Перевод: с английского на все языки

со всех языков на английский

industrial+machine

  • 41 complex

    Англо-русский словарь по экономике и финансам > complex

  • 42 output

    ˈautput
    1. сущ.
    1) а) продукция;
    продукт, изделие to increase, step up output ≈ увеличивать выпуск продукции to curtail, cut back, reduce output ≈ сокращать выпуск продукции manufacturing output ≈ продукция обрабатывающей промышленности gross output ≈ валовая продукция Much of her output as a writer was first published in magazines. ≈ Многие из ее первых литературных произведений были напечатаны поначалу в журналах. Syn: production, produce б) выпуск;
    выработка;
    добыча annual outputгодовой объем производства, выпуск продукции за год industrial output ≈ объем промышленного производства daily outputежедневный выпуск output per workerиндивидуальная выработка, выработка на одного рабочего
    2) тех. производительность;
    мощность, отдача;
    пропускная способность;
    емкость average outputсредняя производительность
    3) мат. итог, результат
    4) компьют. выходное устройство, устройство вывода;
    вывод data outputвывод данных
    2. прил.
    1) выпускаемый, производимый output goodsвыпускаемые продукты
    2) выходной;
    связанный с выводом, с выводным устройством output informationвыходная информация output errorошибка на выходе, ошибка выходной величины, ошибка вывода output capacitanceвыходная емкость продукция;
    выпуск;
    выработка - the * of a mine прдукция шахты - the literary * of the year литературная продукция за год - aggregate industrial * общий объем промышленного производства - per head * выпуск продукции на душу населения - gross agricultural * объем валовой продукции сельского хозяйства напряжение (усилия) - with a sudden * of effort he moved the rock он сдвинул камень резким толчком (техническое) производительность, мощность, отдача - power * выходная мощность( техническое) пропускная способность( горное) добыча (физическое) выход( прибора) (электроника) выходной сигнал (математика) окончательный результат( компьютерное) вывод данных - * text синтезируемый текст( в машинном переводе) (физиологическое) выделение( пота) (специальное) выходной (о сигнале) (специальное) расположенный на выходе( прибора) (специальное) окончательный( о данных) производить, выпускать( компьютерное) выводить (данные) actual ~ фактическая выработка actual ~ фактический объем производства buffered ~ вчт. вывод с буферизацией data ~ вчт. вывод данных decreasing ~ снижающийся объем производства displayed ~ данные выводимые на устройство отображения graphic ~ вчт. графический вывод hyperexponential ~ гиперэкспоненциальный выходящий поток ~ продукция;
    продукт;
    выпуск;
    выработка;
    the literary output of the year литературная продукция за год machine ~ объем продукции, произведенной на станке machine ~ производительность станка machine ~ производственная мощность машины maximal ~ максимальная производительность maximum work ~ максимальная выработка maximum work ~ максимальная производительность net ~ объем произведенной условно-чистой продукции net ~ полезная отдача off-line ~ вчт. автономный вывод ~ of oil добыча нефти peak ~ максимальный выход продукции peak ~ максимальный объем производства peak ~ предельная производительность pooled ~ вчт. объединенный выходящий поток printed ~ вчт. отпечатанные выходные данные real-time ~ вчт. вывод в реальном времени redirect ~ вчт. переадресовывать результат remote job ~ вчт. дистанционный вывод заданий selective ~ вчт. выборочный вывод данных sound ~ вчт. звуковой вывод speaker ~ вчт. вывод на громкоговоритель thermal ~ теплоотдача visual ~ вчт. визуальный выход voice ~ вчт. речевой выход work ~ выработка work ~ производительность

    Большой англо-русский и русско-английский словарь > output

  • 43 controller

    1) управляющее устройство, устройство управления
    2) контроллер, командоаппарат
    5) контрольно-измерительный прибор; контрольно-измерительное устройство
    - AC controller
    - adaptive controller
    - adaptive variable structure controller
    - adjustable controller
    - adjustable-speed controller
    - air-operated controller
    - all-purpose controller
    - analog-to-frequency controller
    - area controller
    - arm controller
    - astatic controller
    - automatic controller
    - auxiliary controller
    - axis controller
    - behavior-based controller
    - bubble memory controller
    - bus-based controller
    - camshaft controller
    - cascade controller
    - cell controller
    - cell management controller
    - center controller
    - centering controller
    - central controller
    - central programmable controller
    - CNC controller
    - CNC/PC-backed controller
    - combination controller
    - communications capable controller
    - compound controller
    - computer-torque controller
    - conductivity controller
    - constant-pressure flow controller
    - continuous controller
    - continuous-action controller
    - conventional CNC controller
    - conventional numerical controller
    - copy controller
    - copying controller
    - correlated controller
    - cycle controller
    - digital controller
    - digital loop controller
    - direct-acting controller
    - discontinuous-action controller
    - discrete action controller
    - disk controller
    - displacement controller
    - distribution controller
    - DNC controller
    - draft controller
    - dressing controller
    - drum logic controller
    - edge tracking controller
    - elastic feedback controller
    - electric contact controller
    - electric controller
    - electric hydraulic controller
    - electromechanical controller
    - electronic controller
    - electropneumatic controller
    - equipment level controller
    - extremal controller
    - factory automation controller
    - feed controller
    - feedback controller
    - field controller
    - finite-dimensional controller
    - fixed-gain controller
    - flexible automation controller
    - flexible controller
    - floating controller
    - flow controller
    - FMS cell controller
    - FMS line controller
    - follow-up controller
    - freely programmable controller
    - frequency controller
    - gain controller
    - gemdrive axis controller
    - hardware controller
    - hydraulic controller
    - I/O controller
    - IBM compatible controller
    - inching controller
    - indicating controller
    - indirect action controller
    - industrial sequence controller
    - infinite-dimensional controller
    - input/output controller
    - integral controller
    - interfaceable controller
    - intermittent controller
    - LAN controller
    - limiting controller
    - linear controller
    - low-point speed controller
    - machine controller
    - machine tool controller
    - management controller
    - manual controller
    - MAP/cell controller
    - master controller
    - master programmable controller
    - material handling controller
    - mechanically operated controller
    - microcomputer controller
    - microprocessor controller
    - microprocessor-driven machine controller
    - minimum error controller
    - model reference adaptive process controller
    - motion controller
    - motor controller
    - multiaction controller
    - multichannel controller
    - multiinput controller
    - multilevel controller
    - multimachine-tool controller
    - multiposition controller
    - multispeed controller
    - multistep controller
    - narrow-band controller
    - NC controller
    - network controller
    - neural net controller
    - numerical controller
    - on-off controller
    - open system controller
    - open-cycle controller
    - optimal controller
    - optimizing peak-holding controller
    - oscillating controller
    - output sampling controller
    - PC-backed controller
    - pedestal controller
    - Petri net controller
    - photoelectric controller
    - PID controller
    - pilot-operated controller
    - plugboard controller
    - pneumatic controller
    - pneumatic-hydraulic controller
    - positioning controller
    - power controller
    - pressure controller
    - probe controller
    - process controller
    - process cycle controller
    - production controller
    - production management controller
    - professional graphics controller
    - program controller
    - programmable controller
    - programmable CRT controller
    - programmable industrial controller
    - programmable interface controller
    - programmable logic controller
    - proportional action controller
    - proportional controller with disturbance-variable compensation
    - proportional controller
    - proportional position action controller
    - proportional-plus-derivative action controller
    - proportional-plus-integral action controller
    - proportional-plus-integral-plus-derivative controller
    - protocol controller
    - pulse controller
    - PWM controller
    - ratio controller
    - relay controller
    - remote controller
    - rigid feedback controller
    - robot arm controller
    - robot cell controller
    - robot/workcenter controller
    - rotary and tilt controller
    - sampled-data controller
    - sampling controller
    - secondary controller
    - self-acting controller
    - self-actuated controller
    - self-operated controller
    - semiautomatic controller
    - sequential controller
    - servo controller
    - shift controller
    - single-duty controller
    - single-variable controller
    - small sequential controller
    - software controller
    - software-based controller
    - speed controller
    - static controller
    - stepping controller
    - strip-width controller
    - supervisory controller
    - system's central controller
    - tape controller
    - teach controller
    - teaching controller
    - temperature controller
    - thermostatic controller
    - tool life controller
    - torque controller
    - turning controller
    - two-level controller
    - two-position controller
    - two-speed controller
    - two-stage controller
    - two-step controller
    - valve controller
    - variable feedback controller
    - vise controller
    - volume controller
    - wide-band controller
    - wide-range controller
    - workstation controller

    English-Russian dictionary of mechanical engineering and automation > controller

  • 44 Cockerill, William

    SUBJECT AREA: Textiles
    [br]
    b. 1759 Lancashire, England
    d. 1832 near Aix-la-Chapelle, France (now Aachen, Germany)
    [br]
    English (naturalized Belgian c. 1810) engineer, inventor and an important figure in the European textile machinery industry.
    [br]
    William Cockerill began his career in Lancashire by making "roving billies" and flying shuttles. He was reputed to have an extraordinary mechanical genius and it is said that he could make models of almost any machine. He followed in the footsteps of many other enterprising British engineers when in 1794 he went to St Petersburg in Russia, having been recommended as a skilful artisan to the Empress Catherine II. After her death two years later, her successor Paul sent Cockerill to prison because he failed to finish a model within a certain time. Cockerill, however, escaped to Sweden where he was commissioned to construct the locks on a public canal. He attempted to introduce textile machinery of his own invention but was unsuccessful and so in 1799 he removed to Verviers, Belgium, where he established himself as a manufacturer of textile machinery. In 1802 he was joined by James Holden, who before long set up his own machine-building business. In 1807 Cockerill moved to Liège where, with his three sons (William Jnr, Charles James and John), he set up factories for the construction of carding machines, spinning frames and looms for the woollen industry. He secured for Verviers supremacy in the woollen trade and introduced at Liège an industry of which England had so far possessed the monopoly. His products were noted for their fine craftsmanship, and in the heyday of the Napoleonic regime about half of his output was sold in France. In 1813 he imported a model of a Watt steam-engine from England and so added another range of products to his firm. Cockerill became a naturalized Belgian subject c. 1810, and a few years later he retired from the business in favour of his two younger sons, Charles James and John (b. 30 April 1790 Haslingden, Lancashire, England; d. 19 June 1840 Warsaw, Poland), but in 1830 at Andenne he converted a vast factory formerly used for calico printing into a paper mill. Little is known of his eldest son William, but the other two sons expanded the enterprise, setting up a woollen factory at Berlin after 1815 and establishing at Seraing-on-the-Meuse in 1817 blast furnaces, an iron foundry and a machine workshop which became the largest on the European continent. William Cockerill senior died in 1832 at the Château du Behrensberg, the residence of his son Charles James, near Aix-la-Chapelle.
    [br]
    Further Reading
    W.O.Henderson, 1961, The Industrial Revolution on the Continent, Manchester (a good account of the spread of the Industrial Revolution in Germany, France and Russia).
    RTS / RLH

    Biographical history of technology > Cockerill, William

  • 45 Kay (of Bury), John

    SUBJECT AREA: Textiles
    [br]
    b. 16 July 1704 Walmersley, near Bury, Lancashire, England
    d. 1779 France
    [br]
    English inventor of the flying shuttle.
    [br]
    John Kay was the youngest of five sons of a yeoman farmer of Walmersley, near Bury, Lancashire, who died before his birth. John was apprenticed to a reedmaker, and just before he was 21 he married a daughter of John Hall of Bury and carried on his trade in that town until 1733. It is possible that his first patent, taken out in 1730, was connected with this business because it was for an engine that made mohair thread for tailors and twisted and dressed thread; such thread could have been used to bind up the reeds used in looms. He also improved the reeds by making them from metal instead of cane strips so they lasted much longer and could be made to be much finer. His next patent in 1733, was a double one. One part of it was for a batting machine to remove dust from wool by beating it with sticks, but the patent is better known for its description of the flying shuttle. Kay placed boxes to receive the shuttle at either end of the reed or sley. Across the open top of these boxes was a metal rod along which a picking peg could slide and drive the shuttle out across the loom. The pegs at each end were connected by strings to a stick that was held in the right hand of the weaver and which jerked the shuttle out of the box. The shuttle had wheels to make it "fly" across the warp more easily, and ran on a shuttle race to support and guide it. Not only was weaving speeded up, but the weaver could produce broader cloth without any aid from a second person. This invention was later adapted for the power loom. Kay moved to Colchester and entered into partnership with a baymaker named Solomon Smith and a year later was joined by William Carter of Ballingdon, Essex. His shuttle was received with considerable hostility in both Lancashire and Essex, but it was probably more his charge of 15 shillings a year for its use that roused the antagonism. From 1737 he was much involved with lawsuits to try and protect his patent, particularly the part that specified the method of winding the thread onto a fixed bobbin in the shuttle. In 1738 Kay patented a windmill for working pumps and an improved chain pump, but neither of these seems to have been successful. In 1745, with Joseph Stell of Keighley, he patented a narrow fabric loom that could be worked by power; this type may have been employed by Gartside in Manchester soon afterwards. It was probably through failure to protect his patent rights that Kay moved to France, where he arrived penniless in 1747. He went to the Dutch firm of Daniel Scalongne, woollen manufacturers, in Abbeville. The company helped him to apply for a French patent for his shuttle, but Kay wanted the exorbitant sum of £10,000. There was much discussion and eventually Kay set up a workshop in Paris, where he received a pension of 2,500 livres. However, he was to face the same problems as in England with weavers copying his shuttle without permission. In 1754 he produced two machines for making card clothing: one pierced holes in the leather, while the other cut and sharpened the wires. These were later improved by his son, Robert Kay. Kay returned to England briefly, but was back in France in 1758. He was involved with machines to card both cotton and wool and tried again to obtain support from the French Government. He was still involved with developing textile machines in 1779, when he was 75, but he must have died soon afterwards. As an inventor Kay was a genius of the first rank, but he was vain, obstinate and suspicious and was destitute of business qualities.
    [br]
    Bibliography
    1730, British patent no. 515 (machine for making mohair thread). 1733, British patent no. 542 (batting machine and flying shuttle). 1738, British patent no. 561 (pump windmill and chain pump). 1745, with Joseph Stell, British patent no. 612 (power loom).
    Further Reading
    B.Woodcroft, 1863, Brief Biographies of Inventors or Machines for the Manufacture of Textile Fabrics, London.
    J.Lord, 1903, Memoir of John Kay, (a more accurate account).
    Descriptions of his inventions may be found in A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the
    Industrial Revolution, Manchester; and C.Singer (ed.), 1957, A History of
    Technology, Vol. III, Oxford: Clarendon Press. The most important record, however, is in A.P.Wadsworth and J. de L. Mann, 1931, The Cotton Trade and Industrial
    Lancashire, Manchester.
    RLH

    Biographical history of technology > Kay (of Bury), John

  • 46 programming

    1) программирование; подготовка УП
    - 2D part programming
    - 3D part programming
    - absolute programming
    - absolute/incremental programming
    - angle programming
    - arc programming
    - at-the-machine programming
    - automatic programming
    - away-from-site programming
    - background programming
    - blue-print programming
    - CAM programming
    - canned programming
    - chuck programming
    - circular programming
    - CNC machine tool programming
    - CNC programming
    - common point programming
    - computer programming
    - computer-assisted off-line programming
    - computerized programming
    - concurrent programming
    - constant surface speed programming
    - constant surface speed/rpm programming
    - contingency programming
    - continuous path programming
    - conversational keyboard programming
    - conversational programming
    - diagnostic programming
    - dialog programming
    - direct digit programming
    - direct feedrate programming
    - direct programming
    - direct spindle speed programming
    - EDM NC programming
    - EIA programming
    - equipment programming
    - explicit path programming
    - external programming
    - family-of-parts programming
    - feature-based part programming
    - five-axis programming
    - fixture-based programming
    - flexible programming
    - free contour programming
    - free programming
    - full 360-degree programming
    - generative NC programming
    - GOTO-less programming
    - graphics-assisted NC programming
    - graphics-oriented NC programming
    - hand-held programming
    - helical programming
    - incremental data programming
    - incremental programming
    - industrial control programming
    - integer programming
    - interactive CAD programming
    - interactive programming
    - ISO programming
    - joint level programming
    - knowledge-based programming
    - ladder-diagram programming
    - lathe programming
    - lead-through programming
    - linear programming
    - machine programming
    - machine-operator programming
    - machine-site programming
    - machine-tool programming
    - machining center programming
    - macro-based programming
    - manual programming
    - mathematical programming
    - MDI programming
    - menu dialogue programming
    - miller programming
    - milling machine programming
    - millturn NC programming
    - mixed-integer programming
    - modular programming
    - multiple process programming
    - NC programming
    - nonmandatory conversational programming
    - numerical control programming
    - object oriented programming
    - off-line programming
    - off-line robot programming
    - off-the-machine programming
    - on-line programming
    - on-site programming
    - on-the-machine programming
    - on-the-spot programming
    - operation programming
    - operator programming
    - operator/foreman programming
    - optimum programming
    - pallet-handling programming
    - parametric programming
    - part programming
    - part surface programming
    - PC programming
    - plugboard programming
    - plug-in programming
    - point-to-point programming
    - polar coordinate programming
    - polar programming
    - pushbutton programming
    - quadratic programming
    - question-and-answer dialog programming
    - random-access programming
    - remote programming
    - resident assistant programming
    - robot programming
    - robotic programming
    - safe zone programming
    - shape programming
    - shop floor programming
    - shop level programming
    - step-by-step programming
    - task level programming
    - task programming
    - teach programming
    - teaching robotic programming
    - three-axis programming
    - top-down programming
    - true part edge programming
    - turning machine programming
    - variable route FMS programming
    - walk-through programming
    - workshop-oriented programming

    English-Russian dictionary of mechanical engineering and automation > programming

  • 47 Cartwright, Revd Edmund

    [br]
    b. 24 April 1743 Marnham, Nottingham, England
    d. 30 October 1823 Hastings, Sussex, England
    [br]
    English inventor of the power loom, a combing machine and machines for making ropes, bread and bricks as well as agricultural improvements.
    [br]
    Edmund Cartwright, the fourth son of William Cartwright, was educated at Wakefield Grammar School, and went to University College, Oxford, at the age of 14. By special act of convocation in 1764, he was elected Fellow of Magdalen College. He married Alice Whitaker in 1772 and soon after was given the ecclesiastical living of Brampton in Derbyshire. In 1779 he was presented with the living of Goadby, Marwood, Leicestershire, where he wrote poems, reviewed new works, and began agricultural experiments. A visit to Matlock in the summer of 1784 introduced him to the inventions of Richard Arkwright and he asked why weaving could not be mechanized in a similar manner to spinning. This began a remarkable career of inventions.
    Cartwright returned home and built a loom which required two strong men to operate it. This was the first attempt in England to develop a power loom. It had a vertical warp, the reed fell with the weight of at least half a hundredweight and, to quote Gartwright's own words, "the springs which threw the shuttle were strong enough to throw a Congreive [sic] rocket" (Strickland 19.71:8—for background to the "rocket" comparison, see Congreve, Sir William). Nevertheless, it had the same three basics of weaving that still remain today in modern power looms: shedding or dividing the warp; picking or projecting the shuttle with the weft; and beating that pick of weft into place with a reed. This loom he proudly patented in 1785, and then he went to look at hand looms and was surprised to see how simply they operated. Further improvements to his own loom, covered by two more patents in 1786 and 1787, produced a machine with the more conventional horizontal layout that showed promise; however, the Manchester merchants whom he visited were not interested. He patented more improvements in 1788 as a result of the experience gained in 1786 through establishing a factory at Doncaster with power looms worked by a bull that were the ancestors of modern ones. Twenty-four looms driven by steam-power were installed in Manchester in 1791, but the mill was burned down and no one repeated the experiment. The Doncaster mill was sold in 1793, Cartwright having lost £30,000, However, in 1809 Parliament voted him £10,000 because his looms were then coming into general use.
    In 1789 he began working on a wool-combing machine which he patented in 1790, with further improvements in 1792. This seems to have been the earliest instance of mechanized combing. It used a circular revolving comb from which the long fibres or "top" were. carried off into a can, and a smaller cylinder-comb for teasing out short fibres or "noils", which were taken off by hand. Its output equalled that of twenty hand combers, but it was only relatively successful. It was employed in various Leicestershire and Yorkshire mills, but infringements were frequent and costly to resist. The patent was prolonged for fourteen years after 1801, but even then Cartwright did not make any profit. His 1792 patent also included a machine to make ropes with the outstanding and basic invention of the "cordelier" which he communicated to his friends, including Robert Fulton, but again it brought little financial benefit. As a result of these problems and the lack of remuneration for his inventions, Cartwright moved to London in 1796 and for a time lived in a house built with geometrical bricks of his own design.
    Other inventions followed fast, including a tread-wheel for cranes, metallic packing for pistons in steam-engines, and bread-making and brick-making machines, to mention but a few. He had already returned to agricultural improvements and he put forward suggestions in 1793 for a reaping machine. In 1801 he received a prize from the Board of Agriculture for an essay on husbandry, which was followed in 1803 by a silver medal for the invention of a three-furrow plough and in 1805 by a gold medal for his essay on manures. From 1801 to 1807 he ran an experimental farm on the Duke of Bedford's estates at Woburn.
    From 1786 until his death he was a prebendary of Lincoln. In about 1810 he bought a small farm at Hollanden near Sevenoaks, Kent, where he continued his inventions, both agricultural and general. Inventing to the last, he died at Hastings and was buried in Battle church.
    [br]
    Principal Honours and Distinctions
    Board of Agriculture Prize 1801 (for an essay on agriculture). Society of Arts, Silver Medal 1803 (for his three-furrow plough); Gold Medal 1805 (for an essay on agricultural improvements).
    Bibliography
    1785. British patent no. 1,270 (power loom).
    1786. British patent no. 1,565 (improved power loom). 1787. British patent no. 1,616 (improved power loom).
    1788. British patent no. 1,676 (improved power loom). 1790, British patent no. 1,747 (wool-combing machine).
    1790, British patent no. 1,787 (wool-combing machine).
    1792, British patent no. 1,876 (improved wool-combing machine and rope-making machine with cordelier).
    Further Reading
    M.Strickland, 1843, A Memoir of the Life, Writings and Mechanical Inventions of Edmund Cartwright, D.D., F.R.S., London (remains the fullest biography of Cartwright).
    Dictionary of National Biography (a good summary of Cartwright's life). For discussions of Cartwright's weaving inventions, see: A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the Industrial Revolution, Manchester. F.Nasmith, 1925–6, "Fathers of machine cotton manufacture", Transactions of the
    Newcomen Society 6.
    H.W.Dickinson, 1942–3, "A condensed history of rope-making", Transactions of the Newcomen Society 23.
    W.English, 1969, The Textile Industry, London (covers both his power loom and his wool -combing machine).
    RLH

    Biographical history of technology > Cartwright, Revd Edmund

  • 48 Dore (Dorr), Samuel Griswold

    SUBJECT AREA: Textiles
    [br]
    b. USA
    d. 1794 England
    [br]
    American inventor of the first rotary shearing machine.
    [br]
    To give a smooth surface to cloth such as the old English broadcloth, the nap was raised and then sheared off. Hand-operated shears of enormous size cut the fibres standing proud of the surface while the cloth was laid over a curved table top. Great skill was required to achieve a smooth finish. Various attempts, such as that in 1784 by James Harmer, a clergyman of Sheffield, were made to mechanize the process by placing several pairs of shears in a frame and operating them by cranks, but these were not successful. The first version of a rotary machine was made by Samuel Griswold Dore (sometimes spelt Dorr), an American from Albany, New York. His first frame, patented in 1792 in America, consisted of a wheel of twelve "spring knives" that were fixed like spokes and set at an angle of about 45° to the horizontal. Under this wheel, and on the same axle, rode a second one, carrying four "tangent knives" that lay almost flat upon the cloth. As the two wheels rotated above the cloth's surface, they acted in "the manner of shears". The principle used in Dore's machine is certainly different from that in the later, successful machine of John Lewis. The machine was thought to be too complicated and expensive for American woollen manufacturers and was much better suited to circumstances in the English industry, Dore therefore moved to England. However, in his British patent in 1793, he introduced a different design, which was more like that on which both Lewis's machine and the lawnmower were based, with knives set across the periphery of a hollow cylinder or barrel. Little more was heard of his machine in Britain, possibly because of Dore's death, which is mentioned in his patent of 1794, although it was used in America and France. Dore's son and others improved the machine in America and brought new specifications to England in 1811, when several patents were taken out.
    [br]
    Bibliography
    1792. US patent (rotary shearing machine).
    1793. British patent no. 1,945 (rotary shearing machine). 1794. British patent no. 1,985.
    Further Reading
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830s, Oxford (examines Dore's inventions and their transfer to Britain).
    Mention of Dore can be found in: J. de L.Mann, 1971, The Cloth Industry in the West of England from 1660 to 1880, Oxford; K.G.Ponting, 1971, The Woollen Industry of South-West England, Bath.
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (discusses Dore's inventions).
    RLH

    Biographical history of technology > Dore (Dorr), Samuel Griswold

  • 49 Levers (Leavers), John

    SUBJECT AREA: Textiles
    [br]
    fl. 1812–21 England
    d. after 1821 Rouen, France
    [br]
    English improver of lace-making machines that formed the basis for many later developments.
    [br]
    John Heathcote had shown that it was possible to make lace by machine with his patents of 1808 and 1809. His machines were developed and improved by John Levers. Levers was originally a hosiery frame-smith and setter-up at Sutton-in-Ashfield but moved to Nottingham, where he extended his operations to the construction of point-net and warp-lace machinery. In the years 1812 and 1813 he more or less isolated himself in the garret of a house in Derby Road, where he assembled his lacemaking machine by himself. He was helped by two brothers and a nephew who made parts, but they saw it only when it was completed. Financial help for making production machines came from the firm of John Stevenson \& Skipwith, lace manufacturers in Nottingham. Levers never sought a patent, as he was under the mistaken impression that additions or improvements to an existing patented machine could not be protected. An early example of the machine survives at the Castle Museum in Nottingham. Although his prospects must have seemed good, for some reason Levers dissolved his partnership with Stevenson \& Co. and continued to work on improving his machine. In 1817 he altered it from the horizontal to the upright position, building many of the machines each year. He was a friendly, kind-hearted man, but he seems to have been unable to apply himself to his business, preferring the company of musicians—he was a bandmaster of the local militia—and was soon frequently without money, even to buy food for his family. He emigrated in 1821 to Rouen, France, where he set up his lace machines and where he subsequently died; when or in what circumstances is unknown. His machine continued to be improved and was adapted to work with the Jacquard mechanism to select the pattern.
    [br]
    Further Reading
    W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867) (the main account of the Levers machine).
    W.English, 1969, The Textile Industry, London (a brief account of the Levers lace machine).
    D.M.Smith, 1965, Industrial Archaeology of the East Midlands, Dawlish (includes an illustration of Levers's machine).
    RLH

    Biographical history of technology > Levers (Leavers), John

  • 50 insurance

    [ɪnˈʃuərəns]
    accept an insurance policy получать страховой полис accident insurance contribution взнос на страхование от несчастного случая accountants' indemnity insurance страхование для компенсации убытков бухгалтерии additional expense insurance страхование дополнительных расходов agricultural insurance сельскохозяйственное страхование air transport insurance страхование воздушных перевозок aircraft hull insurance страхование самолета aircraft hull insurance страхование фюзеляжа воздушного судна aircraft passenger insurance страхование авиапассажиров all risks insurance страхование на все случаи жизни all risks insurance страхование от всех рисков all-in insurance страхование на все случаи жизни all-risks insurance полное страхование all-risks insurance страхование от любого риска annual insurance годовая страховка annuity insurance страхование ренты art property and jewellery insurance страхование предметов искусства и драгоценностей automobile insurance страхование автомобиля automobile third party liability insurance страхование ответственности владельца автомобиля перед третьими лицами aviation insurance авиационное страхование bicycle theft insurance страхование от кражи велосипеда blanket insurance блок-страхование business closure insurance страхование компании на случай прекращения деятельности business interruption insurance страхование компании от убытков в случае остановки производства cancel an insurance аннулировать страхование cancellation insurance страхование от аннулирования capital deposit insurance страхование депозитов капитала captive insurance company дочерняя страховая компания car insurance страхование автомобиля cargo insurance страхование грузов cargo insurance страхование морских грузов cash messenger insurance страхование инкассатора casualty insurance страхование от несчастных случаев child's deferred insurance отсроченное страхование детей child's insurance детское страхование coin machine insurance страхование монетного автомата collective accident insurance коллективное страхование от несчастного случая collective insurance коллективное страхование collision insurance страхование на случай столкновения combined insurance комбинированная страховка combined shop insurance смешанное страхование магазинов commercial insurance торговое страхование commercial liability insurance страхование коммерческой ответственности compensation insurance страхование компенсации comprehensive building insurance страхование нескольких строений по одному договору comprehensive insurance комбинированное страхование comprehensive insurance полная страховка comprehensive insurance страхование нескольких видов имущества по одному договору compulsory industrial injuries insurance страх. обязательное страхование от производственных травм compulsory insurance страх. обязательное страхование compulsory insurance страх. принудительное страхование compulsory old-age insurance обязательное страхование по старости compulsory third party insurance обязательное страхование третьей стороны computer crime insurance страхование от использования вычислительной машины в преступных целях consequential loss insurance страхование от косвенного ущерба consumer insurance страховка потребителя container insurance контейнерная страховка contractor's all risks insurance комбинированное страхование подрядчика contractor's all risks insurance страхование подрядчика от всех рисков contributory insurance страхование с частичными взносами cost and insurance (C and I) стоимость и страхование credit insurance страхование кредитов credit insurance страхование от неуплаты долга credit insurance scheme порядок страхования кредитов credit insurance system система страхования кредитов cremation expenses insurance страхование расходов на кремацию crop hail insurance страхование сельскохозяйственных культур от повреждения градом crop insurance страхование урожая current insurance действующий договор страхования deferred insurance отсроченное страхование deposit insurance депозитная страховка deposit insurance страхование депозитов deposit insurance fund фонд страхования депозитов difference-in-conditions insurance страхование с разницей в условиях direct insurance прямое страхование disability insurance страхование по нетрудоспособности disability insurance страховка по нетрудоспособности double insurance двойное страхование earthquake insurance страхование от землетрясения employer's liability insurance страхование ответственности работодателя employment pension insurance пенсионное страхование трудящихся engineering insurance страхование производственного оборудования environmental liability insurance страхование по обязательствам, связанным с экологией erection insurance страхование строительства exchange risk insurance страхование от валютного риска exhibition risks insurance страхование от рисков, связанных с демонстрацией товаров export credit insurance страхование кредита на экспорт export credit insurance страхование экспортного кредита family income insurance страхование дохода семьи fidelity insurance страхование от финансовых потерь, связанных со злоупотреблениями служащих компании fire insurance страхование от огня fire insurance страхование от пожара fire recourse insurance страхование от повторных пожаров first loss insurance страхование от первых убытков first loss insurance страхование по первому риску first party insurance страхование первой стороны fixed date insurance страхование жизни на определенный срок fixed-term insurance страхование жизни на определенный срок flight insurance страхование воздушной перевозки flood insurance страхование от наводнения foreign exchange insurance страхование в иностранной валюте forest fire insurance страхование от лесных пожаров freight insurance страхование груза freight insurance страхование перевозки грузов frost damage insurance страхование ущерба от заморозка frost insurance страхование от заморозков full value insurance страхование в полную стоимость full value insurance страхование на полную сумму fully comprehensive insurance полное страхование fully comprehensive insurance страхование всех видов по одному договору funeral expenses insurance страхование затрат на похороны general insurance общее страхование general liability insurance страхование гражданской ответственности goods insurance страхование товаров graduated life insurance дифференцированное страхование жизни group health insurance коллективное медицинское страхование group insurance групповое страхование group insurance коллективное страхование group life insurance групповое страхование жизни guarantee insurance гарантийное страхование hailstorm insurance страх. страхование от убытков, причиненных градом health insurance страхование здоровья health insurance страх. страхование от болезней health insurance card карточка страхования здоровья; страховой полис health insurance fund страх. фонд страхования здоровья health insurance society страх. общество страхования здоровья home-foreign insurance страх. страхование по переписке household comprehensive insurance страх. страхование нескольких видов домашнего имущества по одному договору household furniture insurance страх. страхование предметов домашнего обихода houseowner's comprehensive insurance страх. комбинированное страхование домовладения hull insurance страхование корпуса судна, каско hull insurance мор.страх. страхование корпуса судна hunting liability insurance страх. страхование гражданской ответственности на охоте import credit insurance страхование кредита для импорта import protection insurance страхование охраны импорта товаров indemnity insurance страховая гарантия indexed new-value insurance страхование, учитывающее изменение стоимости застрахованного объекта indirect insurance непрямое страхование industrial accident insurance страхование от несчастных случаев на производстве industrial injuries insurance страхование от производственного травматизма industrial insurance промышленное страхование industrial life insurance индустриальное страхование жизни inland transport insurance страхование перевозок внутри страны insurance страхование insurance страховая премия insurance страховой полис insurance сумма страхования insurance against treatment insury страхование на случай неудачного лечения insurance company share акция страховой компании insurance contract act закон о договоре страхования insurance for less than a year страхование на срок менее года insurance in force действующий договор страхования insurance of buildings страхование зданий insurance of cargo страхование груза insurance of contents страхование домашнего имущества insurance of daily benefits страхование дневного содержания insurance of fixed sums страхование фиксированных сумм insurance of fluorescent tubes страхование флуоресцентных ламп insurance of goods страхование товара insurance of goods and chattels страхование личного движимого имущества insurance of growing crops страхование выращиваемого урожая insurance of industrial risks страхование от промышленных рисков insurance of low tension installation страхование установки низкого напряжения insurance of medical expenses страхование медицинских расходов insurance of movable property страхование движимой собственности insurance of persons индивидуальное страхование insurance of persons личное страхование insurance of securities in transit страхование ценных бумаг при перевозке insurance of shell of building страхование облицовки здания insurance of stocks страхование складов insurance of valuables страхование драгоценностей insurance of valuables страхование ювелирных изделий interpretation difference insurance страхование от различий в толковании invalidity insurance страхование на случай инвалидности jewellery insurance страхование драгоценностей jewellery insurance страхование ювелирных изделий key insurance страх. страхование от всех рисков kidnap insurance страх. страхование от похищения ребенка legal expenses insurance страхование судебных издержек liability insurance страхование гражданской ответственности life insurance страхование жизни life insurance company компания по страхованию жизни life insurance policy полис страхования жизни policy: life insurance insurance полис страхования жизни life insurance sum сумма страхования жизни livestock insurance страхование домашнего скота livestock insurance страхование животных long-term insurance долгосрочное страхование loss insurance страхователь от убытков low tension insurance страхование от низкого напряжения в сети luggage insurance страхование багажа machinery breakdown insurance страхование на случай поломки оборудования machinery insurance страхование оборудования mandatory insurance обязательное страхование marine hull insurance страхование корпуса судна marine insurance морское страхование maternity insurance страхование женщин на случай родов maternity insurance страхование по материнству medical expenses insurance страхование медицинских расходов medical insurance медицинское страхование mortgage guarantee insurance гарантийное страхование ипотечной задолженности mortgage insurance страхование ипотечной задолженности motor cycle insurance страхование мотоциклов motor insurance автомобильное страхование motor insurance страхование автомобилей motor third party liability insurance страхование автотранспортных средств от ответственности в отношении третих лиц motor vehicle insurance страхование автомобиля motorcar insurance страхование автомобильного транспорта motorcar insurance страхование легковых автомобилей multiple insurance многократное страхование musical instruments insurance страхование музыкальных инструментов mutual insurance взаимное страхование national health insurance государственное страхование от болезней national insurance государственное страхование National Insurance Act Закон о государственном страховании (Великобритания) national old age invalidity and unemployment pension insurance национальное страхование по старости инвалидности и безработице national pension insurance национальное пенсионное страхование national sickness insurance benefit payments выплаты национального страхового пособия по безработице new insurance дополнительное страхование no-fault insurance страхование безаварийной работы nonlife insurance страхование ущерба nuclear risks insurance страхование от риска радиоактивного облучения obligatory insurance облигаторное страхование occupational compensation insurance страхование выплат работникам offshore insurance офшорное страхование offshore insurance страхование, не подпадающее под национальное регулирование old age insurance страхование по старости optional insurance добровольное страхование ordinary life insurance обычное страхование жизни ordinary life insurance страхование на случай смерти с пожизненной уплатой взносов paid-up insurance оплаченный страховой полис partial insurance неполное страхование partial insurance страхование в неполную стоимость passenger insurance страхование пассажиров pension insurance пенсионное страхование pension insurance страхование пенсии perpetual insurance бессрочное страхование perpetual insurance пожизненное страхование personal accident insurance индивидуальное страхование от несчастного случая personal accident insurance личное страхование от несчастного случая personal insurance индивидуальное страхование personal insurance личное страхование personal liability insurance страхование гражданской ответственности personal property insurance страхование личной собственности pharmaceutical insurance страхование фармацевтических расходов plate glass insurance страхование витринного стекла pluvious insurance страхование от ненастной погоды во время отпуска pool insurance коллективное страхование portfolio insurance страхование портфеля активов post office insurance страхование по почте premium insurance страхование с уплатой взносов previous insurance предыдущее страхование price differences insurance страхование различия в ценах private insurance индивидуальное страхование private insurance личное страхование product liability insurance страхование ответственности за качество выпускаемой продукции professional disability insurance страхование от нетрудоспособности по данной профессии professional indemnity insurance страхование от убытков в ходе профессиональной деятельности professional liability insurance страхование профессиональной ответственности property fire insurance страхование имущества от пожара property insurance страхование имущества propose an insurance заявлять о намерении застраховаться provident insurance социальное страхование public liability insurance страхование гражданской ответственности pure endowment insurance страхование с выплатой страховой суммы лицам, указанным в полисе, или самому застрахованному при достижении определенного срока railway passengers' insurance страхование пассажиров железнодорожного транспорта replacement value insurance страхование имущества, при котором возмещение выплачивается в размере восстановительной стоимости retirement pension insurance страхование пенсии за выслугу лет retirement pension insurance страхование пенсии по возрасту retirement pension insurance страхование пенсии по старости retroactive insurance страхование, имеющее обратную силу risk insurance страхование от риска risk insurance страхование риска robbery insurance страхование от грабежа salvage value insurance страхование стоимости спасенного имущества satellite insurance дополнительное страхование sea insurance морское страхование short-term insurance краткосрочное страхование sickness benefit insurance страхование на случай болезни sickness insurance страхование по болезни sickness insurance card карта страхования по болезни; полис страхования по болезни sickness insurance contribution взносы страхованя по болезни single-premium insurance страхование с единовременным страховым взносом ski-breakage insurance страхование от поломки лыж social insurance социальное страхование social insurance card карта социального страхования The Social Insurance Institution Институт социального страхования spacecraft insurance страхование космического аппарата statutory insurance установленное законом страхование storm damage insurance страхование от убытков вследствие бури straight life insurance страхование с пожизненной уплатой взносов supplementary health insurance дополнительное страхование от болезней supplementary insurance дополнительное страхование suretyship insurance страхование от финансовых потерь, связанных со злоупотреблениями служащих компании survivorship life insurance страхование жизни пережившего супруга television insurance страхование телевизора temporary insurance временное страхование term insurance страхование на срок term life insurance срочное страхование жизни theft insurance страхование от кражи title insurance страхование от дефектов правового титула tourist health insurance страхование туристов от болезней trade credit insurance страхование коммерческих кредитов transport insurance страхование перевозок travel insurance страхование туристов traveller's accident insurance страхование туристов от несчастных случаев traveller's health insurance страхование туристов от болезней underwrite insurance принимать на страхование unemployment insurance страхование от безработицы unemployment insurance страхование по безработице vehicle insurance страхование транспорта voluntary insurance добровольное страхование wager insurance азартный полис war risk insurance страхование от военных рисков water damage insurance страхование от ущерба, причиненного водой weather insurance страхование от атмосферного воздействия whole-life insurance пожизненное страхование на случай смерти widow's insurance страхование на случай вдовства workmen's compensation insurance страхование от понижения заработной платы works traffic insurance страхование производственного транспорта write insurance принимать на страхование

    English-Russian short dictionary > insurance

  • 51 Johnson, Thomas

    SUBJECT AREA: Textiles
    [br]
    fl. 1800s England
    d. after 1846
    [br]
    English developer of the sizing and beaming machine, and improver of the hand loom.
    [br]
    Thomas Johnson was an assistant to William Radcliffe c.1802 in his developments of the sizing machine and hand looms. Johnson is described by Edward Baines (1835) as "an ingenious but dissipated young man to whom he [Radcliffe] explained what he wanted, and whose fertile invention suggested a great variety of expedients, so that he obtained the name of the “conjuror” among his fellow-workmen". Johnson's genius, and Radcliffe's judgement and perseverance, at length produced the dressing-machine that was soon applied to power looms and made their use economic. Cotton warps had to be dressed with a starch paste to prevent them from fraying as they were being woven. Up to this time, the paste had had to be applied as the warp was unwound from the back of the loom, which meant that only short lengths could be treated and then left to dry, holding up the weaver. Radcliffe carried out the dressing and beaming in a separate machine so that weaving could proceed without interruption. Work on the dressing-machine was carried out in 1802 and patents were taken out in 1803 and 1804. These were made out in Johnson's name because Radcliffe was afraid that if his own name were used other people, particularly foreigners, would discover his secrets. Two more patents were taken out for improvements to hand looms. The first of these was a take-up motion for the woven cloth that automatically wound the cloth onto a roller as the weaver operated the loom. This was later incorporated by H.Horrocks into his own power loom design.
    Radcliffe and Johnson also developed the "dandy-loom", which was a more compact form of hand loom and later became adapted for weaving by power. Johnson was the inventor of the first circular or revolving temples, which kept the woven cloth at the right width. In the patent specifications there is a patent in 1805 by Thomas Johnson and James Kay for an improved power loom and another in 1807 for a vertical type of power loom. Johnson could have been involved with further patents in the 1830s and 1840s for vertical power looms and dressing-machines, which would put his death after 1846.
    [br]
    Bibliography
    1802, British patent no. 2,684 (dressing-machine).
    1803, British patent no. 2,771 (dressing-machine).
    1805, with James Kay, British patent no. 2,876 (power-loom). 1807, British patent no. 6,570 (vertical powerloom).
    Further Reading
    There is no general account of Johnson's life, but references to his work with Radcliffe may be found in A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; and in E.Baines, 1835, History of the Cotton Manufacture in Great Britain, London.
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830s, Oxford (for the impact of the dressing-machine in America).
    RLH

    Biographical history of technology > Johnson, Thomas

  • 52 Strutt, Jedediah

    SUBJECT AREA: Textiles
    [br]
    b. 26 July 1726 South Normanton, near Alfreton, Derbyshire, England
    d. 7 May 1797 Derby, England
    [br]
    English inventor of a machine for making ribbed knitting.
    [br]
    Jedediah Strutt was the second of three sons of William, a small farmer and maltster at South Normanton, near Alfreton, Derbyshire, where the only industry was a little framework knitting. At the age of 14 Jedediah was apprenticed to Ralph Massey, a wheelwright near Derby, and lodged with the Woollats, whose daughter Elizabeth he later married in 1755. He moved to Leicester and in 1754 started farming at Blackwell, where an uncle had died and left him the stock on his farm. It was here that he made his knitting invention.
    William Lee's knitting machine remained in virtually the same form as he left it until the middle of the eighteenth century. The knitting industry moved away from London into the Midlands and in 1730 a Nottingham workman, using Indian spun yarn, produced the first pair of cotton hose ever made by mechanical means. This industry developed quickly and by 1750 was providing employment for 1,200 frameworkers using both wool and cotton in the Nottingham and Derby areas. It was against this background that Jedediah Strutt obtained patents for his Derby rib machine in 1758 and 1759.
    The machine was a highly ingenious mechanism, which when placed in front of an ordinary stocking frame enabled the fashionable ribbed stockings to be made by machine instead of by hand. To develop this invention, he formed a partnership first with his brother-in-law, William Woollat, and two leading Derby hosiers, John Bloodworth and Thomas Stamford. This partnership was dissolved in 1762 and another was formed with Woollat and the Nottingham hosier Samuel Need. Strutt's invention was followed by a succession of innovations which enabled framework knitters to produce almost every kind of mesh on their machines. In 1764 the stocking frame was adapted to the making of eyelet holes, and this later lead to the production of lace. In 1767 velvet was made on these frames, and two years later brocade. In this way Strutt's original invention opened up a new era for knitting. Although all these later improvements were not his, he was able to make a fortune from his invention. In 1762 he was made a freeman of Nottingham, but by then he was living in Derby. His business at Derby was concerned mainly with silk hose and he had a silk mill there.
    It was partly his need for cotton yarn and partly his wealth which led him into partnership with Richard Arkwright, John Smalley and David Thornley to exploit Arkwright's patent for spinning cotton by rollers. Together with Samuel Need, they financed the Arkwright partnership in 1770 to develop the horse-powered mill in Nottingham and then the water-powered mill at Cromford. Strutt gave advice to Arkwright about improving the machinery and helped to hold the partnership together when Arkwright fell out with his first partners. Strutt was also involved, in London, where he had a house, with the parliamentary proceedings over the passing of the Calico Act in 1774, which opened up the trade in British-manufactured all-cotton cloth.
    In 1776 Strutt financed the construction of his own mill at Helper, about seven miles (11 km) further down the Derwent valley below Cromford. This was followed by another at Milford, a little lower on the river. Strutt was also a partner with Arkwright and others in the mill at Birkacre, near Chorley in Lancashire. The Strutt mills were developed into large complexes for cotton spinning and many experiments were later carried out in them, both in textile machinery and in fireproof construction for the mills themselves. They were also important training schools for engineers.
    Elizabeth Strutt died in 1774 and Jedediah never married again. The family seem to have lived frugally in spite of their wealth, probably influenced by their Nonconformist background. He had built a house near the mills at Milford, but it was in his Derby house that Jedediah died in 1797. By the time of his death, his son William had long been involved with the business and became a more important cotton spinner than Jedediah.
    [br]
    Bibliography
    1758. British patent no. 722 (Derby rib machine). 1759. British patent no. 734 (Derby rib machine).
    Further Reading
    For the involvement of Strutt in Arkwright's spinning ventures, there are two books, the earlier of which is R.S.Fitton and A.P.Wadsworth, 1958, The Strutts and the Arkwrights, 1758–1830, Manchester, which has most of the details about Strutt's life. This has been followed by R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester.
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (for a general background to the textile industry of the period).
    W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867) (covers Strutt's knitting inventions).
    RLH

    Biographical history of technology > Strutt, Jedediah

  • 53 HMI

    1. человеко-машинный интерфейс
    2. человеко-машинное взаимодействие
    3. терминал
    4. интерфейс управления концентратором
    5. интерфейс "человек-машина"

     

    интерфейс "человек-машина"
    аппаратно-программная система управления технологическими процессами
    HMI - это набор всех средств, позволяющих человеку вмешаться в поведение вычислительной системы. Как правило, HMI представляет собой компьютер с графическим дисплеем, где в наглядной форме отображается поведение системы, и пользователь имеет возможность вмешаться в деятельность системы. Однако в качестве HMI может выступать самый простой пульт из набора тумблеров и светодиодных индикаторов.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    интерфейс управления концентратором

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    терминал
    Устройство ввода-вывода, обеспечивающее взаимодействие пользователей в локальной вычислительной сети или с удаленной ЭВМ через средства телеобработки данных
    [ ГОСТ 25868-91]
    [ ГОСТ Р 50304-92 ]

    Параллельные тексты EN-RU

    HMI port warning
    [Schneider Electric]

    Предупредительное состояние об ошибке обмена данными через порт связи с терминалом оператора
    [Перевод Интент]

    HMI display max current phase enable
    [Schneider Electric]

    Разрешается отображение на терминале оператора максимального линейного тока
    [Перевод Интент]

    Config via HMI keypad enable
    [Schneider Electric]

    Конфигурирование (системы) с помощью клавиатуры терминала оператора
    [Перевод Интент]


    Тематики

    • оборуд. перифер. систем обраб. информации
    • системы для сопряж. радиоэлектр. средств интерфейсные

    Обобщающие термины

    Синонимы

    EN

     

    человеко-машинное взаимодействие

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    человеко-машинный интерфейс (ЧМИ)
    Технические средства, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование.
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.
    [ ГОСТ Р МЭК 60447-2000]

    человекомашинный интерфейс (ЧМИ)
    Технические средства контроля и управления, являющиеся частью оборудования, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование (ГОСТ Р МЭК 60447).
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства и дисплеи.
    [ ГОСТ Р МЭК 60073-2000]

    человеко-машинный интерфейс
    Средства обеспечения двусторонней связи "оператор - технологическое оборудование" (АСУ ТП). Название класса средств, в который входят подклассы:
    SCADA (Supervisory Control and Data Acquisition) - Операторское управление и сбор данных от технологического оборудования.
    DCS (Distributed Control Systems) - Распределенная система управления технологическим оборудованием.
    [ http://www.morepc.ru/dict/]

    Параллельные тексты EN-RU

    MotorSys™ iPMCC solutions can integrate a dedicated human-machine interface (HMI) or communicate via a personal computer directly on the motor starters.
    [Schneider Electric]

    Интеллектуальный центр распределения электроэнергии и управления электродвигателями MotorSys™ может иметь в своем составе специальный человеко-машинный интерфейс (ЧМИ). В качестве альтернативы используется обмен данным между персональным компьютером и пускателями.
    [Перевод Интент]


    HMI на базе операторских станций

    Самое, пожалуй, главное в системе управления - это организация взаимодействия между человеком и программно-аппаратным комплексом. Обеспечение такого взаимодействия и есть задача человеко-машинного интерфейса (HMI, human machine interface).

    На мой взгляд, в аббревиатуре “АСУ ТП” ключевым является слово “автоматизированная”, что подразумевает непосредственное участие человека в процессе реализации системой определенных задач. Очевидно, что чем лучше организован HMI, тем эффективнее человек сможет решать поставленные задачи.

    Как же организован HMI в современных АСУ ТП?
    Существует, как минимум, два подхода реализации функционала HMI:

    1. На базе специализированных рабочих станций оператора, устанавливаемых в центральной диспетчерской;
    2. На базе панелей локального управления, устанавливаемых непосредственно в цеху по близости с контролируемым технологическим объектам.

    Иногда эти два варианта комбинируют, чтобы достичь наибольшей гибкости управления. В данной статье речь пойдет о первом варианте организации операторского уровня.

    Аппаратно рабочая станция оператора (OS, operator station) представляет собой ни что иное как персональный компьютер. Как правило, станция снабжается несколькими широкоэкранными мониторами, функциональной клавиатурой и необходимыми сетевыми адаптерами для подключения к сетям верхнего уровня (например, на базе Industrial Ethernet). Станция оператора несколько отличается от привычных для нас офисных компьютеров, прежде всего, своим исполнением и эксплуатационными характеристиками (а также ценой 4000 - 10 000 долларов).
    На рисунке 1 изображена рабочая станция оператора системы SIMATIC PCS7 производства Siemens, обладающая следующими техническими характеристиками:

    Процессор: Intel Pentium 4, 3.4 ГГц;
    Память: DDR2 SDRAM до 4 ГБ;
    Материнская плата: ChipSet Intel 945G;
    Жесткий диск: SATA-RAID 1/2 x 120 ГБ;
    Слоты: 4 x PCI, 2 x PCI E x 1, 1 x PCI E x 16;
    Степень защиты: IP 31;
    Температура при эксплуатации: 5 – 45 C;
    Влажность: 5 – 95 % (без образования конденсата);
    Операционная система: Windows XP Professional/2003 Server.

    4876
    Рис. 1. Пример промышленной рабочей станции оператора.

    Системный блок может быть как настольного исполнения ( desktop), так и для монтажа в 19” стойку ( rack-mounted). Чаще применяется второй вариант: системный блок монтируется в запираемую стойку для лучшей защищенности и предотвращения несанкционированного доступа.

    Какое программное обеспечение используется?
    На станции оператора устанавливается программный пакет визуализации технологического процесса (часто называемый SCADA). Большинство пакетов визуализации работают под управлением операционных систем семейства Windows (Windows NT 4.0, Windows 2000/XP, Windows 2003 Server), что, на мой взгляд, является большим минусом.
    Программное обеспечение визуализации призвано выполнять следующие задачи:

    1. Отображение технологической информации в удобной для человека графической форме (как правило, в виде интерактивных мнемосхем) – Process Visualization;
    2. Отображение аварийных сигнализаций технологического процесса – Alarm Visualization;
    3. Архивирование технологических данных (сбор истории процесса) – Historical Archiving;
    4. Предоставление оператору возможности манипулировать (управлять) объектами управления – Operator Control.
    5. Контроль доступа и протоколирование действий оператора – Access Control and Operator’s Actions Archiving.
    6. Автоматизированное составление отчетов за произвольный интервал времени (посменные отчеты, еженедельные, ежемесячные и т.д.) – Automated Reporting.

    Как правило, SCADA состоит из двух частей:

    1. Среды разработки, где инженер рисует и программирует технологические мнемосхемы;
    2. Среды исполнения, необходимой для выполнения сконфигурированных мнемосхем в режиме runtime. Фактически это режим повседневной эксплуатации.

    Существует две схемы подключения операторских станций к системе управления, а точнее уровню управления. В рамках первой схемы каждая операторская станция подключается к контроллерам уровня управления напрямую или с помощью промежуточного коммутатора (см. рисунок 2). Подключенная таким образом операторская станция работает независимо от других станций сети, и поэтому часто называется одиночной (пусть Вас не смущает такое название, на самом деле таких станций в сети может быть несколько).

    4877
    Рис. 2. Схема подключения одиночных операторских станций к уровню управления.

    Есть и другой вариант. Часто операторские станции подключают к серверу или резервированной паре серверов, а серверы в свою очередь подключаются к промышленным контроллерам. Таким образом, сервер, являясь неким буфером, постоянно считывает данные с контроллера и предоставляет их по запросу рабочим станциям. Станции, подключенные по такой схеме, часто называют клиентами (см. рисунок 3).

    4878
    Рис. 3. Клиент-серверная архитектура операторского уровня.

    Как происходит информационный обмен?
    Для сопряжения операторской станции с промышленным контроллером на первой устанавливается специальное ПО, называемое драйвером ввода/вывода. Драйвер ввода/вывода поддерживает совместимый с контроллером коммуникационный протокол и позволяет прикладным программам считывать с контроллера параметры или наоборот записывать в него. Пакет визуализации обращается к драйверу ввода/вывода каждый раз, когда требуется обновление отображаемой информации или запись измененных оператором данных. Для взаимодействия пакета визуализации и драйвера ввода/вывода используется несколько протоколов, наиболее популярные из которых OPC (OLE for Process Control) и NetDDE (Network Dynamic Data Exchange). Обобщенно можно сказать, что OPC и NetDDE – это протоколы информационного обмена между различными приложениями, которые могут выполняться как на одном, так и на разных компьютерах. На рисунках 4 и 5 изображено, как взаимодействуют программные компоненты при различных схемах построения операторского уровня.  
    4879
    Рис. 4. Схема взаимодействия программных модулей при использовании одиночных станций.
     
    4880
    Рис. 5. Схема взаимодействия программных модулей при использовании клиент-серверной архитектуры.
    Как выглядит SCADA?
    Разберем простой пример. На рисунке 6 приведена абстрактная схема технологического процесса, хотя полноценным процессом это назвать трудно.
    4881
    Рис. 6. Пример операторской мнемосхемы.
    На рисунке 6 изображен очень упрощенный вариант операторской мнемосхемы для управления тех. процессом. Как видно, резервуар (емкость) наполняется водой. Задача системы - нагреть эту воду до определенной температуры. Для нагрева воды используется газовая горелка. Интенсивность горения регулируется клапаном подачи газа. Также должен быть насос для закачки воды в резервуар и клапан для спуска воды.

    На мнемосхеме отображаются основные технологические параметры, такие как: температура воды; уровень воды в резервуаре; работа насосов; состояние клапанов и т.д. Эти данные обновляются на экране с заданной частотой. Если какой-либо параметр достигает аварийного значения, соответствующее поле начинает мигать, привлекая внимание оператора.

    Сигналы ввода/вывода и исполнительные механизмы отображаются на мнемосхемах в виде интерактивных графических символов (иконок). Каждому типу сигналов и исполнительных механизмов присваивается свой символ: для дискретного сигнала это может быть переключатель, кнопка или лампочка; для аналогового – ползунок, диаграмма или текстовое поле; для двигателей и насосов – более сложные фейсплейты ( faceplates). Каждый символ, как правило, представляет собой отдельный ActiveX компонент. Вообще технология ActiveX широко используется в SCADA-пакетах, так как позволяет разработчику подгружать дополнительные символы, не входящие в стандартную библиотеку, а также разрабатывать свои собственные графические элементы, используя высокоуровневые языки программирования.

    Допустим, оператор хочет включить насос. Для этого он щелкает по его иконке и вызывает панель управления ( faceplate). На этой панели он может выполнить определенные манипуляции: включить или выключить насос, подтвердить аварийную сигнализацию, перевести его в режим “техобслуживания” и т.д. (см. рисунок 7).  
    4882
    Рис. 7. Пример фейсплейта для управления насосом.
      Оператор также может посмотреть график изменения интересующего его технологического параметра, например, за прошедшую неделю. Для этого ему надо вызвать тренд ( trend) и выбрать соответствующий параметр для отображения. Пример тренда реального времени показан на рисунке 8.
     
    4883
    Рис. 8. Пример отображения двух параметров на тренде реального времени.
    Для более детального обзора сообщений и аварийных сигнализаций оператор может воспользоваться специальной панелью ( alarm panel), пример которой изображен на рисунке 9. Это отсортированный список сигнализаций (alarms), представленный в удобной для восприятия форме. Оператор может подтвердить ту или иную аварийную сигнализацию, применить фильтр или просто ее скрыть.
    4884
    Рис. 9. Панель сообщений и аварийных сигнализаций.
    Говоря о SCADA, инженеры часто оперируют таким важным понятием как “тэг” ( tag). Тэг является по существу некой переменной программы визуализации и может быть использован как для локального хранения данных внутри программы, так и в качестве ссылки на внешний параметр процесса. Тэги могут быть разных типов, начиная от обычных числовых данных и кончая структурой с множеством полей. Например, один визуализируемый параметр ввода/вывода – это тэг, или функциональный блок PID-регулятора, выполняемый внутри контроллера, - это тоже тэг. Ниже представлена сильно упрощенная структура тэга, соответствующего простому PID-регулятору:

    Tag Name = “MyPID”;
    Tag Type = PID;

    Fields (список параметров):

    MyPID.OP
    MyPID.SP
    MyPID.PV
    MyPID.PR
    MyPID.TI
    MyPID.DI
    MyPID.Mode
    MyPID.RemoteSP
    MyPID.Alarms и т.д.

    В комплексной прикладной программе может быть несколько тысяч тэгов. Производители SCADA-пакетов это знают и поэтому применяют политику лицензирования на основе количества используемых тэгов. Каждая купленная лицензия жестко ограничивает суммарное количество тэгов, которые можно использовать в программе. Очевидно, чем больше тегов поддерживает лицензия, тем дороже она стоит; так, например, лицензия на 60 000 тэгов может обойтись в 5000 тыс. долларов или даже дороже. В дополнение к этому многие производители SCADA формируют весьма существенную разницу в цене между “голой” средой исполнения и полноценной средой разработки; естественно, последняя с таким же количеством тэгов будет стоить заметно дороже.

    Сегодня на рынке представлено большое количество различных SCADA-пакетов, наиболее популярные из которых представлены ниже:

    1.    Wonderware Intouch;
    2.    Simatic WinCC;
    3.    Iconics Genesis32;
    4.    Citect;
    5.    Adastra Trace Mode

    Лидирующие позиции занимают Wonderware Intouch (производства Invensys) и Simatic WinCC (разработки Siemens) с суммарным количеством инсталляций более 80 тыс. в мире. Пакет визуализации технологического процесса может поставляться как в составе комплексной системы управления, так и в виде отдельного программного продукта. В последнем случае SCADA комплектуется набором драйверов ввода/вывода для коммуникации с контроллерами различных производителей.   [ http://kazanets.narod.ru/HMI_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > HMI

  • 54 Bell, Thomas

    SUBJECT AREA: Paper and printing
    [br]
    fl. 1770–1785 Scotland
    [br]
    Scottish inventor of a calico printing machine with the design engraved on rollers.
    [br]
    In November 1770, John Mackenzie, owner of a bleaching mill, took his millwright Thomas Bell to Glasgow to consult with James Watt about problems they were having with the calico printing machine invented by Bell some years previously. Bell rolled sheets of copper one eighth of an inch (3 mm) thick into cyliders, and filled them with cement which was held in place by cast iron ends. After being turned true and polished, the cylinders were engraved; they cost about £10 each. The printing machines were driven by a water-wheel, but Bell and Mackenzie appeared to have had problems with the doctor blades which scraped off excess colour, and this may have been why they visited Watt.
    They had, presumably, solved the technical problems when Bell took out a patent in 1783 which describes him as "the Elder", but there are no further details about the man himself. The machine is described as having six printing rollers arranged around the top of the circumference of a large central bowl. In later machines, the printing rollers were placed all round a smaller cylinder. All of the printing rollers, each printing a different colour, were driven by gearing to keep them in register. The patent includes steel doctor blades which would have scraped excess colour off the printing rollers. Another patent, taken out in 1784, shows a smaller three-colour machine. The printing rollers had an iron core covered with copper, which could be taken off at pleasure so that fresh patterns could be cut as desired. Bell's machine was used at Masney, near Preston, England, by Messrs Livesey, Hargreaves, Hall \& Co in 1786. Although copper cylinders were difficult to make and engrave, and the soldered seams often burst, these machines were able to increase the output of the cheaper types of printed cloth.
    [br]
    Bibliography
    1783, patent no. 1,378 (calico printing machine with engraved copper rollers). 1784, patent no. 1,443 (three-colour calico printing machine).
    Further Reading
    W.E.A.Axon, 1886, Annals of Manchester, Manchester (provides an account of the invention).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (provides a brief description of the development of calico printing).
    RLH

    Biographical history of technology > Bell, Thomas

  • 55 Johnson, Eldridge Reeves

    SUBJECT AREA: Recording
    [br]
    b. 18 February 1867 Wilmington, Delaware, USA
    d. 14 November 1945 Moorestown, New Jersey, USA
    [br]
    American industrialist, founder and owner of the Victor Talking Machine Company; developer of many basic constructions in mechanical sound recording and the reproduction and manufacture of gramophone records.
    [br]
    He graduated from the Dover Academy (Delaware) in 1882 and was apprenticed in a machine-repair firm in Philadelphia and studied in evening classes at the Spring Garden Institute. In 1888 he took employment in a small Philadelphia machine shop owned by Andrew Scull, specializing in repair and bookbinding machinery. After travels in the western part of the US, in 1891 he became a partner in Scull \& Johnson, Manufacturing Machinists, and established a further company, the New Jersey Wire Stitching Machine Company. He bought out Andrew Scull's interest in October 1894 (the last instalment being paid in 1897) and became an independent general machinist. In 1896 he had perfected a spring motor for the Berliner flat-disc gramophone, and he started experimenting with a more direct method of recording in a spiral groove: that of cutting in wax. Co-operation with Berliner eventually led to the incorporation of the Victor Talking Machine Company in 1901. The innumerable court cases stemming from the fact that so many patents for various elements in sound recording and reproduction were in very many hands were brought to an end in 1903 when Johnson was material in establishing cross-licencing agreements between Victor, Columbia Graphophone and Edison to create what is known as a patent pool. Early on, Johnson had a thorough experience in all matters concerning the development and manufacture of both gramophones and records. He made and patented many major contributions in all these fields, and his approach was very business-like in that the contribution to cost of each part or process was always a decisive factor in his designs. This attitude was material in his consulting work for the sister company, the Gramophone Company, in London before it set up its own factories in 1910. He had quickly learned the advantages of advertising and of providing customers with durable equipment and records. This motivation was so strong that Johnson set up a research programme for determining the cause of wear in records. It turned out to depend on groove profile, and from 1911 one particular profile was adhered to and processes for transforming the grooves of valuable earlier records were developed. Without precise measuring instruments, he used the durability as the determining factor. Johnson withdrew more and more to the role of manager, and the Victor Talking Machine Company gained such a position in the market that the US anti-trust legislation was used against it. However, a generation change in the Board of Directors and certain erroneous decisions as to product line started a decline, and in February 1926 Johnson withdrew on extended sick leave: these changes led to the eventual sale of Victor. However, Victor survived due to the advent of radio and the electrification of replay equipment and became a part of Radio Corporation of America. In retirement Johnson took up various activities in the arts and sciences and financially supported several projects; his private yacht was used in 1933 in work with the Smithsonian Institution on a deep-sea hydrographie and fauna-collecting expedition near Puerto Rico.
    [br]
    Bibliography
    Johnson's patents were many, and some were fundamental to the development of the gramophone, such as: US patent no. 650,843 (in particular a recording lathe); US patent nos. 655,556, 655,556 and 679,896 (soundboxes); US patent no. 681,918 (making the original conductive for electroplating); US patent no. 739,318 (shellac record with paper label).
    Further Reading
    Mrs E.R.Johnson, 1913, "Eldridge Reeves Johnson (1867–1945): Industrial pioneer", manuscript (an account of his early experience).
    E.Hutto, Jr, "Emile Berliner, Eldridge Johnson, and the Victor Talking Machine Company", Journal of AES 25(10/11):666–73 (a good but brief account based on company information).
    E.R.Fenimore Johnson, 1974, His Master's Voice was Eldridge R.Johnson, Milford, Del.
    (a very personal biography by his only son).
    GB-N

    Biographical history of technology > Johnson, Eldridge Reeves

  • 56 Murray, Matthew

    [br]
    b. 1765 near Newcastle upon Tyne, England
    d. 20 February 1826 Holbeck, Leeds, England
    [br]
    English mechanical engineer and steam engine, locomotive and machine-tool pioneer.
    [br]
    Matthew Murray was apprenticed at the age of 14 to a blacksmith who probably also did millwrighting work. He then worked as a journeyman mechanic at Stockton-on-Tees, where he had experience with machinery for a flax mill at Darlington. Trade in the Stockton area became slack in 1788 and Murray sought work in Leeds, where he was employed by John Marshall, who owned a flax mill at Adel, located about 5 miles (8 km) from Leeds. He soon became Marshall's chief mechanic, and when in 1790 a new mill was built in the Holbeck district of Leeds by Marshall and his partner Benyon, Murray was responsible for the installation of the machinery. At about this time he took out two patents relating to improvements in textile machinery.
    In 1795 he left Marshall's employment and, in partnership with David Wood (1761– 1820), established a general engineering and millwrighting business at Mill Green, Holbeck. In the following year the firm moved to a larger site at Water Lane, Holbeck, and additional capital was provided by two new partners, James Fenton (1754–1834) and William Lister (1796–1811). Lister was a sleeping partner and the firm was known as Fenton, Murray \& Wood and was organized so that Fenton kept the accounts, Wood was the administrator and took charge of the workshops, while Murray provided the technical expertise. The factory was extended in 1802 by the construction of a fitting shop of circular form, after which the establishment became known as the "Round Foundry".
    In addition to textile machinery, the firm soon began the manufacture of machine tools and steam-engines. In this field it became a serious rival to Boulton \& Watt, who privately acknowledged Murray's superior craftsmanship, particularly in foundry work, and resorted to some industrial espionage to discover details of his techniques. Murray obtained patents for improvements in steam engines in 1799, 1801 and 1802. These included automatic regulation of draught, a mechanical stoker and his short-D slide valve. The patent of 1801 was successfully opposed by Boulton \& Watt. An important contribution of Murray to the development of the steam engine was the use of a bedplate so that the engine became a compact, self-contained unit instead of separate components built into an en-gine-house.
    Murray was one of the first, if not the very first, to build machine tools for sale. However, this was not the case with the planing machine, which he is said to have invented to produce flat surfaces for his slide valves. Rather than being patented, this machine was kept secret, although it was apparently in use before 1814.
    In 1812 Murray was engaged by John Blenkinsop (1783–1831) to build locomotives for his rack railway from Middleton Colliery to Leeds (about 3 1/2 miles or 5.6 km). Murray was responsible for their design and they were fitted with two double-acting cylinders and cranks at right angles, an important step in the development of the steam locomotive. About six of these locomotives were built for the Middleton and other colliery railways and some were in use for over twenty years. Murray also supplied engines for many early steamboats. In addition, he built some hydraulic machinery and in 1814 patented a hydraulic press for baling cloth.
    Murray's son-in-law, Richard Jackson, later became a partner in the firm, which was then styled Fenton, Murray \& Jackson. The firm went out of business in 1843.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1809 (for machine for hackling flax).
    Further Reading
    L.T.C.Rolt, 1962, Great Engineers, London (contains a good short biography).
    E.Kilburn Scott (ed.), 1928, Matthew Murray, Pioneer Engineer, Leeds (a collection of essays and source material).
    Year 1831, London.
    L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986 (provides information on Murray's machine-tool work).
    Some of Murray's correspondence with Simon Goodrich of the Admiralty has been published in Transactions of the Newcomen Society 3 (1922–3); 6(1925–6); 18(1937– 8); and 32 (1959–60).
    RTS

    Biographical history of technology > Murray, Matthew

  • 57 MMI

    1. человеко-машинный интерфейс
    2. интерфейс "человекмашина"

     

    интерфейс "человекмашина"
    (МСЭ-Т Q.1741).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    человеко-машинный интерфейс (ЧМИ)
    Технические средства, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование.
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.
    [ ГОСТ Р МЭК 60447-2000]

    человекомашинный интерфейс (ЧМИ)
    Технические средства контроля и управления, являющиеся частью оборудования, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование (ГОСТ Р МЭК 60447).
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства и дисплеи.
    [ ГОСТ Р МЭК 60073-2000]

    человеко-машинный интерфейс
    Средства обеспечения двусторонней связи "оператор - технологическое оборудование" (АСУ ТП). Название класса средств, в который входят подклассы:
    SCADA (Supervisory Control and Data Acquisition) - Операторское управление и сбор данных от технологического оборудования.
    DCS (Distributed Control Systems) - Распределенная система управления технологическим оборудованием.
    [ http://www.morepc.ru/dict/]

    Параллельные тексты EN-RU

    MotorSys™ iPMCC solutions can integrate a dedicated human-machine interface (HMI) or communicate via a personal computer directly on the motor starters.
    [Schneider Electric]

    Интеллектуальный центр распределения электроэнергии и управления электродвигателями MotorSys™ может иметь в своем составе специальный человеко-машинный интерфейс (ЧМИ). В качестве альтернативы используется обмен данным между персональным компьютером и пускателями.
    [Перевод Интент]


    HMI на базе операторских станций

    Самое, пожалуй, главное в системе управления - это организация взаимодействия между человеком и программно-аппаратным комплексом. Обеспечение такого взаимодействия и есть задача человеко-машинного интерфейса (HMI, human machine interface).

    На мой взгляд, в аббревиатуре “АСУ ТП” ключевым является слово “автоматизированная”, что подразумевает непосредственное участие человека в процессе реализации системой определенных задач. Очевидно, что чем лучше организован HMI, тем эффективнее человек сможет решать поставленные задачи.

    Как же организован HMI в современных АСУ ТП?
    Существует, как минимум, два подхода реализации функционала HMI:

    1. На базе специализированных рабочих станций оператора, устанавливаемых в центральной диспетчерской;
    2. На базе панелей локального управления, устанавливаемых непосредственно в цеху по близости с контролируемым технологическим объектам.

    Иногда эти два варианта комбинируют, чтобы достичь наибольшей гибкости управления. В данной статье речь пойдет о первом варианте организации операторского уровня.

    Аппаратно рабочая станция оператора (OS, operator station) представляет собой ни что иное как персональный компьютер. Как правило, станция снабжается несколькими широкоэкранными мониторами, функциональной клавиатурой и необходимыми сетевыми адаптерами для подключения к сетям верхнего уровня (например, на базе Industrial Ethernet). Станция оператора несколько отличается от привычных для нас офисных компьютеров, прежде всего, своим исполнением и эксплуатационными характеристиками (а также ценой 4000 - 10 000 долларов).
    На рисунке 1 изображена рабочая станция оператора системы SIMATIC PCS7 производства Siemens, обладающая следующими техническими характеристиками:

    Процессор: Intel Pentium 4, 3.4 ГГц;
    Память: DDR2 SDRAM до 4 ГБ;
    Материнская плата: ChipSet Intel 945G;
    Жесткий диск: SATA-RAID 1/2 x 120 ГБ;
    Слоты: 4 x PCI, 2 x PCI E x 1, 1 x PCI E x 16;
    Степень защиты: IP 31;
    Температура при эксплуатации: 5 – 45 C;
    Влажность: 5 – 95 % (без образования конденсата);
    Операционная система: Windows XP Professional/2003 Server.

    4876
    Рис. 1. Пример промышленной рабочей станции оператора.

    Системный блок может быть как настольного исполнения ( desktop), так и для монтажа в 19” стойку ( rack-mounted). Чаще применяется второй вариант: системный блок монтируется в запираемую стойку для лучшей защищенности и предотвращения несанкционированного доступа.

    Какое программное обеспечение используется?
    На станции оператора устанавливается программный пакет визуализации технологического процесса (часто называемый SCADA). Большинство пакетов визуализации работают под управлением операционных систем семейства Windows (Windows NT 4.0, Windows 2000/XP, Windows 2003 Server), что, на мой взгляд, является большим минусом.
    Программное обеспечение визуализации призвано выполнять следующие задачи:

    1. Отображение технологической информации в удобной для человека графической форме (как правило, в виде интерактивных мнемосхем) – Process Visualization;
    2. Отображение аварийных сигнализаций технологического процесса – Alarm Visualization;
    3. Архивирование технологических данных (сбор истории процесса) – Historical Archiving;
    4. Предоставление оператору возможности манипулировать (управлять) объектами управления – Operator Control.
    5. Контроль доступа и протоколирование действий оператора – Access Control and Operator’s Actions Archiving.
    6. Автоматизированное составление отчетов за произвольный интервал времени (посменные отчеты, еженедельные, ежемесячные и т.д.) – Automated Reporting.

    Как правило, SCADA состоит из двух частей:

    1. Среды разработки, где инженер рисует и программирует технологические мнемосхемы;
    2. Среды исполнения, необходимой для выполнения сконфигурированных мнемосхем в режиме runtime. Фактически это режим повседневной эксплуатации.

    Существует две схемы подключения операторских станций к системе управления, а точнее уровню управления. В рамках первой схемы каждая операторская станция подключается к контроллерам уровня управления напрямую или с помощью промежуточного коммутатора (см. рисунок 2). Подключенная таким образом операторская станция работает независимо от других станций сети, и поэтому часто называется одиночной (пусть Вас не смущает такое название, на самом деле таких станций в сети может быть несколько).

    4877
    Рис. 2. Схема подключения одиночных операторских станций к уровню управления.

    Есть и другой вариант. Часто операторские станции подключают к серверу или резервированной паре серверов, а серверы в свою очередь подключаются к промышленным контроллерам. Таким образом, сервер, являясь неким буфером, постоянно считывает данные с контроллера и предоставляет их по запросу рабочим станциям. Станции, подключенные по такой схеме, часто называют клиентами (см. рисунок 3).

    4878
    Рис. 3. Клиент-серверная архитектура операторского уровня.

    Как происходит информационный обмен?
    Для сопряжения операторской станции с промышленным контроллером на первой устанавливается специальное ПО, называемое драйвером ввода/вывода. Драйвер ввода/вывода поддерживает совместимый с контроллером коммуникационный протокол и позволяет прикладным программам считывать с контроллера параметры или наоборот записывать в него. Пакет визуализации обращается к драйверу ввода/вывода каждый раз, когда требуется обновление отображаемой информации или запись измененных оператором данных. Для взаимодействия пакета визуализации и драйвера ввода/вывода используется несколько протоколов, наиболее популярные из которых OPC (OLE for Process Control) и NetDDE (Network Dynamic Data Exchange). Обобщенно можно сказать, что OPC и NetDDE – это протоколы информационного обмена между различными приложениями, которые могут выполняться как на одном, так и на разных компьютерах. На рисунках 4 и 5 изображено, как взаимодействуют программные компоненты при различных схемах построения операторского уровня.  
    4879
    Рис. 4. Схема взаимодействия программных модулей при использовании одиночных станций.
     
    4880
    Рис. 5. Схема взаимодействия программных модулей при использовании клиент-серверной архитектуры.
    Как выглядит SCADA?
    Разберем простой пример. На рисунке 6 приведена абстрактная схема технологического процесса, хотя полноценным процессом это назвать трудно.
    4881
    Рис. 6. Пример операторской мнемосхемы.
    На рисунке 6 изображен очень упрощенный вариант операторской мнемосхемы для управления тех. процессом. Как видно, резервуар (емкость) наполняется водой. Задача системы - нагреть эту воду до определенной температуры. Для нагрева воды используется газовая горелка. Интенсивность горения регулируется клапаном подачи газа. Также должен быть насос для закачки воды в резервуар и клапан для спуска воды.

    На мнемосхеме отображаются основные технологические параметры, такие как: температура воды; уровень воды в резервуаре; работа насосов; состояние клапанов и т.д. Эти данные обновляются на экране с заданной частотой. Если какой-либо параметр достигает аварийного значения, соответствующее поле начинает мигать, привлекая внимание оператора.

    Сигналы ввода/вывода и исполнительные механизмы отображаются на мнемосхемах в виде интерактивных графических символов (иконок). Каждому типу сигналов и исполнительных механизмов присваивается свой символ: для дискретного сигнала это может быть переключатель, кнопка или лампочка; для аналогового – ползунок, диаграмма или текстовое поле; для двигателей и насосов – более сложные фейсплейты ( faceplates). Каждый символ, как правило, представляет собой отдельный ActiveX компонент. Вообще технология ActiveX широко используется в SCADA-пакетах, так как позволяет разработчику подгружать дополнительные символы, не входящие в стандартную библиотеку, а также разрабатывать свои собственные графические элементы, используя высокоуровневые языки программирования.

    Допустим, оператор хочет включить насос. Для этого он щелкает по его иконке и вызывает панель управления ( faceplate). На этой панели он может выполнить определенные манипуляции: включить или выключить насос, подтвердить аварийную сигнализацию, перевести его в режим “техобслуживания” и т.д. (см. рисунок 7).  
    4882
    Рис. 7. Пример фейсплейта для управления насосом.
      Оператор также может посмотреть график изменения интересующего его технологического параметра, например, за прошедшую неделю. Для этого ему надо вызвать тренд ( trend) и выбрать соответствующий параметр для отображения. Пример тренда реального времени показан на рисунке 8.
     
    4883
    Рис. 8. Пример отображения двух параметров на тренде реального времени.
    Для более детального обзора сообщений и аварийных сигнализаций оператор может воспользоваться специальной панелью ( alarm panel), пример которой изображен на рисунке 9. Это отсортированный список сигнализаций (alarms), представленный в удобной для восприятия форме. Оператор может подтвердить ту или иную аварийную сигнализацию, применить фильтр или просто ее скрыть.
    4884
    Рис. 9. Панель сообщений и аварийных сигнализаций.
    Говоря о SCADA, инженеры часто оперируют таким важным понятием как “тэг” ( tag). Тэг является по существу некой переменной программы визуализации и может быть использован как для локального хранения данных внутри программы, так и в качестве ссылки на внешний параметр процесса. Тэги могут быть разных типов, начиная от обычных числовых данных и кончая структурой с множеством полей. Например, один визуализируемый параметр ввода/вывода – это тэг, или функциональный блок PID-регулятора, выполняемый внутри контроллера, - это тоже тэг. Ниже представлена сильно упрощенная структура тэга, соответствующего простому PID-регулятору:

    Tag Name = “MyPID”;
    Tag Type = PID;

    Fields (список параметров):

    MyPID.OP
    MyPID.SP
    MyPID.PV
    MyPID.PR
    MyPID.TI
    MyPID.DI
    MyPID.Mode
    MyPID.RemoteSP
    MyPID.Alarms и т.д.

    В комплексной прикладной программе может быть несколько тысяч тэгов. Производители SCADA-пакетов это знают и поэтому применяют политику лицензирования на основе количества используемых тэгов. Каждая купленная лицензия жестко ограничивает суммарное количество тэгов, которые можно использовать в программе. Очевидно, чем больше тегов поддерживает лицензия, тем дороже она стоит; так, например, лицензия на 60 000 тэгов может обойтись в 5000 тыс. долларов или даже дороже. В дополнение к этому многие производители SCADA формируют весьма существенную разницу в цене между “голой” средой исполнения и полноценной средой разработки; естественно, последняя с таким же количеством тэгов будет стоить заметно дороже.

    Сегодня на рынке представлено большое количество различных SCADA-пакетов, наиболее популярные из которых представлены ниже:

    1.    Wonderware Intouch;
    2.    Simatic WinCC;
    3.    Iconics Genesis32;
    4.    Citect;
    5.    Adastra Trace Mode

    Лидирующие позиции занимают Wonderware Intouch (производства Invensys) и Simatic WinCC (разработки Siemens) с суммарным количеством инсталляций более 80 тыс. в мире. Пакет визуализации технологического процесса может поставляться как в составе комплексной системы управления, так и в виде отдельного программного продукта. В последнем случае SCADA комплектуется набором драйверов ввода/вывода для коммуникации с контроллерами различных производителей.   [ http://kazanets.narod.ru/HMI_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > MMI

  • 58 Association

    Англо-русский словарь по экономике и финансам > Association

  • 59 design

    1. noun
    1) (preliminary sketch) Entwurf, der
    2) (pattern) Muster, das
    3) no art. (art) Design, das; Gestaltung, die (geh.)
    4) (established form of a product) Entwurf, der; (of machine, engine, etc.) Bauweise, die
    5) (general idea, construction from parts) Konstruktion, die
    6) in pl.

    have designs on somebody/something — es auf jemanden/etwas abgesehen haben

    7) (purpose) Absicht, die

    by designmit Absicht; absichtlich

    8) (end in view) Ziel, das
    2. transitive verb
    1) (draw plan of, sketch) entwerfen; konstruieren, entwerfen [Maschine, Fahrzeug, Flugzeug]
    2)

    be designed to do something[Maschine, Werkzeug, Gerät:] etwas tun sollen

    3) (set apart) vorsehen

    be designed for somebody/something — für jemanden/etwas gedacht od. vorgesehen sein

    * * *
    1. verb
    (to invent and prepare a plan of (something) before it is built or made: A famous architect designed this building.) entwerfen
    2. noun
    1) (a sketch or plan produced before something is made: a design for a dress.) der Entwurf
    2) (style; the way in which something has been made or put together: It is very modern in design; I don't like the design of that building.) die Gestaltung, die Bauart
    3) (a pattern etc: The curtains have a flower design on them.) das Muster
    4) (a plan formed in the mind; (an) intention: Our holidays coincided by design and not by accident.) die Absicht
    - academic.ru/19873/designer">designer
    - designing
    * * *
    de·sign
    [dɪˈzaɪn]
    I. vt
    to \design sth etw entwerfen
    to \design books Bücher gestalten
    to \design cars Autos konstruieren
    to \design a dress ein Kleid entwerfen
    2. (intend)
    to be \designed for sb für jdn konzipiert sein
    these measures are \designed to reduce pollution diese Maßnahmen sollen die Luftverschmutzung verringern
    II. vi entwerfen, gestalten
    III. n
    1. (plan or drawing) Entwurf m
    2. no pl (art of creating designs) Design nt
    to study \design Design studieren
    3. (arrangement of form, colour) Design nt (of + gen); of building Bauart f; of machine Konstruktion f
    4. no pl (intention) Vorsatz m, Absicht f
    to do sth by \design etw mit Absicht tun
    5. (pattern) Muster nt
    \designs pl Absichten pl; ( hum)
    to have \designs on a championship es auf einen Titel abgesehen haben
    IV. adj attr, inv Konstruktions-
    \design fault Konstruktionsfehler m
    \design feature Konstruktionsmerkmal nt
    * * *
    [dI'zaɪn]
    1. n
    1) (= planning, shaping etc of building, book, picture etc) Entwurf m; (of dress) Design nt, Entwurf m; (of car, machine, plane etc) Konstruktion f

    it was a good/faulty design — es war gut/schlecht konstruiert

    2) no pl (as subject = art of designing) Design nt
    3) (= pattern on pottery, material) Muster nt
    4) (= intention) Plan m, Absicht f

    by design ( rather than accident) — absichtlich (und nicht zufällig)

    to have designs on sb/sth — mit jdm/etw etwas im Sinn haben, es auf jdn/etw abgesehen haben

    he has designs on herer hat etwas mit ihr vor

    2. vt
    1) (= plan, draw) entwerfen; machine konstruieren

    a well designed machine —

    car seats designed for maximum safety — Autositze, die für maximale Sicherheit konstruiert sind

    2)

    (= intend) to be designed for sb/sth —

    the dictionary is designed for beginners a peace plan designed to end the civil war — das Wörterbuch ist für Anfänger bestimmt or konzipiert ein Friedensplan, der den Bürgerkrieg beenden soll

    3. vi
    planen, Pläne or Entwürfe machen
    4. adj attr
    Design-
    * * *
    design [dıˈzaın]
    A v/t
    1. entwerfen, aufzeichnen, skizzieren, TECH konstruieren:
    design a dress ein Kleid entwerfen
    2. gestalten, ausführen, anlegen:
    3. fig entwerfen, ausdenken, ersinnen
    4. im Sinne haben, vorhaben, planen ( alle:
    doing, to do zu tun)
    5. bestimmen, vorsehen ( beide:
    as als):
    be designed to do sth dafür bestimmt oder darauf angelegt sein, etwas zu tun (Sache)
    6. (for) jemanden bestimmen (zu), ausersehen, vorsehen (zu, für):
    design sb to be a priest jemanden dazu ausersehen, Priester zu werden
    B v/i Pläne entwerfen, Entwürfe machen ( beide:
    for für)
    C s
    1. Design n, Entwurf m, Zeichnung f, Plan m, Skizze f
    2. Design n, Muster(zeichnung) n(f): copyright A, protection 2, registered 2
    3. TECH
    a) Baumuster n, Konstruktionszeichnung f
    b) Bauart f, Bau(weise) m(f), Konstruktion f, Ausführung f:
    design engineer Konstrukteur(in); industrial design
    4. Design n, (dekoratives) Muster
    5. (künstlerische oder äußere) Gestaltung, Formgebung f
    6. Plan m, Anlage f, Anordnung f
    7. Plan m, Vorhaben n, Absicht f:
    by design mit Absicht, absichtlich;
    with the design of doing mit der Absicht oder dem Vorsatz zu tun
    8. Ziel n, (End)Zweck m
    9. Anschlag m ([up]on sb’s life auf jemandes Leben), böse Absicht:
    have designs (up)on ( oder against) etwas (Böses) im Schilde führen gegen, es abgesehen haben auf (akk), a. hum einen Anschlag vorhaben auf (akk)
    10. Zweckmäßigkeit f:
    argument from design REL Beweis m aus der Zweckmäßigkeit, teleologischer Gottesbeweis
    * * *
    1. noun
    1) (preliminary sketch) Entwurf, der
    2) (pattern) Muster, das
    3) no art. (art) Design, das; Gestaltung, die (geh.)
    4) (established form of a product) Entwurf, der; (of machine, engine, etc.) Bauweise, die
    5) (general idea, construction from parts) Konstruktion, die
    6) in pl.

    have designs on somebody/something — es auf jemanden/etwas abgesehen haben

    7) (purpose) Absicht, die

    by design — mit Absicht; absichtlich

    8) (end in view) Ziel, das
    2. transitive verb
    1) (draw plan of, sketch) entwerfen; konstruieren, entwerfen [Maschine, Fahrzeug, Flugzeug]
    2)

    be designed to do something[Maschine, Werkzeug, Gerät:] etwas tun sollen

    3) (set apart) vorsehen

    be designed for somebody/something — für jemanden/etwas gedacht od. vorgesehen sein

    * * *
    n.
    Bauplan -¨e m.
    Entwurf -¨e m.
    Gestaltung f.
    Konstruktion f.
    Planung -en f. v.
    entwerfen v.
    konstruieren v.
    konzipieren (Technik) v.
    planen v.

    English-german dictionary > design

  • 60 Dyer, Joseph Chessborough

    SUBJECT AREA: Textiles
    [br]
    b. 15 November 1780 Stonnington Point, Connecticut, USA
    d. 2 May 1871 Manchester, England
    [br]
    American inventor of a popular type of roving frame for cotton manufacture.
    [br]
    As a youth, Dyer constructed an unsinkable life-boat but did not immediately pursue his mechanical bent, for at 16 he entered the counting-house of a French refugee named Nancrède and succeeded to part of the business. He first went to England in 1801 and finally settled in 1811 when he married Ellen Jones (d. 1842) of Gower Street, London. Dyer was already linked with American inventors and brought to England Perkins's plan for steel engraving in 1809, shearing and nail-making machines in 1811, and also received plans and specifications for Fulton's steamboats. He seems to have acted as a sort of British patent agent for American inventors, and in 1811 took out a patent for carding engines and a card clothing machine. In 1813 there was a patent for spinning long-fibred substances such as hemp, flax or grasses, and in 1825 there was a further patent for card making machinery. Joshua Field, on his tour through Britain in 1821, saw a wire drawing machine and a leather splitting machine at Dyer's works as well as the card-making machines. At first Dyer lived in Camden Town, London, but he had a card clothing business in Birmingham. He moved to Manchester c.1816, where he developed an extensive engineering works under the name "Joseph C.Dyer, patent card manufacturers, 8 Stanley Street, Dale Street". In 1832 he founded another works at Gamaches, Somme, France, but this enterprise was closed in 1848 with heavy losses through the mismanagement of an agent. In 1825 Dyer improved on Danforth's roving frame and started to manufacture it. While it was still a comparatively crude machine when com-pared with later versions, it had the merit of turning out a large quantity of work and was very popular, realizing a large sum of money. He patented the machine that year and must have continued his interest in these machines as further patents followed in 1830 and 1835. In 1821 Dyer had been involved in the foundation of the Manchester Guardian (now The Guardian) and he was linked with the construction of the Liverpool \& Manchester Railway. He was not so successful with the ill-fated Bank of Manchester, of which he was a director and in which he lost £98,000. Dyer played an active role in the community and presented many papers to the Manchester Literary and Philosophical Society. He helped to establish the Royal Institution in London and the Mechanics Institution in Manchester. In 1830 he was a member of the delegation to Paris to take contributions from the town of Manchester for the relief of those wounded in the July revolution and to congratulate Louis-Philippe on his accession. He called for the reform of Parliament and helped to form the Anti-Corn Law League. He hated slavery and wrote several articles on the subject, both prior to and during the American Civil War.
    [br]
    Bibliography
    1811, British patent no. 3,498 (carding engines and card clothing machine). 1813, British patent no. 3,743 (spinning long-fibred substances).
    1825, British patent no. 5,309 (card making machinery).
    1825, British patent no. 5,217 (roving frame). 1830, British patent no. 5,909 (roving frame).
    1835, British patent no. 6,863 (roving frame).
    Further Reading
    Dictionary of National Biography.
    J.W.Hall, 1932–3, "Joshua Field's diary of a tour in 1821 through the Midlands", Transactions of the Newcomen Society 6.
    Evan Leigh, 1875, The Science of Modern Cotton Spinning, Vol. II, Manchester (provides an account of Dyer's roving frame).
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution: The Diffusion of Textile
    Technologies Between Britain and America, 1790–1830s, Oxford (describes Dyer's links with America).
    See also: Arnold, Aza
    RLH

    Biographical history of technology > Dyer, Joseph Chessborough

См. также в других словарях:

  • machine operator — noun : a worker assigned to or skilled in the operation of a particular kind or class of industrial machine sometimes distinguished from machinist …   Useful english dictionary

  • Industrial Rock — Industrial Rock/ Metal Entstehungsphase: zweite Hälfte der 1980er Jahre Herkunftsort: USA · Kanada · England Stilistische Vorläufer Hardcore Punk · Noise Rock · …   Deutsch Wikipedia

  • Machine vision — (MV System) is the application of computer vision to industry and manufacturing. Whereas computer vision is mainly focused on machine based image processing, machine vision most often requires also digital input/output devices and computer… …   Wikipedia

  • Industrial arts — is an umbrella term originally conceived in the early 20th century to describe educational programs which featured fabrication of objects in wood and/or metal using a variety of hand, power, or machine tools. Many also cover topics such as small… …   Wikipedia

  • machine tool — machine tooled, adj. a power operated machine, as a lathe, used for general cutting and shaping of metal and other substances. [1860 65] * * * Stationary, power driven machine used to cut, shape, or form materials such as metal and wood. Machine… …   Universalium

  • Industrial Engineering — (deutsch Arbeitsingenieurwesen) bezeichnet ein Arbeitsgebiet, in dem es um die Gestaltung, Planung und Optimierung von Leistungserstellungsprozessen im weitesten Sinne mit ingenieurwissenschaftlichen Methoden geht. In der Umsetzung handelt… …   Deutsch Wikipedia

  • industrial design — industrial designer. the art that deals with the design problems of manufactured objects, including problems of designing such objects with consideration for available materials and means of production, of designing packages, bottles, etc., for… …   Universalium

  • Machine (Static-X album) — Machine Studio album by Static X Released May 22, 2001 …   Wikipedia

  • Machine embroidery — is a term that can be used to describe two different actions. The first is using a sewing machine to manually create (either freehand or with built in stitches) a design on a piece of fabric or other similar item. The second is to use a specially …   Wikipedia

  • Industrial Ethernet — is the name given to the use of the Ethernet protocol in an industrial environment, for automation and production machine control.Until recently, a PLC (Programmable logic controller) would communicate with a slave machine using one of several… …   Wikipedia

  • Industrial-Rock — bezeichnet eine Variante der Rock Musik und deren Überlagerung mit Stilelementen der Post Industrial Musik. Sie entstand etwa gleichzeitig zu Industrial Metal bzw. wurde durch diesen stark beeinflusst, die Genre Grenzen beider Richtungen sind… …   Deutsch Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»