Перевод: с английского на все языки

со всех языков на английский

1000-100

  • 61 deposit

    1. noun
    1) (in bank) Depot, das; (credit) Guthaben, das; (Brit.): (at interest) Sparguthaben, das
    2) (payment as pledge) Kaution, die; (first instalment) Anzahlung, die

    pay a deposit — eine Kaution zahlen; eine Anzahlung leisten

    3) (of sand, mud, lime, etc.) Ablagerung, die; (of ore, coal, oil) Lagerstätte, die; (in glass, bottle) Bodensatz, der
    2. transitive verb
    1) (put down in a place) ablegen; abstellen [etwas Senkrechtes, auch Tablett, Teller usw.]; absetzen [Mitfahrer]
    2) (leave lying) [Wasser usw.:] ablagern
    3) (in bank) deponieren, [auf ein Konto] einzahlen [Geld]; (Brit.): (at interest) [auf ein Sparkonto] einzahlen
    * * *
    [di'pozit] 1. verb
    1) (to put or set down: She deposited her shopping-basket in the kitchen.) absetzen
    2) (to put in for safe keeping: He deposited the money in the bank.) einzahlen
    2. noun
    1) (an act of putting money in a bank etc: She made several large deposits at the bank during that month.) die Einzahlung
    2) (an act of paying money as a guarantee that money which is or will be owed will be paid: We have put down a deposit on a house in the country.) die Anzahlung
    3) (the money put into a bank or paid as a guarantee in this way: We decided we could not afford to go on holiday and managed to get back the deposit which we had paid.) die Einlage
    4) (a quantity of solid matter that has settled at the bottom of a liquid, or is left behind by a liquid: The flood-water left a yellow deposit over everything.) die Ablagerung
    5) (a layer (of coal, iron etc) occurring naturally in rock: rich deposits of iron ore.) die Schicht
    * * *
    de·pos·it
    [dɪˈpɒzɪt, AM -ˈpɑ:-]
    I. vt
    1. (leave, put down)
    to \deposit sb jdn absetzen
    to \deposit sth etw ablegen/abstellen; GEOL etw ablagern
    to \deposit luggage Gepäck deponieren
    2. (pay into account)
    to \deposit sth etw einzahlen [o hinterlegen]; (pay as first instalment) etw anzahlen
    to \deposit money in one's account Geld auf sein Konto einzahlen
    3. (leave as security)
    to \deposit sth etw als Sicherheit hinterlegen
    II. n
    1. (sediment) Bodensatz m; (layer) Ablagerung f; (underground layer) Vorkommen nt
    \deposit of mud Schlammschicht f
    oil \deposits Ölvorkommen pl
    2. FIN (money put in bank) Einzahlung f, Einlage f
    bank \deposits pl Bankeinlagen pl
    certificate of \deposit Einzahlungsbeleg m, SCHWEIZ meist Einzahlungsschein m
    fixed \deposit Festgeld nt
    \deposits at notice Kündigungsgelder pl
    \deposit at 7 days' notice Sparkonto nt mit 7-tägiger Kündigungsfrist
    3. (first instalment) Anzahlung f; (security) Kaution f, SCHWEIZ a. Depot nt; bottle Pfand nt
    to forfeit [or lose] a \deposit eine Anzahlung/eine Kaution verlieren
    to make a \deposit eine Anzahlung machen
    to leave a \deposit eine Anzahlung hinterlegen
    to leave sth as a \deposit etw als Anzahlung hinterlegen
    on \deposit als Guthaben
    4. POL Geld, das von einem aufgestellten Kandidaten gezahlt wird, das aber verfällt, wenn der Kandidat nicht genügend Stimmen erhält
    * * *
    [dI'pɒzɪt]
    1. vt
    1) (= put down) hinlegen; (upright) hinstellen
    2) money, valuables deponieren (in or with bei)

    I deposited £500 in my account — ich zahlte £ 500 auf mein Konto ein

    3) (GEOL) ablagern
    2. n
    1) (FIN in bank) Einlage f, Guthaben nt

    to have £500 on deposit — ein Guthaben or eine Einlage von £ 500 haben

    2) (COMM: part payment) Anzahlung f; (= returnable security) Sicherheit f, Kaution f; (for bottle) Pfand nt, Depot nt (Sw)

    to put down a deposit of £1000 on a car — eine Anzahlung von £ 1000 für ein Auto leisten, £ 1000 für ein Auto anzahlen

    to lose one's deposit (Pol)seine Kaution verlieren

    in wine GEOL) Ablagerung f; (= accumulation of ore, coal, oil) (Lager)stätte f
    * * *
    deposit [dıˈpɒzıt; US -ˈpɑ-]
    A v/t
    1. ab-, niedersetzen, -stellen, -legen, weitS. etwas oder jemanden (sicher) unterbringen
    2. CHEM, GEOL, TECH ablagern, absetzen, sedimentieren
    3. Eier (ab)legen
    4. deponieren:
    a) eine Sache hinterlegen ( with bei)
    b) Geld hinterlegen, einzahlen
    5. WIRTSCH einen Betrag anzahlen
    B v/i
    1. CHEM sich absetzen oder ablagern oder niederschlagen
    2. eine Einzahlung machen
    C s
    1. besonders GEOL Ablagerung f, (besonders Bergbau) Lager (-stätte f) n:
    deposit of ore Erzlager
    2. CHEM, TECH Ablagerung f, (Boden)Satz m, Niederschlag m, Sediment n
    3. ELEK (galvanischer) (Metall)Überzug
    4. WIRTSCH Deponierung f, Hinterlegung f
    5. Depot n (hinterlegter Wertgegenstand):
    (up)on ( oder in) deposit in Depot, deponiert;
    a) Einzahlung f
    b) (Geld)Einlage f (meist pl):
    deposits Depositen(gelder, -einlagen);
    deposit account Br Termineinlagekonto n;
    deposit receipt ( oder slip) Einzahlungsbeleg m
    7. JUR Pfand n (auch allg), Hinterlegung f, Sicherheit f:
    “no deposit - no return” (auf Flaschen) „kein Pfand, keine Rückgabe“
    8. WIRTSCH Anzahlung f:
    make ( oder leave, pay) a deposit eine Anzahlung leisten (on für);
    pay a deposit of £100 eine Anzahlung von 100 Pfund leisten, 100 Pfund anzahlen
    9. academic.ru/19707/depository">depository 1
    dep. abk
    4. LING deponent
    * * *
    1. noun
    1) (in bank) Depot, das; (credit) Guthaben, das; (Brit.): (at interest) Sparguthaben, das
    2) (payment as pledge) Kaution, die; (first instalment) Anzahlung, die

    pay a deposit — eine Kaution zahlen; eine Anzahlung leisten

    3) (of sand, mud, lime, etc.) Ablagerung, die; (of ore, coal, oil) Lagerstätte, die; (in glass, bottle) Bodensatz, der
    2. transitive verb
    1) (put down in a place) ablegen; abstellen [etwas Senkrechtes, auch Tablett, Teller usw.]; absetzen [Mitfahrer]
    2) (leave lying) [Wasser usw.:] ablagern
    3) (in bank) deponieren, [auf ein Konto] einzahlen [Geld]; (Brit.): (at interest) [auf ein Sparkonto] einzahlen
    * * *
    (banking) n.
    Einzahlung f. n.
    Ablage -n f.
    Ablagerung f.
    Anzahlung f.
    Depot -s n.
    Kaution -en (Wohnung etc.) f.
    Pfand ¨-er m.
    Sicherheitspfand n. v.
    ablagern v.
    deponieren v.

    English-german dictionary > deposit

  • 62 category

    1. категория витой пары
    2. категория (Сочи 2014)
    3. категория (в информационных технологиях)
    4. категория (в безопасности)
    5. категория

     

    категория
    1. В общем случае группа объектов, объединенных по каким-либо классификационным признакам.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    категория
    Группа аккредитованных лиц, объединенных по принципу схожести их функций на Играх, которым предоставляются одинаковые привилегии, включая право прохода на объекты Игр.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    category
    Group of accredited people based on the similarity of their Games roles, and therefore allocated similar access and other privileges.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    категория
    Классификация элементов системы управления, связанных с обеспечением безопасности, по их устойчивости к неисправностям и последующему поведению при неисправном состоянии, достигаемая структурным построением указанных элементов и (или) определяемая их надежностью.
    [ГОСТ ЕН 1070-2003]
    [ ГОСТ Р ИСО 13849-1-2003]

    Тематики

    EN

    DE

    FR

     

    категория
    Именованная группа объектов, имеющих что-то общее. Категории используются для объединения похожих объектов. Например, типы затрат используются для группировки однотипных затрат, категории инцидентов – однотипных инцидентов, типы КЕ – однотипных конфигурационных единиц.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    category
    A named group of things that have something in common. Categories are used to group similar things together. For example, cost types are used to group similar types of cost. Incident categories are used to group similar types of incident, while CI types are used to group similar types of configuration item.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    категория витой пары
    -
    [Интент]

    категория
    Стандарт Е1АД1А 568А, в котором произведена классификация витых пар в зависимости от используемого частотного диапазона (табл. С-1).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    категория
    Ранжирование пассивных элементов в зависимости от предельной частоты, на которой обеспечиваются работа пассивного элемента в составе кабельной линии и ранжирование кабельных линий, согласно североамериканскому стандарту, в зависимости от полосы пропускания кабельной линии.
    [ http://www.lanmaster.ru/SKS/DOKUMENT/568b.htm]

    Существует несколько категорий витой пары, которые нумеруются от CAT1 до CAT7: 

    • CAT1 (полоса частот 0,1 МГц) — телефонный кабель, всего одна пара (в России применяется кабель и вообще без скруток — «лапша» — у нее характеристики не хуже, но больше влияние помех). В США использовался ранее, только в «скрученном» виде. Используется только для передачи голоса или данных при помощи модема.
    • CAT2 (полоса частот 1 МГц) — старый тип кабеля, 2 пары проводников, поддерживал передачу данных на скоростях до 4 Мбит/с, использовался в сетях Token ring и Arcnet. Сейчас иногда встречается в телефонных сетях.
    • CAT3 (полоса частот 16 МГц) — 4-парный кабель, используется при построении телефонных и локальных сетей 10BASE-T и token ring, поддерживает скорость передачи данных до 10 Мбит/с или 100 Мбит/с по технологии 100BASE-T4 на расстоянии не дальше 100 метров. В отличие от предыдущих двух, отвечает требованиям стандарта IEEE 802.3.
    • CAT4 (полоса частот 20 МГц) — кабель состоит из 4 скрученных пар, использовался в сетях token ring, 10BASE-T, 100BASE-T4, скорость передачи данных не превышает 16 Мбит/с по одной паре, сейчас не используется.
    • CAT5 (полоса частот 100 МГц) — 4-парный кабель, использовался при построении локальных сетей 100BASE-TX и для прокладки телефонных линий, поддерживает скорость передачи данных до 100 Мбит/с при использовании 2 пар.
    • CAT5e (полоса частот 125 МГц) — 4-парный кабель, усовершенствованная категория 5. Скорость передач данных до 100 Мбит/с при использовании 2 пар и до 1000 Мбит/с при использовании 4 пар. Кабель категории 5e является самым распространённым и используется для построения компьютерных сетей. Иногда встречается двухпарный кабель категории 5e. Кабель обеспечивает скорость передач данных до 100 Мбит/с. Преимущества данного кабеля в более низкой себестоимости и меньшей толщине.
    • CAT6 (полоса частот 250 МГц) — применяется в сетях Fast Ethernet и Gigabit Ethernet, состоит из 4 пар проводников и способен передавать данные на скорости до 1000 Мбит/с и до 10 гигабит на расстояние до 50 м. Добавлен в стандарт в июне 2002 года.
    • CAT6a (полоса частот 500 МГц) — применяется в сетях Ethernet, состоит из 4 пар проводников и способен передавать данные на скорости до 10 Гбит/с и планируется использовать его для приложений, работающих на скорости до 40 Гбит/с.
    • CAT7 — спецификация на данный тип кабеля утверждена только международным стандартом ISO 11801, скорость передачи данных до 10 Гбит/с, частота пропускаемого сигнала до 600—700 МГц. Кабель этой категории имеет общий экран и экраны вокруг каждой пары. Седьмая категория, строго говоря, не UTP, а S/FTP (Screened Fully Shielded Twisted Pair).

    Кабель более высокой категории обычно содержит больше пар проводов и каждая пара имеет больше витков на единицу длины.

    [ Источник]

    Тематики

    Синонимы

    EN

    1.3.1 категория (category): Совокупность ламп, имеющих одинаковые конструкцию (форму колбы, габаритные размеры, тип цоколя и тела накала), номинальное напряжение, номинальную мощность и исполнение колбы.

    Примечания

    1 В настоящем стандарте предполагают, что:

    a) лампы прозрачные, матированные и с эквивалентным матированию покрытием имеют колбы одного и того же исполнения;

    b) колбы ламп с белым и других цветов покрытиями, а также из молочного стекла относят к разным исполнениям.

    2 Лампы, различающиеся только цоколями (например, Е27 и B22d), относят к лампам различных категорий, но одного и того же типа в соответствии с ГОСТ Р 52706.

    Источник: ГОСТ Р 52712-2007: Требования безопасности для ламп накаливания. Часть 1. Лампы накаливания вольфрамовые для бытового и аналогичного общего освещения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > category

  • 63 SPD

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > SPD

  • 64 surge offering

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > surge offering

  • 65 surge protective device

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Англо-русский словарь нормативно-технической терминологии > surge protective device

  • 66 surge protector

    1. устройство защиты от перенапряжения
    2. устройство защиты от перенапряжений
    3. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

     

    устройство защиты от перенапряжений

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    устройство защиты от перенапряжения
    Устройство, которое позволяет защитить оборудование от выбросов напряжения сети, возникающих при переключении нагрузки или внешних воздействиях (грозовые разряды и т.п.).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > surge protector

  • 67 voltage surge protector

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > voltage surge protector

  • 68 gear

    1. распределительный щит
    2. распределительное устройство
    3. оборудование
    4. инструменты
    5. входить в сцепление
    6. аппаратура

     

    аппаратура
    -
    [Интент]

    FR


    Тематики

    • аппарат, изделие, устройство...

    EN

     

    входить в сцепление
    приводить в движение механизм


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    оборудование
    Совокупность связанных между собой частей или устройств, из которых по крайней мере одно движется, а также элементы привода, управления и энергетические узлы, которые предназначены для определенного применения, в частности для обработки, производства, перемещения или упаковки материала. К термину «оборудование» относят также машину и совокупность машин, которые так устроены и управляемы, что они функционируют как единое целое для достижения одной и той же цели.
    [ГОСТ ЕН 1070-2003]

    оборудование
    -

    [IEV number 151-11-25 ]

    оборудование
    Оснащение, материалы, приспособления, устройства, механизмы, приборы, инструменты и другие принадлежности, используемые в качестве частей электрической установки или в соединении с ней.
    [ ГОСТ Р МЭК 60204-1-2007]

    EN

    equipment
    single apparatus or set of devices or apparatuses, or the set of main devices of an installation, or all devices necessary to perform a specific task
    NOTE – Examples of equipment are a power transformer, the equipment of a substation, measuring equipment.
    [IEV number 151-11-25 ]

    equipment
    material, fittings, devices, components, appliances, fixtures, apparatus, and the like used as part of, or in connection with, the electrical equipment of machines
    [IEC 60204-1-2006]

    FR

    équipement, m
    matériel, m
    appareil unique ou ensemble de dispositifs ou appareils, ou ensemble des dispositifs principaux d'une installation, ou ensemble des dispositifs nécessaires à l'accomplissement d'une tâche particulière
    NOTE – Des exemples d’équipement ou de matériel sont un transformateur de puissance, l’équipement d’une sous-station, un équipement de mesure.
    [IEV number 151-11-25]

    Тематики

    EN

    DE

    FR

     

    распределительное устройство
    Распределительным устройством (РУ) называется электроустановка, служащая для приема и распределения электроэнергии и содержащая сборные и соединительные шины, коммутационные аппараты, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства защиты, автоматики и измерительные приборы.
    [РД 34.20.185-94]

    распределительное устройство

    Электроустановка, предназначенная для приема и распределения электрической энергии на одном напряжении и содержащая коммутационные аппараты и соединяющие их сборные шины [секции шин], устройства управления и защиты.
    Примечание. К устройствам управления относятся аппараты и связывающие их элементы обеспечивающие контроль, измерение, сигнализацию и выполнение команд.
    [ ГОСТ 24291-90]
    [ ГОСТ Р 53685-2009]

    электрическое распределительное устройство
    распределительное устройство
    Устройство, предназначенное для приема и распределения электроэнергии на одном напряжении и содержащее коммутационные аппараты и соединяющие их сборные соединительные устройства.
    Примечание. В состав распределительного устройства дополнительно могут входить устройства защиты и управления
    [ОСТ 45.55-99]

    распределительное устройство
    Электроустановка, служащая для приема и распределения электроэнергии и содержащая коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства защиты, автоматики и измерительные приборы.
    [ПОТ Р М-016-2001]
    [РД 153-34.0-03.150-00]

    устройство распределительное
    Совокупность аппаратов и приборов для приёма и распределения электроэнергии одного напряжения, вырабатываемой электростанцией или преобразуемой подстанцией
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    switching substation
    a substation which includes switchgear and usually busbars, but no power transformers
    [IEV number 605-01-02]

    FR

    poste de sectionnement
    poste de coupure

    poste comprenant des organes de manoeuvre et généralement des jeux de barres, à l'exclusion de transformateurs de puissance
    [IEV number 605-01-02]

    В качестве РУ 6—10 кВ используется сборка высокого напряжения с однополюсными разъединителями и вертикальным расположением фаз одного присоединения и одна камера КСО с выключателем нагрузки и предохранителями для подключения трансформатора. Для РУ 0,4 кВ применяются сборки низкого напряжения с предохранителями и вертикальным расположением фаз одного присоединения.
    На ПС применяются открытые (ОРУ), закрытые (ЗРУ) или комплектные (КРУ) распределительные устройства.

    [ http://energy-ua.com/elektricheskie-p/klassifikatsiya.html]


    КЛАССИФИКАЦИЯ

    В общем случае ПС и РУ являются составной частью электроустановок, которые различаются:

    • по назначению:
      • генерирующие,
      • преобразовательно-распределительные,
      • потребительские.

        Генерирующие электроустановки служат для выработки электроэнергии, преобразовательно-распределительные электроустановки преобразуют электроэнергию в удобный для передачи и потребления вид, передают ее и распределяют между потребителями;

     Шкала номинальных напряжений ограничена сравнительно небольшим числом стандартных значений, благодаря чему изготавливается небольшое число типоразмеров машин и оборудования, а электросети выполняются более экономичными. В установках трехфазного тока номинальным напряжением принято считать напряжение между фазами (междуфазовое напряжение). Согласно ГОСТ 29322—92 установлена следующая шкала номинальных напряжений:

    для электросетей переменного тока частотой 50 Гц междуфазовое напряжение должно быть: 12, 24, 36, 42, 127, 220, 380 В; 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750 и 1150 кВ;
    для электросетей постоянного тока: 12, 24, 36, 48, 60, 110, 220, 440, 660, 825, 3000 В и выше.

    Тупиковые ПС получают питание по одной или двум тупиковым ВЛ.

    Ответвительные ПС присоединяются ответвлением к одной или двум проходящим ВЛ с односторонним или двухсторонним питанием.

    Проходные ПС включаются в рассечку одной или двух проходящих ВЛ с односторонним или двухсторонним питанием.

    Узловые ПС кроме питающих имеют отходящие радиальные или транзитные ВЛ.

    • по способу управления ПС могут быть:
      • только с телесигнализацией,
      • телеуправляемыми с телесигнализацией,
      • с телесигнализацией и управлением с общеподстанционного пункта управления (ОПУ).


    Подстанции оперативно обслуживаются постоянным дежурным персоналом на щите управления, дежурными на дому или оперативно-выездными бригадами (ОВБ). Ремонт ПС осуществляется специализированными выездными бригадами централизованного ремонта или местным персоналом подстанции.

    В РУ напряжением до 1000 В провода, шины, аппараты, приборы и конструкции выбирают как по нормальным условиям работы (напряжению и току), так и по термическим и динамическим воздействиям токов коротких замыканий (КЗ) или предельно допустимой отключаемой мощности.

    В РУ и ПС напряжением выше 1000 В расстояния между электрооборудованием, аппаратами, токоведущими частями, изоляторами, ограждениями и конструкциями устанавливаются так, чтобы при нормальном режиме работы электроустановки возникающие физические явления (температура нагрева, электрическая дуга, выброс газов, искрение и др.) не могли привести к повреждению оборудования и КЗ.

    [ http://energy-ua.com/elektricheskie-p/klassifikatsiya.html]
     



    Several different classifications of switchgear can be made:

    A single line-up may incorporate several different types of devices, for example, air-insulated bus, vacuum circuit breakers, and manually operated switches may all exist in the same row of cubicles.

    Ratings, design, specifications and details of switchgear are set by a multitude of standards. In North America mostly IEEE and ANSI standards are used, much of the rest of the world uses IEC standards, sometimes with local national derivatives or variations.

    [Robert W. Smeaton (ed) Switchgear and Control Handbook 3rd Ed., Mc Graw Hill, new York 1997]
    [ http://en.wikipedia.org/wiki/High_voltage_switchgear]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    распределительный щит
    Комплектное устройство, содержащее различную коммутационную аппаратуру, соединенное с одной или более отходящими электрическими цепями, питающееся от одной или более входящих цепей, вместе с зажимами для присоединения нейтральных и защитных проводников.
    [ ГОСТ Р МЭК 60050-826-2009]

    щит распределительный
    Электротехническое устройство, объединяющее коммутационную, регулирующую и защитную аппаратуру, а также контрольно-измерительные и сигнальные приборы
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    распределительный щит

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    EN

    distribution board
    assembly containing different types of switchgear and controlgear associated with one or more outgoing electric circuits fed from one or more incoming electric circuits, together with terminals for the neutral and protective conductors.
    [IEV number 826-16-08]

    FR

    tableau de répartition, m
    ensemble comportant différents types d'appareillage associés à un ou plusieurs circuits électriques de départ alimentés par un ou plusieurs circuits électriques d'arrivée, ainsi que des bornes pour les conducteurs neutre et de protection.
    [IEV number 826-16-08]

    Параллельные тексты EN-RU

    Distribution switchboards, including the Main LV Switchboard (MLVS), are critical to the dependability of an electrical installation. They must comply with well-defined standards governing the design and construction of LV switchgear assemblies

    A distribution switchboard is the point at which an incoming-power supply divides into separate circuits, each of which is controlled and protected by the fuses or switchgear of the switchboard. A distribution switchboard is divided into a number of functional units, each comprising all the electrical and mechanical elements that contribute to the fulfilment of a given function. It represents a key link in the dependability chain.

    Consequently, the type of distribution switchboard must be perfectly adapted to its application. Its design and construction must comply with applicable standards and working practises.

    [Schneider Electric]

    Распределительные щиты, включая главный распределительный щит низкого напряжения (ГРЩ), играют решающую роль в обеспечении надежности электроустановки. Они должны отвечать требованиям соответствующих стандартов, определяющих конструкцию и порядок изготовления НКУ распределения электроэнергии.

    В распределительном щите выполняется прием электроэнергии и ее распределение по отдельным цепям, каждая из которых контролируется и защищается плавкими предохранителями или автоматическими выключателями.
    Распределительный щит состоит из функциональных блоков, включающих в себя все электрические и механические элементы, необходимые для выполнения требуемой функции. Распределительный щит представляет собой ключевое звено в цепи обеспечения надежности.

    Тип распределительного щита должен соответствовать области применения. Конструкция и изготовление распределительного щита должны удовлетворять требованиям применимых стандартов и учитывать накопленную практику применения.

    [Перевод Интент]

     

    5654

    Рис. Schneider Electric

    With Prisma Plus G you can be sure to build 100% Schneider Electric switchboards that are safe, optimised:

    > All components (switchgear, distribution blocks, prefabricated connections, etc.) are perfectly rated and coordinated to work together;

    > All switchboard configurations, even the most demanding ones, have been tested.

    You can prove that your switchboard meets the current standards, at any time.

    You can be sure to build a reliable electrical installation and give your customers full satisfaction in terms of dependability and safety for people and the installation.

    Prisma Plus G with its discreet design, blends harmoniously into all tertiary and industrial buildings, including in entrance halls and passageways.

    With Prisma Plus G you can build just the right switchboard for your customer, sized precisely to fit costs and needs.

    With this complete, prefabricated and tested system, it's easy to upgrade your installation and still maintain the performance levels.

    > The wall-mounted and floor-standing enclosures combine easily with switchboards already in service.

    > Devices can be replaced or added at any time.

    [Schneider Electric]

    С помощью оболочек Prisma Plus G можно создавать безопасные распределительные щиты, на 100 % состоящие из изделий Schneider Electric:

    > все изделия (коммутационная аппаратура, распределительные блоки, готовые заводские соединения и т. д.) полностью совместимы механически и электрически;

    > все варианты компоновки распределительных щитов, в том числе для наиболее ответственных применений, прошли испытания.

    В любое время вы можете доказать, что ваши распределительные щиты полностью соответствуют требованиям действующих стандартов.

    Вы можете быть полностью уверены в том, что создаете надежные электроустановки, удовлетворяющие всем требованиям безопасности для людей и оборудования

    Благодаря строгому дизайну, распределительные щиты Prisma Plus G гармонично сочетаются с интерьером любого общественного или промышленного здания. Они хорошо смотрятся и в вестибюле, и в коридоре.

    Применяя оболочки Prisma Plus G можно создавать распределительные щиты, точно соответствующие требованиям заказчика как с точки зрения технических характеристик, так и стоимости.

    С помощью данной испытанной системы, содержащей все необходимые компоненты заводского изготовления можно легко модернизировать существующую электроустановку и поддерживать её уровни производительности.

    > Навесные и напольные оболочки можно легко присоединить к уже эксплуатируемым распределительным щитам.

    > Аппаратуру можно заменять или добавлять в любое время.

    [Перевод Интент]

     

    The switchboard, central to the electrical installation.

    Both the point of arrival of energy and a device for distribution to the site applications, the LV switchboard is the intelligence of the system, central to the electrical installation.

    [Schneider Electric]

    Распределительный щит – «сердце» электроустановки.

    Низковольтное комплектное устройство распределения является «сердцем» электроустановки, поскольку именно оно принимает электроэнергию из сети и распределяет её по территориально распределенным нагрузкам.

    [Перевод Интент]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > gear

  • 69 American Wire Gauge

    1. американский сортамент проводов
    2. американский калибр проволок

     

    американский калибр проволок
    американский сортамент проводов


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    американский сортамент проводов
    Американская система классификации кабелей, в которой чем больше условный номер изделия, тем меньше диаметр проводника. В телекоммуникационных сетях, как правило, используются провода калибров 22AWG, 24AWG и 26AWG (табл. А-4).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    калибр проводника AWG
    -
    [Интент]

    Калибр провода
    AWG и МСМ

    Сечение, мм2

    Число проводов х диаметр 1го провода в мм

    38

    0,009

    7х0, 040

    36

    0,014

    7х0, 051

    34

    0,022

    7х0, 064

    32

    0,034/ 0,035

    7х0,080/ 19х0,051

    30

    0,057/ 0,059

    7х0,102/ 19х0,064

    28

    0,089/ 0,09

    7х0,127/ 19х0,080

    26

    0,141/ 0,155

    7х0,160/ 19х0,102

    24

    0,227/ 0,241

    7х0,203/ 19х0,127

    22

    0,355/ 0,382/ 0,5

    7х0,254/ 19х0,160/ 16х0,2

    20

    0,563/ 0,616/ 0,75

    7х0,320/ 19х0,203/ 24х0,2

    18

    0,897/ 0,963/ 1

    7х0,404/ 19х0,254/ 32х0,20

    16

    1,229/ 1,5

    19х0,287/ 30х0,25

    14

    1,941/ 2,5

    19х0,361/ 50х0,25

    12

    3,085/ 4

    19х0,455/ 56х0,30

    10

    5,26/ 6

    19х0,60/ 84х0,30

    8

    8,35/ 10

    19х0,75/ 80х0,40

    6

    13,29/ 16

    19х0,96/ 128х0,4

    4

    21,14/ 25

    19х1,19/ 200х0,40

    2

    33,61/ 35

    19х1,50/ 280х0,40

    1

    42,38/ 50

    19х1,686/ 400х0,40

    1/0

    53,47

    19х1,89

    2/0

    67,4

    19х2,126

    2/0

    70

    356х0,50

    3/0

    95

    727х0,39

    4/0

    107,17

    19х2,68

    250 МСМ

    127

    37х2,09

    300 МСМ

    152

    37х2,29

    350 МСМ

    177,3

    37х2,47

    400 МСМ

    202,7

    37х2,64

    500 МСМ

    253,4

    37х2,95

    600 МСМ

    304

    61х2,52

    650 МСМ

    329

    61х2,62

    700 МСМ

    354,7

    61х2,72

    750 МСМ

    380

    31х2,82

    800 МСМ

    405,4

    61х2,91

    900 МСМ

    456

    61х3,09

    1000 МСМ

    506,7

    61х3,25

    В этой системе меньшему числовому значению соответствует более толстый провод. Такое «перевёрнутое» обозначение диаметра сложилось исторически: проволоку изготавливают волочением, и номер (калибр) обозначает количество последовательных протягиваний через всё уменьшающиеся отверстия в волоке до получения нужного диаметра. Так, для получения проволоки AWG 24 диаметром около 0,5 мм заготовка AWG 0 диаметром свыше 8 мм протягивалась 24 раза. В калибрах AWG довольно часто обозначают не только размеры (диаметр, сечение) проводов, но и размеры прутков, стержней, трубок.
    [Википедия]

    5279

     

    Американский стандарт на калибры проводов (American Wire Gauge)

      Одножильные нелуженые медные провода Обозначение в стандарте AWG Номинальный диаметр Площадь сечения
    мм X мм Погонный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    10

    2.600

    0.1024

    5.309

    46.77

    31.43

    0.0033

    0.999

    11

    2.300

    0.0906

    4.155

    37.09

    24.92

    0.0041

    1.260

    12

    2.050

    0.0807

    3.301

    29.42

    19.77

    0.0052

    1.588

    13

    1.830

    0.0720

    2.630

    23.33

    15.68

    0.0066

    2.003

    14

    1.630

    0.0642

    2.087

    18.50

    12.43

    0.0083

    2.525

    15

    1.450

    0.0571

    1.651

    14.67

    9.858

    0.0104

    3.184

    16

    1.290

    0.0508

    1.307

    11.63

    7.818

    0.0132

    4.016

    17

    1.150

    0.0453

    1.039

    9.23

    6.200

    0.0166

    5.064

    18

    1.020

    0.0402

    0.817

    7.32

    4.917

    0.0209

    6.385

    19

    0.912

    0.0359

    0.653

    5.80

    3.899

    0.026

    8.051

    20

    0.813

    0.0320

    0.519

    4.60

    3.092

    0.033

    10.15

    21

    0.724

    0.0285

    0.412

    3.65

    2.452

    0.042

    12.80

    22

    0.643

    0.0253

    0.325

    2.89

    1.945

    0.053

    16.14

    23

    0.574

    0.0226

    0.259

    2.29

    1.542

    0.067

    20.36

    24

    0.511

    0.0201

    0.205

    1.82

    1.223

    0.084

    25.67

    25

    0.455

    0.0179

    0.163

    1.44

    0.9699

    0.106

    32.37

    26

    0.404

    0.0159

    0.128

    1.14

    0.7692

    0.134

    40.81

    27

    0.361

    0.0142

    0.102

    0.908

    0.6100

    0.169

    51.47

    28

    0.320

    0.0126

    0.080

    0.720

    0.4837

    0.213

    64.90

    29

    0.287

    0.0113

    0.065

    0.571

    0.3836

    0.268

    81.83

    30

    0.254

    0.0100

    0.051

    0.453

    0.3042

    0.339

    103.2

    31

    0.226

    0.0089

    0.040

    0.359

    0.2413

    0.427

    130.1

    32

    0.203

    0.0080

    0.032

    0.285

    0.1913

    0.538

    164.1

    33

    0.180

    0.0071

    0.025

    0.226

    0.1517

    0.679

    206.9

    34

    0.160

    0.0063

    0.020

    0.179

    0.1203

    0.856

    260.9

    35

    0.142

    0.0056

    0.016

    0.142

    0.09542

    1.086

    331.0

    36

    0.127

    0.0050

    0.013

    0.113

    0.07568

    1.361

    414.8

    37

    0.114

    0.0045

    0.010

    0.091

    0.06130

    1.680

    512.1

    38

    0.102

    0.0040

    0.008

    0.071

    0.04759

    2.128

    648.6

    39

    0.089

    0.0035

    0.006

    0.056

    0.03774

    2.781

    847.8

    40

    0.079

    0.0031

    0.005

    0.045

    0.02993

    3.543

    1080.0

    Обозначение в стандарте AWG мм дюймы Площадь сечения
    мм X мм грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Номинальный диаметр Погонный вес Погонное сопротивление

     

    Многожильные луженые медные провода

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG Приведенный диаметр Площадь сечения
    мм X мм
    Минимальный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    36

    7/44

    0.153

    0.0060

    0.014

    0.11

    0.076

    1.3609

    141.80

    34

    7/42

    0.191

    0.0075

    0.022

    0.18

    0.121

    0.8560

    260.90

    32

    7/40

    0.203

    0.0080

    0.034

    0.29

    0.195

    0.5384

    164.10

    32

    19/44

    0.229

    0.0090

    0.039

    0.29

    0.195

    0.5384

    164.10

    30

    7/38

    0.305

    0.0120

    0.056

    0.45

    0.304

    0.3674

    112.00

    30

    19/42

    0.305

    0.0120

    0.060

    0.45

    0.304

    0.3674

    112.00

    28

    7/36

    0.381

    0.0150

    0.071

    0.72

    0.484

    0.2320

    70.70

    28

    19/40

    0.406

    0.0160

    0.093

    0.72

    0.484

    0.2320

    70.70

    27

    7/35

    0.457

    0.0180

    0.111

    0.91

    0.614

    0.1824

    55.60

    26

    7/34

    0.483

    0.0190

    0.140

    1.15

    0.770

    0.146

    44.40

    26

    10/36

    0.553

    0.0218

    0.127

    1.15

    0.770

    0.146

    44.40

    26

    19/38

    0.508

    0.0200

    0.153

    1.15

    0.770

    0.146

    44.40

    24

    7/32

    0.610

    0.0240

    0.226

    1.83

    1.229

    0.091

    27.70

    24

    10/34

    0.584

    0.0230

    0.200

    1.83

    1.229

    0.091

    27.70

    24

    19/36

    0.610

    0.0240

    0.239

    1.83

    1.229

    0.091

    27.70

    24

    42/40

    0.584

    0.0230

    0.201

    1.83

    1.229

    0.091

    27.70

    22

    72/30

    0.762

    0.0300

    0.352

    2.90

    1.947

    0.057

    17.50

    22

    19/34

    0.787

    0.0310

    0.380

    2.90

    1.947

    0.057

    17.50

    22

    26/36

    0.762

    0.0300

    0.327

    2.90

    1.947

    0.057

    17.50

    20

    7/28

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    10/30

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    19/32

    0.940

    0.0370

    0.612

    4.62

    3.103

    0.036

    10.90

    20

    26/34

    0.914

    0.0360

    0.520

    4.62

    3.103

    0.036

    10.90

    20

    42/36

    0.914

    0.0360

    0.533

    4.62

    3.103

    0.036

    10.90

    18

    7/26

    1.220

    0.0480

    0.891

    7.34

    4.93

    0.023

    6.92

    18

    16/30

    1.200

    0.0472

    0.808

    7.34

    4.93

    0.023

    6.92

    18

    19/30

    1.240

    0.0488

    0.957

    7.34

    4.93

    0.023

    6.92

    18

    42/34

    1.200

    0.0472

    0.819

    7.34

    4.93

    0.023

    6.92

    18

    65/36

    1.200

    0.0472

    0.845

    7.34

    4.93

    0.023

    6.92

    16

    7/24

    1.520

    0.0598

    1.420

    11.68

    7.85

    0.014

    4.35

    16

    19/29

    1.470

    0.0579

    1.216

    11.68

    7.85

    0.014

    4.35

    16

    26/30

    1.500

    0.0591

    1.310

    11.68

    7.85

    0.014

    4.35

    16

    65/34

    1.500

    0.0591

    1.300

    11.68

    7.85

    0.014

    4.35

    16

    105/36

    1.500

    0.0591

    1.365

    11.68

    7.85

    0.014

    4.35

    14

    7/22

    1.850

    0.0728

    2.260

    18.60

    12.5

    0.009

    2.73

    14

    19/26

    1.850

    0.0728

    1.930

    18.60

    12.5

    0.009

    2.73

    14

    42/30

    1.850

    0.0728

    2.060

    18.60

    12.5

    0.009

    2.73

    14

    105/34

    1.850

    0.0728

    2.100

    18.60

    12.5

    0.009

    2.73

    12

    7/20

    2.440

    0.0961

    3.610

    29.56

    19.9

    0.0056

    1.71

    12

    19/25

    2.360

    0.0929

    3.070

    29.56

    19.9

    0.0056

    1.71

    12

    65/30

    2.410

    0.0949

    3.270

    29.56

    19.9

    0.0056

    1.71

    12

    165/34

    2.410

    0.0949

    3.300

    47.00

    31.6

    0.0056

    1.71

    10

    37/26

    2.920

    0.1150

    4.710

    47.00

    31.6

    0.0035

    1.08

    10

    65/28

    2.950

    0.1161

    5.230

    47.00

    31.6

    0.0035

    1.08

    10

    105/30

    2.950

    0.1161

    5.355

    47.00

    31.6

    0.0035

    1.08

    8

    49/25

    3.734

    0.1470

    8.007

    70.73

    47.5

    0.0022

    0.67

    8

    133/29

    3.734

    0.1470

    8.662

    76.52

    51.4

    0.0020

    0.61

    8

    655/36

    3.734

    0.1470

    8.479

    73.78

    49.6

    0.0020

    0.62

    6

    133/27

    4.674

    0.1840

    13.675

    120.75

    81.1

    0.0015

    0.47

    6

    259/30

    4.674

    0.1840

    13.209

    116.60

    78.4

    0.0013

    0.40

    6

    1050/36

    4.674

    0.1840

    13.388

    118.26

    79.5

    0.0013

    0.39

    4

    133/25

    5.898

    0.2322

    21.733

    191.99

    129.0

    0.0008

    0.24

    4

    259/26

    5.898

    0.2322

    26.629

    235.16

    158.0

    0.0007

    0.20

    4

    1666/36

    5.898

    0.2322

    21.242

    187.66

    126.1

    0.0008

    0.25

    2

    1333/23

    7.417

    0.2920

    34.648

    306.00

    205.6

    0.00049

    0.15

    2

    259/26

    7.417

    0.2920

    33.392

    294.87

    198.1

    0.00052

    0.16

    2

    665/30

    7.417

    0.2920

    33.915

    229.36

    201.2

    0.00052

    0.16

    2

    2646/36

    7.417

    0.2920

    33.737

    298.05

    200.3

    0.00052

    0.16

    1

    163.195.0

    8.331

    0.3280

    43.418

    383.35

    257.6

    0.00039

    0.12

    1

    172.508.0

    8.331

    0.3280

    42.322

    373.83

    251.2

    0.00043

    0.13

    1

    817/30

    8.331

    0.3280

    41.667

    367.73

    247.1

    0.00043

    0.13

    1

    2109/34

    8.331

    0.3280

    42.690

    376.94

    253.3

    0.00039

    0.12

    1/0

    133/21

    9.347

    0.3680

    55.098

    486.71

    327.1

    0.00031

    0.10

    1/0

    259/24

    9.347

    0.3680

    53.364

    471.39

    316.8

    0.00032

    0.10

    2/0

    133/20

    10.516

    0.4140

    69.458

    613.38

    412.2

    0.00025

    0.08

    2/0

    259/23

    10.516

    0.4140

    67.472

    595.88

    400.4

    0.00025

    0.08

    3/0

    259/22

    11.786

    0.4640

    83.230

    746.62

    501.7

    0.00020

    0.06

    3/0

    427/24

    11.786

    0.4640

    87.979

    777.12

    522.2

    0.00019

    0.06

    4/0

    259/21

    13.259

    0.5220

    107.297

    950.76

    638.9

    0.00016

    0.05

    4/0

    427/23

    13.259

    0.5220

    111.237

    982.21

    660.0

    0.00015

    0.05

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG мм дюймы Площадь сечения
    мм X мм
    грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Приведенный диаметр Минимальный вес Погонное сопротивление

     

    Тематики

    • кабели, провода...

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > American Wire Gauge

  • 70 American Wire Gauge System

    1. американский сортамент проводов

     

    американский сортамент проводов
    Американская система классификации кабелей, в которой чем больше условный номер изделия, тем меньше диаметр проводника. В телекоммуникационных сетях, как правило, используются провода калибров 22AWG, 24AWG и 26AWG (табл. А-4).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    калибр проводника AWG
    -
    [Интент]

    Калибр провода
    AWG и МСМ

    Сечение, мм2

    Число проводов х диаметр 1го провода в мм

    38

    0,009

    7х0, 040

    36

    0,014

    7х0, 051

    34

    0,022

    7х0, 064

    32

    0,034/ 0,035

    7х0,080/ 19х0,051

    30

    0,057/ 0,059

    7х0,102/ 19х0,064

    28

    0,089/ 0,09

    7х0,127/ 19х0,080

    26

    0,141/ 0,155

    7х0,160/ 19х0,102

    24

    0,227/ 0,241

    7х0,203/ 19х0,127

    22

    0,355/ 0,382/ 0,5

    7х0,254/ 19х0,160/ 16х0,2

    20

    0,563/ 0,616/ 0,75

    7х0,320/ 19х0,203/ 24х0,2

    18

    0,897/ 0,963/ 1

    7х0,404/ 19х0,254/ 32х0,20

    16

    1,229/ 1,5

    19х0,287/ 30х0,25

    14

    1,941/ 2,5

    19х0,361/ 50х0,25

    12

    3,085/ 4

    19х0,455/ 56х0,30

    10

    5,26/ 6

    19х0,60/ 84х0,30

    8

    8,35/ 10

    19х0,75/ 80х0,40

    6

    13,29/ 16

    19х0,96/ 128х0,4

    4

    21,14/ 25

    19х1,19/ 200х0,40

    2

    33,61/ 35

    19х1,50/ 280х0,40

    1

    42,38/ 50

    19х1,686/ 400х0,40

    1/0

    53,47

    19х1,89

    2/0

    67,4

    19х2,126

    2/0

    70

    356х0,50

    3/0

    95

    727х0,39

    4/0

    107,17

    19х2,68

    250 МСМ

    127

    37х2,09

    300 МСМ

    152

    37х2,29

    350 МСМ

    177,3

    37х2,47

    400 МСМ

    202,7

    37х2,64

    500 МСМ

    253,4

    37х2,95

    600 МСМ

    304

    61х2,52

    650 МСМ

    329

    61х2,62

    700 МСМ

    354,7

    61х2,72

    750 МСМ

    380

    31х2,82

    800 МСМ

    405,4

    61х2,91

    900 МСМ

    456

    61х3,09

    1000 МСМ

    506,7

    61х3,25

    В этой системе меньшему числовому значению соответствует более толстый провод. Такое «перевёрнутое» обозначение диаметра сложилось исторически: проволоку изготавливают волочением, и номер (калибр) обозначает количество последовательных протягиваний через всё уменьшающиеся отверстия в волоке до получения нужного диаметра. Так, для получения проволоки AWG 24 диаметром около 0,5 мм заготовка AWG 0 диаметром свыше 8 мм протягивалась 24 раза. В калибрах AWG довольно часто обозначают не только размеры (диаметр, сечение) проводов, но и размеры прутков, стержней, трубок.
    [Википедия]

    5279

     

    Американский стандарт на калибры проводов (American Wire Gauge)

      Одножильные нелуженые медные провода Обозначение в стандарте AWG Номинальный диаметр Площадь сечения
    мм X мм Погонный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    10

    2.600

    0.1024

    5.309

    46.77

    31.43

    0.0033

    0.999

    11

    2.300

    0.0906

    4.155

    37.09

    24.92

    0.0041

    1.260

    12

    2.050

    0.0807

    3.301

    29.42

    19.77

    0.0052

    1.588

    13

    1.830

    0.0720

    2.630

    23.33

    15.68

    0.0066

    2.003

    14

    1.630

    0.0642

    2.087

    18.50

    12.43

    0.0083

    2.525

    15

    1.450

    0.0571

    1.651

    14.67

    9.858

    0.0104

    3.184

    16

    1.290

    0.0508

    1.307

    11.63

    7.818

    0.0132

    4.016

    17

    1.150

    0.0453

    1.039

    9.23

    6.200

    0.0166

    5.064

    18

    1.020

    0.0402

    0.817

    7.32

    4.917

    0.0209

    6.385

    19

    0.912

    0.0359

    0.653

    5.80

    3.899

    0.026

    8.051

    20

    0.813

    0.0320

    0.519

    4.60

    3.092

    0.033

    10.15

    21

    0.724

    0.0285

    0.412

    3.65

    2.452

    0.042

    12.80

    22

    0.643

    0.0253

    0.325

    2.89

    1.945

    0.053

    16.14

    23

    0.574

    0.0226

    0.259

    2.29

    1.542

    0.067

    20.36

    24

    0.511

    0.0201

    0.205

    1.82

    1.223

    0.084

    25.67

    25

    0.455

    0.0179

    0.163

    1.44

    0.9699

    0.106

    32.37

    26

    0.404

    0.0159

    0.128

    1.14

    0.7692

    0.134

    40.81

    27

    0.361

    0.0142

    0.102

    0.908

    0.6100

    0.169

    51.47

    28

    0.320

    0.0126

    0.080

    0.720

    0.4837

    0.213

    64.90

    29

    0.287

    0.0113

    0.065

    0.571

    0.3836

    0.268

    81.83

    30

    0.254

    0.0100

    0.051

    0.453

    0.3042

    0.339

    103.2

    31

    0.226

    0.0089

    0.040

    0.359

    0.2413

    0.427

    130.1

    32

    0.203

    0.0080

    0.032

    0.285

    0.1913

    0.538

    164.1

    33

    0.180

    0.0071

    0.025

    0.226

    0.1517

    0.679

    206.9

    34

    0.160

    0.0063

    0.020

    0.179

    0.1203

    0.856

    260.9

    35

    0.142

    0.0056

    0.016

    0.142

    0.09542

    1.086

    331.0

    36

    0.127

    0.0050

    0.013

    0.113

    0.07568

    1.361

    414.8

    37

    0.114

    0.0045

    0.010

    0.091

    0.06130

    1.680

    512.1

    38

    0.102

    0.0040

    0.008

    0.071

    0.04759

    2.128

    648.6

    39

    0.089

    0.0035

    0.006

    0.056

    0.03774

    2.781

    847.8

    40

    0.079

    0.0031

    0.005

    0.045

    0.02993

    3.543

    1080.0

    Обозначение в стандарте AWG мм дюймы Площадь сечения
    мм X мм грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Номинальный диаметр Погонный вес Погонное сопротивление

     

    Многожильные луженые медные провода

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG Приведенный диаметр Площадь сечения
    мм X мм
    Минимальный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    36

    7/44

    0.153

    0.0060

    0.014

    0.11

    0.076

    1.3609

    141.80

    34

    7/42

    0.191

    0.0075

    0.022

    0.18

    0.121

    0.8560

    260.90

    32

    7/40

    0.203

    0.0080

    0.034

    0.29

    0.195

    0.5384

    164.10

    32

    19/44

    0.229

    0.0090

    0.039

    0.29

    0.195

    0.5384

    164.10

    30

    7/38

    0.305

    0.0120

    0.056

    0.45

    0.304

    0.3674

    112.00

    30

    19/42

    0.305

    0.0120

    0.060

    0.45

    0.304

    0.3674

    112.00

    28

    7/36

    0.381

    0.0150

    0.071

    0.72

    0.484

    0.2320

    70.70

    28

    19/40

    0.406

    0.0160

    0.093

    0.72

    0.484

    0.2320

    70.70

    27

    7/35

    0.457

    0.0180

    0.111

    0.91

    0.614

    0.1824

    55.60

    26

    7/34

    0.483

    0.0190

    0.140

    1.15

    0.770

    0.146

    44.40

    26

    10/36

    0.553

    0.0218

    0.127

    1.15

    0.770

    0.146

    44.40

    26

    19/38

    0.508

    0.0200

    0.153

    1.15

    0.770

    0.146

    44.40

    24

    7/32

    0.610

    0.0240

    0.226

    1.83

    1.229

    0.091

    27.70

    24

    10/34

    0.584

    0.0230

    0.200

    1.83

    1.229

    0.091

    27.70

    24

    19/36

    0.610

    0.0240

    0.239

    1.83

    1.229

    0.091

    27.70

    24

    42/40

    0.584

    0.0230

    0.201

    1.83

    1.229

    0.091

    27.70

    22

    72/30

    0.762

    0.0300

    0.352

    2.90

    1.947

    0.057

    17.50

    22

    19/34

    0.787

    0.0310

    0.380

    2.90

    1.947

    0.057

    17.50

    22

    26/36

    0.762

    0.0300

    0.327

    2.90

    1.947

    0.057

    17.50

    20

    7/28

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    10/30

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    19/32

    0.940

    0.0370

    0.612

    4.62

    3.103

    0.036

    10.90

    20

    26/34

    0.914

    0.0360

    0.520

    4.62

    3.103

    0.036

    10.90

    20

    42/36

    0.914

    0.0360

    0.533

    4.62

    3.103

    0.036

    10.90

    18

    7/26

    1.220

    0.0480

    0.891

    7.34

    4.93

    0.023

    6.92

    18

    16/30

    1.200

    0.0472

    0.808

    7.34

    4.93

    0.023

    6.92

    18

    19/30

    1.240

    0.0488

    0.957

    7.34

    4.93

    0.023

    6.92

    18

    42/34

    1.200

    0.0472

    0.819

    7.34

    4.93

    0.023

    6.92

    18

    65/36

    1.200

    0.0472

    0.845

    7.34

    4.93

    0.023

    6.92

    16

    7/24

    1.520

    0.0598

    1.420

    11.68

    7.85

    0.014

    4.35

    16

    19/29

    1.470

    0.0579

    1.216

    11.68

    7.85

    0.014

    4.35

    16

    26/30

    1.500

    0.0591

    1.310

    11.68

    7.85

    0.014

    4.35

    16

    65/34

    1.500

    0.0591

    1.300

    11.68

    7.85

    0.014

    4.35

    16

    105/36

    1.500

    0.0591

    1.365

    11.68

    7.85

    0.014

    4.35

    14

    7/22

    1.850

    0.0728

    2.260

    18.60

    12.5

    0.009

    2.73

    14

    19/26

    1.850

    0.0728

    1.930

    18.60

    12.5

    0.009

    2.73

    14

    42/30

    1.850

    0.0728

    2.060

    18.60

    12.5

    0.009

    2.73

    14

    105/34

    1.850

    0.0728

    2.100

    18.60

    12.5

    0.009

    2.73

    12

    7/20

    2.440

    0.0961

    3.610

    29.56

    19.9

    0.0056

    1.71

    12

    19/25

    2.360

    0.0929

    3.070

    29.56

    19.9

    0.0056

    1.71

    12

    65/30

    2.410

    0.0949

    3.270

    29.56

    19.9

    0.0056

    1.71

    12

    165/34

    2.410

    0.0949

    3.300

    47.00

    31.6

    0.0056

    1.71

    10

    37/26

    2.920

    0.1150

    4.710

    47.00

    31.6

    0.0035

    1.08

    10

    65/28

    2.950

    0.1161

    5.230

    47.00

    31.6

    0.0035

    1.08

    10

    105/30

    2.950

    0.1161

    5.355

    47.00

    31.6

    0.0035

    1.08

    8

    49/25

    3.734

    0.1470

    8.007

    70.73

    47.5

    0.0022

    0.67

    8

    133/29

    3.734

    0.1470

    8.662

    76.52

    51.4

    0.0020

    0.61

    8

    655/36

    3.734

    0.1470

    8.479

    73.78

    49.6

    0.0020

    0.62

    6

    133/27

    4.674

    0.1840

    13.675

    120.75

    81.1

    0.0015

    0.47

    6

    259/30

    4.674

    0.1840

    13.209

    116.60

    78.4

    0.0013

    0.40

    6

    1050/36

    4.674

    0.1840

    13.388

    118.26

    79.5

    0.0013

    0.39

    4

    133/25

    5.898

    0.2322

    21.733

    191.99

    129.0

    0.0008

    0.24

    4

    259/26

    5.898

    0.2322

    26.629

    235.16

    158.0

    0.0007

    0.20

    4

    1666/36

    5.898

    0.2322

    21.242

    187.66

    126.1

    0.0008

    0.25

    2

    1333/23

    7.417

    0.2920

    34.648

    306.00

    205.6

    0.00049

    0.15

    2

    259/26

    7.417

    0.2920

    33.392

    294.87

    198.1

    0.00052

    0.16

    2

    665/30

    7.417

    0.2920

    33.915

    229.36

    201.2

    0.00052

    0.16

    2

    2646/36

    7.417

    0.2920

    33.737

    298.05

    200.3

    0.00052

    0.16

    1

    163.195.0

    8.331

    0.3280

    43.418

    383.35

    257.6

    0.00039

    0.12

    1

    172.508.0

    8.331

    0.3280

    42.322

    373.83

    251.2

    0.00043

    0.13

    1

    817/30

    8.331

    0.3280

    41.667

    367.73

    247.1

    0.00043

    0.13

    1

    2109/34

    8.331

    0.3280

    42.690

    376.94

    253.3

    0.00039

    0.12

    1/0

    133/21

    9.347

    0.3680

    55.098

    486.71

    327.1

    0.00031

    0.10

    1/0

    259/24

    9.347

    0.3680

    53.364

    471.39

    316.8

    0.00032

    0.10

    2/0

    133/20

    10.516

    0.4140

    69.458

    613.38

    412.2

    0.00025

    0.08

    2/0

    259/23

    10.516

    0.4140

    67.472

    595.88

    400.4

    0.00025

    0.08

    3/0

    259/22

    11.786

    0.4640

    83.230

    746.62

    501.7

    0.00020

    0.06

    3/0

    427/24

    11.786

    0.4640

    87.979

    777.12

    522.2

    0.00019

    0.06

    4/0

    259/21

    13.259

    0.5220

    107.297

    950.76

    638.9

    0.00016

    0.05

    4/0

    427/23

    13.259

    0.5220

    111.237

    982.21

    660.0

    0.00015

    0.05

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG мм дюймы Площадь сечения
    мм X мм
    грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Приведенный диаметр Минимальный вес Погонное сопротивление

     

    Тематики

    • кабели, провода...

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > American Wire Gauge System

  • 71 AWG

    1. американский сортамент проводов

     

    американский сортамент проводов
    Американская система классификации кабелей, в которой чем больше условный номер изделия, тем меньше диаметр проводника. В телекоммуникационных сетях, как правило, используются провода калибров 22AWG, 24AWG и 26AWG (табл. А-4).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    калибр проводника AWG
    -
    [Интент]

    Калибр провода
    AWG и МСМ

    Сечение, мм2

    Число проводов х диаметр 1го провода в мм

    38

    0,009

    7х0, 040

    36

    0,014

    7х0, 051

    34

    0,022

    7х0, 064

    32

    0,034/ 0,035

    7х0,080/ 19х0,051

    30

    0,057/ 0,059

    7х0,102/ 19х0,064

    28

    0,089/ 0,09

    7х0,127/ 19х0,080

    26

    0,141/ 0,155

    7х0,160/ 19х0,102

    24

    0,227/ 0,241

    7х0,203/ 19х0,127

    22

    0,355/ 0,382/ 0,5

    7х0,254/ 19х0,160/ 16х0,2

    20

    0,563/ 0,616/ 0,75

    7х0,320/ 19х0,203/ 24х0,2

    18

    0,897/ 0,963/ 1

    7х0,404/ 19х0,254/ 32х0,20

    16

    1,229/ 1,5

    19х0,287/ 30х0,25

    14

    1,941/ 2,5

    19х0,361/ 50х0,25

    12

    3,085/ 4

    19х0,455/ 56х0,30

    10

    5,26/ 6

    19х0,60/ 84х0,30

    8

    8,35/ 10

    19х0,75/ 80х0,40

    6

    13,29/ 16

    19х0,96/ 128х0,4

    4

    21,14/ 25

    19х1,19/ 200х0,40

    2

    33,61/ 35

    19х1,50/ 280х0,40

    1

    42,38/ 50

    19х1,686/ 400х0,40

    1/0

    53,47

    19х1,89

    2/0

    67,4

    19х2,126

    2/0

    70

    356х0,50

    3/0

    95

    727х0,39

    4/0

    107,17

    19х2,68

    250 МСМ

    127

    37х2,09

    300 МСМ

    152

    37х2,29

    350 МСМ

    177,3

    37х2,47

    400 МСМ

    202,7

    37х2,64

    500 МСМ

    253,4

    37х2,95

    600 МСМ

    304

    61х2,52

    650 МСМ

    329

    61х2,62

    700 МСМ

    354,7

    61х2,72

    750 МСМ

    380

    31х2,82

    800 МСМ

    405,4

    61х2,91

    900 МСМ

    456

    61х3,09

    1000 МСМ

    506,7

    61х3,25

    В этой системе меньшему числовому значению соответствует более толстый провод. Такое «перевёрнутое» обозначение диаметра сложилось исторически: проволоку изготавливают волочением, и номер (калибр) обозначает количество последовательных протягиваний через всё уменьшающиеся отверстия в волоке до получения нужного диаметра. Так, для получения проволоки AWG 24 диаметром около 0,5 мм заготовка AWG 0 диаметром свыше 8 мм протягивалась 24 раза. В калибрах AWG довольно часто обозначают не только размеры (диаметр, сечение) проводов, но и размеры прутков, стержней, трубок.
    [Википедия]

    5279

     

    Американский стандарт на калибры проводов (American Wire Gauge)

      Одножильные нелуженые медные провода Обозначение в стандарте AWG Номинальный диаметр Площадь сечения
    мм X мм Погонный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    10

    2.600

    0.1024

    5.309

    46.77

    31.43

    0.0033

    0.999

    11

    2.300

    0.0906

    4.155

    37.09

    24.92

    0.0041

    1.260

    12

    2.050

    0.0807

    3.301

    29.42

    19.77

    0.0052

    1.588

    13

    1.830

    0.0720

    2.630

    23.33

    15.68

    0.0066

    2.003

    14

    1.630

    0.0642

    2.087

    18.50

    12.43

    0.0083

    2.525

    15

    1.450

    0.0571

    1.651

    14.67

    9.858

    0.0104

    3.184

    16

    1.290

    0.0508

    1.307

    11.63

    7.818

    0.0132

    4.016

    17

    1.150

    0.0453

    1.039

    9.23

    6.200

    0.0166

    5.064

    18

    1.020

    0.0402

    0.817

    7.32

    4.917

    0.0209

    6.385

    19

    0.912

    0.0359

    0.653

    5.80

    3.899

    0.026

    8.051

    20

    0.813

    0.0320

    0.519

    4.60

    3.092

    0.033

    10.15

    21

    0.724

    0.0285

    0.412

    3.65

    2.452

    0.042

    12.80

    22

    0.643

    0.0253

    0.325

    2.89

    1.945

    0.053

    16.14

    23

    0.574

    0.0226

    0.259

    2.29

    1.542

    0.067

    20.36

    24

    0.511

    0.0201

    0.205

    1.82

    1.223

    0.084

    25.67

    25

    0.455

    0.0179

    0.163

    1.44

    0.9699

    0.106

    32.37

    26

    0.404

    0.0159

    0.128

    1.14

    0.7692

    0.134

    40.81

    27

    0.361

    0.0142

    0.102

    0.908

    0.6100

    0.169

    51.47

    28

    0.320

    0.0126

    0.080

    0.720

    0.4837

    0.213

    64.90

    29

    0.287

    0.0113

    0.065

    0.571

    0.3836

    0.268

    81.83

    30

    0.254

    0.0100

    0.051

    0.453

    0.3042

    0.339

    103.2

    31

    0.226

    0.0089

    0.040

    0.359

    0.2413

    0.427

    130.1

    32

    0.203

    0.0080

    0.032

    0.285

    0.1913

    0.538

    164.1

    33

    0.180

    0.0071

    0.025

    0.226

    0.1517

    0.679

    206.9

    34

    0.160

    0.0063

    0.020

    0.179

    0.1203

    0.856

    260.9

    35

    0.142

    0.0056

    0.016

    0.142

    0.09542

    1.086

    331.0

    36

    0.127

    0.0050

    0.013

    0.113

    0.07568

    1.361

    414.8

    37

    0.114

    0.0045

    0.010

    0.091

    0.06130

    1.680

    512.1

    38

    0.102

    0.0040

    0.008

    0.071

    0.04759

    2.128

    648.6

    39

    0.089

    0.0035

    0.006

    0.056

    0.03774

    2.781

    847.8

    40

    0.079

    0.0031

    0.005

    0.045

    0.02993

    3.543

    1080.0

    Обозначение в стандарте AWG мм дюймы Площадь сечения
    мм X мм грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Номинальный диаметр Погонный вес Погонное сопротивление

     

    Многожильные луженые медные провода

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG Приведенный диаметр Площадь сечения
    мм X мм
    Минимальный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    36

    7/44

    0.153

    0.0060

    0.014

    0.11

    0.076

    1.3609

    141.80

    34

    7/42

    0.191

    0.0075

    0.022

    0.18

    0.121

    0.8560

    260.90

    32

    7/40

    0.203

    0.0080

    0.034

    0.29

    0.195

    0.5384

    164.10

    32

    19/44

    0.229

    0.0090

    0.039

    0.29

    0.195

    0.5384

    164.10

    30

    7/38

    0.305

    0.0120

    0.056

    0.45

    0.304

    0.3674

    112.00

    30

    19/42

    0.305

    0.0120

    0.060

    0.45

    0.304

    0.3674

    112.00

    28

    7/36

    0.381

    0.0150

    0.071

    0.72

    0.484

    0.2320

    70.70

    28

    19/40

    0.406

    0.0160

    0.093

    0.72

    0.484

    0.2320

    70.70

    27

    7/35

    0.457

    0.0180

    0.111

    0.91

    0.614

    0.1824

    55.60

    26

    7/34

    0.483

    0.0190

    0.140

    1.15

    0.770

    0.146

    44.40

    26

    10/36

    0.553

    0.0218

    0.127

    1.15

    0.770

    0.146

    44.40

    26

    19/38

    0.508

    0.0200

    0.153

    1.15

    0.770

    0.146

    44.40

    24

    7/32

    0.610

    0.0240

    0.226

    1.83

    1.229

    0.091

    27.70

    24

    10/34

    0.584

    0.0230

    0.200

    1.83

    1.229

    0.091

    27.70

    24

    19/36

    0.610

    0.0240

    0.239

    1.83

    1.229

    0.091

    27.70

    24

    42/40

    0.584

    0.0230

    0.201

    1.83

    1.229

    0.091

    27.70

    22

    72/30

    0.762

    0.0300

    0.352

    2.90

    1.947

    0.057

    17.50

    22

    19/34

    0.787

    0.0310

    0.380

    2.90

    1.947

    0.057

    17.50

    22

    26/36

    0.762

    0.0300

    0.327

    2.90

    1.947

    0.057

    17.50

    20

    7/28

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    10/30

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    19/32

    0.940

    0.0370

    0.612

    4.62

    3.103

    0.036

    10.90

    20

    26/34

    0.914

    0.0360

    0.520

    4.62

    3.103

    0.036

    10.90

    20

    42/36

    0.914

    0.0360

    0.533

    4.62

    3.103

    0.036

    10.90

    18

    7/26

    1.220

    0.0480

    0.891

    7.34

    4.93

    0.023

    6.92

    18

    16/30

    1.200

    0.0472

    0.808

    7.34

    4.93

    0.023

    6.92

    18

    19/30

    1.240

    0.0488

    0.957

    7.34

    4.93

    0.023

    6.92

    18

    42/34

    1.200

    0.0472

    0.819

    7.34

    4.93

    0.023

    6.92

    18

    65/36

    1.200

    0.0472

    0.845

    7.34

    4.93

    0.023

    6.92

    16

    7/24

    1.520

    0.0598

    1.420

    11.68

    7.85

    0.014

    4.35

    16

    19/29

    1.470

    0.0579

    1.216

    11.68

    7.85

    0.014

    4.35

    16

    26/30

    1.500

    0.0591

    1.310

    11.68

    7.85

    0.014

    4.35

    16

    65/34

    1.500

    0.0591

    1.300

    11.68

    7.85

    0.014

    4.35

    16

    105/36

    1.500

    0.0591

    1.365

    11.68

    7.85

    0.014

    4.35

    14

    7/22

    1.850

    0.0728

    2.260

    18.60

    12.5

    0.009

    2.73

    14

    19/26

    1.850

    0.0728

    1.930

    18.60

    12.5

    0.009

    2.73

    14

    42/30

    1.850

    0.0728

    2.060

    18.60

    12.5

    0.009

    2.73

    14

    105/34

    1.850

    0.0728

    2.100

    18.60

    12.5

    0.009

    2.73

    12

    7/20

    2.440

    0.0961

    3.610

    29.56

    19.9

    0.0056

    1.71

    12

    19/25

    2.360

    0.0929

    3.070

    29.56

    19.9

    0.0056

    1.71

    12

    65/30

    2.410

    0.0949

    3.270

    29.56

    19.9

    0.0056

    1.71

    12

    165/34

    2.410

    0.0949

    3.300

    47.00

    31.6

    0.0056

    1.71

    10

    37/26

    2.920

    0.1150

    4.710

    47.00

    31.6

    0.0035

    1.08

    10

    65/28

    2.950

    0.1161

    5.230

    47.00

    31.6

    0.0035

    1.08

    10

    105/30

    2.950

    0.1161

    5.355

    47.00

    31.6

    0.0035

    1.08

    8

    49/25

    3.734

    0.1470

    8.007

    70.73

    47.5

    0.0022

    0.67

    8

    133/29

    3.734

    0.1470

    8.662

    76.52

    51.4

    0.0020

    0.61

    8

    655/36

    3.734

    0.1470

    8.479

    73.78

    49.6

    0.0020

    0.62

    6

    133/27

    4.674

    0.1840

    13.675

    120.75

    81.1

    0.0015

    0.47

    6

    259/30

    4.674

    0.1840

    13.209

    116.60

    78.4

    0.0013

    0.40

    6

    1050/36

    4.674

    0.1840

    13.388

    118.26

    79.5

    0.0013

    0.39

    4

    133/25

    5.898

    0.2322

    21.733

    191.99

    129.0

    0.0008

    0.24

    4

    259/26

    5.898

    0.2322

    26.629

    235.16

    158.0

    0.0007

    0.20

    4

    1666/36

    5.898

    0.2322

    21.242

    187.66

    126.1

    0.0008

    0.25

    2

    1333/23

    7.417

    0.2920

    34.648

    306.00

    205.6

    0.00049

    0.15

    2

    259/26

    7.417

    0.2920

    33.392

    294.87

    198.1

    0.00052

    0.16

    2

    665/30

    7.417

    0.2920

    33.915

    229.36

    201.2

    0.00052

    0.16

    2

    2646/36

    7.417

    0.2920

    33.737

    298.05

    200.3

    0.00052

    0.16

    1

    163.195.0

    8.331

    0.3280

    43.418

    383.35

    257.6

    0.00039

    0.12

    1

    172.508.0

    8.331

    0.3280

    42.322

    373.83

    251.2

    0.00043

    0.13

    1

    817/30

    8.331

    0.3280

    41.667

    367.73

    247.1

    0.00043

    0.13

    1

    2109/34

    8.331

    0.3280

    42.690

    376.94

    253.3

    0.00039

    0.12

    1/0

    133/21

    9.347

    0.3680

    55.098

    486.71

    327.1

    0.00031

    0.10

    1/0

    259/24

    9.347

    0.3680

    53.364

    471.39

    316.8

    0.00032

    0.10

    2/0

    133/20

    10.516

    0.4140

    69.458

    613.38

    412.2

    0.00025

    0.08

    2/0

    259/23

    10.516

    0.4140

    67.472

    595.88

    400.4

    0.00025

    0.08

    3/0

    259/22

    11.786

    0.4640

    83.230

    746.62

    501.7

    0.00020

    0.06

    3/0

    427/24

    11.786

    0.4640

    87.979

    777.12

    522.2

    0.00019

    0.06

    4/0

    259/21

    13.259

    0.5220

    107.297

    950.76

    638.9

    0.00016

    0.05

    4/0

    427/23

    13.259

    0.5220

    111.237

    982.21

    660.0

    0.00015

    0.05

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG мм дюймы Площадь сечения
    мм X мм
    грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Приведенный диаметр Минимальный вес Погонное сопротивление

     

    Тематики

    • кабели, провода...

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > AWG

  • 72 B and S gage

    1. американский сортамент проводов

     

    американский сортамент проводов
    Американская система классификации кабелей, в которой чем больше условный номер изделия, тем меньше диаметр проводника. В телекоммуникационных сетях, как правило, используются провода калибров 22AWG, 24AWG и 26AWG (табл. А-4).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    калибр проводника AWG
    -
    [Интент]

    Калибр провода
    AWG и МСМ

    Сечение, мм2

    Число проводов х диаметр 1го провода в мм

    38

    0,009

    7х0, 040

    36

    0,014

    7х0, 051

    34

    0,022

    7х0, 064

    32

    0,034/ 0,035

    7х0,080/ 19х0,051

    30

    0,057/ 0,059

    7х0,102/ 19х0,064

    28

    0,089/ 0,09

    7х0,127/ 19х0,080

    26

    0,141/ 0,155

    7х0,160/ 19х0,102

    24

    0,227/ 0,241

    7х0,203/ 19х0,127

    22

    0,355/ 0,382/ 0,5

    7х0,254/ 19х0,160/ 16х0,2

    20

    0,563/ 0,616/ 0,75

    7х0,320/ 19х0,203/ 24х0,2

    18

    0,897/ 0,963/ 1

    7х0,404/ 19х0,254/ 32х0,20

    16

    1,229/ 1,5

    19х0,287/ 30х0,25

    14

    1,941/ 2,5

    19х0,361/ 50х0,25

    12

    3,085/ 4

    19х0,455/ 56х0,30

    10

    5,26/ 6

    19х0,60/ 84х0,30

    8

    8,35/ 10

    19х0,75/ 80х0,40

    6

    13,29/ 16

    19х0,96/ 128х0,4

    4

    21,14/ 25

    19х1,19/ 200х0,40

    2

    33,61/ 35

    19х1,50/ 280х0,40

    1

    42,38/ 50

    19х1,686/ 400х0,40

    1/0

    53,47

    19х1,89

    2/0

    67,4

    19х2,126

    2/0

    70

    356х0,50

    3/0

    95

    727х0,39

    4/0

    107,17

    19х2,68

    250 МСМ

    127

    37х2,09

    300 МСМ

    152

    37х2,29

    350 МСМ

    177,3

    37х2,47

    400 МСМ

    202,7

    37х2,64

    500 МСМ

    253,4

    37х2,95

    600 МСМ

    304

    61х2,52

    650 МСМ

    329

    61х2,62

    700 МСМ

    354,7

    61х2,72

    750 МСМ

    380

    31х2,82

    800 МСМ

    405,4

    61х2,91

    900 МСМ

    456

    61х3,09

    1000 МСМ

    506,7

    61х3,25

    В этой системе меньшему числовому значению соответствует более толстый провод. Такое «перевёрнутое» обозначение диаметра сложилось исторически: проволоку изготавливают волочением, и номер (калибр) обозначает количество последовательных протягиваний через всё уменьшающиеся отверстия в волоке до получения нужного диаметра. Так, для получения проволоки AWG 24 диаметром около 0,5 мм заготовка AWG 0 диаметром свыше 8 мм протягивалась 24 раза. В калибрах AWG довольно часто обозначают не только размеры (диаметр, сечение) проводов, но и размеры прутков, стержней, трубок.
    [Википедия]

    5279

     

    Американский стандарт на калибры проводов (American Wire Gauge)

      Одножильные нелуженые медные провода Обозначение в стандарте AWG Номинальный диаметр Площадь сечения
    мм X мм Погонный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    10

    2.600

    0.1024

    5.309

    46.77

    31.43

    0.0033

    0.999

    11

    2.300

    0.0906

    4.155

    37.09

    24.92

    0.0041

    1.260

    12

    2.050

    0.0807

    3.301

    29.42

    19.77

    0.0052

    1.588

    13

    1.830

    0.0720

    2.630

    23.33

    15.68

    0.0066

    2.003

    14

    1.630

    0.0642

    2.087

    18.50

    12.43

    0.0083

    2.525

    15

    1.450

    0.0571

    1.651

    14.67

    9.858

    0.0104

    3.184

    16

    1.290

    0.0508

    1.307

    11.63

    7.818

    0.0132

    4.016

    17

    1.150

    0.0453

    1.039

    9.23

    6.200

    0.0166

    5.064

    18

    1.020

    0.0402

    0.817

    7.32

    4.917

    0.0209

    6.385

    19

    0.912

    0.0359

    0.653

    5.80

    3.899

    0.026

    8.051

    20

    0.813

    0.0320

    0.519

    4.60

    3.092

    0.033

    10.15

    21

    0.724

    0.0285

    0.412

    3.65

    2.452

    0.042

    12.80

    22

    0.643

    0.0253

    0.325

    2.89

    1.945

    0.053

    16.14

    23

    0.574

    0.0226

    0.259

    2.29

    1.542

    0.067

    20.36

    24

    0.511

    0.0201

    0.205

    1.82

    1.223

    0.084

    25.67

    25

    0.455

    0.0179

    0.163

    1.44

    0.9699

    0.106

    32.37

    26

    0.404

    0.0159

    0.128

    1.14

    0.7692

    0.134

    40.81

    27

    0.361

    0.0142

    0.102

    0.908

    0.6100

    0.169

    51.47

    28

    0.320

    0.0126

    0.080

    0.720

    0.4837

    0.213

    64.90

    29

    0.287

    0.0113

    0.065

    0.571

    0.3836

    0.268

    81.83

    30

    0.254

    0.0100

    0.051

    0.453

    0.3042

    0.339

    103.2

    31

    0.226

    0.0089

    0.040

    0.359

    0.2413

    0.427

    130.1

    32

    0.203

    0.0080

    0.032

    0.285

    0.1913

    0.538

    164.1

    33

    0.180

    0.0071

    0.025

    0.226

    0.1517

    0.679

    206.9

    34

    0.160

    0.0063

    0.020

    0.179

    0.1203

    0.856

    260.9

    35

    0.142

    0.0056

    0.016

    0.142

    0.09542

    1.086

    331.0

    36

    0.127

    0.0050

    0.013

    0.113

    0.07568

    1.361

    414.8

    37

    0.114

    0.0045

    0.010

    0.091

    0.06130

    1.680

    512.1

    38

    0.102

    0.0040

    0.008

    0.071

    0.04759

    2.128

    648.6

    39

    0.089

    0.0035

    0.006

    0.056

    0.03774

    2.781

    847.8

    40

    0.079

    0.0031

    0.005

    0.045

    0.02993

    3.543

    1080.0

    Обозначение в стандарте AWG мм дюймы Площадь сечения
    мм X мм грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Номинальный диаметр Погонный вес Погонное сопротивление

     

    Многожильные луженые медные провода

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG Приведенный диаметр Площадь сечения
    мм X мм
    Минимальный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    36

    7/44

    0.153

    0.0060

    0.014

    0.11

    0.076

    1.3609

    141.80

    34

    7/42

    0.191

    0.0075

    0.022

    0.18

    0.121

    0.8560

    260.90

    32

    7/40

    0.203

    0.0080

    0.034

    0.29

    0.195

    0.5384

    164.10

    32

    19/44

    0.229

    0.0090

    0.039

    0.29

    0.195

    0.5384

    164.10

    30

    7/38

    0.305

    0.0120

    0.056

    0.45

    0.304

    0.3674

    112.00

    30

    19/42

    0.305

    0.0120

    0.060

    0.45

    0.304

    0.3674

    112.00

    28

    7/36

    0.381

    0.0150

    0.071

    0.72

    0.484

    0.2320

    70.70

    28

    19/40

    0.406

    0.0160

    0.093

    0.72

    0.484

    0.2320

    70.70

    27

    7/35

    0.457

    0.0180

    0.111

    0.91

    0.614

    0.1824

    55.60

    26

    7/34

    0.483

    0.0190

    0.140

    1.15

    0.770

    0.146

    44.40

    26

    10/36

    0.553

    0.0218

    0.127

    1.15

    0.770

    0.146

    44.40

    26

    19/38

    0.508

    0.0200

    0.153

    1.15

    0.770

    0.146

    44.40

    24

    7/32

    0.610

    0.0240

    0.226

    1.83

    1.229

    0.091

    27.70

    24

    10/34

    0.584

    0.0230

    0.200

    1.83

    1.229

    0.091

    27.70

    24

    19/36

    0.610

    0.0240

    0.239

    1.83

    1.229

    0.091

    27.70

    24

    42/40

    0.584

    0.0230

    0.201

    1.83

    1.229

    0.091

    27.70

    22

    72/30

    0.762

    0.0300

    0.352

    2.90

    1.947

    0.057

    17.50

    22

    19/34

    0.787

    0.0310

    0.380

    2.90

    1.947

    0.057

    17.50

    22

    26/36

    0.762

    0.0300

    0.327

    2.90

    1.947

    0.057

    17.50

    20

    7/28

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    10/30

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    19/32

    0.940

    0.0370

    0.612

    4.62

    3.103

    0.036

    10.90

    20

    26/34

    0.914

    0.0360

    0.520

    4.62

    3.103

    0.036

    10.90

    20

    42/36

    0.914

    0.0360

    0.533

    4.62

    3.103

    0.036

    10.90

    18

    7/26

    1.220

    0.0480

    0.891

    7.34

    4.93

    0.023

    6.92

    18

    16/30

    1.200

    0.0472

    0.808

    7.34

    4.93

    0.023

    6.92

    18

    19/30

    1.240

    0.0488

    0.957

    7.34

    4.93

    0.023

    6.92

    18

    42/34

    1.200

    0.0472

    0.819

    7.34

    4.93

    0.023

    6.92

    18

    65/36

    1.200

    0.0472

    0.845

    7.34

    4.93

    0.023

    6.92

    16

    7/24

    1.520

    0.0598

    1.420

    11.68

    7.85

    0.014

    4.35

    16

    19/29

    1.470

    0.0579

    1.216

    11.68

    7.85

    0.014

    4.35

    16

    26/30

    1.500

    0.0591

    1.310

    11.68

    7.85

    0.014

    4.35

    16

    65/34

    1.500

    0.0591

    1.300

    11.68

    7.85

    0.014

    4.35

    16

    105/36

    1.500

    0.0591

    1.365

    11.68

    7.85

    0.014

    4.35

    14

    7/22

    1.850

    0.0728

    2.260

    18.60

    12.5

    0.009

    2.73

    14

    19/26

    1.850

    0.0728

    1.930

    18.60

    12.5

    0.009

    2.73

    14

    42/30

    1.850

    0.0728

    2.060

    18.60

    12.5

    0.009

    2.73

    14

    105/34

    1.850

    0.0728

    2.100

    18.60

    12.5

    0.009

    2.73

    12

    7/20

    2.440

    0.0961

    3.610

    29.56

    19.9

    0.0056

    1.71

    12

    19/25

    2.360

    0.0929

    3.070

    29.56

    19.9

    0.0056

    1.71

    12

    65/30

    2.410

    0.0949

    3.270

    29.56

    19.9

    0.0056

    1.71

    12

    165/34

    2.410

    0.0949

    3.300

    47.00

    31.6

    0.0056

    1.71

    10

    37/26

    2.920

    0.1150

    4.710

    47.00

    31.6

    0.0035

    1.08

    10

    65/28

    2.950

    0.1161

    5.230

    47.00

    31.6

    0.0035

    1.08

    10

    105/30

    2.950

    0.1161

    5.355

    47.00

    31.6

    0.0035

    1.08

    8

    49/25

    3.734

    0.1470

    8.007

    70.73

    47.5

    0.0022

    0.67

    8

    133/29

    3.734

    0.1470

    8.662

    76.52

    51.4

    0.0020

    0.61

    8

    655/36

    3.734

    0.1470

    8.479

    73.78

    49.6

    0.0020

    0.62

    6

    133/27

    4.674

    0.1840

    13.675

    120.75

    81.1

    0.0015

    0.47

    6

    259/30

    4.674

    0.1840

    13.209

    116.60

    78.4

    0.0013

    0.40

    6

    1050/36

    4.674

    0.1840

    13.388

    118.26

    79.5

    0.0013

    0.39

    4

    133/25

    5.898

    0.2322

    21.733

    191.99

    129.0

    0.0008

    0.24

    4

    259/26

    5.898

    0.2322

    26.629

    235.16

    158.0

    0.0007

    0.20

    4

    1666/36

    5.898

    0.2322

    21.242

    187.66

    126.1

    0.0008

    0.25

    2

    1333/23

    7.417

    0.2920

    34.648

    306.00

    205.6

    0.00049

    0.15

    2

    259/26

    7.417

    0.2920

    33.392

    294.87

    198.1

    0.00052

    0.16

    2

    665/30

    7.417

    0.2920

    33.915

    229.36

    201.2

    0.00052

    0.16

    2

    2646/36

    7.417

    0.2920

    33.737

    298.05

    200.3

    0.00052

    0.16

    1

    163.195.0

    8.331

    0.3280

    43.418

    383.35

    257.6

    0.00039

    0.12

    1

    172.508.0

    8.331

    0.3280

    42.322

    373.83

    251.2

    0.00043

    0.13

    1

    817/30

    8.331

    0.3280

    41.667

    367.73

    247.1

    0.00043

    0.13

    1

    2109/34

    8.331

    0.3280

    42.690

    376.94

    253.3

    0.00039

    0.12

    1/0

    133/21

    9.347

    0.3680

    55.098

    486.71

    327.1

    0.00031

    0.10

    1/0

    259/24

    9.347

    0.3680

    53.364

    471.39

    316.8

    0.00032

    0.10

    2/0

    133/20

    10.516

    0.4140

    69.458

    613.38

    412.2

    0.00025

    0.08

    2/0

    259/23

    10.516

    0.4140

    67.472

    595.88

    400.4

    0.00025

    0.08

    3/0

    259/22

    11.786

    0.4640

    83.230

    746.62

    501.7

    0.00020

    0.06

    3/0

    427/24

    11.786

    0.4640

    87.979

    777.12

    522.2

    0.00019

    0.06

    4/0

    259/21

    13.259

    0.5220

    107.297

    950.76

    638.9

    0.00016

    0.05

    4/0

    427/23

    13.259

    0.5220

    111.237

    982.21

    660.0

    0.00015

    0.05

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG мм дюймы Площадь сечения
    мм X мм
    грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Приведенный диаметр Минимальный вес Погонное сопротивление

     

    Тематики

    • кабели, провода...

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > B and S gage

  • 73 Brown and Sharp gage

    1. американский сортамент проводов

     

    американский сортамент проводов
    Американская система классификации кабелей, в которой чем больше условный номер изделия, тем меньше диаметр проводника. В телекоммуникационных сетях, как правило, используются провода калибров 22AWG, 24AWG и 26AWG (табл. А-4).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    калибр проводника AWG
    -
    [Интент]

    Калибр провода
    AWG и МСМ

    Сечение, мм2

    Число проводов х диаметр 1го провода в мм

    38

    0,009

    7х0, 040

    36

    0,014

    7х0, 051

    34

    0,022

    7х0, 064

    32

    0,034/ 0,035

    7х0,080/ 19х0,051

    30

    0,057/ 0,059

    7х0,102/ 19х0,064

    28

    0,089/ 0,09

    7х0,127/ 19х0,080

    26

    0,141/ 0,155

    7х0,160/ 19х0,102

    24

    0,227/ 0,241

    7х0,203/ 19х0,127

    22

    0,355/ 0,382/ 0,5

    7х0,254/ 19х0,160/ 16х0,2

    20

    0,563/ 0,616/ 0,75

    7х0,320/ 19х0,203/ 24х0,2

    18

    0,897/ 0,963/ 1

    7х0,404/ 19х0,254/ 32х0,20

    16

    1,229/ 1,5

    19х0,287/ 30х0,25

    14

    1,941/ 2,5

    19х0,361/ 50х0,25

    12

    3,085/ 4

    19х0,455/ 56х0,30

    10

    5,26/ 6

    19х0,60/ 84х0,30

    8

    8,35/ 10

    19х0,75/ 80х0,40

    6

    13,29/ 16

    19х0,96/ 128х0,4

    4

    21,14/ 25

    19х1,19/ 200х0,40

    2

    33,61/ 35

    19х1,50/ 280х0,40

    1

    42,38/ 50

    19х1,686/ 400х0,40

    1/0

    53,47

    19х1,89

    2/0

    67,4

    19х2,126

    2/0

    70

    356х0,50

    3/0

    95

    727х0,39

    4/0

    107,17

    19х2,68

    250 МСМ

    127

    37х2,09

    300 МСМ

    152

    37х2,29

    350 МСМ

    177,3

    37х2,47

    400 МСМ

    202,7

    37х2,64

    500 МСМ

    253,4

    37х2,95

    600 МСМ

    304

    61х2,52

    650 МСМ

    329

    61х2,62

    700 МСМ

    354,7

    61х2,72

    750 МСМ

    380

    31х2,82

    800 МСМ

    405,4

    61х2,91

    900 МСМ

    456

    61х3,09

    1000 МСМ

    506,7

    61х3,25

    В этой системе меньшему числовому значению соответствует более толстый провод. Такое «перевёрнутое» обозначение диаметра сложилось исторически: проволоку изготавливают волочением, и номер (калибр) обозначает количество последовательных протягиваний через всё уменьшающиеся отверстия в волоке до получения нужного диаметра. Так, для получения проволоки AWG 24 диаметром около 0,5 мм заготовка AWG 0 диаметром свыше 8 мм протягивалась 24 раза. В калибрах AWG довольно часто обозначают не только размеры (диаметр, сечение) проводов, но и размеры прутков, стержней, трубок.
    [Википедия]

    5279

     

    Американский стандарт на калибры проводов (American Wire Gauge)

      Одножильные нелуженые медные провода Обозначение в стандарте AWG Номинальный диаметр Площадь сечения
    мм X мм Погонный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    10

    2.600

    0.1024

    5.309

    46.77

    31.43

    0.0033

    0.999

    11

    2.300

    0.0906

    4.155

    37.09

    24.92

    0.0041

    1.260

    12

    2.050

    0.0807

    3.301

    29.42

    19.77

    0.0052

    1.588

    13

    1.830

    0.0720

    2.630

    23.33

    15.68

    0.0066

    2.003

    14

    1.630

    0.0642

    2.087

    18.50

    12.43

    0.0083

    2.525

    15

    1.450

    0.0571

    1.651

    14.67

    9.858

    0.0104

    3.184

    16

    1.290

    0.0508

    1.307

    11.63

    7.818

    0.0132

    4.016

    17

    1.150

    0.0453

    1.039

    9.23

    6.200

    0.0166

    5.064

    18

    1.020

    0.0402

    0.817

    7.32

    4.917

    0.0209

    6.385

    19

    0.912

    0.0359

    0.653

    5.80

    3.899

    0.026

    8.051

    20

    0.813

    0.0320

    0.519

    4.60

    3.092

    0.033

    10.15

    21

    0.724

    0.0285

    0.412

    3.65

    2.452

    0.042

    12.80

    22

    0.643

    0.0253

    0.325

    2.89

    1.945

    0.053

    16.14

    23

    0.574

    0.0226

    0.259

    2.29

    1.542

    0.067

    20.36

    24

    0.511

    0.0201

    0.205

    1.82

    1.223

    0.084

    25.67

    25

    0.455

    0.0179

    0.163

    1.44

    0.9699

    0.106

    32.37

    26

    0.404

    0.0159

    0.128

    1.14

    0.7692

    0.134

    40.81

    27

    0.361

    0.0142

    0.102

    0.908

    0.6100

    0.169

    51.47

    28

    0.320

    0.0126

    0.080

    0.720

    0.4837

    0.213

    64.90

    29

    0.287

    0.0113

    0.065

    0.571

    0.3836

    0.268

    81.83

    30

    0.254

    0.0100

    0.051

    0.453

    0.3042

    0.339

    103.2

    31

    0.226

    0.0089

    0.040

    0.359

    0.2413

    0.427

    130.1

    32

    0.203

    0.0080

    0.032

    0.285

    0.1913

    0.538

    164.1

    33

    0.180

    0.0071

    0.025

    0.226

    0.1517

    0.679

    206.9

    34

    0.160

    0.0063

    0.020

    0.179

    0.1203

    0.856

    260.9

    35

    0.142

    0.0056

    0.016

    0.142

    0.09542

    1.086

    331.0

    36

    0.127

    0.0050

    0.013

    0.113

    0.07568

    1.361

    414.8

    37

    0.114

    0.0045

    0.010

    0.091

    0.06130

    1.680

    512.1

    38

    0.102

    0.0040

    0.008

    0.071

    0.04759

    2.128

    648.6

    39

    0.089

    0.0035

    0.006

    0.056

    0.03774

    2.781

    847.8

    40

    0.079

    0.0031

    0.005

    0.045

    0.02993

    3.543

    1080.0

    Обозначение в стандарте AWG мм дюймы Площадь сечения
    мм X мм грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Номинальный диаметр Погонный вес Погонное сопротивление

     

    Многожильные луженые медные провода

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG Приведенный диаметр Площадь сечения
    мм X мм
    Минимальный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    36

    7/44

    0.153

    0.0060

    0.014

    0.11

    0.076

    1.3609

    141.80

    34

    7/42

    0.191

    0.0075

    0.022

    0.18

    0.121

    0.8560

    260.90

    32

    7/40

    0.203

    0.0080

    0.034

    0.29

    0.195

    0.5384

    164.10

    32

    19/44

    0.229

    0.0090

    0.039

    0.29

    0.195

    0.5384

    164.10

    30

    7/38

    0.305

    0.0120

    0.056

    0.45

    0.304

    0.3674

    112.00

    30

    19/42

    0.305

    0.0120

    0.060

    0.45

    0.304

    0.3674

    112.00

    28

    7/36

    0.381

    0.0150

    0.071

    0.72

    0.484

    0.2320

    70.70

    28

    19/40

    0.406

    0.0160

    0.093

    0.72

    0.484

    0.2320

    70.70

    27

    7/35

    0.457

    0.0180

    0.111

    0.91

    0.614

    0.1824

    55.60

    26

    7/34

    0.483

    0.0190

    0.140

    1.15

    0.770

    0.146

    44.40

    26

    10/36

    0.553

    0.0218

    0.127

    1.15

    0.770

    0.146

    44.40

    26

    19/38

    0.508

    0.0200

    0.153

    1.15

    0.770

    0.146

    44.40

    24

    7/32

    0.610

    0.0240

    0.226

    1.83

    1.229

    0.091

    27.70

    24

    10/34

    0.584

    0.0230

    0.200

    1.83

    1.229

    0.091

    27.70

    24

    19/36

    0.610

    0.0240

    0.239

    1.83

    1.229

    0.091

    27.70

    24

    42/40

    0.584

    0.0230

    0.201

    1.83

    1.229

    0.091

    27.70

    22

    72/30

    0.762

    0.0300

    0.352

    2.90

    1.947

    0.057

    17.50

    22

    19/34

    0.787

    0.0310

    0.380

    2.90

    1.947

    0.057

    17.50

    22

    26/36

    0.762

    0.0300

    0.327

    2.90

    1.947

    0.057

    17.50

    20

    7/28

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    10/30

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    19/32

    0.940

    0.0370

    0.612

    4.62

    3.103

    0.036

    10.90

    20

    26/34

    0.914

    0.0360

    0.520

    4.62

    3.103

    0.036

    10.90

    20

    42/36

    0.914

    0.0360

    0.533

    4.62

    3.103

    0.036

    10.90

    18

    7/26

    1.220

    0.0480

    0.891

    7.34

    4.93

    0.023

    6.92

    18

    16/30

    1.200

    0.0472

    0.808

    7.34

    4.93

    0.023

    6.92

    18

    19/30

    1.240

    0.0488

    0.957

    7.34

    4.93

    0.023

    6.92

    18

    42/34

    1.200

    0.0472

    0.819

    7.34

    4.93

    0.023

    6.92

    18

    65/36

    1.200

    0.0472

    0.845

    7.34

    4.93

    0.023

    6.92

    16

    7/24

    1.520

    0.0598

    1.420

    11.68

    7.85

    0.014

    4.35

    16

    19/29

    1.470

    0.0579

    1.216

    11.68

    7.85

    0.014

    4.35

    16

    26/30

    1.500

    0.0591

    1.310

    11.68

    7.85

    0.014

    4.35

    16

    65/34

    1.500

    0.0591

    1.300

    11.68

    7.85

    0.014

    4.35

    16

    105/36

    1.500

    0.0591

    1.365

    11.68

    7.85

    0.014

    4.35

    14

    7/22

    1.850

    0.0728

    2.260

    18.60

    12.5

    0.009

    2.73

    14

    19/26

    1.850

    0.0728

    1.930

    18.60

    12.5

    0.009

    2.73

    14

    42/30

    1.850

    0.0728

    2.060

    18.60

    12.5

    0.009

    2.73

    14

    105/34

    1.850

    0.0728

    2.100

    18.60

    12.5

    0.009

    2.73

    12

    7/20

    2.440

    0.0961

    3.610

    29.56

    19.9

    0.0056

    1.71

    12

    19/25

    2.360

    0.0929

    3.070

    29.56

    19.9

    0.0056

    1.71

    12

    65/30

    2.410

    0.0949

    3.270

    29.56

    19.9

    0.0056

    1.71

    12

    165/34

    2.410

    0.0949

    3.300

    47.00

    31.6

    0.0056

    1.71

    10

    37/26

    2.920

    0.1150

    4.710

    47.00

    31.6

    0.0035

    1.08

    10

    65/28

    2.950

    0.1161

    5.230

    47.00

    31.6

    0.0035

    1.08

    10

    105/30

    2.950

    0.1161

    5.355

    47.00

    31.6

    0.0035

    1.08

    8

    49/25

    3.734

    0.1470

    8.007

    70.73

    47.5

    0.0022

    0.67

    8

    133/29

    3.734

    0.1470

    8.662

    76.52

    51.4

    0.0020

    0.61

    8

    655/36

    3.734

    0.1470

    8.479

    73.78

    49.6

    0.0020

    0.62

    6

    133/27

    4.674

    0.1840

    13.675

    120.75

    81.1

    0.0015

    0.47

    6

    259/30

    4.674

    0.1840

    13.209

    116.60

    78.4

    0.0013

    0.40

    6

    1050/36

    4.674

    0.1840

    13.388

    118.26

    79.5

    0.0013

    0.39

    4

    133/25

    5.898

    0.2322

    21.733

    191.99

    129.0

    0.0008

    0.24

    4

    259/26

    5.898

    0.2322

    26.629

    235.16

    158.0

    0.0007

    0.20

    4

    1666/36

    5.898

    0.2322

    21.242

    187.66

    126.1

    0.0008

    0.25

    2

    1333/23

    7.417

    0.2920

    34.648

    306.00

    205.6

    0.00049

    0.15

    2

    259/26

    7.417

    0.2920

    33.392

    294.87

    198.1

    0.00052

    0.16

    2

    665/30

    7.417

    0.2920

    33.915

    229.36

    201.2

    0.00052

    0.16

    2

    2646/36

    7.417

    0.2920

    33.737

    298.05

    200.3

    0.00052

    0.16

    1

    163.195.0

    8.331

    0.3280

    43.418

    383.35

    257.6

    0.00039

    0.12

    1

    172.508.0

    8.331

    0.3280

    42.322

    373.83

    251.2

    0.00043

    0.13

    1

    817/30

    8.331

    0.3280

    41.667

    367.73

    247.1

    0.00043

    0.13

    1

    2109/34

    8.331

    0.3280

    42.690

    376.94

    253.3

    0.00039

    0.12

    1/0

    133/21

    9.347

    0.3680

    55.098

    486.71

    327.1

    0.00031

    0.10

    1/0

    259/24

    9.347

    0.3680

    53.364

    471.39

    316.8

    0.00032

    0.10

    2/0

    133/20

    10.516

    0.4140

    69.458

    613.38

    412.2

    0.00025

    0.08

    2/0

    259/23

    10.516

    0.4140

    67.472

    595.88

    400.4

    0.00025

    0.08

    3/0

    259/22

    11.786

    0.4640

    83.230

    746.62

    501.7

    0.00020

    0.06

    3/0

    427/24

    11.786

    0.4640

    87.979

    777.12

    522.2

    0.00019

    0.06

    4/0

    259/21

    13.259

    0.5220

    107.297

    950.76

    638.9

    0.00016

    0.05

    4/0

    427/23

    13.259

    0.5220

    111.237

    982.21

    660.0

    0.00015

    0.05

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG мм дюймы Площадь сечения
    мм X мм
    грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Приведенный диаметр Минимальный вес Погонное сопротивление

     

    Тематики

    • кабели, провода...

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > Brown and Sharp gage

  • 74 Gauge

    1. прибор для измерения жидкости и газов
    2. номер сита
    3. грубый измерительный прибор
    4. американский сортамент проводов

     

    американский сортамент проводов
    Американская система классификации кабелей, в которой чем больше условный номер изделия, тем меньше диаметр проводника. В телекоммуникационных сетях, как правило, используются провода калибров 22AWG, 24AWG и 26AWG (табл. А-4).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    калибр проводника AWG
    -
    [Интент]

    Калибр провода
    AWG и МСМ

    Сечение, мм2

    Число проводов х диаметр 1го провода в мм

    38

    0,009

    7х0, 040

    36

    0,014

    7х0, 051

    34

    0,022

    7х0, 064

    32

    0,034/ 0,035

    7х0,080/ 19х0,051

    30

    0,057/ 0,059

    7х0,102/ 19х0,064

    28

    0,089/ 0,09

    7х0,127/ 19х0,080

    26

    0,141/ 0,155

    7х0,160/ 19х0,102

    24

    0,227/ 0,241

    7х0,203/ 19х0,127

    22

    0,355/ 0,382/ 0,5

    7х0,254/ 19х0,160/ 16х0,2

    20

    0,563/ 0,616/ 0,75

    7х0,320/ 19х0,203/ 24х0,2

    18

    0,897/ 0,963/ 1

    7х0,404/ 19х0,254/ 32х0,20

    16

    1,229/ 1,5

    19х0,287/ 30х0,25

    14

    1,941/ 2,5

    19х0,361/ 50х0,25

    12

    3,085/ 4

    19х0,455/ 56х0,30

    10

    5,26/ 6

    19х0,60/ 84х0,30

    8

    8,35/ 10

    19х0,75/ 80х0,40

    6

    13,29/ 16

    19х0,96/ 128х0,4

    4

    21,14/ 25

    19х1,19/ 200х0,40

    2

    33,61/ 35

    19х1,50/ 280х0,40

    1

    42,38/ 50

    19х1,686/ 400х0,40

    1/0

    53,47

    19х1,89

    2/0

    67,4

    19х2,126

    2/0

    70

    356х0,50

    3/0

    95

    727х0,39

    4/0

    107,17

    19х2,68

    250 МСМ

    127

    37х2,09

    300 МСМ

    152

    37х2,29

    350 МСМ

    177,3

    37х2,47

    400 МСМ

    202,7

    37х2,64

    500 МСМ

    253,4

    37х2,95

    600 МСМ

    304

    61х2,52

    650 МСМ

    329

    61х2,62

    700 МСМ

    354,7

    61х2,72

    750 МСМ

    380

    31х2,82

    800 МСМ

    405,4

    61х2,91

    900 МСМ

    456

    61х3,09

    1000 МСМ

    506,7

    61х3,25

    В этой системе меньшему числовому значению соответствует более толстый провод. Такое «перевёрнутое» обозначение диаметра сложилось исторически: проволоку изготавливают волочением, и номер (калибр) обозначает количество последовательных протягиваний через всё уменьшающиеся отверстия в волоке до получения нужного диаметра. Так, для получения проволоки AWG 24 диаметром около 0,5 мм заготовка AWG 0 диаметром свыше 8 мм протягивалась 24 раза. В калибрах AWG довольно часто обозначают не только размеры (диаметр, сечение) проводов, но и размеры прутков, стержней, трубок.
    [Википедия]

    5279

     

    Американский стандарт на калибры проводов (American Wire Gauge)

      Одножильные нелуженые медные провода Обозначение в стандарте AWG Номинальный диаметр Площадь сечения
    мм X мм Погонный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    10

    2.600

    0.1024

    5.309

    46.77

    31.43

    0.0033

    0.999

    11

    2.300

    0.0906

    4.155

    37.09

    24.92

    0.0041

    1.260

    12

    2.050

    0.0807

    3.301

    29.42

    19.77

    0.0052

    1.588

    13

    1.830

    0.0720

    2.630

    23.33

    15.68

    0.0066

    2.003

    14

    1.630

    0.0642

    2.087

    18.50

    12.43

    0.0083

    2.525

    15

    1.450

    0.0571

    1.651

    14.67

    9.858

    0.0104

    3.184

    16

    1.290

    0.0508

    1.307

    11.63

    7.818

    0.0132

    4.016

    17

    1.150

    0.0453

    1.039

    9.23

    6.200

    0.0166

    5.064

    18

    1.020

    0.0402

    0.817

    7.32

    4.917

    0.0209

    6.385

    19

    0.912

    0.0359

    0.653

    5.80

    3.899

    0.026

    8.051

    20

    0.813

    0.0320

    0.519

    4.60

    3.092

    0.033

    10.15

    21

    0.724

    0.0285

    0.412

    3.65

    2.452

    0.042

    12.80

    22

    0.643

    0.0253

    0.325

    2.89

    1.945

    0.053

    16.14

    23

    0.574

    0.0226

    0.259

    2.29

    1.542

    0.067

    20.36

    24

    0.511

    0.0201

    0.205

    1.82

    1.223

    0.084

    25.67

    25

    0.455

    0.0179

    0.163

    1.44

    0.9699

    0.106

    32.37

    26

    0.404

    0.0159

    0.128

    1.14

    0.7692

    0.134

    40.81

    27

    0.361

    0.0142

    0.102

    0.908

    0.6100

    0.169

    51.47

    28

    0.320

    0.0126

    0.080

    0.720

    0.4837

    0.213

    64.90

    29

    0.287

    0.0113

    0.065

    0.571

    0.3836

    0.268

    81.83

    30

    0.254

    0.0100

    0.051

    0.453

    0.3042

    0.339

    103.2

    31

    0.226

    0.0089

    0.040

    0.359

    0.2413

    0.427

    130.1

    32

    0.203

    0.0080

    0.032

    0.285

    0.1913

    0.538

    164.1

    33

    0.180

    0.0071

    0.025

    0.226

    0.1517

    0.679

    206.9

    34

    0.160

    0.0063

    0.020

    0.179

    0.1203

    0.856

    260.9

    35

    0.142

    0.0056

    0.016

    0.142

    0.09542

    1.086

    331.0

    36

    0.127

    0.0050

    0.013

    0.113

    0.07568

    1.361

    414.8

    37

    0.114

    0.0045

    0.010

    0.091

    0.06130

    1.680

    512.1

    38

    0.102

    0.0040

    0.008

    0.071

    0.04759

    2.128

    648.6

    39

    0.089

    0.0035

    0.006

    0.056

    0.03774

    2.781

    847.8

    40

    0.079

    0.0031

    0.005

    0.045

    0.02993

    3.543

    1080.0

    Обозначение в стандарте AWG мм дюймы Площадь сечения
    мм X мм грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Номинальный диаметр Погонный вес Погонное сопротивление

     

    Многожильные луженые медные провода

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG Приведенный диаметр Площадь сечения
    мм X мм
    Минимальный вес Погонное сопротивление мм дюймы грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов

    36

    7/44

    0.153

    0.0060

    0.014

    0.11

    0.076

    1.3609

    141.80

    34

    7/42

    0.191

    0.0075

    0.022

    0.18

    0.121

    0.8560

    260.90

    32

    7/40

    0.203

    0.0080

    0.034

    0.29

    0.195

    0.5384

    164.10

    32

    19/44

    0.229

    0.0090

    0.039

    0.29

    0.195

    0.5384

    164.10

    30

    7/38

    0.305

    0.0120

    0.056

    0.45

    0.304

    0.3674

    112.00

    30

    19/42

    0.305

    0.0120

    0.060

    0.45

    0.304

    0.3674

    112.00

    28

    7/36

    0.381

    0.0150

    0.071

    0.72

    0.484

    0.2320

    70.70

    28

    19/40

    0.406

    0.0160

    0.093

    0.72

    0.484

    0.2320

    70.70

    27

    7/35

    0.457

    0.0180

    0.111

    0.91

    0.614

    0.1824

    55.60

    26

    7/34

    0.483

    0.0190

    0.140

    1.15

    0.770

    0.146

    44.40

    26

    10/36

    0.553

    0.0218

    0.127

    1.15

    0.770

    0.146

    44.40

    26

    19/38

    0.508

    0.0200

    0.153

    1.15

    0.770

    0.146

    44.40

    24

    7/32

    0.610

    0.0240

    0.226

    1.83

    1.229

    0.091

    27.70

    24

    10/34

    0.584

    0.0230

    0.200

    1.83

    1.229

    0.091

    27.70

    24

    19/36

    0.610

    0.0240

    0.239

    1.83

    1.229

    0.091

    27.70

    24

    42/40

    0.584

    0.0230

    0.201

    1.83

    1.229

    0.091

    27.70

    22

    72/30

    0.762

    0.0300

    0.352

    2.90

    1.947

    0.057

    17.50

    22

    19/34

    0.787

    0.0310

    0.380

    2.90

    1.947

    0.057

    17.50

    22

    26/36

    0.762

    0.0300

    0.327

    2.90

    1.947

    0.057

    17.50

    20

    7/28

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    10/30

    0.890

    0.0350

    0.504

    4.62

    3.103

    0.036

    10.90

    20

    19/32

    0.940

    0.0370

    0.612

    4.62

    3.103

    0.036

    10.90

    20

    26/34

    0.914

    0.0360

    0.520

    4.62

    3.103

    0.036

    10.90

    20

    42/36

    0.914

    0.0360

    0.533

    4.62

    3.103

    0.036

    10.90

    18

    7/26

    1.220

    0.0480

    0.891

    7.34

    4.93

    0.023

    6.92

    18

    16/30

    1.200

    0.0472

    0.808

    7.34

    4.93

    0.023

    6.92

    18

    19/30

    1.240

    0.0488

    0.957

    7.34

    4.93

    0.023

    6.92

    18

    42/34

    1.200

    0.0472

    0.819

    7.34

    4.93

    0.023

    6.92

    18

    65/36

    1.200

    0.0472

    0.845

    7.34

    4.93

    0.023

    6.92

    16

    7/24

    1.520

    0.0598

    1.420

    11.68

    7.85

    0.014

    4.35

    16

    19/29

    1.470

    0.0579

    1.216

    11.68

    7.85

    0.014

    4.35

    16

    26/30

    1.500

    0.0591

    1.310

    11.68

    7.85

    0.014

    4.35

    16

    65/34

    1.500

    0.0591

    1.300

    11.68

    7.85

    0.014

    4.35

    16

    105/36

    1.500

    0.0591

    1.365

    11.68

    7.85

    0.014

    4.35

    14

    7/22

    1.850

    0.0728

    2.260

    18.60

    12.5

    0.009

    2.73

    14

    19/26

    1.850

    0.0728

    1.930

    18.60

    12.5

    0.009

    2.73

    14

    42/30

    1.850

    0.0728

    2.060

    18.60

    12.5

    0.009

    2.73

    14

    105/34

    1.850

    0.0728

    2.100

    18.60

    12.5

    0.009

    2.73

    12

    7/20

    2.440

    0.0961

    3.610

    29.56

    19.9

    0.0056

    1.71

    12

    19/25

    2.360

    0.0929

    3.070

    29.56

    19.9

    0.0056

    1.71

    12

    65/30

    2.410

    0.0949

    3.270

    29.56

    19.9

    0.0056

    1.71

    12

    165/34

    2.410

    0.0949

    3.300

    47.00

    31.6

    0.0056

    1.71

    10

    37/26

    2.920

    0.1150

    4.710

    47.00

    31.6

    0.0035

    1.08

    10

    65/28

    2.950

    0.1161

    5.230

    47.00

    31.6

    0.0035

    1.08

    10

    105/30

    2.950

    0.1161

    5.355

    47.00

    31.6

    0.0035

    1.08

    8

    49/25

    3.734

    0.1470

    8.007

    70.73

    47.5

    0.0022

    0.67

    8

    133/29

    3.734

    0.1470

    8.662

    76.52

    51.4

    0.0020

    0.61

    8

    655/36

    3.734

    0.1470

    8.479

    73.78

    49.6

    0.0020

    0.62

    6

    133/27

    4.674

    0.1840

    13.675

    120.75

    81.1

    0.0015

    0.47

    6

    259/30

    4.674

    0.1840

    13.209

    116.60

    78.4

    0.0013

    0.40

    6

    1050/36

    4.674

    0.1840

    13.388

    118.26

    79.5

    0.0013

    0.39

    4

    133/25

    5.898

    0.2322

    21.733

    191.99

    129.0

    0.0008

    0.24

    4

    259/26

    5.898

    0.2322

    26.629

    235.16

    158.0

    0.0007

    0.20

    4

    1666/36

    5.898

    0.2322

    21.242

    187.66

    126.1

    0.0008

    0.25

    2

    1333/23

    7.417

    0.2920

    34.648

    306.00

    205.6

    0.00049

    0.15

    2

    259/26

    7.417

    0.2920

    33.392

    294.87

    198.1

    0.00052

    0.16

    2

    665/30

    7.417

    0.2920

    33.915

    229.36

    201.2

    0.00052

    0.16

    2

    2646/36

    7.417

    0.2920

    33.737

    298.05

    200.3

    0.00052

    0.16

    1

    163.195.0

    8.331

    0.3280

    43.418

    383.35

    257.6

    0.00039

    0.12

    1

    172.508.0

    8.331

    0.3280

    42.322

    373.83

    251.2

    0.00043

    0.13

    1

    817/30

    8.331

    0.3280

    41.667

    367.73

    247.1

    0.00043

    0.13

    1

    2109/34

    8.331

    0.3280

    42.690

    376.94

    253.3

    0.00039

    0.12

    1/0

    133/21

    9.347

    0.3680

    55.098

    486.71

    327.1

    0.00031

    0.10

    1/0

    259/24

    9.347

    0.3680

    53.364

    471.39

    316.8

    0.00032

    0.10

    2/0

    133/20

    10.516

    0.4140

    69.458

    613.38

    412.2

    0.00025

    0.08

    2/0

    259/23

    10.516

    0.4140

    67.472

    595.88

    400.4

    0.00025

    0.08

    3/0

    259/22

    11.786

    0.4640

    83.230

    746.62

    501.7

    0.00020

    0.06

    3/0

    427/24

    11.786

    0.4640

    87.979

    777.12

    522.2

    0.00019

    0.06

    4/0

    259/21

    13.259

    0.5220

    107.297

    950.76

    638.9

    0.00016

    0.05

    4/0

    427/23

    13.259

    0.5220

    111.237

    982.21

    660.0

    0.00015

    0.05

    Обозн.
    в стандарте AWG
    Количество жил/толщина одной в AWG мм дюймы Площадь сечения
    мм X мм
    грамм на метр фунтов на 1000 футов Ом на метр Ом на 1000 футов Приведенный диаметр Минимальный вес Погонное сопротивление

     

    Тематики

    • кабели, провода...

    Синонимы

    EN

     

    номер сита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > Gauge

  • 75 approach

    1. intransitive verb
    (in space) sich nähern; näher kommen; [Sturm usw.:] aufziehen; (in time) nahen

    the time is fast approaching when you will have to... — es wird nicht mehr lange dauern und du musst...

    2. transitive verb
    1) (come near to) sich nähern (+ Dat.); (set about) herangehen an (+ Akk.); angehen [Problem, Aufgabe, Thema]
    2) (be similar to) verwandt sein (+ Dat.)
    3) (approximate to) nahe kommen (+ Dat.)

    the temperature/weight approaches 100 °C/50 kg — die Temperatur/das Gewicht beträgt nahezu 100 °C/50 kg

    4) (appeal to) sich wenden an (+ Akk.)
    3. noun
    1) [Heran]nahen, das; (treatment) Ansatz, der (to zu); (attitude) Einstellung, die (to gegenüber)
    2) (appeal) Herantreten, das (to an + Akk.)
    3) (advance) Annäherungsversuche
    4) (access) Zugang, der; (road) Zufahrtsstraße, die; (fig.) Zugang, der
    5) (Aeronaut.) Landeanflug, der; Approach, der
    * * *
    [ə'prəu ] 1. verb
    (to come near (to): The car approached (the traffic lights) at top speed; Christmas is approaching.) sich nähern
    2. noun
    1) (the act of coming near: The boys ran off at the approach of a policeman.) das Herannahen
    2) (a road, path etc leading to a place: All the approaches to the village were blocked by fallen rock.) der Zugang
    3) (an attempt to obtain or attract a person's help, interest etc: They have made an approach to the government for help; That fellow makes approaches to (= he tries to become friendly with) every woman he meets.) die Annäherungsversuche
    - academic.ru/3291/approachable">approachable
    - approaching
    * * *
    ap·proach
    [əˈprəʊtʃ, AM -ˈproʊ-]
    I. vt
    1. (come closer)
    to \approach sb/sth sich akk jdm/etw nähern; (come towards) auf jdn/etw zukommen
    you can only \approach this area by air dieses Gebiet kann man nur auf dem Luftweg erreichen
    2. (of amount, time)
    to \approach sth:
    the total amount is \approaching $1000 die Gesamtsumme nähert sich der 1000-Dollar-Marke
    my grandfather is \approaching 80 mein Großvater wird bald 80
    it's \approaching lunchtime es geht auf Mittag zu
    3. (of quality)
    to \approach sb/sth an jdn/etw heranreichen
    the service here doesn't even \approach a decent standard der Service hier ist unter allem Standard
    4. (ask)
    to \approach sb an jdn herantreten
    she hasn't \approached him about it yet sie hat ihn noch nicht deswegen angesprochen
    to \approach sb for sth jdn um etw akk bitten
    5. (handle)
    to \approach sth etw in Angriff nehmen
    II. vi sich akk nähern
    III. n
    1. (coming) Nähern nt kein pl
    \approach of dusk Einbruch m der Dämmerung
    at the \approach of winter... wenn der Winter naht,...
    2. (preparation to land) [Lande]anflug m
    3. (access) Zugang m
    the southern \approaches to Manchester die südlichen Zufahrtsstraßen nach Manchester
    the \approaches to this island... die Seewege zu dieser Insel...
    \approach road Zufahrtsstraße f
    4. (appeal) Herantreten nt
    to make an \approach to sb an jdn herantreten
    5. (proposal) Vorstoß m
    to make an \approach to sb sich akk an jdn wenden
    6. usu pl ( dated: sexual advance) Annäherungsversuch m
    to make \approaches to sb bei jdm Annäherungsversuche machen
    7. (methodology) Ansatz m
    8. ( fig)
    that was the closest \approach to an apology that you'll ever get! mehr als das wirst du als Entschuldigung nie [zu hören] bekommen
    * * *
    [ə'prəʊtʃ]
    1. vi
    (physically) sich nähern, näher kommen; (date, summer etc) nahen
    2. vt
    1) (= come near) sich nähern (+dat); (AVIAT) anfliegen; (in figures, temperature, time) zugehen auf (+acc), sich nähern (+dat); (in quality, stature) herankommen an (+acc); (fig) heranreichen an (+acc)

    to approach adolescence/manhood — ins Pubertätsalter/Mannesalter kommen

    2) (= make an approach to) person, committee, organization herantreten an (+acc) (about wegen), angehen (about um), ansprechen (about wegen, auf +acc hin)

    I haven't approached him yet — ich habe ihn daraufhin noch nicht angesprochen, ich bin damit noch nicht an ihn herangetreten

    he is easy/difficult to approach — er ist leicht/nicht leicht ansprechbar

    3) (= tackle) question, problem, task angehen, herangehen an (+acc), anpacken
    3. n
    1) (= drawing near) (Heran)nahen nt; (of troops) Heranrücken nt; (of night) Einbruch m; (AVIAT) Anflug m (to an +acc)

    at the approach of Easter — als das Osterfest nahte/wenn das Osterfest naht

    2) (to person, committee, organization) Herantreten nt

    to make approaches/an approach to sb (with request) — an jdn herantreten; (man to woman) Annäherungsversuche machen

    3) (= way of tackling, attitude) Ansatz m (to zu)

    a positive approach to mathematics/teaching — eine positive Einstellung zu Mathematik/zum Unterrichten

    his approach to the problemseine Art or Methode, an das Problem heranzugehen, sein Problemansatz

    try a different approach —

    4) (= access) Zugang m, Weg m; (= road) Zufahrt(sstraße) f
    5) (= approximation) Annäherung f (to an +acc)
    * * *
    approach [əˈprəʊtʃ]
    A v/i
    1. sich nähern, näherkommen, herannahen, -rücken, nahen
    2. fig (to) nahekommen, ähnlich oder fast gleich sein (dat), grenzen (an akk)
    3. Golf: einen Annäherungsschlag machen
    B v/t
    1. sich nähern (dat):
    approach a limit MATH sich einem Grenzwert nähern
    2. FLUG anfliegen
    3. fig nahekommen (dat), (fast) erreichen:
    he’s approaching 60 er geht auf die 60 zu
    4. herangehen an (akk), eine Aufgabe etc anpacken
    5. a) an jemanden herantreten, sich an jemanden wenden:
    approach sb about ( oder on) jemanden auf (akk) … hin ansprechen;
    approach sb for a loan jemanden um ein Darlehen bitten oder angehen
    b) besonders pej sich an ein Mädchen etc heranmachen
    6. zu sprechen kommen auf (akk), ein Thema etc anschneiden
    7. näher bringen, (an)nähern
    C s
    1. (Heran)Nahen n (auch eines Zeitpunkts), (Her)Anrücken n, Annäherung f, Anmarsch m ( auch MIL), FLUG Anflug m:
    the approach of winter der herannahende Winter;
    approach flight Zielanflug m;
    approach lights pl Anflugbefeuerung f;
    approach path Anflugweg m;
    approach (shot) (Golf) Annäherungsschlag m
    2. a) Zugang m, Ein-, Zu-, Auffahrt f
    b) auch approach road Zufahrtsstraße f
    3. fig Annäherung f (to an akk), Nahekommen n:
    a fair approach to accuracy ziemliche Genauigkeit;
    an approach to truth annähernd die Wahrheit
    4. Ähnlichkeit f (to mit):
    an approach to a smile der Versuch eines Lächelns
    5. pl MIL
    a) Laufgräben pl
    b) Vormarschstraße f
    6. fig erster Schritt (to zu)
    7. meist pl fig Annäherung f, Herantreten n ( beide:
    to sb an jemanden):
    approaches Annäherungsversuch(e) m(pl);
    make approaches to sb an jemanden herantreten, sich an jemanden wenden ( beide:
    concerning wegen)
    a) Art f und Weise f (etwas) anzupacken, Methode f, Verfahren n:
    a new approach is made to the problem das Problem wird neu angegangen;
    have a scientific approach to sth etwas wissenschaftlich angehen
    b) Auffassung f (gen), Betrachtungsweise f (gen), Einstellung f (zu), Verhalten n (gegenüber):
    have a wrong approach to sth eine falsche Einstellung zu etwas haben
    c) Behandlung f (eines Themas etc)
    d) PHIL etc Ansatz m
    9. fig (to) Einführung f (in akk), Weg m, Zugang m (zu)
    * * *
    1. intransitive verb
    (in space) sich nähern; näher kommen; [Sturm usw.:] aufziehen; (in time) nahen

    the time is fast approaching when you will have to... — es wird nicht mehr lange dauern und du musst...

    2. transitive verb
    1) (come near to) sich nähern (+ Dat.); (set about) herangehen an (+ Akk.); angehen [Problem, Aufgabe, Thema]
    2) (be similar to) verwandt sein (+ Dat.)
    3) (approximate to) nahe kommen (+ Dat.)

    the temperature/weight approaches 100 °C/50 kg — die Temperatur/das Gewicht beträgt nahezu 100 °C/50 kg

    4) (appeal to) sich wenden an (+ Akk.)
    3. noun
    1) [Heran]nahen, das; (treatment) Ansatz, der (to zu); (attitude) Einstellung, die (to gegenüber)
    2) (appeal) Herantreten, das (to an + Akk.)
    3) (advance) Annäherungsversuche
    4) (access) Zugang, der; (road) Zufahrtsstraße, die; (fig.) Zugang, der
    5) (Aeronaut.) Landeanflug, der; Approach, der
    * * *
    (to) n.
    Betrachtungsweise f. n.
    (§ pl.: approaches)
    = Annäherung f.
    Ansatz -e m.
    Einführung f.
    Einstellung f.
    Haltung -en f.
    Herannahen n.
    Lösungsvorschlag m.
    Näherung -en f.
    Stellungnahme (zu) f.
    Verfahrensweise f.
    Versuch -e m.
    Zugang -¨e m.
    Zutritt -e m.
    erster Schritt (zu) m. (to ask for sth.) v.
    bitten v.
    (§ p.,pp.: bat, gebeten)
    jemanden angehen ausdr.
    sich an jemanden wenden (um, wegen) ausdr. (a topic, etc.) v.
    auf etwas zu sprechen kommen ausdr. (aeronautic) v.
    sich anfliegen (Luftfahrt) v. v.
    annähern v.
    bevorstehen v.
    einfliegen v.
    herannahen v.
    nahekommen v.
    nahen v.
    sich nähern v.
    ähnlich sein ausdr.

    English-german dictionary > approach

  • 76 good

    {gud}
    I. 1. добър, доброкачествен, хубав
    2. хубав, приятен
    it is GOOD to... хубаво/приятно е да...
    aplles are GOOD eating ябълките ca приятии на вкус/за ядене
    3. добър, полезен, здравословен
    to eat/drink/smoke more than is GOOD for още прекалявам с ядене/пиене/пушене
    4. хубав, добър, достатъчен, изобилен, богат
    5. добър, добродетелен, милостив
    GOOD deeds добри дела, благодеяния
    6. добър, мил, любезен
    be GOOD enough to... бъдете така добър/любезен да
    7. добър, правилен, уместен, основателен
    8. добър, послушен (особ. за деца), кротък
    there's a GOOD girl/boy! ти си добро момиче/момче! така те искам
    9. добър, опитен, който го бива (at)
    подходящ, годен (for)
    to be GOOD at добър съм по, удава ми се...
    to be пo GOOD at не ме бива по/за
    10. добър, пресен (за продукти)
    to keep GOOD запазвам се, не се развалям (за храна)
    11. валиден, истински, нефалшифициран
    12. добър, здрав, силен
    with his GOOD leg със здравия си крак
    13. способен да издържи/да понесе/да плати, сигурен, обезпечен
    I am GOOD for another ten miles мога да издържа още десет мили
    to be GOOD for 100 pound мога да платя 100 лири
    he's always GOOD for a laugh с него винаги може да се посмееш/винаги пада смях
    14. добър, удобен, изгоден, благоприятен
    15. често за усилване на друго прилагателно, истински, доста, много, цял
    GOOD hard work усилена работа, зор
    in GOOD plain English на прост английски
    you have a GOOD way to go имаш да биеш доста път
    to wait two GOOD hours чакам цели два часа
    16. в поздрави
    GOOD afternoon/day/evening/morning добър ден/вечер/добро утро, довиждане
    GOOD night лека нощ
    as GOOD as толкова добър, колкото, все едно, че, почти
    it is as GOOD as done все едно, че е свършено
    it is as GOOD as saying that все едно да кажеш, че
    her GOOD man ост. благоверният, съпругът
    GOOD old... браво (на)..., ашколсун (на)...
    a GOOD sport/sort/sl. egg славен човек, арабия
    that's a GOOD one каква лъжа/измишлъотина, и тая си я бива
    to make GOOD компенсирам, възстановявам
    to make GOOD the casualties воен. замествам убитите войници с нови, попълвам оределите редици, доказвам (твърдение), изпълнявам (обещание), успявам в, постигам
    to make GOOD one's escape успявам/удава ми се да избягам, утвърждавам, закрепвам (положенигто си), доказвам (правота си), пробивам си път, преуспявам, поправям се, изкупвам грешките си
    II. 1. ам. добре
    2. разг. за усилване в съчет.
    GOOD and много, здравата, хубавичко, както трябва
    to be GOOD and angry aм. здравата съм ядосан
    GOOD and hard здравата, усилено
    GOOD for you! браво!
    III. 1. добро
    an influence for GOOD добро влияние
    he is up to/after no GOOD той готви/крои нещо лошо
    2. добро, благо, полза
    for the GOOD of one's health заради здравето си
    to do someone GOOD полезен съм на някого, помагам някому (физически, морално)
    a nice cup of tea will do you GOOD един хубав чай ще ти дойде добре
    much GOOD that will do you upon. голяма полза (ще имаш от това)
    what GOOD is it, what is the GOOD of it, what GOOD will it do? каква полза от това? it's no GOOD няма полза, безполезно e
    it's no GOOD (my) talking to him about it няма смисъл да му говоря за това
    that's пo GOOD това нищо не струва, от това нищо няма да излезе
    he'll come to no GOOD ще се провали, нищо няма да излезе от него
    it's all to the GOOD толкова по-добре
    to be five pounds to the GOOD имам пет лири печалба
    3. с гл. в р1 добри/благочестиви/честни хора
    the GOOD and the bad respect him уважават го и добрите, и лошите
    4. рl вещи, движимо имущество
    5. р1 стока, артикули
    6. р1 товар, багаж, стоки
    7. attr товарен, багажен
    by slow/fast GOODs service с малка/голяма бързина (за жп превоз)
    to have the GOODs ам. sl. бива ме
    to have the GOODs on someone имам преимущество преднякого, зная неща, които уличават някого
    that's the GOODs! ам. sl. точно така! to catch someone with the GOODs хващам някого на местопрестъплението
    to be in GOOD with someone ползувам се с благоразположението на/в добри отношения съм с някого
    for GOOD (and all) завинаги, окончателно, безвъзратно
    * * *
    {gud} a (better {'betъ}; best {best}) 1. добър, доброкачеств(2) {gud} adv 1. ам. добре; 2. разг. за усилване в сьчет.: good and{3} {gud} n 1. добро; an influence for good добро влияние; he is up
    * * *
    хубав; харен; хубаво; благо; благоприя; валиден; доброкачествен; добър; добро; добродетелен;
    * * *
    1. 1 в поздрави 2. 1 валиден, истински, нефалшифициран 3. 1 добър, здрав, силен 4. 1 добър, удобен, изгоден, благоприятен 5. 1 способен да издържи/да понесе/да плати, сигурен, обезпечен 6. 1 често за усилване на друго прилагателно, истински, доста, много, цял 7. a good sport/sort/sl. egg славен човек, арабия 8. a nice cup of tea will do you good един хубав чай ще ти дойде добре 9. an influence for good добро влияние 10. aplles are good eating ябълките ca приятии на вкус/за ядене 11. as good as толкова добър, колкото, все едно, че, почти 12. attr товарен, багажен 13. be good enough to... бъдете така добър/любезен да 14. by slow/fast goods service с малка/голяма бързина (за жп превоз) 15. for good (and all) завинаги, окончателно, безвъзратно 16. for the good of one's health заради здравето си 17. good afternoon/day/evening/morning добър ден/вечер/добро утро, довиждане 18. good and hard здравата, усилено 19. good and много, здравата, хубавичко, както трябва 20. good deeds добри дела, благодеяния 21. good for you! браво! 22. good hard work усилена работа, зор 23. good night лека нощ 24. good old... браво (на)..., ашколсун (на).. 25. he is up to/after no good той готви/крои нещо лошо 26. he'll come to no good ще се провали, нищо няма да излезе от него 27. he's always good for a laugh с него винаги може да се посмееш/винаги пада смях 28. her good man ост. благоверният, съпругът 29. i am good for another ten miles мога да издържа още десет мили 30. i. добър, доброкачествен, хубав 31. ii. ам. добре 32. iii. добро 33. in good plain english на прост английски 34. it is as good as done все едно, че е свършено 35. it is as good as saying that все едно да кажеш, че 36. it is good to... хубаво/приятно е да.. 37. it's all to the good толкова по-добре 38. it's no good (my) talking to him about it няма смисъл да му говоря за това 39. much good that will do you upon. голяма полза (ще имаш от това) 40. pl вещи, движимо имущество 41. that's a good one каква лъжа/измишлъотина, и тая си я бива 42. that's the goods! ам. sl. точно така! to catch someone with the goods хващам някого на местопрестъплението 43. that's пo good това нищо не струва, от това нищо няма да излезе 44. the good and the bad respect him уважават го и добрите, и лошите 45. there's a good girl/boy! ти си добро момиче/момче! така те искам 46. to be five pounds to the good имам пет лири печалба 47. to be good and angry aм. здравата съм ядосан 48. to be good at добър съм по, удава ми се.. 49. to be good for & 100 мога да платя 100 лири 50. to be in good with someone ползувам се с благоразположението на/в добри отношения съм с някого 51. to be пo good at не ме бива по/за 52. to do someone good полезен съм на някого, помагам някому (физически, морално) 53. to eat/drink/smoke more than is good for още прекалявам с ядене/пиене/пушене 54. to have the goods on someone имам преимущество преднякого, зная неща, които уличават някого 55. to have the goods ам. sl. бива ме 56. to keep good запазвам се, не се развалям (за храна) 57. to make good one's escape успявам/удава ми се да избягам, утвърждавам, закрепвам (положенигто си), доказвам (правота си), пробивам си път, преуспявам, поправям се, изкупвам грешките си 58. to make good the casualties воен. замествам убитите войници с нови, попълвам оределите редици, доказвам (твърдение), изпълнявам (обещание), успявам в, постигам 59. to make good компенсирам, възстановявам 60. to wait two good hours чакам цели два часа 61. what good is it, what is the good of it, what good will it do? каква полза от това? it's no good няма полза, безполезно e 62. with his good leg със здравия си крак 63. you have a good way to go имаш да биеш доста път 64. добро, благо, полза 65. добър, добродетелен, милостив 66. добър, мил, любезен 67. добър, опитен, който го бива (at) 68. добър, полезен, здравословен 69. добър, послушен (особ. за деца), кротък 70. добър, правилен, уместен, основателен 71. добър, пресен (за продукти) 72. подходящ, годен (for) 73. р1 стока, артикули 74. р1 товар, багаж, стоки 75. разг. за усилване в съчет 76. с гл. в р1 добри/благочестиви/честни хора 77. хубав, добър, достатъчен, изобилен, богат 78. хубав, приятен
    * * *
    good [gud] I. adj ( better[´betə]; best [best]) 1. добър, доброкачествен, хубав; to put in a \good word for казвам добра дума за; 2. хубав, приятен; this mеal is \good to eat това ядене е приятно на вкус; 3. добър, полезен, здравословен; aspirin is \good for headache аспиринът помага при главоболие; he drinks more than is \good for him прекалява с пиенето; 4. хубав, добър, достатъчен, изобилен, богат; здрав; 5. добър, добродетелен; милостив; \good deeds ( works) добри дела, благодеяния; 6. добър, мил, любезен; be \good enough to sign here бъдете така добър (любезен) да сложите подписа си тук; 7. добър, правилен; целесъобразен; приличен; I thought it \good to do that сметнах, че е добре (правилно, прилично) да направя това; 8. добър, послушен (особ. за деца); there's a \good boy! ти си добро момче! 9. добър, опитен, който го бива (at); подходящ, годен ( for); умел, изкусен; to be \good at swimming добре плувам, бива ме в плуването; he'd be no \good as a doctor от него няма да стане добър лекар; 10. добър, свеж, пресен (за продукти); 11. истински, валиден, нефалшифициран; the passport is \good for five years паспортът важи за пет години; 12. добър, здрав, силен; with his \good eye със здравото си око; a \good fire силен огън; 13. способен да издържи (да понесе, да плати); надежден; the tyres are \good for another 5000 km гумите могат да изкарат още 5000 км; to be \good for $ 1000 мога да платя 1000 долара; 14. добър, удобен, изгоден; благоприятен; 15. често за усилване на друго прилагателно: истински; доста, много; цял; \good hard work усилена работа; зор; a \good long walk дълга разходка; in \good plain English на прост английски; you have a \good way to go имаш доста път да вървиш; to wait three \good hours чакам цели три часа; you're \good and early много рано сте дошли; as \good as 1) толкова добър, колкото; 2) все едно, че; почти; it is as \good as new почти е ново; it is as \good as done все едно, че е свършено, почти е свършено; it is as \good as a play! колко забавно! as \good as pie много симпатичен; to give as \good as one gets не падам по-долу, и мен си ме бива; the G. Book Библията; \good old John! браво на Иван, ашколсун, Иване! a \good sport ( sort, sl egg, onion) славен човек, арабия; to be as \good as o.'s word изпълнявам обещанието си, оставам верен на думата си, държа на думата си; that's a \good one (разг. 'un) каква лъжа, и тая си я бива; to make \good 1) компенсирам; to make \good the casualties воен. замествам убитите войници с нови, попълвам оределите редици; 2) доказвам ( твърдение), изпълнявам ( обещание); 3) успявам в, постигам; to make \good o.'s escape успявам (удава ми се) да избягам; 4) утвърждавам, закрепям (положението си); доказвам (правата си); 5) пробивам си път, преуспявам; 6) поправям се; изкупвам грешките си; to take (s.th.) in \good part не се засягам; II. adv здравата, хубавичко, както трябва; \good and hard усилено, здравата; \good for you! браво! III. n 1. добро, благодеяние, добро дело; to do \good върша добро; to return \good for evil отвръщам на злото с добро; an influence for \good добро влияние; to be up to no \good готвя (кроя) нещо лошо; to be in \good with s.o. ам. в добри отношения съм с, разбирам се добре с; 2. добро, благо; полза; for the \good of заради, поради; for the common \good за общо добро (благо); to do s.o. \good полезен съм на някого, помагам някому (физически или морално); much \good that will do you ирон. голяма полза (ще имаш от това); a ( fat) lot of \good that'll do you! голяма файда! what's the \good of каква полза от (да с ger); it's no \good waiting for him няма смисъл да го чакаме; that's no \good това не струва нищо; от това нищо няма да излезе; to come to no \good провалям се, пропадам, нищо не излиза от мен; it's all to the \good толкова по-добре; to be ten dollars to the \good имам десет долара печалба; 3. for \good ( and all) завинаги, окончателно, безвъзвратно; 4. (с гл. в мн.) добри (благочестиви, честни) хора; 5. pl вещи, движимо имущество; 6. pl стока, артикули; \good and chattels лични вещи; the latest spring \goods последните пролетни стоки; fancy \goods модни стоки; consumer \goods стоки за широко потребление; loose \goods насипни материали; semimanufactured \goods полуфабрикати; canned \goods консерви; green \goods пресни зеленчуци (плодове); dry \goods галантерийни стоки; 7. pl товар, багаж, стоки; attr товарен, багажен; a \goods train товарен влак; a \goods station сточна гара; to deliver the \goods доставям стоката; изпълнявам обещание или поето задължение; that's the \goods sl хайде, на добър час; to catch s.o. with the \goods хващам някого на местопрестъплението; to have the \goods on s.o. разполагам с компрометираща информация за някого; to have ( put, keep) all o.'s \good in the shop window излагам всичко на показ; a nice little bit ( piece) of \goods разг. "парче" (за младо момиче, жена); 8. pl (the \good) улики, веществени доказателства.

    English-Bulgarian dictionary > good

  • 77 drawing equipment

    1. оборудование волочильное
    2. волочильное оборудование

     

    волочильное оборудование
    Механическое оборудование (машины) для волочения металлов и сплавов, которые могут быть условно разделены на следующие группы:
    - прямолинейные волочильные станы усилием от 10 до 1500 кН для волочения прутков, профилей и труб длиной до 100 м со скоростью волочения до > 100 м/мин;
    - волочильные барабаны диаметром 350-1000 мм для протягивания прутков, профилей и труб небольшого диаметра в мотках (бухтах) со скоростью волочения до 250 м/мин;
    - машины для волочения проволоки (одно- и многократного волочения) со скоростью до 50 м/ с;
    - трубоволочильные барабанные станы для бухтового волочения труб среднего размера (до 70 мм) со скоростью волочения до 30 м/с и длиной обрабатываемых труб до 5—6 км;
    - агрегатные линии калибровочного волочения и отделки прутков, профилей и труб.
    В волочильных цехах кроме перечисленного основного волочильного оборудования используется следующее оборудование для вспомогельных и отделочных операций:
    - машины и устройства для острения, заковки и затяжки заготовок;
    - установки для термообработки и отделки полуфабрикатов;
    - машины для правки, резки готовой продукции, удаления поверхностных дефектов;
    - оборудование для транспортировки и складирования партий металлопродукции.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    оборудование волочильное
    Механическое оборудование (машины) для волочения металлов и сплавов, которые могут быть условно разделены на группы:
    - прямолинейные волочильные станы усилием от 10 до 1500 кН для волочения прутков, профилей и труб длиной до 100 м со скор, волочения до 100 м/мин;
    - волочильные барабаны диаметром 350-1000 мм для протягивания прутков, профилей и труб небольшого диаметра в мотках (бухтах) со скоростью волочения до 250 м/мин;
    - машины для волочения проволоки (одно- и многократного волочения) со скоростью до 50 м/ с;
    - трубоволочильные барабанные станы для бухтового волочения труб среднего размера (до 70 мм) со скоростью волочения до 30 м/с и длиной обрабатываемых труб до 5-6 км;
    - агрегатные линии калибровочного волочения и отделки прутков, профилей и труб.

    В волочильных цехах кроме перечисленного основного волочильного оборудования используется следующее оборудование для вспомогательных и отделочных операций:
    - машины и устройства для острения, заковки и затяжки заготовок;
    - установки для термообработки и отделки полуфабрикатов;
    - машины для правки, резки готовой продукции, удаления поверхностных дефектов;
    - оборудование для транспортировки и складирования партий металлопродукции.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > drawing equipment

  • 78 dinar

    1. динар

     

    динар
    1. (DA). Стандартная денежная единица Алжира, состоящая из 100 сантимов.
    2. Стандартная денежная единица Бахрейна (BD), Ирака (ID), Иордании (JD), Йемена (YD) и Кувейта (KD), состоящая из 1000 филсов.
    3. (TD). Стандартная денежная единица Туниса, состоящая из 1000 миллимов.
    4. (Din.). Стандартная денежная единица Хорватии и Югославии, состоящая из 100 пара.
    5. (LD). Стандартная денежная единица Ливии, состоящая из 1000 дирхамов.
    6. Иранская денежная единица, равная одной сотой риала (rial).
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > dinar

  • 79 fee

    1. сущ.
    1)
    а) эк. плата (за услуги, какое-л. право и т. д.); комиссия, комиссионный сбор; чаевые; вознаграждение; гонорар; взнос

    ATTRIBUTES:

    additional fee, extra fee — дополнительная плата, дополнительное вознаграждение

    base [basic\] fee — базовая плата, базовое вознаграждение

    contract with a base fee of 1% and an award fee of 2% — контракт с базовым вознаграждением в размере 1% и премиальными в размере 2%

    lawyer's fee — гонорар [вознаграждение\] адвоката

    We couldn't afford to pay the lawyer's fees. — У нас не было денег, чтобы нанять адвоката.

    use fee — плата за пользование [использование\]

    The total replacement fee for a lost book is $60. — Суммарная плата за замену утерянной книги составляет $60.

    monthly fee — месячная плата, месячное вознаграждение, плата [вознаграждение\] за месяц

    COMBS:

    fee for [smth.\] — плата [вознаграждение, комиссионные\] за [что-л.\]

    The fee for adults is $3 per day. — Плата для взрослых составляет $3 в день

    The registration fee per person is £66 + VAT. — Регистрационный взнос на одно лицо составляет £66 плюс НДС.

    a $5.00 per day fee — плата в размере $5.00 в день

    $75.00 Rental Fee for two hours; $37.50 for each additional hour — Плата за прокат на два часа составляет $75,00; $37,50 за каждый дополнительный час.

    fee of $100, $100 fee — плата в размере $100

    one-time fee of $17.88 to $34.95 — единовременная плата в размере от $17,88 до $34,95

    a fee in the amount of $1000 — плата в сумме [в размере\] $1000

    amount of fee — сумма оплаты [вознаграждения, комиссионных\]

    per-transaction fee — плата [комиссионные\] за операцию

    $10.00 fee per transaction — плата [комиссионные\] в размере $10 за операцию

    to receive a fee — получать вознаграждение [плату\]

    See:
    12-b-1 fee, 12b-1 fee, account fee, administration fee, administrative fee, admission fee, advance fee, advisory fee, agency fee, allowable fee, annual fee, application fee, appraisal fee, arrangement fee, assumption fee, ATM fee, audit fee, automated teller machine fee, award fee, back fee, bounced check fee, break-up fee, brokerage fee, broker's fee, broking fee, capitated fee, capitation fee, chargeback fee, clearing fee, commission fee, commitment fee, conditional fee, connection fee, consulting fee, contingency fee, contingent fee, contractor's fee, copyright fee, credit report fee, custodial fee, delivery fee, directors' fee, discount fee, distribution fee, documentation fee, drop-dead fee, early redemption fee, early repayment fee, effluent fee, emission fee, entrance fee, exit fee, facility fee, factoring fee, fair share fee, filing fee, finder's fee, fixed fee, flat fee, front-end fee, graduation fee, grazing fee, guarantee fee, handling fees, harbour fees, high loan to value fee, high percentage lending fee, high percentage loan fee, holding fee, incentive fee, initiation fee, insufficient funds fee, interchange fee, issuer's reimbursement fee, joining fee, kill fee, landing fee, late enrollment fee, late fee, late payment fee, licence fee 2), listing fee, loan discount fee, loan fee, loan guarantee fee, loan origination fee, lock-in fee, maintenance fee, management fee, manager's fee, membership fee, merchant discount fee, mortgage indemnity fee, mortgage indemnity guarantee fee, non-sufficient funds fee, no-sale fee, NSF fee, origination fee, overdraft fee, penalty fee, performance fee, policy fee, prepayment fee, professional fee, purchase fee, reasonable and customary fee, redemption fee, registration fee 2), renewal fee, rental fee, reproduction fee, retainer fee, retaining fee, returned check fee, re-use fee, SAG fee, sale fee, sales fee, school fee, Screen Actors Guild fee, SEC fee, service fee, sign-up fee, slotting fee, stand-by fee, stop payment fee, storage fee, subscription fee, success fee, surrender fee, take-up fee, termination fee, transaction fee, tuition fee, union fees, upfront fee, user fee, usual and customary fee, usual, customary and reasonable fee, usual, customary and reasonable fee, usual, customary and reasonable fee, usual, customary and reasonable fee
    б) гос. фин. сбор (целевой обязательный платеж, предназначенный для оплаты услуг, оказываемых компаниям и предприятиям государственными органами)

    legal [litigation\] fee — судебный сбор, судебная пошлина

    Syn:
    due 1. 2) а), tax 1. 1) б)
    See:
    2) эк., ист. = fief 1),
    3)
    а) юр. право собственности
    See:
    б) юр., ист. лен, феод, феодальное поместье, частное владение
    2. гл.
    1) общ. выплачивать (гонорар, чаевые, плату за дополнительные услуги)
    2) эк. тр., редк. нанимать (на работу), предоставлять работу

    We feed a lawyer to act for us. — Мы взяли адвоката для ведения нашего дела.

    Syn:

    * * *
    плата, комиссия, гонорар, вознаграждение: 1) плата (комиссия) за услугу; проведение операции в виде процента от цены или фиксированной суммы (может устанавливаться в ходе переговоров) (напр., оплата услуг юристов или аудиторов); 2) плата за учебу в частной школе или университете; 3) чаевые; 4) сбор, пошлина; 5) вступительный взнос в клуб; 6) абсолютное право собственности; право наследования без ограничений; = fee simple; fee simple absolute; freehold.
    * * *
    гонорар; комиссия; сбор; вознаграждение
    . . Словарь экономических терминов .
    * * *
    Финансы/Кредит/Валюта

    Англо-русский экономический словарь > fee

  • 80 clock up


    1) отмечать пройденное расстояние The old car has just clocked up another 50,000 kilometres. ≈ Машина пробежала очередные 50 тысяч километров.
    2) отмечать (успех) Now we can clock up another victory for our team. ≈ Теперь мы можем записать еще одну победу в наш актив. записать время или расстояние - we clocked up 1000 miles coming here! мы проехали 1000 миль, чтобы добраться сюда добиться скорости - can * 100 miles an hour in my new car на моей новой машине я могу показать скорость 100 миль в час набирать, накапливать - he clocked up a lot of debts when he was in Paris во время пребывания в Париже он влез в большие долги

    Большой англо-русский и русско-английский словарь > clock up

См. также в других словарях:

  • 1000 av. J.-C. — Xe siècle av. J. C. IIe millénaire av. J. C. | Ier millénaire av. J. C. | Ier millénaire ../.. | XIIe siècle av. J. C. | XIe siècle av. J. C …   Wikipédia en Français

  • 100 Great Paintings — was a television series created by Edwin Mullins for BBC 2 in 1980, in which he also acted as moderator.http://ftvdb.bfi.org.uk/sift/series/11652 13 January 2007] He chose 20 thematic groups, such as war, the Adoration, the language of color, the …   Wikipedia

  • 1000 bornes — jeu de société {{{licence}}} Auteur Edmond Dujardin Illustrateur Joseph Le Cal …   Wikipédia en Français

  • 100 francs Delacroix — recto/verso Le 100 francs Delacroix est un billet de banque français émis par la Banque de France de 1978 à 1995. Il succède au 100 francs Corneille et sera remplacé par le 100 francs Cézanne. Ce billet a été peint par Fontanarosa et a été gravé… …   Wikipédia en Français

  • 1000 (nombre) — Pour les articles homonymes, voir mille. Article détaillé : nombres 1000 à 1999. 1 000 Cardinal …   Wikipédia en Français

  • 100 000 евро — (Австрия) Номинал: 100 000 евро …   Википедия

  • (1000) Пиацция — Орбита астероида (1000) Пиацция (синий), орбиты планет (красный) и Солнце в центре (чёрный). Открытие Первооткрыватель Карл Рейнмут Место обнаружения Хайдельберг Дата обнаружения …   Википедия

  • 1000 Stars Hotel — (Морское,Крым) Категория отеля: Адрес: Karla Marksa Street 7, 98033 Морское, Крым …   Каталог отелей

  • 1000 Stars Hotel — (Морское,Крым) Категория отеля: Адрес: Karla Marksa Street 7, 98033 Морское, Крым …   Каталог отелей

  • 100-мм полевая пушка образца 1944 года (БС-3) — …   Википедия

  • 1000 Home Apartments — (Хевиз,Венгрия) Категория отеля: Адрес: 8380 Хевиз, Fortuna utca 14., Венгрия …   Каталог отелей

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»