

    optically readable medium

    02.01.01

    optical throw

    02.04.27

    orientation

    02.04.23

    orientation pattern

    02.01.22

    oscillating mirror scanner

    02.04.19

    overhead

    03.01.03

    overprinting

    02.04.36

    pad character

    04.02.22

    pad codeword

    04.02.23

    permanent marking

    04.02.27

    photometer

    02.02.19

    picket fence orientation

    03.02.06

    pitch

    02.04.26

    pixel

    02.04.37

    print contrast signal

    02.02.20

    printability gauge

    03.02.26

    printability test

    02.02.21

    print quality

    02.02.02

    quiet zone

    02.01.06

    raster

    02.04.18

    raster scanner

    02.04.17

    reading angle

    02.04.22

    reading distance

    02.04.29

    read rate

    02.04.06

    redundancy

    03.01.05

    reference decode algorithm

    02.02.26

    reference threshold

    02.02.27

    reflectance

    02.02.07

    reflectance difference

    02.02.11

    regular reflection

    02.02.08

    resolution

    02.01.15

    row

    04.02.10

    scanner

    02.04.04

    scanning window

    02.04.28

    scan, noun (1)

    02.04.01

    scan, noun (2)

    02.04.03

    scan reflectance profile

    02.02.17

    scan, verb

    02.04.02

    self-checking

    02.01.21

    shift character

    02.01.23

    short read

    03.02.12

    show through

    02.02.12

    single line (beam) scanner

    02.04.11

    skew

    02.04.25

    slot reader

    02.04.12

    speck

    02.02.24

    spectral response

    02.02.10

    spot

    02.02.25

    stacked symbology

    04.02.12

    stop character/pattern

    03.01.02

    structured append

    04.02.16

    substitution error

    03.02.01

    substrate

    02.02.06

    symbol architecture

    02.01.04

    symbol aspect ratio

    02.01.19

    symbol character

    02.01.07

    symbol check character

    03.02.02

    symbol density

    03.02.16

    symbology

    02.01.02

    symbol width

    02.01.18

    tilt

    02.04.24

    transmittance (l)

    02.02.14

    transmittance (2)

    02.02.15

    truncation

    03.02.13

    two-dimensional symbol (1)

    04.02.01

    two-dimensional symbol (2)

    04.02.02

    two-width symbology

    03.01.09

    variable parity encodation

    03.02.09

    verification

    02.02.03

    verifier

    02.02.04

    vertical redundancy

    03.01.06

    void

    02.02.23

    wand

    02.04.08

    wide: narrow ratio

    03.01.07

    X dimension

    02.01.10

    Y dimension

    02.01.11

    Z dimension

    02.01.12

    zero-suppression

    03.02.17

    <2>Приложение ДА1)

    ______________

    1)

    Источник: ГОСТ Р ИСО/МЭК 19762-2-2011: Информационные технологии. Технологии автоматической идентификации и сбора данных (АИСД). Гармонизированный словарь. Часть 2. Оптические носители данных (ОНД) оригинал документа

    Англо-русский словарь нормативно-технической терминологии > verification

  • 107 diversity

    1. разнохарактерность
    2. разнородность
    3. разнопринципность
    4. разнообразие
    5. разновременность
    6. разнесение
    7. несходство
    8. неодинаковость

     

    неодинаковость

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    несходство

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    разнесение
    Метод борьбы с замираниями, основанный на организации нескольких каналов для приема сигналов с одной и той же информацией. См. angle ~, antenna ~, directivity ~, explicit ~, frequency - geometric-, implicit-, тасrodiversity, microdiversity, orbital-, order of~, orthogonaltransmit-, path-, polarization- selection- selective transmit ~, space ~, time ~.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    разновременность

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    разнообразие
    Различные средства для выполнения требуемой функции.
    Пример
    Разнообразие может достигаться использованием различных физических методов и различных проектных подходов.
    [ ГОСТ Р МЭК 61508-4-2007]

    разнообразие
    (в кибернетике и общей теории систем) — количественная характеристика сложности системы: измеряется логарифмом (по основанию 2) возможных различимых ее состояний. (См. Необходимое разнообразие.)
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    разнопринципность
    (напр. обеспечение более одного способа выполнения функции или контроля параметра)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    разнородность

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    разнохарактерность

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    3.3 разнообразие (diversity): Наличие двух или более путей или средств достижения установленной цели. Разнообразие специально создается как защита от отказа по общей причине. Оно может быть достигнуто наличием систем, которые физически отличаются одна от другой, или с помощью функционального разнообразия, если аналогичные системы достигают установленной цели различными путями.

    [МЭК 60880, пункт 3.14]

    Примечание - См. также «функциональное разнообразие».

    Источник: ГОСТ Р МЭК 62340-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Требования по предотвращению отказов по общей причине оригинал документа

    3.5 разнообразие (diversity): Наличие двух или более резервных систем или резервных элементов для выполнения одной определенной функции, при котором разные системы или элементы наделяются различными признаками таким образом, чтобы уменьшалась возможность отказа по общей причине, включая общий отказ.

    (Глоссарий МАГАТЭ по вопросам безопасности:2007)

    Примечание - В МЭК 60880 дано следующее определение для термина «разнообразие»: Наличие двух или более путей или средств достижения установленной цели. Разнообразие специально создается как защита от отказа по общей причине. Оно может быть достигнуто наличием систем, которые физически отличаются одна от другой, или с помощью функционального разнообразия, если аналогичные системы достигают установленной цели различными путями.

    Источник: ГОСТ Р МЭК 61226-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Классификация функций контроля и управления оригинал документа

    3.14 разнообразие (diversity): Наличие двух или более путей или средств достижения установленной цели. Разнообразие специально создается как защита от отказа по общей причине. Оно может быть достигнуто наличием систем, которые физически отличаются одна от другой, или с помощью функционального разнообразия, если аналогичные системы достигают установленной цели различными путями.

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.3 разнообразие (diversity): Наличие двух или более различных путей или средств достижения установленной цели. Разнообразие специально создается как защита от отказа по общей причине. Оно может быть достигнуто наличием систем, которые физически отличаются одна от другой, или с помощью функционального разнообразия, если аналогичные системы достигают установленной цели различными путями.

    [МЭК 60880:2006, определение 3.14]

    Примечание - Это определение шире используемого в IAEA NS-G-1.3: «наличие двух или более систем или компонентов, предназначенных для выполнения определенной функции, где различные системы или компоненты обладают различными свойствами, чтобы уменьшить возможность общего отказа».

    [МЭК 61226:2005, определение 3.5]

    Источник: ГОСТ Р МЭК 60987-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Требования к разработке аппаратного обеспечения компьютеризованных систем оригинал документа

    3.3.9 разнообразие (diversity): Различные средства для выполнения требуемой функции.

    ПРИМЕР - Разнообразие может достигаться использованием различных физических методов и различных проектных подходов.

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.16 разнообразие (diversity): Наличие двух или более путей или средств достижения установленной цели. Разнообразие специально создается как защита от отказа по общей причине. Оно может быть достигнуто наличием систем, которые физически отличаются одна от другой, или с помощью функционального разнообразия, если аналогичные системы достигают установленной цели различными путями.

    [МЭК 60880-2, пункт 3.6]

    Примечание 1 - См. также «функциональное разнообразие».

    Примечание 2 - Это определение шире, чем использованное в МАГАТЭ 50-C-D: «существование избыточных компонентов или систем с целью выполнения определенной функции, когда такие компоненты или системы совместно несут в себе одну или более различных характеристик. Например, такие характеристики, как различные условия работы, размеры оборудования, производители, принципы функционирования и типы оборудования, использующие различные физические методы».

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > diversity

  • 108 OS level software

    English-Russian base dictionary > OS level software

  • 109 HMI

    1. человеко-машинный интерфейс
    2. человеко-машинное взаимодействие
    3. терминал
    4. интерфейс управления концентратором
    5. интерфейс "человек-машина"

     

    интерфейс "человек-машина"
    аппаратно-программная система управления технологическими процессами
    HMI - это набор всех средств, позволяющих человеку вмешаться в поведение вычислительной системы. Как правило, HMI представляет собой компьютер с графическим дисплеем, где в наглядной форме отображается поведение системы, и пользователь имеет возможность вмешаться в деятельность системы. Однако в качестве HMI может выступать самый простой пульт из набора тумблеров и светодиодных индикаторов.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    интерфейс управления концентратором

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    терминал
    Устройство ввода-вывода, обеспечивающее взаимодействие пользователей в локальной вычислительной сети или с удаленной ЭВМ через средства телеобработки данных
    [ ГОСТ 25868-91]
    [ ГОСТ Р 50304-92 ]

    Параллельные тексты EN-RU

    HMI port warning
    [Schneider Electric]

    Предупредительное состояние об ошибке обмена данными через порт связи с терминалом оператора
    [Перевод Интент]

    HMI display max current phase enable
    [Schneider Electric]

    Разрешается отображение на терминале оператора максимального линейного тока
    [Перевод Интент]

    Config via HMI keypad enable
    [Schneider Electric]

    Конфигурирование (системы) с помощью клавиатуры терминала оператора
    [Перевод Интент]


    Тематики

    • оборуд. перифер. систем обраб. информации
    • системы для сопряж. радиоэлектр. средств интерфейсные

    Обобщающие термины

    Синонимы

    EN

     

    человеко-машинное взаимодействие

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    человеко-машинный интерфейс (ЧМИ)
    Технические средства, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование.
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.
    [ ГОСТ Р МЭК 60447-2000]

    человекомашинный интерфейс (ЧМИ)
    Технические средства контроля и управления, являющиеся частью оборудования, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование (ГОСТ Р МЭК 60447).
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства и дисплеи.
    [ ГОСТ Р МЭК 60073-2000]

    человеко-машинный интерфейс
    Средства обеспечения двусторонней связи "оператор - технологическое оборудование" (АСУ ТП). Название класса средств, в который входят подклассы:
    SCADA (Supervisory Control and Data Acquisition) - Операторское управление и сбор данных от технологического оборудования.
    DCS (Distributed Control Systems) - Распределенная система управления технологическим оборудованием.
    [ http://www.morepc.ru/dict/]

    Параллельные тексты EN-RU

    MotorSys™ iPMCC solutions can integrate a dedicated human-machine interface (HMI) or communicate via a personal computer directly on the motor starters.
    [Schneider Electric]

    Интеллектуальный центр распределения электроэнергии и управления электродвигателями MotorSys™ может иметь в своем составе специальный человеко-машинный интерфейс (ЧМИ). В качестве альтернативы используется обмен данным между персональным компьютером и пускателями.
    [Перевод Интент]


    HMI на базе операторских станций

    Самое, пожалуй, главное в системе управления - это организация взаимодействия между человеком и программно-аппаратным комплексом. Обеспечение такого взаимодействия и есть задача человеко-машинного интерфейса (HMI, human machine interface).

    На мой взгляд, в аббревиатуре “АСУ ТП” ключевым является слово “автоматизированная”, что подразумевает непосредственное участие человека в процессе реализации системой определенных задач. Очевидно, что чем лучше организован HMI, тем эффективнее человек сможет решать поставленные задачи.

    Как же организован HMI в современных АСУ ТП?
    Существует, как минимум, два подхода реализации функционала HMI:

    1. На базе специализированных рабочих станций оператора, устанавливаемых в центральной диспетчерской;
    2. На базе панелей локального управления, устанавливаемых непосредственно в цеху по близости с контролируемым технологическим объектам.

    Иногда эти два варианта комбинируют, чтобы достичь наибольшей гибкости управления. В данной статье речь пойдет о первом варианте организации операторского уровня.

    Аппаратно рабочая станция оператора (OS, operator station) представляет собой ни что иное как персональный компьютер. Как правило, станция снабжается несколькими широкоэкранными мониторами, функциональной клавиатурой и необходимыми сетевыми адаптерами для подключения к сетям верхнего уровня (например, на базе Industrial Ethernet). Станция оператора несколько отличается от привычных для нас офисных компьютеров, прежде всего, своим исполнением и эксплуатационными характеристиками (а также ценой 4000 - 10 000 долларов).
    На рисунке 1 изображена рабочая станция оператора системы SIMATIC PCS7 производства Siemens, обладающая следующими техническими характеристиками:

    Процессор: Intel Pentium 4, 3.4 ГГц;
    Память: DDR2 SDRAM до 4 ГБ;
    Материнская плата: ChipSet Intel 945G;
    Жесткий диск: SATA-RAID 1/2 x 120 ГБ;
    Слоты: 4 x PCI, 2 x PCI E x 1, 1 x PCI E x 16;
    Степень защиты: IP 31;
    Температура при эксплуатации: 5 – 45 C;
    Влажность: 5 – 95 % (без образования конденсата);
    Операционная система: Windows XP Professional/2003 Server.

    4876
    Рис. 1. Пример промышленной рабочей станции оператора.

    Системный блок может быть как настольного исполнения ( desktop), так и для монтажа в 19” стойку ( rack-mounted). Чаще применяется второй вариант: системный блок монтируется в запираемую стойку для лучшей защищенности и предотвращения несанкционированного доступа.

    Какое программное обеспечение используется?
    На станции оператора устанавливается программный пакет визуализации технологического процесса (часто называемый SCADA). Большинство пакетов визуализации работают под управлением операционных систем семейства Windows (Windows NT 4.0, Windows 2000/XP, Windows 2003 Server), что, на мой взгляд, является большим минусом.
    Программное обеспечение визуализации призвано выполнять следующие задачи:

    1. Отображение технологической информации в удобной для человека графической форме (как правило, в виде интерактивных мнемосхем) – Process Visualization;
    2. Отображение аварийных сигнализаций технологического процесса – Alarm Visualization;
    3. Архивирование технологических данных (сбор истории процесса) – Historical Archiving;
    4. Предоставление оператору возможности манипулировать (управлять) объектами управления – Operator Control.
    5. Контроль доступа и протоколирование действий оператора – Access Control and Operator’s Actions Archiving.
    6. Автоматизированное составление отчетов за произвольный интервал времени (посменные отчеты, еженедельные, ежемесячные и т.д.) – Automated Reporting.

    Как правило, SCADA состоит из двух частей:

    1. Среды разработки, где инженер рисует и программирует технологические мнемосхемы;
    2. Среды исполнения, необходимой для выполнения сконфигурированных мнемосхем в режиме runtime. Фактически это режим повседневной эксплуатации.

    Существует две схемы подключения операторских станций к системе управления, а точнее уровню управления. В рамках первой схемы каждая операторская станция подключается к контроллерам уровня управления напрямую или с помощью промежуточного коммутатора (см. рисунок 2). Подключенная таким образом операторская станция работает независимо от других станций сети, и поэтому часто называется одиночной (пусть Вас не смущает такое название, на самом деле таких станций в сети может быть несколько).

    4877
    Рис. 2. Схема подключения одиночных операторских станций к уровню управления.

    Есть и другой вариант. Часто операторские станции подключают к серверу или резервированной паре серверов, а серверы в свою очередь подключаются к промышленным контроллерам. Таким образом, сервер, являясь неким буфером, постоянно считывает данные с контроллера и предоставляет их по запросу рабочим станциям. Станции, подключенные по такой схеме, часто называют клиентами (см. рисунок 3).

    4878
    Рис. 3. Клиент-серверная архитектура операторского уровня.

    Как происходит информационный обмен?
    Для сопряжения операторской станции с промышленным контроллером на первой устанавливается специальное ПО, называемое драйвером ввода/вывода. Драйвер ввода/вывода поддерживает совместимый с контроллером коммуникационный протокол и позволяет прикладным программам считывать с контроллера параметры или наоборот записывать в него. Пакет визуализации обращается к драйверу ввода/вывода каждый раз, когда требуется обновление отображаемой информации или запись измененных оператором данных. Для взаимодействия пакета визуализации и драйвера ввода/вывода используется несколько протоколов, наиболее популярные из которых OPC (OLE for Process Control) и NetDDE (Network Dynamic Data Exchange). Обобщенно можно сказать, что OPC и NetDDE – это протоколы информационного обмена между различными приложениями, которые могут выполняться как на одном, так и на разных компьютерах. На рисунках 4 и 5 изображено, как взаимодействуют программные компоненты при различных схемах построения операторского уровня.  
    4879
    Рис. 4. Схема взаимодействия программных модулей при использовании одиночных станций.
     
    4880
    Рис. 5. Схема взаимодействия программных модулей при использовании клиент-серверной архитектуры.
    Как выглядит SCADA?
    Разберем простой пример. На рисунке 6 приведена абстрактная схема технологического процесса, хотя полноценным процессом это назвать трудно.
    4881
    Рис. 6. Пример операторской мнемосхемы.
    На рисунке 6 изображен очень упрощенный вариант операторской мнемосхемы для управления тех. процессом. Как видно, резервуар (емкость) наполняется водой. Задача системы - нагреть эту воду до определенной температуры. Для нагрева воды используется газовая горелка. Интенсивность горения регулируется клапаном подачи газа. Также должен быть насос для закачки воды в резервуар и клапан для спуска воды.

    На мнемосхеме отображаются основные технологические параметры, такие как: температура воды; уровень воды в резервуаре; работа насосов; состояние клапанов и т.д. Эти данные обновляются на экране с заданной частотой. Если какой-либо параметр достигает аварийного значения, соответствующее поле начинает мигать, привлекая внимание оператора.

    Сигналы ввода/вывода и исполнительные механизмы отображаются на мнемосхемах в виде интерактивных графических символов (иконок). Каждому типу сигналов и исполнительных механизмов присваивается свой символ: для дискретного сигнала это может быть переключатель, кнопка или лампочка; для аналогового – ползунок, диаграмма или текстовое поле; для двигателей и насосов – более сложные фейсплейты ( faceplates). Каждый символ, как правило, представляет собой отдельный ActiveX компонент. Вообще технология ActiveX широко используется в SCADA-пакетах, так как позволяет разработчику подгружать дополнительные символы, не входящие в стандартную библиотеку, а также разрабатывать свои собственные графические элементы, используя высокоуровневые языки программирования.

    Допустим, оператор хочет включить насос. Для этого он щелкает по его иконке и вызывает панель управления ( faceplate). На этой панели он может выполнить определенные манипуляции: включить или выключить насос, подтвердить аварийную сигнализацию, перевести его в режим “техобслуживания” и т.д. (см. рисунок 7).  
    4882
    Рис. 7. Пример фейсплейта для управления насосом.
      Оператор также может посмотреть график изменения интересующего его технологического параметра, например, за прошедшую неделю. Для этого ему надо вызвать тренд ( trend) и выбрать соответствующий параметр для отображения. Пример тренда реального времени показан на рисунке 8.
     
    4883
    Рис. 8. Пример отображения двух параметров на тренде реального времени.
    Для более детального обзора сообщений и аварийных сигнализаций оператор может воспользоваться специальной панелью ( alarm panel), пример которой изображен на рисунке 9. Это отсортированный список сигнализаций (alarms), представленный в удобной для восприятия форме. Оператор может подтвердить ту или иную аварийную сигнализацию, применить фильтр или просто ее скрыть.
    4884
    Рис. 9. Панель сообщений и аварийных сигнализаций.
    Говоря о SCADA, инженеры часто оперируют таким важным понятием как “тэг” ( tag). Тэг является по существу некой переменной программы визуализации и может быть использован как для локального хранения данных внутри программы, так и в качестве ссылки на внешний параметр процесса. Тэги могут быть разных типов, начиная от обычных числовых данных и кончая структурой с множеством полей. Например, один визуализируемый параметр ввода/вывода – это тэг, или функциональный блок PID-регулятора, выполняемый внутри контроллера, - это тоже тэг. Ниже представлена сильно упрощенная структура тэга, соответствующего простому PID-регулятору:

    Tag Name = “MyPID”;
    Tag Type = PID;

    Fields (список параметров):

    MyPID.OP
    MyPID.SP
    MyPID.PV
    MyPID.PR
    MyPID.TI
    MyPID.DI
    MyPID.Mode
    MyPID.RemoteSP
    MyPID.Alarms и т.д.

    В комплексной прикладной программе может быть несколько тысяч тэгов. Производители SCADA-пакетов это знают и поэтому применяют политику лицензирования на основе количества используемых тэгов. Каждая купленная лицензия жестко ограничивает суммарное количество тэгов, которые можно использовать в программе. Очевидно, чем больше тегов поддерживает лицензия, тем дороже она стоит; так, например, лицензия на 60 000 тэгов может обойтись в 5000 тыс. долларов или даже дороже. В дополнение к этому многие производители SCADA формируют весьма существенную разницу в цене между “голой” средой исполнения и полноценной средой разработки; естественно, последняя с таким же количеством тэгов будет стоить заметно дороже.

    Сегодня на рынке представлено большое количество различных SCADA-пакетов, наиболее популярные из которых представлены ниже:

    1.    Wonderware Intouch;
    2.    Simatic WinCC;
    3.    Iconics Genesis32;
    4.    Citect;
    5.    Adastra Trace Mode

    Лидирующие позиции занимают Wonderware Intouch (производства Invensys) и Simatic WinCC (разработки Siemens) с суммарным количеством инсталляций более 80 тыс. в мире. Пакет визуализации технологического процесса может поставляться как в составе комплексной системы управления, так и в виде отдельного программного продукта. В последнем случае SCADA комплектуется набором драйверов ввода/вывода для коммуникации с контроллерами различных производителей.   [ http://kazanets.narod.ru/HMI_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > HMI

  • 110 software safety integrity

    1. полнота безопасности программного обеспечения

     

    полнота безопасности программного обеспечения
    Количественная характеристика, которая означает вероятность того, что программное обеспечение программируемой электронной системы будет выполнять специфицированные функции обеспечения безопасности при всех установленных условиях в течение установленного периода времени.
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    EN

    3.7 полнота безопасности программного обеспечения (software safety integrity): Количественная характеристика, которая означает вероятность того, что программное обеспечение программируемой электронной системы будет выполнять заданные функции безопасности при всех оговоренных условиях в течение установленного периода времени.

    Источник: ГОСТ Р 53195.4-2010: Безопасность функциональная связанных с безопасностью зданий и сооружений систем. Часть 4. Требования к программному обеспечению оригинал документа

    3.5.3 полнота безопасности программного обеспечения (software safety integrity): Количественная характеристика, которая означает вероятность того, что программное обеспечение программируемой электронной системы будет выполнять специфицированные функции обеспечения безопасности при всех установленных условиях в течение установленного периода времени.

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > software safety integrity

  • 111 general-purpose language

    1. универсальный язык

    3.20 универсальный язык (general-purpose language): Компьютерный язык, предназначенный для всех видов применения.

    [МЭК 62138, пункт 3.17]

    Примечание 1 - Программное обеспечение операционной системы групп оборудования обычно реализуется с использованием универсальных языков.

    Примечание 2 - Примеры: Ада, Си, Паскаль.

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    Англо-русский словарь нормативно-технической терминологии > general-purpose language

  • 112 alarm management

    1. управление аварийными сигналами

     

    управление аварийными сигналами
    -
    [Интент]


    Переход от аналоговых систем к цифровым привел к широкому, иногда бесконтрольному использованию аварийных сигналов. Текущая программа снижения количества нежелательных аварийных сигналов, контроля, определения приоритетности и адекватного реагирования на такие сигналы будет способствовать надежной и эффективной работе предприятия.

    Если технология хороша, то, казалось бы, чем шире она применяется, тем лучше. Разве не так? Как раз нет. Больше не всегда означает лучше. Наступление эпохи микропроцессоров и широкое распространение современных распределенных систем управления (DCS) упростило подачу сигналов тревоги при любом сбое технологического процесса, поскольку затраты на это невелики или равны нулю. В результате в настоящее время на большинстве предприятий имеются системы, подающие ежедневно огромное количество аварийных сигналов и уведомлений, что мешает работе, а иногда приводит к катастрофическим ситуациям.

    „Всем известно, насколько важной является система управления аварийными сигналами. Но, несмотря на это, на производстве такие системы управления внедряются достаточно редко", - отмечает Тодд Стауффер, руководитель отдела маркетинга PCS7 в компании Siemens Energy & Automation. Однако события последних лет, среди которых взрыв на нефтеперегонном заводе BP в Техасе в марте 2005 г., в результате которого погибло 15 и получило травмы 170 человек, могут изменить отношение к данной проблеме. В отчете об этом событии говорится, что аварийные сигналы не всегда были технически обоснованы.

    Широкое распространение компьютеризированного оборудования и распределенных систем управления сделало более простым и быстрым формирование аварийных сигналов. Согласно новым принципам аварийные сигналы следует формировать только тогда, когда необходимы ответные действия оператора. (С разрешения Siemens Energy & Automation)

    Этот и другие подобные инциденты побудили специалистов многих предприятий пересмотреть программы управления аварийными сигналами. Специалисты пытаются найти причины непомерного роста числа аварийных сигналов, изучить и применить передовой опыт и содействовать разработке стандартов. Все это подталкивает многие компании к оценке и внедрению эталонных стандартов, таких, например, как Publication 191 Ассоциации пользователей средств разработки и материалов (EEMUA) „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке", которую многие называют фактическим стандартом систем управления аварийными сигналами. Тим Дональдсон, директор по маркетингу компании Iconics, отмечает: „Распределение и частота/колебания аварийных сигналов, взаимная корреляция, время реакции и изменения в действиях оператора в течение определенного интервала времени являются основными показателями отчетов, которые входят в стандарт EEMUA и обеспечивают полезную информацию для улучшения работы предприятия”. Помимо этого как конечные пользователи, так и поставщики поддерживают развитие таких стандартов, как SP-18.02 ISA «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности». (см. сопроводительный раздел „Стандарты, эталоны, передовой опыт" для получения более подробных сведений).

    Предполагается, что одной из причин взрыва на нефтеперегонном заводе BP в Техасе в 2005 г., в результате которого погибло 15 и получило ранения 170 человек, а также был нанесен значительный ущерб имуществу, стала неэффективная система аварийных сигналов.(Источник: Комиссия по химической безопасности и расследованию аварий США)

    На большинстве предприятий системы аварийной сигнализации очень часто имеют слишком большое количество аварийных сигналов. Это в высшей степени нецелесообразно. Показатели EEMUA являются эталонными. Они содержатся в Publication 191 (1999), „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Начало работы

    Наиболее важным представляется вопрос: почему так велико количество аварийных сигналов? Стауффер объясняет это следующим образом: „В эпоху аналоговых систем аварийные сигналы реализовывались аппаратно. Они должны были соответствующим образом разрабатываться и устанавливаться. Каждый аварийный сигнал имел реальную стоимость - примерно 1000 долл. США. Поэтому они выполнялись тщательно. С развитием современных DCS аварийные сигналы практически ничего не стоят, в связи с чем на предприятиях стремятся устанавливать все возможные сигналы".

    Характеристики «хорошего» аварийного сообщения

    В число базовых требований к аварийному сообщению, включенных в аттестационный документ EEMUA, входит ясное, непротиворечивое представление информации. На каждом экране дисплея:

    • Должно быть четко определено возникшее состояние;

    • Следует использовать терминологию, понятную для оператора;

    • Должна применяться непротиворечивая система сокращений, основанная на стандартном словаре сокращений для данной отрасли производства;

    • Следует использовать согласованную структуру сообщения;

    • Система не должна строиться только на основе теговых обозначений и номеров;

    • Следует проверить удобство работы на реальном производстве.

    Информация из Publication 191 (1999) EEMUA „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Качественная система управления аварийными сигналами должна опираться на руководящий документ. В стандарте ISA SP-18.02 «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности», предложен целостный подход, основанный на модели жизненного цикла, которая включает в себя определяющие принципы, обучение, контроль и аудит.

    Именно поэтому операторы сегодня часто сталкиваются с проблемой резкого роста аварийных сигналов. В соответствии с рекомендациями Publication 191 EEMUA средняя частота аварийных сигналов не должна превышать одного сигнала за 10 минут, или не более 144 сигналов в день. В большинстве отраслей промышленности показатели значительно выше и находятся в диапазоне 5-9 сигналов за 10 минут (см. таблицу Эталонные показатели для аварийных сигналов). Дэвид Гэртнер, руководитель служб управления аварийными сигналами в компании Invensys Process Systems, вспоминает, что при запуске производственной установки пяти операторам за полгода поступило 5 миллионов сигналов тревоги. „От одного из устройств было получено 550 000 аварийных сигналов. Устройство работает на протяжении многих месяцев, и до сих пор никто не решился отключить его”.

    Практика прошлых лет заключалась в том, чтобы использовать любые аварийные сигналы независимо от того - нужны они или нет. Однако в последнее время при конфигурировании систем аварийных сигналов исходят из необходимости ответных действий со стороны оператора. Этот принцип, который отражает фундаментальные изменения в разработке систем и взаимодействии операторов, стал основой проекта стандарта SP18 ISA. В этом документе дается следующее определение аварийного сигнала: „звуковой и/или визуальный способ привлечения внимания, указывающий оператору на неисправность оборудования, отклонения в технологическом процессе или аномальные условия эксплуатации, которые требуют реагирования”. При такой практике сигнал конфигурируется только в том случае, когда на него необходим ответ оператора.

    Адекватная реакция

    Особенно важно учитывать следующую рекомендацию: „Не следует ничего предпринимать в отношении событий, для которых нет измерительного инструмента (обычно программного)”.Высказывания Ника Сэнд-за, сопредседателя комитета по разработке стандартов для систем управления аварийными сигналами SP-18.00.02 Общества ISA и менеджера технологий управления процессами химического производства DuPont, подчеркивают необходимость контроля: „Система контроля должна сообщать - в каком состоянии находятся аварийные сигналы. По каким аварийным сигналам проводится техническое обслуживание? Сколько сигналов имеет самый высокий приоритет? Какие из них относятся к системе безопасности? Она также должна сообщать об эффективности работы системы. Соответствует ли ее работа вашим целям и основополагающим принципам?"

    Кейт Джоунз, старший менеджер по системам визуализации в Wonderware, добавляет: „Во многих отраслях промышленности, например в фармацевтике и в пищевой промышленности, уже сегодня требуется ведение баз данных по материалам и ингредиентам. Эта информация может также оказаться полезной при анализе аварийных сигналов. Мы можем установить комплект оборудования, работающего в реальном времени. Оно помогает определить место, где возникла проблема, с которой связан аварийный сигнал. Например, можно создать простые гистограммы частот аварийных сигналов. Можно сформировать отчеты об аварийных сигналах в соответствии с разными уровнями системы контроля, которая предоставляет сведения как для менеджеров, так и для исполнителей”.

    Представитель компании Invensys Гэртнер утверждает, что двумя основными элементами каждой программы управления аварийными сигналами должны быть: „хороший аналитический инструмент, с помощью которого можно определить устройства, подающие наибольшее количество аварийных сигналов, и эффективный технологический процесс, позволяющий объединить усилия персонала и технические средства для устранения неисправностей. Инструментарий помогает выявить источник проблемы. С его помощью можно определить наиболее частые сигналы, а также ложные и отвлекающие сигналы. Таким образом, мы можем выяснить, где и когда возникают аварийные сигналы, можем провести анализ основных причин и выяснить, почему происходит резкое увеличение сигналов, а также установить для них новые приоритеты. На многих предприятиях высокий приоритет установлен для всех аварийных сигналов. Это неприемлемое решение. Наиболее разумным способом распределения приоритетности является следующий: 5 % аварийных сигналов имеют приоритет № 1, 15% приоритет № 2, и 80% приоритет № 3. В этом случае оператор может отреагировать на те сигналы, которые действительно важны”.

    И, тем не менее, Марк МакТэвиш, руководитель группы решений в области управления аварийными сигналами и международных курсов обучения в компании Matrikon, отмечает: „Необходимо помнить, что программное обеспечение - это всего лишь инструмент, оно само по себе не является решением. Аварийные сигналы должны представлять собой исключительные случаи, которые указывают на события, выходящие за приемлемые рамки. Удачные программы управления аварийными сигналами позволяют добиться внедрения на производстве именно такого подхода. Они помогают инженерам изо дня в день управлять своими установками, обеспечивая надежный контроль качества и повышение производительности за счет снижения незапланированных простоев”.

    Система, нацеленная на оператора

    Тем не менее, даже наличия хорошей системы сигнализации и механизма контроля и анализа ее функционирования еще недостаточно. Необходимо следовать основополагающим принципам, руководящему документу, который должен стать фундаментом для всей системы аварийной сигнализации в целом, подчеркивает Сэндз, сопредседатель ISA SP18. При разработке стандарта „основное внимание мы уделяем не только рационализации аварийных сигналов, - говорит он, - но и жизненному циклу систем управления аварийными сигналами в целом, включая обучение, внесение изменений, совершенствование и периодический контроль на производственном участке. Мы стремимся использовать целостный подход к системе управления аварийными сигналами, построенной в соответствии с ISA 84.00.01, Функциональная безопасность: Системы безопасности с измерительной аппаратурой для сектора обрабатывающей промышленности». (см. диаграмму Модель жизненного цикла системы управления аварийными сигналами)”.

    «В данном подходе учитывается участие оператора. Многие недооценивают роль оператора,- отмечает МакТэвиш из Matrikon. - Система управления аварийными сигналами строится вокруг оператора. Инженерам трудно понять проблемы оператора, если они не побывают на его месте и не получат опыт управления аварийными сигналами. Они считают, что знают потребности оператора, но зачастую оказывается, что это не так”.

    Удобное отображение информации с помощью человеко-машинного интерфейса является наиболее существенным аспектом системы управления аварийными сигналами. Джонс из Wonderware говорит: „Аварийные сигналы перед поступлением к оператору должны быть отфильтрованы так, чтобы до оператора дошли нужные сообщения. Программное обеспечение предоставляет инструментарий для удобной конфигурации этих параметров, но также важны согласованность и подтверждение ответных действий”.

    Аварийный сигнал должен сообщать о том, что необходимо сделать. Например, как отмечает Стауффер из Siemens: „Когда специалист по автоматизации настраивает конфигурацию системы, он может задать обозначение для физического устройства в соответствии с системой идентификационных или контурных тегов ISA. При этом обозначение аварийного сигнала может выглядеть как LIC-120. Но оператору информацию представляют в другом виде. Для него это 'регулятор уровня для резервуара XYZ'. Если в сообщении оператору указываются неверные сведения, то могут возникнуть проблемы. Оператор, а не специалист по автоматизации является адресатом. Он - единственный, кто реагирует на сигналы. Сообщение должно быть сразу же абсолютно понятным для него!"

    Эдди Хабиби, основатель и главный исполнительный директор PAS, отмечает: „Эффективность деятельности оператора, которая существенно влияет на надежность и рентабельность предприятия, выходит за рамки совершенствования системы управления аварийными сигналами. Инвестиции в операторов являются такими же важными, как инвестиции в современные системы управления технологическим процессом. Нельзя добиться эффективности работы операторов без учета человеческого фактора. Компетентный оператор хорошо знает технологический процесс, имеет прекрасные навыки общения и обращения с людьми и всегда находится в состоянии готовности в отношении всех событий системы аварийных сигналов”. „До возникновения DCS, -продолжает он, - перед оператором находилась схема технологического процесса, на которой были указаны все трубопроводы и измерительное оборудование. С переходом на управление с помощью ЭВМ сотни схем трубопроводов и контрольно-измерительных приборов были занесены в компьютерные системы. При этом не подумали об интерфейсе оператора. Когда произошел переход от аналоговых систем и физических схем панели управления к цифровым системам с экранными интерфейсами, оператор утратил целостную картину происходящего”.

    «Оператору также требуется иметь необходимое образование в области технологических процессов, - подчеркивает Хабиби. - Мы часто недооцениваем роль обучения. Каковы принципы работы насоса или компрессора? Летчик гражданской авиации проходит бесчисленные часы подготовки. Он должен быть достаточно подготовленным перед тем, как ему разрешат взять на себя ответственность за многие жизни. В руках оператора химического производства возможно лежит не меньшее, если не большее количество жизней, но его подготовка обычно ограничивается двухмесячными курсами, а потом он учится на рабочем месте. Необходимо больше внимания уделять повышению квалификации операторов производства”.

    Рентабельность

    Эффективная система управления аварийными сигналами стоит времени и денег. Однако и неэффективная система также стоит денег и времени, но приводит к снижению производительности и повышению риска для человеческой жизни. Хотя создание новой программы управления аварийными сигналами или пересмотр и реконструкция старой может обескуражить кого угодно, существует масса информации по способам реализации и достижения целей системы управления аварийными сигналами.

    Наиболее важным является именно определение цели и способов ее достижения. МакТэвиш говорит, что система должна выдавать своевременные аварийные сигналы, которые не дублируют друг друга, адекватно отражают ситуацию, помогают оператору диагностировать проблему и определять эффективное направление действий. „Целью является поддержание производства в безопасном, надежном рабочем состоянии, которое позволяет выпускать качественный продукт. В конечном итоге целью является финансовая прибыль. Если на предприятии не удается достичь этих целей, то его существование находится под вопросом.

    Управление аварийными сигналами - это процесс, а не схема, - подводит итог Гэртнер из Invensys. - Это то же самое, что и производственная безопасность. Это - постоянный процесс, он никогда не заканчивается. Мы уже осознали высокую стоимость низкой эффективности и руководители предприятий больше не хотят за нее расплачиваться”.

    Автор: Джини Катцель, Control Engineering

    [ http://controlengrussia.com/artykul/article/hmi-upravlenie-avariinymi-signalami/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > alarm management

  • 113 fault

    1. ток повреждения
    2. сверхток
    3. сброс
    4. сбой
    5. разлом
    6. повреждение (цепи, линии, устройства)
    7. повреждение (во взрывозащите)
    8. повреждение
    9. ошибка
    10. отказ
    11. ненормальный режим работы
    12. неисправность
    13. неисправное состояние
    14. нарушение
    15. короткое замыкание
    16. дизъюктивное нарушение
    17. дефект
    18. выход из строя
    19. аварийное сообщение

     

    аварийное сообщение
    -

    Параллельные тексты EN-RU

    The system offers diagnostic and statistics functions and configurable warnings and faults, allowing better prediction of component maintenance, and provides data to continuously improve the entire system.
    [Schneider Electric]

    Система (управления электродвигателем) предоставляет оператору различную диагностическую и статистическую информацию и позволяет сконфигурировать предупредительные и аварийные сообщения, что дает возможность лучше планировать техническое обслуживание и постоянно улучшать систему в целом.
    [Перевод Интент]

    Various alarm notifications are available to indicate a compromised security state such as forced entry and door position.
    [APC]

    Устройство может формировать различные аварийные сообщения о нарушении защиты, например, о несанкционированном проникновении или об изменении положения двери.
    [Перевод Интент]


    Тематики

    EN

     

    выход из строя

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    выход системы из строя
    вследствие отказа аппаратного или программного обеспечения либо средств связи
    [Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. © 1998-2007 гг., Э.М. Пройдаков, Л.А. Теплицкий. 13,8 тыс. статей.]

    выход из строя
    -

    [Интент]

    Единичные выходы из строя в процессе испытаний элементов электронной техники (микросхем, электровакуумных и полупроводниковых приборов, конденсаторов, резисторов, кварцевых резонаторов и т.д.), а также ламп накаливания и предохранителей не могут служить основанием для прекращения испытаний, если это не вызвано недостатком конструкции прибора.

    При повторных выходах из строя тех же элементов испытания следует считать неудовлетворительными.
    [ ГОСТ 24314-80]

    При выходе из строя отдельно стоящих вентиляторов на двигателях мельниц, дымососов, мельничных вентиляторов, вентиляторов первичного воздуха и т.д. необходимо при первой возможности, но не позже чем его допускается заводской инструкцией, отключить двигатель 6 кВ для ремонта вентилятора охлаждения двигателя.
    [РД 34.20.565]

    Судовая электрическая сеть, предназначенная для передачи электроэнергии при выходе из строя линий электропередачи силовой сети или исчезновении напряжения
    [ ГОСТ 22652-77]

    Тематики

    Синонимы

    EN

     

    дизъюктивное нарушение
    Относительное перемещение частей пластов вдоль плоскости их разрыва (геол.)
    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    EN

     

    короткое замыкание
    Случайное или намеренное соединение резистором или импедансом со сравнительно низким сопротивлением двух или более точек в цепи, нормально находящихся под различным напряжением.
    Случайное или намеренное низкоимпедансное или низкоомное соединение двух или более точек электрической цепи, нормально находящихся под разными электрическими потенциалами. (вариант компании Интент)
    МЭК 60050(151-03-41) [2].
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    короткое замыкание
    Случайный или преднамеренный проводящий путь между двумя или более проводящими частями, принуждающий различия электрических потенциалов между этими проводящими частями становиться равными или близкими к нулю.
    Короткое замыкание обычно возникает в аварийном режиме электроустановки здания при повреждении изоляции токоведущих частей, находящихся под разными электрическими потенциалами, и возникновении между этими частями электрического контакта, имеющего пренебрежимо малое полное сопротивление. Короткое замыкание также может быть следствием ошибочных действий, совершаемых персоналом при монтаже и эксплуатации электроустановки здания, когда соединяют между собой проводящие части, которые в нормальном режиме находятся под разными электрическими потенциалами.
    Короткое замыкание характеризуется током короткого замыкания, который, многократно превышая номинальный ток электрической цепи, может вызвать возгорание её элементов и явиться причиной пожара в здании. Поэтому в электроустановках зданий всегда проводят мероприятия, направленные на снижение вероятности возникновения короткого замыкания, а также выполняют защиту от короткого замыкания с помощью устройств защиты от сверхтока.
    [ http://www.volt-m.ru/glossary/letter/%CA/view/27/]

    короткое замыкание
    Случайное или преднамеренное соединение двух или более проводящих частей, вызывающее снижение разности электрических потенциалов между этими частями до нуля или значения, близкого к нулю.
    [ ГОСТ Р МЭК 60050-195-2005]

    короткое замыкание
    КЗ

    замыкание, при котором токи в ветвях электроустановки, примыкающих к месту его возникновения, резко возрастают, превышая наибольший допустимый ток продолжительного режима
    [Методические указания по защите распределительных электрических сетей напряжением 0,4-10 кВ от грозовых перенапряжений]

    EN

    short-circuit
    accidental or intentional conductive path between two or more conductive parts forcing the electric potential differences between these conductive parts to be equal to or close to zero
    Source: 151-03-41 MOD
    [IEV number 195-04-11]

    FR

    court-circuit
    chemin conducteur accidentel ou intentionnel entre deux ou plusieurs parties conductrices forçant les différences de potentiel électriques entre ces parties conductrices à être nulles ou proches de zéro
    Source: 151-03-41 MOD
    [IEV number 195-04-11]

    Параллельные тексты EN-RU

    A short-circuit is a low impedance connection between two conductors at different voltages.
    [ABB]

    Короткое замыкание представляет собой низкоомное соединение двух проводников, находящихся под разными потенциалами.
    [Перевод Интент]

    Тематики

    Синонимы

    • КЗ

    EN

    DE

    FR

     

    нарушение
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    fault
    Another term for offense.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    неисправное состояние
    Состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации.
    [ ГОСТ 27.002-89]
    [ОСТ 45.152-99]

    неисправное состояние
    неисправность

    По ГОСТ 13377-75
    [ ГОСТ 24166-80]

    неисправное состояние
    Состояние системы тревожной сигнализации, препятствующее реагированию системы на наличие опасности в соответствии с требованиями стандартов.
    [ ГОСТ Р 50775-95]
    [МЭК 839-1-1-88]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

     

    неисправность
    отказ в работе

    Состояние машины, характеризующееся неспособностью выполнять заданную функцию, исключая случаи проведения профилактического технического обслуживания, других запланированных действий или недостаток внешних ресурсов (например, отключение энергоснабжения).
    Примечание 1
    Неисправность часто является результатом повреждения самой машины, однако она может иметь место и без повреждения.
    Примечание 2
    На практике термины «неисправность», «отказ» и «повреждение» часто используются как синонимы.
    [ ГОСТ Р ИСО 12100-1:2007]

    неисправность

    Состояние оборудования, характеризуемое его неспособностью выполнять требуемую функцию, исключая профилактическое обслуживание или другие планово-предупредительные действия, а также исключая неспособность выполнять требуемую функцию из-за недостатка внешних ресурсов.
    Примечание - Неисправность часто является следствием отказа самого оборудования, но может существовать и без предварительного отказа.
    [ГОСТ ЕН 1070-2003]

    неисправность
    Состояние технического объекта (элемента), характеризуемое его неспособностью выполнять требуемую функцию, исключая периоды профилактического технического обслуживания или другие планово-предупредительные действия, или в результате недостатка внешних ресурсов.
    Примечания
    1 Неисправность является часто следствием отказа самого технического объекта, но может существовать и без предварительного отказа.
    2 Английский термин «fault» и его определение идентичны данному в МЭК 60050-191 (МЭС 191-05-01) [1]. В машиностроении чаще применяют французский термин «defaut» или немецкий термин «Fehler», чем термины «panne» и «Fehlzusstand», которые употребляют с этим определением.
    [ ГОСТ Р ИСО 13849-1-2003]

    Тематики

    EN

    DE

    FR

     

    ненормальный режим работы электротехнического изделия
    Режим работы электротехнического изделия (электротехнического устройства, электрооборудования), при котором значение хотя бы одного из параметров режима выходит за пределы наибольшего или наименьшего рабочего значения.
    [ ГОСТ 18311-80]


    К ненормальным относятся режимы, связанные с отклонениями от допустимых значений величин тока, напряжения и частоты, опасные для оборудования или устойчивой работы энергосистемы.

    Рассмотрим наиболее характерные ненормальные режимы.

    а) Перегрузка оборудования, вызванная увеличением тока сверх номинального значения. Номинальным называется максимальный ток, допускаемый для данного оборудования в течение неограниченного времени.
    Если ток, проходящий по оборудованию, превышает номинальное значение, то за счет выделяемого им дополнительного тепла температура токоведущих частей и изоляции через некоторое время превосходит допустимую величину, что приводит к ускоренному износу изоляции и ее повреждению. Время, допустимое для прохождения повышенных токов, зависит от их величины. Характер этой зависимости показан на рис. 1-3 и определяется конструкцией оборудования и типом изоляционных материалов. Для предупреждения повреждения оборудования при его перегрузке необходимо принять меры к разгрузке или отключению оборудования.

    б) Качания в системах возникают при выходе из синхронизма работающих параллельно генераторов (или электростанций) А и В (рис. 1-2, б). При качаниях в каждой точке системы происходит периодическое изменение («качание») тока и напряжения. Ток во всех элементах сети, связывающих вышедшие из синхронизма генераторы А и В, колеблется от нуля до максимального значения, во много раз превышающего нормальную величину. Напряжение падает от нормального до некоторого минимального значения, имеющего разную величину в каждой точке сети. В точке С, называемой электрическим центром качаний, оно снижается до нуля, в остальных точках сети напряжение падает, но остается больше нуля, нарастая от центра качания С к источникам питания А и В. По характеру изменения тока и напряжения качания похожи на к. з. Возрастание тока вызывает нагревание оборудования, а уменьшение напряжения нарушает работу всех потребителей системы. Качание — очень опасный ненормальный режим, отражающийся на работе всей энергосистемы.

    в) Повышение напряжения сверх допустимого значения возникает обычно на гидрогенераторах при внезапном отключении их нагрузки. Разгрузившийся гидрогенератор увеличивает частоту вращения, что вызывает возрастание э. д. с. статора до опасных для его изоляции значений. Защита в таких случаях должна снизить ток возбуждения генератора или отключить его.
    Опасное для изоляции оборудования повышение напряжения может возникнуть также при одностороннем отключении или включении длинных линий электропередачи с большой емкостной проводимостью.
    Кроме отмеченных ненормальных режимов, имеются и другие, ликвидация которых возможна при помощи релейной защиты.

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

     

    отказ
    Нарушение способности оборудования выполнять требуемую функцию.
    Примечания
    1. После отказа оборудование находится в неисправном состоянии.
    2. «Отказ» является событием, в отличие от «неисправности», которая является состоянием.
    3. Это понятие, как оно определено, не применяют к оборудованию объекту, состоящему только из программных средств.
    4. На практике термины «отказ» и «неисправность» часто используют как синонимы.
    [ГОСТ ЕН 1070-2003]
    [ ГОСТ Р ИСО 13849-1-2003]
    [ ГОСТ Р МЭК 60204-1-2007]

    отказ
    Событие, заключающееся в нарушении работоспособного состояния объекта.
    [ ГОСТ 27.002-89]
    [ОСТ 45.153-99]
    [СТО Газпром РД 2.5-141-2005]
    [СО 34.21.307-2005]

    отказ
    Событие, заключающееся в нарушении работоспособного состояния машины и (или) оборудования вследствие конструктивных нарушений при проектировании, несоблюдения установленного процесса производства или ремонта, невыполнения правил или инструкций по эксплуатации.
    [Технический регламент о безопасности машин и оборудования]

    EN

    failure
    the termination of the ability of an item to perform a required function
    NOTE 1 – After failure the item has a fault.
    NOTE 2 – "Failure" is an event, as distinguished from "fault", which is a state.
    NOTE 3 – This concept as defined does not apply to items consisting of software only.
    [IEV number 191-04-01]
    NOTE 4 - In practice, the terms fault and failure are often used synonymously
    [IEC 60204-1-2006]

    FR

    défaillance
    cessation de l'aptitude d'une entité à accomplir une fonction requise
    NOTE 1 – Après défaillance d'une entité, cette entité est en état de panne.
    NOTE 2 – Une défaillance est un passage d'un état à un autre, par opposition à une panne, qui est un état.
    NOTE 3 – La notion de défaillance, telle qu'elle est définie, ne s'applique pas à une entité constituée seulement de logiciel.
    [IEV number 191-04-01]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    повреждение
    Повреждение любого элемента, разделения, изоляции или соединения между элементами, не являющихся неповреждаемыми по МЭК 60079-11 [8], при проведении испытаний на искробезопасность.
    [ ГОСТ Р МЭК 60050-426-2006]


    Тематики

    EN

     

    повреждение (цепи, линии, устройства)
    -

    [Интент]

    Тематики

    EN

     

    разлом

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    fault
    A fracture or a zone of fractures along which there has been displacement of the sides relative to one another parallel to the fracture. (Source: BJGEO)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

     

    сбой
    Самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора.
    [ ГОСТ 27.002-89]
    [ОСТ 45.153-99]
    [СТО Газпром РД 2.5-141-2005]

    сбой
    Ненормальный режим, который может вызвать уменьшение или потерю способности функционального блока выполнять требуемую функцию.
    Примечание
    МЭС 191-05-01 определяет «сбой» как состояние, характеризуемое неспособностью выполнить необходимую функцию, исключая неспособности, возникающие во время профилактического ухода или других плановых мероприятий, либо в результате недостатка внешних ресурсов. Иллюстрация к этим двум точкам зрения показана на рисунке [ ИСО / МЭК 2382-14-01-10].
    3743
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    Обобщающие термины

    EN

     

    сброс
    Разрывное нарушение, при котором сместитель падает в сторону опущенного крыла (висячее крыло опущено относительно лежачего).
    [ Словарь геологических терминов и понятий. Томский Государственный Университет]

    Тематики

    • геология, геофизика

    Обобщающие термины

    EN

     

    сверхток
    Любой ток, превышающий номинальный
    МЭК 60050(441-11-06).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]
    [ ГОСТ Р 50345-99( МЭК 60898-95)]

    сверхток
    Электрический ток, превышающий номинальный электрический ток.
    Сверхток представляет собой любой электрический ток, величина которого превышает номинальный ток какого-либо элемента электроустановки здания или используемого в ней электрооборудования, например: номинальный ток электрической цепи, допустимый длительный ток проводника, номинальный ток автоматического выключателя и т. д. В нормативной и правовой документации различают два основных вида сверхтока – ток перегрузки и ток короткого замыкания.
    Появление сверхтока в каком-либо элементе электроустановки здания может привести к его перегреву, возгоранию и, как следствие, к возникновению пожара в здании. Поэтому в электроустановках зданий выполняют защиту от сверхтока.
    [ http://www.volt-m.ru/glossary/letter/%D1/view/59/]

    сверхток
    сверхток в электротехническом изделии
    Ток, значение которого превосходит наибольшее рабочее значение тока электротехнического изделия (устройства).
    [ ГОСТ 18311-80]

    сверхток
    Электрический ток, превышающий номинальный электрический ток.
    Примечание - Для проводников номинальный ток считается равным длительному допустимому току.
    [ ГОСТ Р МЭК 60050-826-2009]

    Сверхток может оказывать или может не оказывать вредные воздействия в зависимости от его величины и продолжительности. Сверхтоки могут возникать в результате перегрузок в электроприемниках или при повреждениях, таких как короткие замыкания или замыканиях на землю
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    сверхток
    Любой ток, превышающий номинальное значение. Для проводов номинальным значением является допустимый ток.
    [ ГОСТ Р МЭК 60204-1-2007]

    EN

    overcurrent
    electric current exceeding the rated electric current
    NOTE – For conductors, the rated current is considered as equal to the current-carrying capacity
    [IEV number 826-11-14]


    over-current
    <>current exceeding the rated current
    <>[IEC 61095, ed. 2.0 (2009-02)]


    over-current
    electric current the value of which exceeds a specified limiting value
    [IEV number 151-15-28]
    [IEV number 442-01-20]

    FR

    surintensité, f
    courant électrique supérieur au courant électrique assigné
    NOTE – Pour des conducteurs, on considère que le courant assigné est égal au courant admissible.
    [IEV number 826-11-14]


    surintensité
    courant supérieur au courant assigné
    [IEC 61095, ed. 2.0 (2009-02)]
    [IEV number 442-01-20]
    surintensité, f
    courant électrique dont la valeur dépasse une valeur limite spécifiée
    [IEV number 151-15-28]

    Параллельные тексты EN-RU

    The design of LV installations leads to basic protection devices being fitted for three types of faults:

    • overloads
    • short-circuits
    • insulation faults
    [Schneider Electric]

    Низковольтные электроустановки должны быть оснащены устройствами защиты трех типов:

    • от перегрузки;
    • от короткого замыкания;
    • от токов утечки.

    [Перевод Интент]

    Примечание
    .
    Слово fault в данном случае пришлось опустить, поскольку:
    - его нельзя перевести как "неисправность", т. к. возникновение 
    перегрузки ( overload) не является неисправностью;
    - его нельзя перевести как "сверхток", т. к. ток утечки не является сверхтоком
    .

    The chosen switchgear must withstand and eliminate faults at optimised cost with respect to the necessary performance.
    [Schneider Electric]

    Выбранная аппаратура распределения должна иметь такие характеристики, чтобы рентабельно выдерживать и ограничивать сверхтоки.
    [Перевод Интент]

     

    Тематики

    Синонимы

    EN

    DE

    FR

     

    ток повреждения
    Ток, возникающий в результате пробоя или перекрытия изоляции.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    ток повреждения
    Ток, который протекает через данную точку повреждения в результате повреждения изоляции.
    [ ГОСТ Р МЭК 60050-826-2009]

    EN

    fault current
    current resulting from an insulation failure, the bridging of insulation or incorrect connection in an electrical circuit
    [IEC 61439-1, ed. 2.0 (2011-08)]

    fault current

    current which flows across a given point of fault resulting from an insulation fault
    [IEV number 826-11-11]

    FR

    courant de défaut
    courant résultant d'un défaut de l'isolation, du contournement de l’isolation ou d’un raccordement incorrect dans un circuit électrique
    [IEC 61439-1, ed. 2.0 (2011-08)]

    courant de défaut, m

    courant s'écoulant en un point de défaut donné, consécutivement à un défaut de l'isolation
    [IEV number 826-11-11]

    Тематики

    EN

    DE

    • Fehlerstrom, m

    FR

    • courant de défaut, m

    3.7.2 повреждение (fault): Повреждение любого элемента, разделения, изоляции или соединения между элементами, не являющимися по настоящему стандарту не повреждаемыми, от которых зависит искробезопасность цепи.

    Источник: ГОСТ Р 52350.11-2005: Электрооборудование для взрывоопасных газовых сред. Часть 11. Искробезопасная электрическая цепь "I" оригинал документа

    3.16 неисправность (fault): Состояние объекта, характеризующееся неспособностью исполнять требуемую функцию, исключая время профилактического технического обслуживания или других запланированных действий, или простои из-за недостатка внешних ресурсов

    Примечание - Неисправность часто является результатом отказа объекта, но может существовать и без отказа.

    Источник: ГОСТ Р 51901.6-2005: Менеджмент риска. Программа повышения надежности оригинал документа

    3.6 неисправность (fault): Состояние элемента, характеризующееся неспособностью исполнять требуемую функцию, исключая период технического обслуживания, ремонта или других запланированных действий, а также из-за недостатка внешних ресурсов.

    Примечание - Неисправность часто является результатом отказа элемента, но может существовать и без предшествующего отказа.

    Источник: ГОСТ Р 51901.5-2005: Менеджмент риска. Руководство по применению методов анализа надежности оригинал документа

    3.5 неисправность (fault): Состояние объекта, когда один из его элементов или группа элементов проявляют признаки деградации или нарушения работы, что может привести к отказу машины.

    Примечания

    1 Неисправность часто является следствием отказа, но может иметь место и при его отсутствии.

    2 Состояние объекта не рассматривают как неисправное, если оно возникло вследствие запланированных процедур или нехватки внешних ресурсов.

    Источник: ГОСТ Р ИСО 13379-2009: Контроль состояния и диагностика машин. Руководство по интерпретации данных и методам диагностирования оригинал документа

    3.3 неисправность (fault): Состояние объекта, при котором он не способен выполнять требуемую функцию, за исключением такой неспособности при техническом обслуживании или других плановых мероприятиях или вследствие нехватки внешних ресурсов.

    Примечания

    1 Неисправность часто является следствием отказа объекта, но может иметь место и без него.

    2 В настоящем стандарте термин «неисправность» используется наряду с термином «отказ» по историческим причинам.

    Источник: ГОСТ Р 51901.12-2007: Менеджмент риска. Метод анализа видов и последствий отказов оригинал документа

    3.1.30 ошибка (fault): Разность между погрешностью весоизмерительного датчика и основной погрешностью весоизмерительного датчика (см. 3.1.34).

    Источник: ГОСТ Р 8.726-2010: Государственная система обеспечения единства измерений. Датчики весоизмерительные. Общие технические требования. Методы испытаний оригинал документа

    3.6 дефект (fault): Неисправность или ошибка в компоненте технического обеспечения, программного обеспечения или системы

    [МЭК 61513, пункт 3.22]

    Примечание 1 - Дефекты могут подразделяться на случайные, например, в результате ухудшения аппаратных средств из-за старения, и систематические, например, ошибки в программном обеспечении, которые вытекают из погрешностей проектирования.

    Примечание 2 - Дефект (в особенности дефект проекта) может остаться необнаруженным в системе до тех пор, пока не окажется, что полученный результат не соответствует намеченной функции, то есть возникает отказ.

    Примечание 3 - См. также «ошибка программного обеспечения» и «случайный дефект».

    Источник: ГОСТ Р МЭК 62340-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Требования по предотвращению отказов по общей причине оригинал документа

    3.2 неисправность (fault): Состояние объекта, когда один из его элементов или группа элементов проявляет признаки деградации или нарушения работы, что может привести к отказу машины.

    Примечание - Неисправность может привести к отказу.

    Источник: ГОСТ Р ИСО 17359-2009: Контроль состояния и диагностика машин. Общее руководство по организации контроля состояния и диагностирования оригинал документа

    3.17 дефект (fault): Неисправность или ошибка в компоненте технического обеспечения, программного обеспечения или системы.

    [МЭК 61513, пункт 3.22]

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.6.1 сбой (fault): Ненормальный режим, который может вызвать уменьшение или потерю способности функционального блока выполнять требуемую функцию.

    Примечание - МЭС 191-05-01 определяет «сбой» как состояние, характеризуемое неспособностью выполнить необходимую функцию, исключая неспособности, возникающие во время профилактического ухода или других плановых мероприятий, либо в результате недостатка внешних ресурсов. Иллюстрация к этим двум точкам зрения показана на рисунке 4 [ИСО/МЭК 2382-14-01-10].

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.22 дефект (fault): Дефект в аппаратуре, программном обеспечении или в компоненте системы (см. рисунок 3).

    Примечание 1 -Дефекты могут быть результатом случайных отказов, которые возникают, например, из-за деградации аппаратуры в результате старения; возможны систематические дефекты, например, в результате дефектов в программном обеспечении, возникающих из-за ошибок при проектировании.

    Примечание 2 - Дефект (особенно дефекты, связанные с проектированием) может оставаться незамеченным, пока сохраняются условия, при которых он не отражается на выполнении функции, т.е. пока не произойдет отказ.

    Примечание 3 - См. также «дефект программного обеспечения».

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    4.10.1 ошибка (fault): Разность между погрешностью показаний и погрешностью прибора.

    Источник: ГОСТ Р ЕН 1434-1-2011: Теплосчетчики. Часть 1. Общие требования

    Англо-русский словарь нормативно-технической терминологии > fault

  • 114 animation

    1. анимация

     

    анимация
    Имитация работы программной системы (или существенной части этой системы) для отображения существенных аспектов поведения системы, применяемая, например, к спецификации требований в соответствующем формате или на достаточно высоком уровне представления проекта системы.
    Примечание
    Анимация может дать дополнительную уверенность в том, что система удовлетворяет реальным требованиям, поскольку она улучшает восприятие человеком заданного поведения системы.
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    EN

    3.1 анимация (animation): Имитация работы программного обеспечения (или отдельной его части), предназначенная для отображения существенных аспектов поведения программируемой электронной системы, связанной с безопасностью зданий и сооружений.

    Примечания

    1 Анимация применима, например, к спецификации требований для представления проекта системы на достаточно высоком уровне в соответствующем формате.

    2 Анимация позволяет оценить специфическое поведение системы при задании параметров и данных, близких к реальным.

    Источник: ГОСТ Р 53195.4-2010: Безопасность функциональная связанных с безопасностью зданий и сооружений систем. Часть 4. Требования к программному обеспечению оригинал документа

    3.1 анимация (animation): Процесс, посредством которого указанное в спецификации поведение демонстрируется с реальными значениями, полученными из задающих поведение выражений и некоторых входных величин.

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.8.13 анимация (animation): Имитация работы программной системы (или существенной части этой системы) для отображения существенных аспектов поведения системы, применяемая, например, к спецификации требований в соответствующем формате или на достаточно высоком уровне представления проекта системы.

    Примечание - Анимация может дать дополнительную уверенность в том, что система удовлетворяет реальным требованиям, поскольку она улучшает восприятие человеком заданного поведения системы.

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > animation

  • 115 data

    1. факты
    2. технические характеристики
    3. Термины, определенные в ИСО 10303-1
    4. показатели
    5. новости (амер.)
    6. данные

     

    данные
    Интерпретируемое формализованным способом представление информации, пригодное для коммуникации, интерпретации или обработки.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    данные
    Информация, представленная в виде, пригодном для обработки автоматическими средствами при возможном участии человека
    [ ГОСТ 15971-90]
    [ ГОСТ Р 50304-92]
    [ОСТ 45.127-99]

    [Руководящий документ "Основные положения развития Взаимоувязанной сети связи Российской Федерации на перспективу до 2005 года"]

    данные
    Представление информации в формализованном виде, пригодном для передачи, интерпретации или обработки.
    [ ГОСТ Р ИСО/МЭК 12119-2000]
    [ ГОСТ Р 52653-2006]

    данные
    Информация, представленная в формализованном виде, пригодном для передачи, интерпретации или обработки с участием человека или автоматическими средствами
    [ ГОСТ 34.320-96]

    данные
    Сведения, являющиеся объектом обработки в информационных человеко-машинных системах.
    [ ГОСТ 17657-79]

    данные
    Информация, обработанная и представленная в формализованном виде для дальнейшей обработки
    [ГОСТ 7.0-99]

    данные
    Сведения о состоянии любого объекта — экономического или не экономического, большой системы или ее элементарной части (элемента), о человеке и машине и т. д., представленные в формализованном виде и предназначенные для обработки (или уже обработанные). Д. не обязательно должны быть числовыми: например, статистические показатели работы предприятий и анкетные сведения о человеке — все это Д.) В процессах сбора, обработки и использования они расчленяются на отдельные элементарные составляющие — элементы данных или элементарные данные (иногда их называют просто данными). Элементарные Д. могут быть выражены целыми и вещественными числами, словами, а также булевыми величинами, способными принимать лишь два значения — «истина» (1), «ложь» (0). Слово «Д.» не вполне соответствует слову «информация«, хотя они часто употребляются как синонимы. Д. — величина, число или отношение, вводимые в процесс обработки или выводимые из него. Информация же определяется как знание, полученное из этих данных. Следовательно, обработка данных есть приведение их к такому виду, который наиболее удобен для получения из них информации, знания. Для того, чтобы из минимального количества Д. извлечь максимум информации, используются различные способы записи массивов данных, методы агрегирования и др. Для того, чтобы быть воспринятыми и стать информацией, Д. проходят как бы тройной фильтр: физический (ограничения по пропускной способности канала), семантический (см. Тезаурус) и прагматический, где оценивается полезность Д. (см. Информация). Экономические Д. можно подразделить на два особенно важных класса: условно-постоянные и переменные. Различие между ними поясним простым примером: нормативы запасов — условно-постоянные Д., размеры запасов отдельных материалов на конкретные даты — переменные. Следовательно, первые — это всякого рода расценки, нормативы, нормы, сведения о производительности оборудования и т.д. Обычно в автоматизированных системах управления они либо хранятся в массивах картотек (устаревшая и выходящая из употребления система), либо вводятся в память машины один раз и при необходимости включаются в расчет самой машиной. Условно-постоянными они называются потому, что все же время от времени обновляются. Переменные Д. (сведения о выработке рабочих, о сдаче деталей и продукции, о тех же запасах на складе и многие другие) после расчета, как правило, выводятся из памяти компьютера. См. также Автоматизированная система обработки данных (АСОД), База данных, Носитель данных, Обработка данных, Показатель, Сбор данных, Скорость передачи данных, Экономическая информация.
    [ http://slovar-lopatnikov.ru/]


    Тематики

    EN

    FR

     

    новости (амер.)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    показатели

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    технические характеристики
    Ряд номинальных параметров или условий эксплуатации.
    [ ГОСТ Р МЭК 60050-426-2006]

    технические характеристики
    -
    [Интент]


    Тематики

    EN

    FR

     

    факты

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    3.4 данные (data): Совокупность значений, присвоенных для основных мер измерений, производных мер измерений и (или) показателей.

    [ИСО/МЭК 15939:2007]

    Источник: ГОСТ Р ИСО/МЭК 27004-2011: Информационная технология. Методы и средства обеспечения безопасности. Менеджмент информационной безопасности. Измерения оригинал документа

    3.1 Термины, определенные в ИСО 10303-1

    В настоящем стандарте применены следующие термины:

    - приложение (application);

    - прикладной объект (application object);

    - прикладной протокол (application protocol);

    - прикладная эталонная модель; ПЭМ (application reference model; ARM);

    - данные (data);

    - информация (information);

    - интегрированный ресурс (integrated resource);

    - изделие (product);

    - данные об изделии (product data).

    Источник: ГОСТ Р ИСО/ТС 10303-1287-2008: Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1287. Прикладные модули. Регистрация действий по прикладному протоколу ПП239

    1. Данные

    Data

    Информация, представленная в виде, пригодном для обработки автоматическими средствами при возможном участии человека

    Источник: ГОСТ 15971-90: Системы обработки информации. Термины и определения оригинал документа

    3.2.14 данные (data): Представление информации в формальном виде, пригодном для передачи, интерпретации или обработки людьми или компьютерами;

    Источник: ГОСТ Р ИСО 10303-1-99: Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1. Общие представления и основополагающие принципы оригинал документа

    2.6 данные (Data): Дискретные объективные факты (номера, символы, цифры) без контекста и пояснений.

    Источник: ГОСТ Р 53894-2010: Менеджмент знаний. Термины и определения оригинал документа

    3.12 данные (data): Представление информации или команд в виде, пригодном для передачи, интерпретации или обработки с помощью компьютера.

    [IEEE 610, модифицировано]

    Примечание - Данные, необходимые для определения параметров и реализации прикладных и служебных функций в системе, называются «прикладными данными».

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.13 данные (data): Представление информации или сообщений в виде, подходящем для передачи, интерпретации или обработки с помощью компьютеров (см. рисунок 2).

    [IEEE 610, модифицировано] [1]

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.1.3 данные (data): Любой элемент информации, принимаемый регистратором для записи, включая численные значения, текст, а также звуковые и радиолокационные сигналы, за исключением особо оговоренных случаев или ситуаций, когда по контексту понятно иное.

    Источник: ГОСТ Р МЭК 61996-1-2009: Морское навигационное оборудование и средства радиосвязи. Судовой регистратор данных рейса (РДР). Часть 1. Регистратор данных рейса (РДР). Технико-эксплуатационные требования, методы и требуемые результаты испытаний оригинал документа

    3.17 данные (data): представление информации формальным способом, подходящим для коммуникации, интерпретации или для информационной обработки человеком или компьютерами.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Англо-русский словарь нормативно-технической терминологии > data

  • 116 fault tolerance

    1. устойчивость к сбоям
    2. устойчивость к отказам
    3. устойчивость к дефектам и ошибкам
    4. устойчивость к дефектам
    5. отказоустойчивость программного средства
    6. отказоустойчивость (в информационных технологиях)
    7. отказоустойчивость
    8. нечувствительность к отказам
    9. невосприимчивость к отказам

     

    невосприимчивость к отказам
    отказоустойчивость
    нечувствительность к отказам


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    нечувствительность к отказам
    Свойство программы или системы сохранять правильность функционирования при наличии ошибок или отказов.
    [Домарев В.В. Безопасность информационных технологий. Системный подход.]

    Тематики

    EN

     

    отказоустойчивость
    Способность системы самой устранять возникающие в ней отказы.
    Отказоустойчивость сводится к обнаружению отказов, оценке ситуаций, локализации и принятии мер по их устранению. Система способная обеспечить управление отказами и выполнять все указанные задачи является отказоустойчивой.
    Для увеличения отказоустойчивости в систему в виде горячего резерва добавляются компоненты, которые не нужны при нормальной работе. Например, устанавливаются два вместо одного диска. Запись данных идет сразу на оба диска. Поэтому, если один из них выйдет из строя, то система продолжит нормальную работу с другим диском. Отказоустойчивые системы сложнее и дороже обычных. В результате рассматриваемые системы используются там, где нужна особенно большая надежность. Например, банковские системы, системы управления посадкой самолетов.
    [Гипертекстовый энциклопедический словарь по информатике Э. Якубайтиса]
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    отказоустойчивость (в информационных технологиях)
    Способность ИТ-услуги или конфигурационной единицы продолжать обеспечивать эксплуатирование корректно после сбоя части компонента.
    [ http://www.dtln.ru/slovar-terminov]

    отказоустойчивость
    (ITIL Service Strategy)
    Способность ИТ-услуги или другой конфигурационной единицы продолжать корректную работу после сбоя части компонента.
    См. тж. устойчивость; контрмера.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    fault tolerance
    (ITIL Service Design)
    The ability of an IT service or other configuration item to continue to operate correctly after failure of a component part.
    See also countermeasure; resilience.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    отказоустойчивость программного средства
    Совокупность свойств программного средства, характеризующая его способность поддерживать необходимый уровень пригодности при проявлении дефектов программного средства или нарушении установленных интерфейсов.
    Примечание
    Необходимый уровень пригодности включает в себя способность к безопасному функционированию при отказах, к минимизации возможных потерь данных и исключению опасных действий при внезапном нарушении условий функционирования.
    [ ГОСТ 28806-90]

    Тематики

    Обобщающие термины

    EN

     

    устойчивость к отказам
    Способность функционального блока продолжать выполнять необходимую функцию при наличии сбоев или ошибок.
    Примечание
    Определение, приведенное в МЭС 191-15-05, относится только к отказам подкомпонентов.
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    EN

     

    устойчивость к сбоям
    Способность программы или системы корректно работать при возникновении сбоев. Устойчивые к сбоям системы создаются для обеспечения работы при отключении питания, повреждении дисков, серьезных ошибках пользователей и т.п. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

    3.8 устойчивость к дефектам (fault tolerance): Встроенные возможности системы обеспечивать непрерывную и правильную работу при наличии ограниченного числа дефектов технического или программного обеспечения.

    [МЭК 60880, пункт 3.18]

    Источник: ГОСТ Р МЭК 62340-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Требования по предотвращению отказов по общей причине оригинал документа

    3.18 устойчивость к дефектам и ошибкам (fault tolerance): Встроенные возможности системы обеспечивать непрерывную и правильную работу при наличии ограниченного числа дефектов технического или программного обеспечения.

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.6.3 устойчивость к отказам (fault tolerance): способность функционального блока продолжать выполнять необходимую функцию при наличии сбоев или ошибок.

    Примечание - Определение, приведенное в МЭС 191-15-05, относится только к отказам подкомпонентов. См. примечание к 3.6.1 [ИСО/МЭК 2382-14-04-06].

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > fault tolerance

  • 117 output

    1. результат вычисления (мат.)
    2. результат вычисления
    3. продукция
    4. зажим для выходного проводника
    5. добыча (нефти или газа)
    6. выходные данные
    7. выходной поток (в экологическом менеджменте)
    8. выходной поток
    9. выходная мощность
    10. выход (продукта)
    11. выход (в автоматике, электротехнике)
    12. выход
    13. выработка
    14. выпуск

     

    выпуск
    Процесс слива жидких металла и шлака из плавильной печи. При этом В. жидкого металла в ковш с отделением шлака наз. бесшлаковым выпуском. Выпускное отверстие обычно располагается либо в боковой стенке, либо в подине печи (донный в.). Донный в. стали из дуговой печи через отверстие, смещенное относит. оси печи, наз. внецентренным в.
    [ http://metaltrade.ru/abc/a.htm]

    выпуск
    Объем продукции (понимаемой в широком смысле, т.е. включая, например, материальные и нематериальные услуги, отходы производства и т.д.), производимой в результате функционирования экономической системы. Ср. Продукт, Результаты.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    выработка
    Объём работ в натуральном или денежном выражении, выполненный за единицу времени и приходящийся на одного работающего
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    DE

    FR

     

    выход
    Часть объекта, предназначенная для выдачи воздействий вовне.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    выход
    Термин, применяемый к величинам (напряжение, ток, импеданс...), связанным с получением или отдачей мощности или сигнала
    [СТ МЭК 50(151)-78]

    Тематики

    • автоматизация, основные понятия
    • электротехника, основные понятия

    Обобщающие термины

    EN

     

    выход (продукта)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    выходная мощность

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия
    • электротехника, основные понятия

    EN

     

    выходной поток (в экологическом менеджменте)
    Материал или энергия, выходящие из единичного процесса.
    Примечание
    Материалы могут включать сырье, промежуточную продукцию, продукцию, выбросы, сбросы и отходы.
    [ http://www.14000.ru/glossary/main.php?PHPSESSID=25e3708243746ef7c85d0a8408d768af]

    EN

    output
    Material or energy which leaves a unit process.
    Note
    Materials may include raw materials, intermediate products, products, emissions and waste.
    [ISO 14040]

    Тематики

    EN

     

    выходные данные
    Составная часть выходных сведений, включающая данные о месте выпуска издания, имени издателя и годе выпуска издания.
    [ГОСТ 7.76-96, статья 7.5.1]
    [ ГОСТ Р 7.0.3-2006]

    выходные данные
    Данные, получаемые в результате решения экономико-математической задачи, компьютерных вычислений и т.п. См.Входы и выходы системы.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Обобщающие термины

    EN

     

    продукция
    Результат деятельности или процессов.
    Примечания
    1 Продукция может включать услуги, оборудование, перерабатываемые материалы, программное обеспечение или комбинации из них.
    2 Продукция может быть материальной (например, узлы или перерабатываемые материалы) или нематериальной (например, информация или понятия), или комбинацией из них.
    3 Продукция может быть намеренной (например, предложение потребителям или ненамеренной (например, загрязнитель или нежелательные последствия).
    [ИСО 8402-94]
    [ ГОСТ Р 52104-2003]

    продукция
    Результат процесса.
    Примечания
    1. Существуют четыре общие категории продукции:
    - услуги (например, перевозки);
    - программные средства (например, компьютерная программа, словарь);
    - технические средства (например, узел двигателя);
    - перерабатываемые материалы (например, смазка).
    Многие виды продукции содержат элементы, относящиеся к различным общим категориям продукции. Отнесение продукции к услугам, программным, техническим средствам или перерабатываемым материалам зависит от преобладающего элемента.(например, поставляемая продукция "автомобиль" состоит из технических средств (например, шин), перерабатываемых материалов (горючее, охлаждающая жидкость), программных средств (программное управление двигателем, инструкция для водителя) и услуги (разъяснения по эксплуатации, даваемые продавцом).
    2. Услуга является результатом, по меньшей мере, одного действия, обязательно осуществленного при взаимодействии поставщика и потребителя, и, как правило, нематериальна. Предоставление услуги может включать в себя, например, следующее:
    - деятельность, осуществленную на поставленной потребителем материальной продукции (например, ремонт неисправного автомобиля);
    - деятельность, осуществленную на поставленной потребителем нематериальной продукции (например, составление заявления о доходах, необходимого для определения размера налога);
    - предоставление нематериальной продукции (например, информации в смысле передачи знаний);
    - создание благоприятных условий для потребителей (например, в гостиницах и ресторанах).
    Программное средство содержит информацию и обычно является нематериальным, может также быть в форме подходов, операций или процедуры.
    Техническое средство, как правило, является материальным и его количество выражается исчисляемой характеристикой. Перерабатываемые материалы обычно являются материальными и их количество выражается непрерывной характеристикой. Технические средства и перерабатываемые материалы часто называют товарами.
    3. обеспечение качества направлено главным образом на предполагаемую продукцию.
    [ ГОСТ Р ИСО 9000-2008]

    продукция
    Товары, поступившие в продажу.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    продукция
    Совокупность продуктов и услуг производства (или иной экономической деятельности: строительства, транспорта, связи и др.), оцениваемая в стоимостном или натуральном измерении; выход экономической системы. В различных источниках круг объектов, относимых к П., существенно различается. В плановой практике продукцией считаются только полезные продукты труда — готовые изделия, полуфабрикаты, услуги. В более широком смысле, кроме этого, к ней относят также, например, отходы, в том числе загрязняющие среду, побочные продукты, брак. Однако в этом смысле предпочтительнее термин выпуск. См. также Валовая продукция, Конечный продукт (народнохозяйственный), Конечный продукт отрасли, Продукт, Результаты, Условно-чистая продукция, Чистая продукция.
    [ http://slovar-lopatnikov.ru/]

    EN

    merchandise
    Goods that are sold in business.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

    3.25 выходной поток (output): Поток продукции, материалов или энергии, выходящий из единичного процесса.

    Примечание - Продукция и материалы включают сырье, промежуточную продукцию, сопродукцию, отходы, сбросы и выбросы.

    Источник: ГОСТ Р ИСО 14040-2010: Экологический менеджмент. Оценка жизненного цикла. Принципы и структура оригинал документа

    3.25 выходной поток (output): Поток продукции, материалов или энергии, выходящий из единичного процесса.

    Примечание - Продукция и материалы включают в себя сырье, промежуточную продукцию, сопродукцию, отходы, сбросы и выбросы.

    Источник: ГОСТ Р ИСО 14044-2007: Экологический менеджмент. Оценка жизненного цикла. Требования и рекомендации оригинал документа

    2.7 выход (output): Результат преобразования входов.

    Примечание - К выходам относят:

    а) то, что соответствует требованиям;

    б) то, что не соответствует требованиям;

    в) отходы;

    г) информацию о процессе.

    Источник: ГОСТ Р 52380.1-2005: Руководство по экономике качества. Часть 1. Модель затрат на процесс оригинал документа

    6.18 выходной поток (output): Поток продукции (6.11), материалов или поток энергии (6.13), выходящий из единичного процесса (6.4.1).

    Примечание - Продукция (6.2) и материалы включают в себя сырье (6.12), промежуточную продукцию (6.2.1), сопродукцию (6.2.2) и выбросы (6.19).

    [ИСО 14040:2006]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    Англо-русский словарь нормативно-технической терминологии > output

  • 118 man-machine communication

    1. человеко-машинный интерфейс
    2. связь человек-машина
    3. диалог человека с ЭВМ

     

    диалог человека с ЭВМ

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Тематики

    EN

     

    связь человек-машина

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    человеко-машинный интерфейс (ЧМИ)
    Технические средства, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование.
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.
    [ ГОСТ Р МЭК 60447-2000]

    человекомашинный интерфейс (ЧМИ)
    Технические средства контроля и управления, являющиеся частью оборудования, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование (ГОСТ Р МЭК 60447).
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства и дисплеи.
    [ ГОСТ Р МЭК 60073-2000]

    человеко-машинный интерфейс
    Средства обеспечения двусторонней связи "оператор - технологическое оборудование" (АСУ ТП). Название класса средств, в который входят подклассы:
    SCADA (Supervisory Control and Data Acquisition) - Операторское управление и сбор данных от технологического оборудования.
    DCS (Distributed Control Systems) - Распределенная система управления технологическим оборудованием.
    [ http://www.morepc.ru/dict/]

    Параллельные тексты EN-RU

    MotorSys™ iPMCC solutions can integrate a dedicated human-machine interface (HMI) or communicate via a personal computer directly on the motor starters.
    [Schneider Electric]

    Интеллектуальный центр распределения электроэнергии и управления электродвигателями MotorSys™ может иметь в своем составе специальный человеко-машинный интерфейс (ЧМИ). В качестве альтернативы используется обмен данным между персональным компьютером и пускателями.
    [Перевод Интент]


    HMI на базе операторских станций

    Самое, пожалуй, главное в системе управления - это организация взаимодействия между человеком и программно-аппаратным комплексом. Обеспечение такого взаимодействия и есть задача человеко-машинного интерфейса (HMI, human machine interface).

    На мой взгляд, в аббревиатуре “АСУ ТП” ключевым является слово “автоматизированная”, что подразумевает непосредственное участие человека в процессе реализации системой определенных задач. Очевидно, что чем лучше организован HMI, тем эффективнее человек сможет решать поставленные задачи.

    Как же организован HMI в современных АСУ ТП?
    Существует, как минимум, два подхода реализации функционала HMI:

    1. На базе специализированных рабочих станций оператора, устанавливаемых в центральной диспетчерской;
    2. На базе панелей локального управления, устанавливаемых непосредственно в цеху по близости с контролируемым технологическим объектам.

    Иногда эти два варианта комбинируют, чтобы достичь наибольшей гибкости управления. В данной статье речь пойдет о первом варианте организации операторского уровня.

    Аппаратно рабочая станция оператора (OS, operator station) представляет собой ни что иное как персональный компьютер. Как правило, станция снабжается несколькими широкоэкранными мониторами, функциональной клавиатурой и необходимыми сетевыми адаптерами для подключения к сетям верхнего уровня (например, на базе Industrial Ethernet). Станция оператора несколько отличается от привычных для нас офисных компьютеров, прежде всего, своим исполнением и эксплуатационными характеристиками (а также ценой 4000 - 10 000 долларов).
    На рисунке 1 изображена рабочая станция оператора системы SIMATIC PCS7 производства Siemens, обладающая следующими техническими характеристиками:

    Процессор: Intel Pentium 4, 3.4 ГГц;
    Память: DDR2 SDRAM до 4 ГБ;
    Материнская плата: ChipSet Intel 945G;
    Жесткий диск: SATA-RAID 1/2 x 120 ГБ;
    Слоты: 4 x PCI, 2 x PCI E x 1, 1 x PCI E x 16;
    Степень защиты: IP 31;
    Температура при эксплуатации: 5 – 45 C;
    Влажность: 5 – 95 % (без образования конденсата);
    Операционная система: Windows XP Professional/2003 Server.

    4876
    Рис. 1. Пример промышленной рабочей станции оператора.

    Системный блок может быть как настольного исполнения ( desktop), так и для монтажа в 19” стойку ( rack-mounted). Чаще применяется второй вариант: системный блок монтируется в запираемую стойку для лучшей защищенности и предотвращения несанкционированного доступа.

    Какое программное обеспечение используется?
    На станции оператора устанавливается программный пакет визуализации технологического процесса (часто называемый SCADA). Большинство пакетов визуализации работают под управлением операционных систем семейства Windows (Windows NT 4.0, Windows 2000/XP, Windows 2003 Server), что, на мой взгляд, является большим минусом.
    Программное обеспечение визуализации призвано выполнять следующие задачи:

    1. Отображение технологической информации в удобной для человека графической форме (как правило, в виде интерактивных мнемосхем) – Process Visualization;
    2. Отображение аварийных сигнализаций технологического процесса – Alarm Visualization;
    3. Архивирование технологических данных (сбор истории процесса) – Historical Archiving;
    4. Предоставление оператору возможности манипулировать (управлять) объектами управления – Operator Control.
    5. Контроль доступа и протоколирование действий оператора – Access Control and Operator’s Actions Archiving.
    6. Автоматизированное составление отчетов за произвольный интервал времени (посменные отчеты, еженедельные, ежемесячные и т.д.) – Automated Reporting.

    Как правило, SCADA состоит из двух частей:

    1. Среды разработки, где инженер рисует и программирует технологические мнемосхемы;
    2. Среды исполнения, необходимой для выполнения сконфигурированных мнемосхем в режиме runtime. Фактически это режим повседневной эксплуатации.

    Существует две схемы подключения операторских станций к системе управления, а точнее уровню управления. В рамках первой схемы каждая операторская станция подключается к контроллерам уровня управления напрямую или с помощью промежуточного коммутатора (см. рисунок 2). Подключенная таким образом операторская станция работает независимо от других станций сети, и поэтому часто называется одиночной (пусть Вас не смущает такое название, на самом деле таких станций в сети может быть несколько).

    4877
    Рис. 2. Схема подключения одиночных операторских станций к уровню управления.

    Есть и другой вариант. Часто операторские станции подключают к серверу или резервированной паре серверов, а серверы в свою очередь подключаются к промышленным контроллерам. Таким образом, сервер, являясь неким буфером, постоянно считывает данные с контроллера и предоставляет их по запросу рабочим станциям. Станции, подключенные по такой схеме, часто называют клиентами (см. рисунок 3).

    4878
    Рис. 3. Клиент-серверная архитектура операторского уровня.

    Как происходит информационный обмен?
    Для сопряжения операторской станции с промышленным контроллером на первой устанавливается специальное ПО, называемое драйвером ввода/вывода. Драйвер ввода/вывода поддерживает совместимый с контроллером коммуникационный протокол и позволяет прикладным программам считывать с контроллера параметры или наоборот записывать в него. Пакет визуализации обращается к драйверу ввода/вывода каждый раз, когда требуется обновление отображаемой информации или запись измененных оператором данных. Для взаимодействия пакета визуализации и драйвера ввода/вывода используется несколько протоколов, наиболее популярные из которых OPC (OLE for Process Control) и NetDDE (Network Dynamic Data Exchange). Обобщенно можно сказать, что OPC и NetDDE – это протоколы информационного обмена между различными приложениями, которые могут выполняться как на одном, так и на разных компьютерах. На рисунках 4 и 5 изображено, как взаимодействуют программные компоненты при различных схемах построения операторского уровня.  
    4879
    Рис. 4. Схема взаимодействия программных модулей при использовании одиночных станций.
     
    4880
    Рис. 5. Схема взаимодействия программных модулей при использовании клиент-серверной архитектуры.
    Как выглядит SCADA?
    Разберем простой пример. На рисунке 6 приведена абстрактная схема технологического процесса, хотя полноценным процессом это назвать трудно.
    4881
    Рис. 6. Пример операторской мнемосхемы.
    На рисунке 6 изображен очень упрощенный вариант операторской мнемосхемы для управления тех. процессом. Как видно, резервуар (емкость) наполняется водой. Задача системы - нагреть эту воду до определенной температуры. Для нагрева воды используется газовая горелка. Интенсивность горения регулируется клапаном подачи газа. Также должен быть насос для закачки воды в резервуар и клапан для спуска воды.

    На мнемосхеме отображаются основные технологические параметры, такие как: температура воды; уровень воды в резервуаре; работа насосов; состояние клапанов и т.д. Эти данные обновляются на экране с заданной частотой. Если какой-либо параметр достигает аварийного значения, соответствующее поле начинает мигать, привлекая внимание оператора.

    Сигналы ввода/вывода и исполнительные механизмы отображаются на мнемосхемах в виде интерактивных графических символов (иконок). Каждому типу сигналов и исполнительных механизмов присваивается свой символ: для дискретного сигнала это может быть переключатель, кнопка или лампочка; для аналогового – ползунок, диаграмма или текстовое поле; для двигателей и насосов – более сложные фейсплейты ( faceplates). Каждый символ, как правило, представляет собой отдельный ActiveX компонент. Вообще технология ActiveX широко используется в SCADA-пакетах, так как позволяет разработчику подгружать дополнительные символы, не входящие в стандартную библиотеку, а также разрабатывать свои собственные графические элементы, используя высокоуровневые языки программирования.

    Допустим, оператор хочет включить насос. Для этого он щелкает по его иконке и вызывает панель управления ( faceplate). На этой панели он может выполнить определенные манипуляции: включить или выключить насос, подтвердить аварийную сигнализацию, перевести его в режим “техобслуживания” и т.д. (см. рисунок 7).  
    4882
    Рис. 7. Пример фейсплейта для управления насосом.
      Оператор также может посмотреть график изменения интересующего его технологического параметра, например, за прошедшую неделю. Для этого ему надо вызвать тренд ( trend) и выбрать соответствующий параметр для отображения. Пример тренда реального времени показан на рисунке 8.
     
    4883
    Рис. 8. Пример отображения двух параметров на тренде реального времени.
    Для более детального обзора сообщений и аварийных сигнализаций оператор может воспользоваться специальной панелью ( alarm panel), пример которой изображен на рисунке 9. Это отсортированный список сигнализаций (alarms), представленный в удобной для восприятия форме. Оператор может подтвердить ту или иную аварийную сигнализацию, применить фильтр или просто ее скрыть.
    4884
    Рис. 9. Панель сообщений и аварийных сигнализаций.
    Говоря о SCADA, инженеры часто оперируют таким важным понятием как “тэг” ( tag). Тэг является по существу некой переменной программы визуализации и может быть использован как для локального хранения данных внутри программы, так и в качестве ссылки на внешний параметр процесса. Тэги могут быть разных типов, начиная от обычных числовых данных и кончая структурой с множеством полей. Например, один визуализируемый параметр ввода/вывода – это тэг, или функциональный блок PID-регулятора, выполняемый внутри контроллера, - это тоже тэг. Ниже представлена сильно упрощенная структура тэга, соответствующего простому PID-регулятору:

    Tag Name = “MyPID”;
    Tag Type = PID;

    Fields (список параметров):

    MyPID.OP
    MyPID.SP
    MyPID.PV
    MyPID.PR
    MyPID.TI
    MyPID.DI
    MyPID.Mode
    MyPID.RemoteSP
    MyPID.Alarms и т.д.

    В комплексной прикладной программе может быть несколько тысяч тэгов. Производители SCADA-пакетов это знают и поэтому применяют политику лицензирования на основе количества используемых тэгов. Каждая купленная лицензия жестко ограничивает суммарное количество тэгов, которые можно использовать в программе. Очевидно, чем больше тегов поддерживает лицензия, тем дороже она стоит; так, например, лицензия на 60 000 тэгов может обойтись в 5000 тыс. долларов или даже дороже. В дополнение к этому многие производители SCADA формируют весьма существенную разницу в цене между “голой” средой исполнения и полноценной средой разработки; естественно, последняя с таким же количеством тэгов будет стоить заметно дороже.

    Сегодня на рынке представлено большое количество различных SCADA-пакетов, наиболее популярные из которых представлены ниже:

    1.    Wonderware Intouch;
    2.    Simatic WinCC;
    3.    Iconics Genesis32;
    4.    Citect;
    5.    Adastra Trace Mode

    Лидирующие позиции занимают Wonderware Intouch (производства Invensys) и Simatic WinCC (разработки Siemens) с суммарным количеством инсталляций более 80 тыс. в мире. Пакет визуализации технологического процесса может поставляться как в составе комплексной системы управления, так и в виде отдельного программного продукта. В последнем случае SCADA комплектуется набором драйверов ввода/вывода для коммуникации с контроллерами различных производителей.   [ http://kazanets.narod.ru/HMI_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > man-machine communication

  • 119 channel

    1. телеметрический канал связи
    2. русло реки
    3. радиоствол
    4. пускать по каналу
    5. проводящий канал
    6. канал ядерного реактора
    7. канал изготовления фонограммы [видеограммы, видеофонограммы]
    8. канал (ядерного реактора)
    9. канал (тракт передачи измерительной информации)
    10. канал (связи)
    11. канал (в СКС)
    12. канал (в контактной линзе)
    13. канал (в гидротехнике)
    14. канал
    15. инкрементный режим (канал)
    16. акустико-эмиссионный канал

     

    инкрементный режим (канал)
    Способ ввода данных с помощью специализированного канала (режима работы интерфейса) в оперативную память ЭВМ, при котором содержимое ячейки памяти увеличивается на единицу. Способ используется в системах автоматизации эксперимента.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    канал
    Элемент или группа элементов, которые независимо выполняют функцию.
    Пример
    Двухканальная (или дуальная) конфигурация - это такая конфигурация, в которой два канала независимо выполняют одну и ту же функцию.
    Примечания
    1 В число элементов канала могут входить модули ввода/вывода, логическая система, датчики и оконечные элементы.
    2 Термин допускается использовать для описания полных систем или частей системы (например, датчиков или оконечных элементов).
    [ ГОСТ Р МЭК 61508-4-2007]

    канал
    В кибернетике — устройство для передачи информации, рассматриваемое абстрактно, независимо от его физической природы (подобно тому, например, как геометрия рассматривает объемы тел, отвлекаясь от материала, из которого они изготовлены). Общей характеристикой для К. связи, для устройства в ЭВМ, называемого мультиплексным К., для К. обратной связи абстрактной кибернетической системы и т.д. является именно их способность передавать информацию. На эту способность оказывают влияние «шумы» или «помехи«. См. Возмущение (возмущающее воздействие). Идеальным К. считается такой, в котором помехи либо отсутствуют, либо они пренебрежимо малы.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    канал
    Путь передачи сигнала между двумя единицами активного оборудования, например, такими как оборудованием ЛВС и терминальным оборудованием.
    [ ГОСТ Р 53246-2008]

    канал
    тракт

    Кабельная линия, состоящая из соединительного оборудования, шнуров и перемычек, образующих непрерывную кабельную линию от порта активного оборудования с одной стороны до порта активного оборудования с другой стороны.
    [ http://www.lanmaster.ru/SKS/DOKUMENT/568b.htm]

    Тематики

    Синонимы

    EN

     

    канал
    1. Искусственный открытый водовод
    2. Протяжённая полость
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    канал
    Искусственный открытый водовод в земляной выемке или насыпи
    [ ГОСТ 19185-73]

    канал
    Водовод незамкнутого поперечного сечения в виде искусственного русла в грунтовой выемке и/или насыпи.
    [СО 34.21.308-2005]

    Тематики

    EN

    DE

    FR

     

    канал (в контактной линзе)
    Предусмотренная выемка в контактной линзе.
    [ ГОСТ 28956-91]

    Тематики

    Обобщающие термины

    EN

    FR

     

    канал (связи)

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Тематики

    EN

     

    канал
    Индивидуальный тракт передачи измерительной информации в средстве измерений.

    Примечание. "Канал" и "фаза" не одно и то же. Канал напряжения определяется разностью потенциалов между двумя проводниками. Понятие "фаза" относится к отдельному проводнику. В многофазных системах канал может быть между двумя фазами, или между фазой и нейтралью, или между фазой и землей, или между нейтралью и землей.
    [ ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008)]

    EN

    channel
    individual measurement path through an instrument
    NOTE “Channel” and “phase” are not the same. A voltage channel is by definition the difference in potential between 2 conductors. Phase refers to a single conductor. On polyphase systems, a channel may be between 2 phases, or between a phase and neutral, or between a phase and earth, or between neutral and earth
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    FR

    voie (de mesure)
    ensemble des dispositifs de mesure associés à une mesure individuelle
    NOTE «Voies» et «phases» n’ont pas la même signification. Une voie de mesure correspond par définition à une différence de potentiel entre deux conducteurs. Une phase correspond à un simple conducteur. Dans les systèmes polyphasés, une voie de mesure peut être entre deux phases ou entre une phase et le neutre, ou entre une phase et la terre, ou entre le neutre et la terre.
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    Тематики

    EN

    FR

     

    канал (ядерного реактора)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    канал изготовления фонограммы [видеограммы, видеофонограммы]
    Совокупность нескольких каналов записи и воспроизведения, последовательно используемых при изготовлении фонограммы, видеограммы, видеофонограммы.
    Примечания
    1. Входным сигналом канала изготовления сигналограммы служит сигнал, поступающий на вход первого канала записи в последовательной цепи каналов записи и воспроизведения. Выходным сигналом является сигнал на выходе последнего канала записи в этой цепи, то есть сигнал, записанный на изготовленной сигналограмме.
    2. Каналы записи и воспроизведения, составляющие канал изготовления сигналограммы, могут относиться к различным системам записи и воспроизведения.
    3. В зависимости от вида сигналограммы могут образовываться видовые понятия, например "канал изготовления магнитофонной кассеты", "канал изготовления грампластинки".
    [ ГОСТ 13699-91]

    Тематики

    EN

     

    канал ядерного реактора
    канал

    Сборочная единица ядерного реактора, предназначенная для размещения в активной зоне или отражателе или биологической защите тепловыделяющей сборки, облучательного устройства, рабочих органов системы управления и защиты, измерительной и контрольной аппаратуры.
    Примечание
    Канал ядерного реактора может иметь патрубки для подвода или отвода теплоносителя, а также устройства герметизации внутриканального пространства.
    [ ГОСТ 23082-78]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    проводящий канал
    Область полевого транзистора, в которой регулируется поток носителей заряда.
    Примечания
    1. Данное понятие не следует смешивать с "каналом утечки", возникающим в месте выхода p-n перехода на поверхность кристалла.
    2. Проводящий канал может быть n или p-типа в зависимости от типа электропроводности полупроводника.
    [ ГОСТ 15133-77

    Тематики

    EN

    DE

    FR

     

    пускать по каналу
    направлять


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    радиоствол
    радиоканал


    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    Синонимы

    EN

     

    русло реки
    Выработанное речным потоком ложе, по которому осуществляется сток без затопления поймы.
    [ ГОСТ 19179-73]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    телеметрический канал связи
    канал связи

    Совокупность устройств и (или) составных частей с одним входом и одним выходом, обеспечивающих передачу групповых телеметрических сигналов на расстояние и их прием.
    [ ГОСТ 19619-74

    Тематики

    • телемеханика, телеметрия

    Синонимы

    EN

    4. Телеметрический канал связи

    Канал связи

    E.Channel

    Совокупность устройств и (или) составных частей с одним входом и одним выходом, обеспечивающих передачу групповых телеметрических сигналов на расстояние и их прием

    Источник: ГОСТ 19619-74: Оборудование радиотелеметрическое. Термины и определения оригинал документа

    2.11 акустико-эмиссионный канал (channel, acoustic emission): Система, по которой распространяется сигнал АЭ, включающая часть объекта от источника АЭ до преобразователя, преобразователь, предусилитель или трансформатор импеданса, фильтры, вторичный усилитель или другие приборы при необходимости, соединительные кабели, а также прибор обработки сигнала или процессора.

    Источник: ГОСТ Р ИСО 12716-2009: Контроль неразрушающий. Акустическая эмиссия. Словарь оригинал документа

    3.6 канал (channel): Совокупность взаимосвязанных компонентов внутри системы, имеющая один выход. Канал теряет свою идентичность тогда, когда сигналы на единственном выходе сочетаются с сигналами от других каналов, например, от канала контроля или канала активизации защиты.

    [Глоссарий МАГАТЭ NS-G-1.3]

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.3.8 канал (channel): Элемент или группа элементов, которые независимо выполняют функцию.

    ПРИМЕР - Двухканальная (или дуальная) конфигурация - это такая конфигурация, в которой два канала независимо выполняют одну и туже функцию.

    Примечания

    1. В число элементов канала могут входить модули ввода/вывода, логическая система (см. 3.4.5), датчики и оконечные элементы.

    2. Термин допускается использовать для описания полных систем или частей системы (например, датчиков или оконечных элементов).

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.5 канал (channel): Ряд взаимосвязанных компонентов внутри системы, которые формируют один выходной сигнал. Канал теряет свою индивидуальность, если его выходные сигналы сочетаются с сигналами от другого канала, например, канала контроля или канала безопасности.

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.4 канал (channel): Совокупность взаимосвязанных элементов в системе, которая выдает один выходной сигнал. Канал теряет свою идентичность, когда сигналы одного выхода объединяются с сигналами, поступающими от других каналов (например, от контрольно-измерительного канала или канала обслуживания устройств безопасности).

    [Глоссарий безопасности МАГАТЭ, Версия 2.0,2006]

    Источник: ГОСТ Р МЭК 62385-2012: Атомные станции. Контроль и управление, важные для безопасности. Методы оценки рабочих характеристик измерительных каналов систем безопасности оригинал документа

    3.1 канал (channel): Индивидуальный тракт передачи измерительной информации в средстве измерений.

    Примечание - «Канал» и «фаза» не одно и то же. Канал напряжения определяется разностью потенциалов между двумя проводниками. Понятие «фаза» относится к отдельному проводнику. В многофазных системах канал может быть между двумя фазами или между фазой и нейтралью, или между фазой и землей, или между нейтралью и землей.

    Источник: ГОСТ Р 51317.4.30-2008: Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии оригинал документа

    Англо-русский словарь нормативно-технической терминологии > channel

  • 120 man-machine interface

    1. человеко-машинный интерфейс
    2. интерфейс "человекмашина"

     

    интерфейс "человекмашина"
    (МСЭ-Т Q.1741).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    человеко-машинный интерфейс (ЧМИ)
    Технические средства, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование.
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.
    [ ГОСТ Р МЭК 60447-2000]

    человекомашинный интерфейс (ЧМИ)
    Технические средства контроля и управления, являющиеся частью оборудования, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование (ГОСТ Р МЭК 60447).
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства и дисплеи.
    [ ГОСТ Р МЭК 60073-2000]

    человеко-машинный интерфейс
    Средства обеспечения двусторонней связи "оператор - технологическое оборудование" (АСУ ТП). Название класса средств, в который входят подклассы:
    SCADA (Supervisory Control and Data Acquisition) - Операторское управление и сбор данных от технологического оборудования.
    DCS (Distributed Control Systems) - Распределенная система управления технологическим оборудованием.
    [ http://www.morepc.ru/dict/]

    Параллельные тексты EN-RU

    MotorSys™ iPMCC solutions can integrate a dedicated human-machine interface (HMI) or communicate via a personal computer directly on the motor starters.
    [Schneider Electric]

    Интеллектуальный центр распределения электроэнергии и управления электродвигателями MotorSys™ может иметь в своем составе специальный человеко-машинный интерфейс (ЧМИ). В качестве альтернативы используется обмен данным между персональным компьютером и пускателями.
    [Перевод Интент]


    HMI на базе операторских станций

    Самое, пожалуй, главное в системе управления - это организация взаимодействия между человеком и программно-аппаратным комплексом. Обеспечение такого взаимодействия и есть задача человеко-машинного интерфейса (HMI, human machine interface).

    На мой взгляд, в аббревиатуре “АСУ ТП” ключевым является слово “автоматизированная”, что подразумевает непосредственное участие человека в процессе реализации системой определенных задач. Очевидно, что чем лучше организован HMI, тем эффективнее человек сможет решать поставленные задачи.

    Как же организован HMI в современных АСУ ТП?
    Существует, как минимум, два подхода реализации функционала HMI:

    1. На базе специализированных рабочих станций оператора, устанавливаемых в центральной диспетчерской;
    2. На базе панелей локального управления, устанавливаемых непосредственно в цеху по близости с контролируемым технологическим объектам.

    Иногда эти два варианта комбинируют, чтобы достичь наибольшей гибкости управления. В данной статье речь пойдет о первом варианте организации операторского уровня.

    Аппаратно рабочая станция оператора (OS, operator station) представляет собой ни что иное как персональный компьютер. Как правило, станция снабжается несколькими широкоэкранными мониторами, функциональной клавиатурой и необходимыми сетевыми адаптерами для подключения к сетям верхнего уровня (например, на базе Industrial Ethernet). Станция оператора несколько отличается от привычных для нас офисных компьютеров, прежде всего, своим исполнением и эксплуатационными характеристиками (а также ценой 4000 - 10 000 долларов).
    На рисунке 1 изображена рабочая станция оператора системы SIMATIC PCS7 производства Siemens, обладающая следующими техническими характеристиками:

    Процессор: Intel Pentium 4, 3.4 ГГц;
    Память: DDR2 SDRAM до 4 ГБ;
    Материнская плата: ChipSet Intel 945G;
    Жесткий диск: SATA-RAID 1/2 x 120 ГБ;
    Слоты: 4 x PCI, 2 x PCI E x 1, 1 x PCI E x 16;
    Степень защиты: IP 31;
    Температура при эксплуатации: 5 – 45 C;
    Влажность: 5 – 95 % (без образования конденсата);
    Операционная система: Windows XP Professional/2003 Server.

    4876
    Рис. 1. Пример промышленной рабочей станции оператора.

    Системный блок может быть как настольного исполнения ( desktop), так и для монтажа в 19” стойку ( rack-mounted). Чаще применяется второй вариант: системный блок монтируется в запираемую стойку для лучшей защищенности и предотвращения несанкционированного доступа.

    Какое программное обеспечение используется?
    На станции оператора устанавливается программный пакет визуализации технологического процесса (часто называемый SCADA). Большинство пакетов визуализации работают под управлением операционных систем семейства Windows (Windows NT 4.0, Windows 2000/XP, Windows 2003 Server), что, на мой взгляд, является большим минусом.
    Программное обеспечение визуализации призвано выполнять следующие задачи:

    1. Отображение технологической информации в удобной для человека графической форме (как правило, в виде интерактивных мнемосхем) – Process Visualization;
    2. Отображение аварийных сигнализаций технологического процесса – Alarm Visualization;
    3. Архивирование технологических данных (сбор истории процесса) – Historical Archiving;
    4. Предоставление оператору возможности манипулировать (управлять) объектами управления – Operator Control.
    5. Контроль доступа и протоколирование действий оператора – Access Control and Operator’s Actions Archiving.
    6. Автоматизированное составление отчетов за произвольный интервал времени (посменные отчеты, еженедельные, ежемесячные и т.д.) – Automated Reporting.

    Как правило, SCADA состоит из двух частей:

    1. Среды разработки, где инженер рисует и программирует технологические мнемосхемы;
    2. Среды исполнения, необходимой для выполнения сконфигурированных мнемосхем в режиме runtime. Фактически это режим повседневной эксплуатации.

    Существует две схемы подключения операторских станций к системе управления, а точнее уровню управления. В рамках первой схемы каждая операторская станция подключается к контроллерам уровня управления напрямую или с помощью промежуточного коммутатора (см. рисунок 2). Подключенная таким образом операторская станция работает независимо от других станций сети, и поэтому часто называется одиночной (пусть Вас не смущает такое название, на самом деле таких станций в сети может быть несколько).

    4877
    Рис. 2. Схема подключения одиночных операторских станций к уровню управления.

    Есть и другой вариант. Часто операторские станции подключают к серверу или резервированной паре серверов, а серверы в свою очередь подключаются к промышленным контроллерам. Таким образом, сервер, являясь неким буфером, постоянно считывает данные с контроллера и предоставляет их по запросу рабочим станциям. Станции, подключенные по такой схеме, часто называют клиентами (см. рисунок 3).

    4878
    Рис. 3. Клиент-серверная архитектура операторского уровня.

    Как происходит информационный обмен?
    Для сопряжения операторской станции с промышленным контроллером на первой устанавливается специальное ПО, называемое драйвером ввода/вывода. Драйвер ввода/вывода поддерживает совместимый с контроллером коммуникационный протокол и позволяет прикладным программам считывать с контроллера параметры или наоборот записывать в него. Пакет визуализации обращается к драйверу ввода/вывода каждый раз, когда требуется обновление отображаемой информации или запись измененных оператором данных. Для взаимодействия пакета визуализации и драйвера ввода/вывода используется несколько протоколов, наиболее популярные из которых OPC (OLE for Process Control) и NetDDE (Network Dynamic Data Exchange). Обобщенно можно сказать, что OPC и NetDDE – это протоколы информационного обмена между различными приложениями, которые могут выполняться как на одном, так и на разных компьютерах. На рисунках 4 и 5 изображено, как взаимодействуют программные компоненты при различных схемах построения операторского уровня.  
    4879
    Рис. 4. Схема взаимодействия программных модулей при использовании одиночных станций.
     
    4880
    Рис. 5. Схема взаимодействия программных модулей при использовании клиент-серверной архитектуры.
    Как выглядит SCADA?
    Разберем простой пример. На рисунке 6 приведена абстрактная схема технологического процесса, хотя полноценным процессом это назвать трудно.
    4881
    Рис. 6. Пример операторской мнемосхемы.
    На рисунке 6 изображен очень упрощенный вариант операторской мнемосхемы для управления тех. процессом. Как видно, резервуар (емкость) наполняется водой. Задача системы - нагреть эту воду до определенной температуры. Для нагрева воды используется газовая горелка. Интенсивность горения регулируется клапаном подачи газа. Также должен быть насос для закачки воды в резервуар и клапан для спуска воды.

    На мнемосхеме отображаются основные технологические параметры, такие как: температура воды; уровень воды в резервуаре; работа насосов; состояние клапанов и т.д. Эти данные обновляются на экране с заданной частотой. Если какой-либо параметр достигает аварийного значения, соответствующее поле начинает мигать, привлекая внимание оператора.

    Сигналы ввода/вывода и исполнительные механизмы отображаются на мнемосхемах в виде интерактивных графических символов (иконок). Каждому типу сигналов и исполнительных механизмов присваивается свой символ: для дискретного сигнала это может быть переключатель, кнопка или лампочка; для аналогового – ползунок, диаграмма или текстовое поле; для двигателей и насосов – более сложные фейсплейты ( faceplates). Каждый символ, как правило, представляет собой отдельный ActiveX компонент. Вообще технология ActiveX широко используется в SCADA-пакетах, так как позволяет разработчику подгружать дополнительные символы, не входящие в стандартную библиотеку, а также разрабатывать свои собственные графические элементы, используя высокоуровневые языки программирования.

    Допустим, оператор хочет включить насос. Для этого он щелкает по его иконке и вызывает панель управления ( faceplate). На этой панели он может выполнить определенные манипуляции: включить или выключить насос, подтвердить аварийную сигнализацию, перевести его в режим “техобслуживания” и т.д. (см. рисунок 7).  
    4882
    Рис. 7. Пример фейсплейта для управления насосом.
      Оператор также может посмотреть график изменения интересующего его технологического параметра, например, за прошедшую неделю. Для этого ему надо вызвать тренд ( trend) и выбрать соответствующий параметр для отображения. Пример тренда реального времени показан на рисунке 8.
     
    4883
    Рис. 8. Пример отображения двух параметров на тренде реального времени.
    Для более детального обзора сообщений и аварийных сигнализаций оператор может воспользоваться специальной панелью ( alarm panel), пример которой изображен на рисунке 9. Это отсортированный список сигнализаций (alarms), представленный в удобной для восприятия форме. Оператор может подтвердить ту или иную аварийную сигнализацию, применить фильтр или просто ее скрыть.
    4884
    Рис. 9. Панель сообщений и аварийных сигнализаций.
    Говоря о SCADA, инженеры часто оперируют таким важным понятием как “тэг” ( tag). Тэг является по существу некой переменной программы визуализации и может быть использован как для локального хранения данных внутри программы, так и в качестве ссылки на внешний параметр процесса. Тэги могут быть разных типов, начиная от обычных числовых данных и кончая структурой с множеством полей. Например, один визуализируемый параметр ввода/вывода – это тэг, или функциональный блок PID-регулятора, выполняемый внутри контроллера, - это тоже тэг. Ниже представлена сильно упрощенная структура тэга, соответствующего простому PID-регулятору:

    Tag Name = “MyPID”;
    Tag Type = PID;

    Fields (список параметров):

    MyPID.OP
    MyPID.SP
    MyPID.PV
    MyPID.PR
    MyPID.TI
    MyPID.DI
    MyPID.Mode
    MyPID.RemoteSP
    MyPID.Alarms и т.д.

    В комплексной прикладной программе может быть несколько тысяч тэгов. Производители SCADA-пакетов это знают и поэтому применяют политику лицензирования на основе количества используемых тэгов. Каждая купленная лицензия жестко ограничивает суммарное количество тэгов, которые можно использовать в программе. Очевидно, чем больше тегов поддерживает лицензия, тем дороже она стоит; так, например, лицензия на 60 000 тэгов может обойтись в 5000 тыс. долларов или даже дороже. В дополнение к этому многие производители SCADA формируют весьма существенную разницу в цене между “голой” средой исполнения и полноценной средой разработки; естественно, последняя с таким же количеством тэгов будет стоить заметно дороже.

    Сегодня на рынке представлено большое количество различных SCADA-пакетов, наиболее популярные из которых представлены ниже:

    1.    Wonderware Intouch;
    2.    Simatic WinCC;
    3.    Iconics Genesis32;
    4.    Citect;
    5.    Adastra Trace Mode

    Лидирующие позиции занимают Wonderware Intouch (производства Invensys) и Simatic WinCC (разработки Siemens) с суммарным количеством инсталляций более 80 тыс. в мире. Пакет визуализации технологического процесса может поставляться как в составе комплексной системы управления, так и в виде отдельного программного продукта. В последнем случае SCADA комплектуется набором драйверов ввода/вывода для коммуникации с контроллерами различных производителей.   [ http://kazanets.narod.ru/HMI_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > man-machine interface

См. также в других словарях:

  • программное обеспечение системы числового программного управления станком — программное обеспечение Совокупность программ и документации на них для реализации целей и задач системы числового программного управления станком. [ГОСТ 20523 80] Тематики числовое программное управление Синонимы программное обеспечение EN… …   Справочник технического переводчика

  • программное обеспечение системы помощи инженерам при проектировании — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN engineer assist softwareEAS …   Справочник технического переводчика

  • программное обеспечение системы управления инфраструктурой ЦОДа — [Интент] Тематики ЦОДы (центры обработки данных) EN data center management software system …   Справочник технического переводчика

  • ГОСТ Р 53624-2009: Информационные технологии. Информационно-вычислительные системы. Программное обеспечение. Системы менеджмента качества. Требования — Терминология ГОСТ Р 53624 2009: Информационные технологии. Информационно вычислительные системы. Программное обеспечение. Системы менеджмента качества. Требования оригинал документа: 3.1 запись: Документ, содержащий описание результатов… …   Словарь-справочник терминов нормативно-технической документации

  • программное обеспечение — 01.01.80 программное обеспечение (в области электросвязи) [software <telecommunication>]: Программы ЭВМ, процедуры, правила и любая сопутствующая документация, имеющие отношение к работе аппаратуры, сети электросвязи или другого… …   Словарь-справочник терминов нормативно-технической документации

  • программное обеспечение (программное средство, программа) — 3.6 программное обеспечение (программное средство, программа): Последовательность инструкций в кодах для вычислительного средства, находящаяся в памяти вычислительного средства, представляющая описание алгоритма действий с данными. Примечание… …   Словарь-справочник терминов нормативно-технической документации

  • Программное обеспечение предприятия — (англ. Enterprise Application Software, EAS) это программное обеспечение, которое используется в крупных предприятиях, таких как бизнес или государство, решающее задачи предприятия в целом, а не только одного департамента или филиала.[1]… …   Википедия

  • программное обеспечение автоматизированной системы — программное обеспечение АС Совокупность программ на носителях данных и программных документов, предназначенная для отладки, функционирования и проверки работоспособности АС. [ГОСТ 34.003 90] Тематики автоматизированные системы Синонимы… …   Справочник технического переводчика

  • программное обеспечение — Совокупность программ системы обработки информации и программных документов, необходимых для эксплуатации этих программ. [ГОСТ 19781 90] программное обеспечение Продукт интеллектуальной деятельности, включающий программы, процедуры, данные,… …   Справочник технического переводчика

  • Программное обеспечение автоматизированной системы — совокупность программ для реализации целей и задач автоматизированной системы. См. также: Автоматизированные системы Финансовый словарь Финам …   Финансовый словарь

  • программное обеспечение геоинформационной системы — Совокупность программ, в которых реализованы функциональные возможности геоинформационных систем и сопровождающей программной документации. Примечание В зависимости от полноты реализации функциональных возможностей ГИС и их назначения… …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»