Перевод: с английского на русский

с русского на английский

системы+управления

  • 41 management information system

    1. управленческая информационная система
    2. информационно-управляющая система
    3. информационная система управления
    4. информационная система (в АСУ)
    5. административная информационная система
    6. автоматизированная система управления

     

    автоматизированная система, управляющая
    АСУ

    Управляющая система, часть функций которой, главным образом функцию принятия решений, выполняет человек-оператор.
    Примечание
    В зависимости от объектов управления различают, например: АСУ П, когда объектом управления является предприятие; АСУ ТП, когда объектом управления является технологический процесс; ОАСУ, когда объектом управления является организационный объект или комплекс.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.  Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    автоматизированная система управления
    АСУ

    Совокупность математических методов, технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом (процессом) в соответствии с заданной целью. АСУ принято делить на основу и функциональную часть. В основу входят информационное, техническое и математическое обеспечение. К функциональной части относят набор взаимосвязанных программ, автоматизирующих конкретные функции управления (планирование, финансово-бухгалтерскую деятельность и др.). Различают АСУ объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональными автоматизированными системами, например, проектирования, расчетов, материально-технического и др. обеспечения.
    [ http://www.morepc.ru/dict/]

    автоматизированная система управления
    АСУ

    Система управления, в которой применяются современные автоматические средства обработки данных и экономико-математические методы для решения основных задач управления производственно-хозяйственной деятельностью. Это человеко-машинная система: в ней ряд операций и действий передается для исполнения машинам и другим устройствам (особенно это относится к так называемым рутинным, повторяющимся, стандартным операциям расчетов), но главное решение всегда остается за человеком. Этим АСУ отличаются от автоматических систем, т.е. таких технических устройств, которые действуют самостоятельно, по установленной для них программе, без вмешательства человека. АСУ подразделяются прежде всего на два класса: автоматизированные системы организационного управления и автоматизированные системы управления технологическими процессами (последние часто бывают автоматическими, первые ими принципиально быть не могут). Традиционно термин АСУ закрепился за первым из названных классов. Отличие АСУ от обычной, неавтоматизированной, но также использующей ЭВМ, системы управления показано на рис. А.1, а, б. Стрелками обозначены потоки информации. В первом случае компьютер используется для решения отдельных задач управления, например для производства плановых расчетов, результаты которых рассматриваются органом управления и либо принимаются, либо отвергаются. При этом необходимые данные собираются специально для решения каждой задачи и вводятся в компьютер, а потом за ненадобностью уничтожаются. Во втором случае существенная часть информации от объекта управления собирается непосредственно вычислительным центром, в том числе по каналам связи. При этом нет необходимости каждый раз вводить в компьютер все данные: часть из них (цены, нормативы и т. п.) хранится в ее запоминающем устройстве. Из вычислительного центра выработанные задания поступают, с одной стороны, в орган управления, а с другой (обычно через контрольное звено) — к объекту управления. В свою очередь информация, поступающая от объекта управления, влияет на принимаемые решения, т.е. здесь используется кибернетический принцип обратной связи. Это — АСУ. Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций — того, что и как она делает, и с точки зрения ее схемы, т.е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем — функциональные и обеспечивающие. Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т.д.) — не разовое мероприятие, а длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически «вписывается» в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером, на основе получаемых им данных, оперативных управляющих «команд». Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т.д. Экономическая эффективность АСУ определяется прежде всего ростом эффективности самого производства в результате лучшей загрузки оборудования, повышения ритмичности, сокращения незавершенного производства и других материальных запасов, повышения качества продукции. РисА.1. Системы управления с использованием компьютеров а — неавтоматизированная, б — автоматизированная; I — управляющий центр; II — автоматизированная управляемая система (например, производство), III — контроль; тонкая черная стрелка — канал непосредственного управления компьютером некоторыми технологическими процессами (бывает не во всех АСУ); тонкая пунктирная стрелка показывает ту часть информации, которая поступает непосредственно в центр, минуя компьютер.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

     

    административная информационная система

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    информационная система (в АСУ)
    Компьютерная система сбора, хранения, накопления, поиска и передачи данных, применяемых в процессе управления, планирования и организации производства. Это информационная подсистема автоматизированной системы управления. Она обычно включает следующие части: информационно-справочный фонд (архив, библиотека данных), язык АСУ, т.е. совокупность знаков и классификаторов (и правил обращения с ними), а также комплекс моделей и программ, обеспечивающих функционирование системы. Современные И.с. часто выступают как интегрированные системы обработки данных. При формировании И.с. АСУ изучаются задачи управления и связи между ними. На этой основе выявляются нужные для их решения сведения и, следовательно, потребность в информации; отбрасываются ненужные потоки информации, дополняются полезные потоки; устанавливаются периодичность и адреса поступления информации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    информационная система управления
    ИСУ

    Система, обеспечивающая получение прошлых, настоящих и предполагаемых данных о внутренних операциях и внешних событиях. Своевременно предоставляя информацию, необходимую для принятия решений, она поддерживает такие функции предприятия, как планирование, контроль и оперативное управление.
    [ http://www.lexikon.ru/dict/uprav/index.html]

    Тематики

    Синонимы

    EN

     

    информационно-управляющая система
    Формальная система обеспечения руководителей информацией, необходимой для принятия решений.
    [ http://tourlib.net/books_men/meskon_glossary.htm]

    Тематики

    EN

     

    управленческая информационная система
    УИС

    (ITIL Service Design)
    Набор инструментов, данных и информации, который используется для поддержки процесса или функции. Примеры управленческой информационной системы – система управления доступностью, система управления подрядчиками и контрактами.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    система управленческая информационная
    Система, состоящая из взаимосвязанных подсистем, которые выдают информацию, необходимую для управления фирмой, при этом бухгалтерская подсистема является наиболее важной, так как она играет ведущую роль в управлении потоком экономических данных и направлении их во всех подразделения фирмы, а также заинтересованным лицам вне фирмы.
    [ http://www.lexikon.ru/dict/buh/index.html]

    EN

    management information system
    MIS

    (ITIL Service Design) A set of tools, data and information that is used to support a process or function. Examples include the availability management information system and the supplier and contract management information system. See also service knowledge management system.
    [Словарь терминов ITIL® версия 1.0, 29 июля 2011 г.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > management information system

  • 42 HMI

    1. человеко-машинный интерфейс
    2. человеко-машинное взаимодействие
    3. терминал
    4. интерфейс управления концентратором
    5. интерфейс "человек-машина"

     

    интерфейс "человек-машина"
    аппаратно-программная система управления технологическими процессами
    HMI - это набор всех средств, позволяющих человеку вмешаться в поведение вычислительной системы. Как правило, HMI представляет собой компьютер с графическим дисплеем, где в наглядной форме отображается поведение системы, и пользователь имеет возможность вмешаться в деятельность системы. Однако в качестве HMI может выступать самый простой пульт из набора тумблеров и светодиодных индикаторов.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    интерфейс управления концентратором

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    терминал
    Устройство ввода-вывода, обеспечивающее взаимодействие пользователей в локальной вычислительной сети или с удаленной ЭВМ через средства телеобработки данных
    [ ГОСТ 25868-91]
    [ ГОСТ Р 50304-92 ]

    Параллельные тексты EN-RU

    HMI port warning
    [Schneider Electric]

    Предупредительное состояние об ошибке обмена данными через порт связи с терминалом оператора
    [Перевод Интент]

    HMI display max current phase enable
    [Schneider Electric]

    Разрешается отображение на терминале оператора максимального линейного тока
    [Перевод Интент]

    Config via HMI keypad enable
    [Schneider Electric]

    Конфигурирование (системы) с помощью клавиатуры терминала оператора
    [Перевод Интент]


    Тематики

    • оборуд. перифер. систем обраб. информации
    • системы для сопряж. радиоэлектр. средств интерфейсные

    Обобщающие термины

    Синонимы

    EN

     

    человеко-машинное взаимодействие

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    человеко-машинный интерфейс (ЧМИ)
    Технические средства, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование.
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства, дисплеи.
    [ ГОСТ Р МЭК 60447-2000]

    человекомашинный интерфейс (ЧМИ)
    Технические средства контроля и управления, являющиеся частью оборудования, предназначенные для обеспечения непосредственного взаимодействия между оператором и оборудованием и дающие возможность оператору управлять оборудованием и контролировать его функционирование (ГОСТ Р МЭК 60447).
    Примечание
    Такие средства могут включать приводимые в действие вручную органы управления, контрольные устройства и дисплеи.
    [ ГОСТ Р МЭК 60073-2000]

    человеко-машинный интерфейс
    Средства обеспечения двусторонней связи "оператор - технологическое оборудование" (АСУ ТП). Название класса средств, в который входят подклассы:
    SCADA (Supervisory Control and Data Acquisition) - Операторское управление и сбор данных от технологического оборудования.
    DCS (Distributed Control Systems) - Распределенная система управления технологическим оборудованием.
    [ http://www.morepc.ru/dict/]

    Параллельные тексты EN-RU

    MotorSys™ iPMCC solutions can integrate a dedicated human-machine interface (HMI) or communicate via a personal computer directly on the motor starters.
    [Schneider Electric]

    Интеллектуальный центр распределения электроэнергии и управления электродвигателями MotorSys™ может иметь в своем составе специальный человеко-машинный интерфейс (ЧМИ). В качестве альтернативы используется обмен данным между персональным компьютером и пускателями.
    [Перевод Интент]


    HMI на базе операторских станций

    Самое, пожалуй, главное в системе управления - это организация взаимодействия между человеком и программно-аппаратным комплексом. Обеспечение такого взаимодействия и есть задача человеко-машинного интерфейса (HMI, human machine interface).

    На мой взгляд, в аббревиатуре “АСУ ТП” ключевым является слово “автоматизированная”, что подразумевает непосредственное участие человека в процессе реализации системой определенных задач. Очевидно, что чем лучше организован HMI, тем эффективнее человек сможет решать поставленные задачи.

    Как же организован HMI в современных АСУ ТП?
    Существует, как минимум, два подхода реализации функционала HMI:

    1. На базе специализированных рабочих станций оператора, устанавливаемых в центральной диспетчерской;
    2. На базе панелей локального управления, устанавливаемых непосредственно в цеху по близости с контролируемым технологическим объектам.

    Иногда эти два варианта комбинируют, чтобы достичь наибольшей гибкости управления. В данной статье речь пойдет о первом варианте организации операторского уровня.

    Аппаратно рабочая станция оператора (OS, operator station) представляет собой ни что иное как персональный компьютер. Как правило, станция снабжается несколькими широкоэкранными мониторами, функциональной клавиатурой и необходимыми сетевыми адаптерами для подключения к сетям верхнего уровня (например, на базе Industrial Ethernet). Станция оператора несколько отличается от привычных для нас офисных компьютеров, прежде всего, своим исполнением и эксплуатационными характеристиками (а также ценой 4000 - 10 000 долларов).
    На рисунке 1 изображена рабочая станция оператора системы SIMATIC PCS7 производства Siemens, обладающая следующими техническими характеристиками:

    Процессор: Intel Pentium 4, 3.4 ГГц;
    Память: DDR2 SDRAM до 4 ГБ;
    Материнская плата: ChipSet Intel 945G;
    Жесткий диск: SATA-RAID 1/2 x 120 ГБ;
    Слоты: 4 x PCI, 2 x PCI E x 1, 1 x PCI E x 16;
    Степень защиты: IP 31;
    Температура при эксплуатации: 5 – 45 C;
    Влажность: 5 – 95 % (без образования конденсата);
    Операционная система: Windows XP Professional/2003 Server.

    4876
    Рис. 1. Пример промышленной рабочей станции оператора.

    Системный блок может быть как настольного исполнения ( desktop), так и для монтажа в 19” стойку ( rack-mounted). Чаще применяется второй вариант: системный блок монтируется в запираемую стойку для лучшей защищенности и предотвращения несанкционированного доступа.

    Какое программное обеспечение используется?
    На станции оператора устанавливается программный пакет визуализации технологического процесса (часто называемый SCADA). Большинство пакетов визуализации работают под управлением операционных систем семейства Windows (Windows NT 4.0, Windows 2000/XP, Windows 2003 Server), что, на мой взгляд, является большим минусом.
    Программное обеспечение визуализации призвано выполнять следующие задачи:

    1. Отображение технологической информации в удобной для человека графической форме (как правило, в виде интерактивных мнемосхем) – Process Visualization;
    2. Отображение аварийных сигнализаций технологического процесса – Alarm Visualization;
    3. Архивирование технологических данных (сбор истории процесса) – Historical Archiving;
    4. Предоставление оператору возможности манипулировать (управлять) объектами управления – Operator Control.
    5. Контроль доступа и протоколирование действий оператора – Access Control and Operator’s Actions Archiving.
    6. Автоматизированное составление отчетов за произвольный интервал времени (посменные отчеты, еженедельные, ежемесячные и т.д.) – Automated Reporting.

    Как правило, SCADA состоит из двух частей:

    1. Среды разработки, где инженер рисует и программирует технологические мнемосхемы;
    2. Среды исполнения, необходимой для выполнения сконфигурированных мнемосхем в режиме runtime. Фактически это режим повседневной эксплуатации.

    Существует две схемы подключения операторских станций к системе управления, а точнее уровню управления. В рамках первой схемы каждая операторская станция подключается к контроллерам уровня управления напрямую или с помощью промежуточного коммутатора (см. рисунок 2). Подключенная таким образом операторская станция работает независимо от других станций сети, и поэтому часто называется одиночной (пусть Вас не смущает такое название, на самом деле таких станций в сети может быть несколько).

    4877
    Рис. 2. Схема подключения одиночных операторских станций к уровню управления.

    Есть и другой вариант. Часто операторские станции подключают к серверу или резервированной паре серверов, а серверы в свою очередь подключаются к промышленным контроллерам. Таким образом, сервер, являясь неким буфером, постоянно считывает данные с контроллера и предоставляет их по запросу рабочим станциям. Станции, подключенные по такой схеме, часто называют клиентами (см. рисунок 3).

    4878
    Рис. 3. Клиент-серверная архитектура операторского уровня.

    Как происходит информационный обмен?
    Для сопряжения операторской станции с промышленным контроллером на первой устанавливается специальное ПО, называемое драйвером ввода/вывода. Драйвер ввода/вывода поддерживает совместимый с контроллером коммуникационный протокол и позволяет прикладным программам считывать с контроллера параметры или наоборот записывать в него. Пакет визуализации обращается к драйверу ввода/вывода каждый раз, когда требуется обновление отображаемой информации или запись измененных оператором данных. Для взаимодействия пакета визуализации и драйвера ввода/вывода используется несколько протоколов, наиболее популярные из которых OPC (OLE for Process Control) и NetDDE (Network Dynamic Data Exchange). Обобщенно можно сказать, что OPC и NetDDE – это протоколы информационного обмена между различными приложениями, которые могут выполняться как на одном, так и на разных компьютерах. На рисунках 4 и 5 изображено, как взаимодействуют программные компоненты при различных схемах построения операторского уровня.  
    4879
    Рис. 4. Схема взаимодействия программных модулей при использовании одиночных станций.
     
    4880
    Рис. 5. Схема взаимодействия программных модулей при использовании клиент-серверной архитектуры.
    Как выглядит SCADA?
    Разберем простой пример. На рисунке 6 приведена абстрактная схема технологического процесса, хотя полноценным процессом это назвать трудно.
    4881
    Рис. 6. Пример операторской мнемосхемы.
    На рисунке 6 изображен очень упрощенный вариант операторской мнемосхемы для управления тех. процессом. Как видно, резервуар (емкость) наполняется водой. Задача системы - нагреть эту воду до определенной температуры. Для нагрева воды используется газовая горелка. Интенсивность горения регулируется клапаном подачи газа. Также должен быть насос для закачки воды в резервуар и клапан для спуска воды.

    На мнемосхеме отображаются основные технологические параметры, такие как: температура воды; уровень воды в резервуаре; работа насосов; состояние клапанов и т.д. Эти данные обновляются на экране с заданной частотой. Если какой-либо параметр достигает аварийного значения, соответствующее поле начинает мигать, привлекая внимание оператора.

    Сигналы ввода/вывода и исполнительные механизмы отображаются на мнемосхемах в виде интерактивных графических символов (иконок). Каждому типу сигналов и исполнительных механизмов присваивается свой символ: для дискретного сигнала это может быть переключатель, кнопка или лампочка; для аналогового – ползунок, диаграмма или текстовое поле; для двигателей и насосов – более сложные фейсплейты ( faceplates). Каждый символ, как правило, представляет собой отдельный ActiveX компонент. Вообще технология ActiveX широко используется в SCADA-пакетах, так как позволяет разработчику подгружать дополнительные символы, не входящие в стандартную библиотеку, а также разрабатывать свои собственные графические элементы, используя высокоуровневые языки программирования.

    Допустим, оператор хочет включить насос. Для этого он щелкает по его иконке и вызывает панель управления ( faceplate). На этой панели он может выполнить определенные манипуляции: включить или выключить насос, подтвердить аварийную сигнализацию, перевести его в режим “техобслуживания” и т.д. (см. рисунок 7).  
    4882
    Рис. 7. Пример фейсплейта для управления насосом.
      Оператор также может посмотреть график изменения интересующего его технологического параметра, например, за прошедшую неделю. Для этого ему надо вызвать тренд ( trend) и выбрать соответствующий параметр для отображения. Пример тренда реального времени показан на рисунке 8.
     
    4883
    Рис. 8. Пример отображения двух параметров на тренде реального времени.
    Для более детального обзора сообщений и аварийных сигнализаций оператор может воспользоваться специальной панелью ( alarm panel), пример которой изображен на рисунке 9. Это отсортированный список сигнализаций (alarms), представленный в удобной для восприятия форме. Оператор может подтвердить ту или иную аварийную сигнализацию, применить фильтр или просто ее скрыть.
    4884
    Рис. 9. Панель сообщений и аварийных сигнализаций.
    Говоря о SCADA, инженеры часто оперируют таким важным понятием как “тэг” ( tag). Тэг является по существу некой переменной программы визуализации и может быть использован как для локального хранения данных внутри программы, так и в качестве ссылки на внешний параметр процесса. Тэги могут быть разных типов, начиная от обычных числовых данных и кончая структурой с множеством полей. Например, один визуализируемый параметр ввода/вывода – это тэг, или функциональный блок PID-регулятора, выполняемый внутри контроллера, - это тоже тэг. Ниже представлена сильно упрощенная структура тэга, соответствующего простому PID-регулятору:

    Tag Name = “MyPID”;
    Tag Type = PID;

    Fields (список параметров):

    MyPID.OP
    MyPID.SP
    MyPID.PV
    MyPID.PR
    MyPID.TI
    MyPID.DI
    MyPID.Mode
    MyPID.RemoteSP
    MyPID.Alarms и т.д.

    В комплексной прикладной программе может быть несколько тысяч тэгов. Производители SCADA-пакетов это знают и поэтому применяют политику лицензирования на основе количества используемых тэгов. Каждая купленная лицензия жестко ограничивает суммарное количество тэгов, которые можно использовать в программе. Очевидно, чем больше тегов поддерживает лицензия, тем дороже она стоит; так, например, лицензия на 60 000 тэгов может обойтись в 5000 тыс. долларов или даже дороже. В дополнение к этому многие производители SCADA формируют весьма существенную разницу в цене между “голой” средой исполнения и полноценной средой разработки; естественно, последняя с таким же количеством тэгов будет стоить заметно дороже.

    Сегодня на рынке представлено большое количество различных SCADA-пакетов, наиболее популярные из которых представлены ниже:

    1.    Wonderware Intouch;
    2.    Simatic WinCC;
    3.    Iconics Genesis32;
    4.    Citect;
    5.    Adastra Trace Mode

    Лидирующие позиции занимают Wonderware Intouch (производства Invensys) и Simatic WinCC (разработки Siemens) с суммарным количеством инсталляций более 80 тыс. в мире. Пакет визуализации технологического процесса может поставляться как в составе комплексной системы управления, так и в виде отдельного программного продукта. В последнем случае SCADA комплектуется набором драйверов ввода/вывода для коммуникации с контроллерами различных производителей.   [ http://kazanets.narod.ru/HMI_PART1.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > HMI

  • 43 application software

    1. прикладное программное средство
    2. прикладное программное обеспечение

     

    прикладное программное обеспечение
    Программы, занимающиеся обработкой пользовательских данных, например офисные программы, бизнес-программы, программы для работы с графикой и т.д.
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    3.4 прикладное программное обеспечение (application software): Часть программного обеспечения системы контроля и управления, которая обеспечивает выполнение прикладных функций.

    [МЭК 61513, пункт 3.2]

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.2 прикладное программное обеспечение (application software): Часть программного обеспечения системы контроля и управления, которое обеспечивает выполнение прикладных функций (см. рисунок 2).

    Примечание 1 - См. также «прикладная функция», «библиотека прикладных программ», «системное программное обеспечение системы».

    Примечание 2 - Прикладное программное обеспечение отличается от системного.

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.1.4 прикладное программное средство (application software): Программное средство, предназначенное для приложения и состоящее из программ, данных и документации.

    Источник: Р 50.1.041-2002: Информационные технологии. Руководство по проектированию профилей среды открытой системы (СОС) организации-пользователя

    3.23 прикладное программное обеспечение (application software): Специальное программное обеспечение, предназначенное для применения в системе SRECS, содержащее логические последовательности, пределы и выражения для управления соответствующими выходами, а также решения, необходимые для выполнения системой SRECS своих функций (см. ЕН 62061, пункт 3.2.46).

    Примечание - Для примера - программа для PLC, обеспечивающая безопасность при работе на станке.

    Источник: ГОСТ Р ЕН 1870-1-2011: Безопасность деревообрабатывающих станков. Станки круглопильные. Часть 1. Станки круглопильные универсальные (с подвижным столом и без), станки круглопильные форматные и станки круглопильные для строительной площадки

    3.25 прикладное программное обеспечение (application software): Особое программное обеспечение для специального применения, содержащее логические последовательности, пределы и выражения для контроля соответствующих вводов, выходов, расчетов и решений, необходимых для выполнения функциональных требований системы SRECS согласно ЕН 62061 (пункт 3.1.36).

    Примечание - Например, программа SRECS как часть системы управления для безопасной эксплуатации станка.

    Источник: ГОСТ Р ЕН 940-2009: Безопасность деревообрабатывающих станков. Станки комбинированные деревообрабатывающие

    3.2.3 прикладное программное средство (application software): Программное средство, которое отражает специфику приложения и скомпоновано из соответствующих программ, данных и документации.

    Источник: ГОСТ Р ИСО/МЭК ТО 10000-3-99: Информационная технология. Основы и таксономия международных функциональных стандартов. Часть 3. Принципы и таксономия профилей среды открытых систем

    3.2.21 прикладное программное обеспечение (application software): Специальное программное обеспечение, предназначенное для применения в системе SRECS, содержащее логические последовательности, пределы и выражения для управления соответствующими выходами, а также решения, необходимые для выполнения системой SRECS своих функций (см. ЕН 62061, пункт 3.2.46).

    Примечание - Например: программа для PLC, обеспечивающая работу станка.

    Источник: ГОСТ Р ЕН 848-1-2011: Безопасность деревообрабатывающих станков. Станки фрезерные односторонние. Часть 1. Станки фрезерные одношпиндельные с вертикальным нижним расположением шпинделя

    3.2.14 прикладное программное обеспечение (application software): Особое программное обеспечение для специального применения, выполненное главным проектировщиком системы SRECS.

    Примечание 1 - В основном оно содержит логические последовательности, пределы и выражения для контроля соответствующих входов, выходов, расчетов и решений, необходимых для выполнения функциональных требований SRECS согласно ЕН 62061 (пункт 3.2.46).

    Примечание 2 - Пример - программа SRECS как часть системы управления для безопасной эксплуатации станка.

    Источник: ГОСТ Р ЕН 859-2010: Безопасность деревообрабатывающих станков. Станки фуговальные с ручной подачей

    3.2.17 прикладное программное обеспечение (application software): Особое программное обеспечение для специального применения, выполненное главным проектировщиком системы SRECS.

    Примечание 1 - В основном оно содержит логические последовательности, пределы и выражения для контроля соответствующих входов, выходов, расчетов и решений, необходимых для выполнения функциональных требований SRECS согласно ЕН 62061 (пункт 3.1.36).

    Примечание 2 - Пример - программа SRECS как часть системы управления для безопасной эксплуатации станка.

    Источник: ГОСТ Р ЕН 860-2010: Безопасность деревообрабатывающих станков. Станки рейсмусовые односторонние

    3.2.19 прикладное программное обеспечение (application software): Специальное программное обеспечение, предназначенное для применения в системе SRECS, содержащее логические последовательности, пределы и выражения для управления соответствующими выходами, а также решения, необходимые для выполнения системой SRECS своих функций (см. ЕН 62061, пункт 3.2.46).

    Источник: ГОСТ Р ЕН 861-2011: Безопасность деревообрабатывающих станков. Станки фуговально-рейсмусовые

    Англо-русский словарь нормативно-технической терминологии > application software

  • 44 control

    control n
    управление
    acceleration control line flow restrictor
    дроссельный пакет линии управления приемистостью
    acceleration control unit
    автомат приемистости
    aerodrome approach control system
    система управления подходом к аэродрому
    aerodrome control
    управление в зоне аэродрома
    aerodrome control communication
    аэродромная командная связь
    aerodrome controlled zone
    зона, контролируемая авиадиспетчерской службой аэродрома
    aerodrome control point
    аэродромный диспетчерский пункт
    aerodrome control radar
    диспетчерский аэродромный радиолокатор
    aerodrome control radio
    аэродромная радиостанция командной связи
    aerodrome control sector
    зона контроля аэродрома диспетчерской службой
    aerodrome control service
    служба управления движением в зоне аэродрома
    aerodrome control tower
    аэродромный диспетчерский пункт
    aerodrome control tower clearance
    разрешение аэродромного диспетчерского пункта
    aerodrome control unit
    аэродромный диспетчерский пункт
    aerodrome traffic control zone
    зона аэродромного управления воздушным движением
    aerodynamic control
    управление с помощью аэродинамической поверхности
    aerodynamic roll control
    управление креном с помощью аэродинамической поверхности
    aeronautical information control
    аэронавигационное диспетчерское обслуживание
    aileron control system
    система управления элеронами
    aileron trim tab control system
    система управления триммером элерона
    air control
    диспетчерское обслуживание воздушного пространства
    aircraft control loss
    потеря управляемости воздушного судна
    aircraft control margin
    запас управляемости воздушного судна
    aircraft control system
    система управления воздушным судном
    aircraft control transfer
    передача управления воздушным судном
    aircraft sanitary control
    санитарный контроль воздушных судов
    air intake spike control
    управление конусом воздухозаборником
    air mixture control
    регулирование топливовоздушной смеси
    airport control tower
    командно-диспетчерский пункт аэрофлота
    air traffic control
    1. управление воздушным движением
    2. ответчик системы УВД Air Traffic Control Advisory Committee
    Консультативный комитет по управлению воздушным движением
    air traffic control area
    зона управления воздушным движением
    air traffic control boundary
    граница зоны управления воздушным движением
    air traffic control center
    диспетчерский центр управления воздушным движением
    air traffic control clearance
    разрешение службы управления воздушным движением
    air-traffic control instruction
    указания по управлению воздушным движением
    air traffic control loop
    цикл управления воздушным движением
    air traffic control procedures
    правила управления воздушным движением
    air traffic control radar
    радиолокатор управления воздушным движением
    air traffic control routing
    прокладка маршрута полета согласно указанию службы управления движением
    air traffic control service
    служба управления воздушным движением
    air traffic control system
    система управления воздушным движением
    air traffic control unit
    пункт управления воздушным движением
    airways control
    управление воздушным движением на трассе полета
    airworthiness control system
    система контроля за летной годностью
    altitude control unit
    высотный корректор
    amount of controls
    степень использования
    angle-of-attack control
    установка угла атаки
    angular position control
    управление по угловому отклонению
    antitorque control pedal
    педаль управления рулевым винтом
    approach control
    управление в зоне захода на посадку
    approach control point
    диспетчерский пункт захода на посадку
    approach control radar
    радиолокатор управления заходом на посадку
    approach control service
    диспетчерская служба захода на посадку
    approach control tower
    пункт управления заходом на посадку
    approach control unit
    диспетчерский пункт управления заходом на посадку
    area control
    управление в зоне
    area control center
    районный диспетчерский центр управления движением на авиатрассе
    area flight control
    районный диспетчерский пункт управления полетами
    assisted control
    управление с помощью гидроусилителей
    associated crop control operation
    контроль состояния посевов по пути выполнения основного задания
    associated fire control operation
    противопожарное патрулирование по пути выполнения основного задания
    assume the control
    брать управление на себя
    assumption of control message
    прием экипажем диспетчерского указания
    attitude control system
    система ориентации
    (в полете) attitude flight control
    управление пространственным положением
    automatic boost control
    автоматическое регулирование наддува
    automatic control
    автоматическое управление
    automatic exhaust temperature control
    автоматический регулятор температуры выходящих газов
    automatic flight control
    автоматическое управление полетом
    automatic flight control equipment
    оборудование автоматического управления полетом
    automatic flight control system
    автоматическая бортовая система управления
    automatic gain control
    автоматическая регулировка усиления
    automatic level control
    автоматическое управление уровнем
    automatic path control
    автоматический контроль траектории
    automatic volume control
    автоматическое регулирование громкости
    autopilot control
    управление с помощью автопилота
    autostart control unit
    автомат запуска
    backswept boundary layer controlled wing
    крыло с управляемым пограничным слоем
    balance the control surface
    балансировать поверхность управления
    bank control
    управление креном
    blanketing of controls
    затенение рулей
    bleed valve control mechanism
    механизм управления клапанами перепуска воздуха
    bleed valve control unit
    блок управления клапанами перепуска
    boundary layer control
    управление пограничным слоем
    brake control pedal
    педаль управления тормозами
    Budget Control Section
    Секция контроля за выполнением бюджета
    (ИКАО) bypass control
    управление перепуском топлива
    cabin temperature control system
    система регулирования температуры воздуха в кабине
    cable control
    тросовое управление
    cable control system
    система тросового управления
    cargo hatch control switch
    переключатель управления грузовым люком
    change-over to manual control
    переходить на ручное управление
    check control
    контрольный код
    clearance control
    таможенный досмотр
    collective pitch control
    управление общим шагом
    collective pitch control lever
    ручка шаг-газ
    collective pitch control rod
    тяга управления общим шагом
    collective pitch control system
    система управления общим шагом
    (несущего винта) constant altitude control
    выдерживание постоянной высоты
    control actuator
    исполнительный механизм управления
    control board
    пульт управления
    control booster
    усилитель системы управления
    control cable
    трос управления
    control cable fairlead
    направляющая тросовой проводки
    control cable pressure seal
    гермовывод троса управления
    control center
    диспетчерский центр
    control characteristic
    характеристика управляемости
    control circuit
    цепь управления
    control column
    штурвальная колонка
    control column elbow
    колено колонки штурвала
    control column gaiter
    чехол штурвальной колонки
    control communication
    связь для управления полетами
    control console
    пульт управления
    control desk
    пульт управления
    control force
    усилие в системе управления
    control gear
    ведущая шестерня
    control in transition
    управление на переходном режиме
    control lag
    запаздывание системы управления
    controlled aerodrome
    аэродром с командно-диспетчерской службой
    controlled airspace
    контролируемое воздушное пространство
    controlled flight
    контролируемый полет
    controlled route
    контролируемый маршрут
    controlled spin
    управляемый штопор
    control lever
    ручка управления
    controlling beam
    управляющий луч
    controlling fuel
    командное топливо
    control linkage
    проводка системы управления
    control lock
    стопор рулей
    control loss
    потеря управляемости
    control message
    диспетчерское указание
    control mode
    режим управления
    control of an investigation
    контроль за ходом расследования
    control panel
    пульт управления
    control pedestal
    пульт управления
    control position indicator
    указатель положения рулей
    control radar
    радиолокационная станция наведения
    control radio station
    радиостанция диспетчерской связи
    control rod
    тяга управления
    control rod pressure seal
    гермовывод тяги управления
    control signal
    управляющий сигнал
    control slot
    щель управления
    (пограничным слоем) control speed
    эволютивная скорость
    Минимально допустимая скорость при сохранении управляемости. controls response
    чувствительность органов управления
    control stick
    ручка управления
    (воздушным судном) control stick movement
    перемещение ручки управления
    control surface
    поверхность управления
    control surface angle
    угол отклонения руля
    control surface chord
    хорда руля
    control surface deflection
    отклонение поверхности управления
    control surface effectiveness
    эффективность рулей
    control surface load
    нагрузка на поверхность управления
    control surface pilot
    ось руля
    control surface reversal
    перекладка поверхности управления
    control system
    система управления
    control system load
    усилие на систему управления
    control the aircraft
    управлять воздушным судном
    control the pitch
    управлять шагом
    control transfer line
    рубеж передачи управления
    control unit
    командный прибор
    control valve
    клапан управления
    control wheel
    штурвал
    control wheel force
    усилие на штурвале
    control wheel grip
    рукоятка штурвала
    control wheel horn
    рог штурвала
    control wheel rim
    колесо штурвала управления
    control zone
    зона диспетчерского контроля
    crop control flight
    полет для контроля состояния посевов
    crop control operation
    полет для контроля состояния посевов с воздуха
    customs control
    таможенный досмотр
    cyclic pitch control
    управление циклическим шагом
    cyclic pitch control rod
    тяга управления циклическим шагом
    cyclic pitch control stick
    ручка продольно-поперечного управления циклическим шагом
    (несущего винта) cyclic pitch control system
    система управления циклическим шагом
    (несущего винта) data flow control
    управление потоком информации
    deceleration control unit
    дроссельный механизм
    deflect the control surface
    отклонять поверхность управления
    (напр. элерон) differential aileron control
    дифференциальное управление элеронами
    differential control
    дифференциальное управление
    digital engine control
    цифровой электронный регулятор режимов работы двигателя
    direct control
    непосредственный контроль
    directional control
    путевое управление
    directional control capability
    продольная управляемость при посадке
    directional control loss
    потеря путевой управляемости
    directional control pedal
    педаль путевого управления
    direct lift control system
    система управления подъемной силой
    director control
    директорное управление
    distance control
    дистанционное управление
    Document Control Unit
    Сектор контроля за документацией
    drift angle control
    управление углом сноса
    dual control
    спаренное управление
    easy-to-operate control
    легкое управление
    electric propeller pitch control
    электрическое управление шагом воздушного винта
    electronic engine control system
    электронная система управления двигателем
    elevator control
    управление рулем высоты
    elevator control stand
    колонка руля высоты
    emergency control
    аварийное управление
    engine control system
    система управления двигателем
    engine throttle control lever
    рычаг раздельного управления газом двигателя
    environmental control system equipment
    оборудование системы контроля окружающей среды
    environment control
    охрана окружающей среды
    environment control system
    система жизнеобеспечения
    (воздушного судна) environment control system noise
    шум от системы кондиционирования
    fail to maintain control
    не обеспечивать диспетчерское обслуживание
    fail to relinquish control
    своевременно не передать управление
    feedback control system
    система управления с обратной связью
    fire control operation
    противопожарное патрулирование с воздуха
    flight compartment controls
    органы управления в кабине экипажа
    flight control
    диспетчерское управление полетами
    flight control boost system
    бустерная система управления полетом
    flight control fundamentals
    руководство по управлению полетами
    flight control gust-lock system
    система стопорения поверхностей управления
    (при стоянке воздушного судна) flight control load
    нагрузка в полете от поверхности управления
    flight control system
    система управления полетом
    flight director system control panel
    пульт управления системой директорного управления
    flow control
    управление потоком
    flow control center
    диспетчерский центр управления потоком воздушного движения
    flow control procedure
    управление потоком
    foot controls
    ножное управление
    fore-aft control rod
    тяга провольного управления
    fuel control panel
    топливный щиток
    fuel control unit
    командно-топливный агрегат
    fuel injection control
    регулирование непосредственного впрыска топлива
    full-span control surface
    поверхность управления по всему размаху
    (напр. крыла) get out of control
    терять управление
    go out of control
    становиться неуправляемым
    ground control
    управление наземным движением
    ground controlled approach
    заход на посадку на посадку под контролем наземных средств
    ground control system
    наземная система управления
    (полетом) hand control
    ручное управление
    handle the flight controls
    оперировать органами управления полетом
    heading control loop
    рамочная антенна контроля курса
    health control
    медицинский контроль
    helicopter control system
    система управления вертолетом
    hydraulic control
    гидравлическое управление
    hydraulic control boost system
    гидравлическая бустерная система управления
    hydraulic propeller pitch control
    гидравлическое управление шагом воздушного винта
    immigration control
    иммиграционный контроль
    independent control
    автономное управление
    inertial control system
    инерциальная система управления
    integrated control system
    встроенная система контроля
    integrated system of airspace control
    комплексная система контроля воздушного пространства
    interphone control box
    абонентский аппарат переговорного устройства
    irreversible control
    необратимое управление
    jacking control unit
    пульт управления подъемниками
    jet deviation control system
    система управления отклонением реактивной струи
    laminar flow control
    управление ламинарным потоком
    landing control
    управление посадкой
    land use control
    контроль за использованием территории
    lateral control
    поперечное управление
    lateral control rod
    тяга поперечного управления
    lateral control spoiler
    интерцептор - элерон
    lateral control system
    система поперечного управления
    (воздушным судном) layout of controls
    расположение органов управления
    level control
    управление эшелонированием
    longitudinal control
    продольное управление
    longitudinal control rod
    тяга продольного управления
    longitudinal control system
    система продольного управления
    (воздушным судном) loss of control
    потеря управления
    loss the control
    терять управление
    low control area
    нижний диспетчерский район
    maintain control
    обеспечивать диспетчерское обслуживание
    manipulate the flight controls
    оперировать органами управления полетом
    manual control
    ручное управление
    master control
    центральный пульт управления
    mid air collision control
    предупреждение столкновений в воздухе
    mixture control
    высотный корректор
    mixture control assembly
    высотный корректор двигателя
    mixture control knob
    ручка управления высотным корректором
    mixture control lever
    рычаг высотного корректора
    noise control
    контроль уровня шума
    noise control technique
    метод контроля шума
    nonreversible control
    необратимое управление
    nozzle control system
    система управления реактивным соплом
    oceanic area control center
    океанический районный диспетчерский центр
    oceanic control area
    океанический диспетчерский район
    oil control ring
    маслосборное кольцо
    operating controls
    органы управления
    operational control
    диспетчерское управление полетами
    overspeed limiting control
    узел ограничения заброса оборотов
    passport control
    паспортный контроль
    pedal control
    ножное управление
    pilot on the controls
    пилот, управляющий воздушным судном
    pitch control
    продольное управление
    pitch control lever
    ручка шага
    pitch control system
    система управления тангажом
    pitch trim control knob
    кремальера тангажа
    positive control zone
    зона полного диспетчерского контроля
    power augmentation control
    управление форсажем
    power-boost control
    обратимое управление с помощью гидроусилителей
    power-boost control system
    бустерная обратимая система управления
    powered control
    управление с помощью гидроусилителей
    power-operated control
    необратимое управление с помощью гидроусилителей
    power-operated control system
    необратимая система управления
    pressure control system
    система регулирования давления
    pressure control unit
    автомат давления
    propeller control unit
    регулятор числа оборотов воздушного винта
    propeller pitch control
    управление шагом воздушного винта
    propeller pitch control system
    л управления шагом воздушного винта
    pull the control column back
    брать штурвал на себя
    pull the control stick back
    брать ручку управления на себя
    push-button control
    кнопочное управление
    push-pull control system
    жесткая система управления
    (при помощи тяг) push the control column
    отдавать штурвал от себя
    push the control stick
    отдавать ручку управления от себя
    quality control expert
    эксперт по контролю за качеством
    radar approach control
    центр радиолокационного управления заходом на посадку
    radar control
    радиолокационный контроль
    radar control area
    зона действия радиолокатора
    radar transfer of control
    передача радиолокационного диспетчерского управления
    radio control board
    пульт управления по радио
    radio remote control
    радиодистанционное управление
    regional control center
    региональный диспетчерский центр
    release of control
    передача управления
    relinquish control
    передавать управление
    remote control
    дистанционное управление
    remote control equipment
    оборудование дистанционного управления
    remote control system
    система дистанционного управления
    respond to controls
    реагировать на отклонение рулей
    reverser lock control valve
    клапан управления замком реверса
    reversible control
    обратимое управление
    reversible control system
    обратимая система управления
    rigid control
    жесткое управление
    roll control
    управление по крену
    roll control force sensor
    датчик усилий по крену
    roll control knob
    ручка управления креном
    rudder control
    управление рулем направления
    rudder control system
    система управления рулем направления
    rudder trim tab control system
    система управления триммером руля направления
    runway controlled
    диспетчер старта
    runway control van
    передвижной диспетчерский пункт в районе ВПП
    safety control measures
    меры по обеспечению безопасности
    speed control area
    зона выдерживания скорости
    speed control system
    система управления скоростью
    (полета) spring tab control rod
    тяга управление пружинным сервокомпенсатором
    stabilizer control jack
    механизм перестановки стабилизатора
    stack controlled
    диспетчер подхода
    starting fuel control unit
    автомат подачи пускового топлива
    steering-damping control valve
    распределительно демпфирующий механизм
    stiff control
    тугое управление
    surface movement control
    управление наземным движением
    surge control
    противопомпажный механизм
    tab control system
    система управления триммером
    tab control wheel
    штурвальчик управления триммером
    tail rotor control pedal
    педаль управления рулевым винтом
    take over the control
    брать управление на себя
    temperature control
    терморегулятор
    temperature control amplifier
    усилитель терморегулятора
    temporary loss of control
    временная потеря управляемости
    terminal control area
    узловой диспетчерский район
    terminal radar control
    конечный пункт радиолокационного контроля
    terminate the control
    прекращать диспетчерское обслуживание
    termination of control
    прекращение диспетчерского обслуживания
    throttle control
    управление газом
    throttle control knob
    сектор управления газом
    throttle control twist grip
    ручка коррекции газа
    tie bus control
    управление переключением шин
    track controlled
    диспетчер обзорного радиолокатора
    traffic control
    управление воздушным движением
    traffic control instructions
    правила управления воздушным движением
    traffic control personnel
    персонал диспетчерской службы воздушного движения
    traffic control regulations
    правила управления воздушным движением
    transfer of control
    передача диспетчерского управления
    transfer the control
    передавать диспетчерское управление другому пункту
    trim tab control
    управление триммером
    turn control knob
    ручка управления разворотом
    unassisted control
    управление без применения гидроусилителей
    unassisted control system
    безбустерная система управления
    upper area control center
    диспетчерский центр управления верхним районом
    upper control area
    верхний диспетчерский район
    upper level control area
    верхний район управления эшелонированием
    warning system control unit
    блок управления аварийной сигнализации
    weight and balance controlled
    диспетчер по загрузке и центровке
    wind flaps control system
    система управления закрылками
    windshield heat control unit
    автомат обогрева стекол
    wing flap control system
    система управления закрылками
    yaw control
    управление по углу рыскания

    English-Russian aviation dictionary > control

  • 45 MIS

    1. управленческая информационная система
    2. несоответствие (линии)
    3. информационно-управляющая система
    4. информационная система управления
    5. индикация многоадресного вторичного состояния
    6. административная информационная система
    7. автоматизированная система управления

     

    автоматизированная система, управляющая
    АСУ

    Управляющая система, часть функций которой, главным образом функцию принятия решений, выполняет человек-оператор.
    Примечание
    В зависимости от объектов управления различают, например: АСУ П, когда объектом управления является предприятие; АСУ ТП, когда объектом управления является технологический процесс; ОАСУ, когда объектом управления является организационный объект или комплекс.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.  Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    автоматизированная система управления
    АСУ

    Совокупность математических методов, технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом (процессом) в соответствии с заданной целью. АСУ принято делить на основу и функциональную часть. В основу входят информационное, техническое и математическое обеспечение. К функциональной части относят набор взаимосвязанных программ, автоматизирующих конкретные функции управления (планирование, финансово-бухгалтерскую деятельность и др.). Различают АСУ объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональными автоматизированными системами, например, проектирования, расчетов, материально-технического и др. обеспечения.
    [ http://www.morepc.ru/dict/]

    автоматизированная система управления
    АСУ

    Система управления, в которой применяются современные автоматические средства обработки данных и экономико-математические методы для решения основных задач управления производственно-хозяйственной деятельностью. Это человеко-машинная система: в ней ряд операций и действий передается для исполнения машинам и другим устройствам (особенно это относится к так называемым рутинным, повторяющимся, стандартным операциям расчетов), но главное решение всегда остается за человеком. Этим АСУ отличаются от автоматических систем, т.е. таких технических устройств, которые действуют самостоятельно, по установленной для них программе, без вмешательства человека. АСУ подразделяются прежде всего на два класса: автоматизированные системы организационного управления и автоматизированные системы управления технологическими процессами (последние часто бывают автоматическими, первые ими принципиально быть не могут). Традиционно термин АСУ закрепился за первым из названных классов. Отличие АСУ от обычной, неавтоматизированной, но также использующей ЭВМ, системы управления показано на рис. А.1, а, б. Стрелками обозначены потоки информации. В первом случае компьютер используется для решения отдельных задач управления, например для производства плановых расчетов, результаты которых рассматриваются органом управления и либо принимаются, либо отвергаются. При этом необходимые данные собираются специально для решения каждой задачи и вводятся в компьютер, а потом за ненадобностью уничтожаются. Во втором случае существенная часть информации от объекта управления собирается непосредственно вычислительным центром, в том числе по каналам связи. При этом нет необходимости каждый раз вводить в компьютер все данные: часть из них (цены, нормативы и т. п.) хранится в ее запоминающем устройстве. Из вычислительного центра выработанные задания поступают, с одной стороны, в орган управления, а с другой (обычно через контрольное звено) — к объекту управления. В свою очередь информация, поступающая от объекта управления, влияет на принимаемые решения, т.е. здесь используется кибернетический принцип обратной связи. Это — АСУ. Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций — того, что и как она делает, и с точки зрения ее схемы, т.е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем — функциональные и обеспечивающие. Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т.д.) — не разовое мероприятие, а длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически «вписывается» в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером, на основе получаемых им данных, оперативных управляющих «команд». Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т.д. Экономическая эффективность АСУ определяется прежде всего ростом эффективности самого производства в результате лучшей загрузки оборудования, повышения ритмичности, сокращения незавершенного производства и других материальных запасов, повышения качества продукции. РисА.1. Системы управления с использованием компьютеров а — неавтоматизированная, б — автоматизированная; I — управляющий центр; II — автоматизированная управляемая система (например, производство), III — контроль; тонкая черная стрелка — канал непосредственного управления компьютером некоторыми технологическими процессами (бывает не во всех АСУ); тонкая пунктирная стрелка показывает ту часть информации, которая поступает непосредственно в центр, минуя компьютер.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

     

    административная информационная система

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    индикация многоадресного вторичного состояния
    Передается MCU оконечному устройству для информирования о том, что, поскольку другие оконечные устройства более высокой скорости участвуют в соединении конференц-связи, данное оконечное устройство не обязательно получит все сигналы, переданные этим оконечным устройствам (МСЭ-Т Н.230).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    информационная система управления
    ИСУ

    Система, обеспечивающая получение прошлых, настоящих и предполагаемых данных о внутренних операциях и внешних событиях. Своевременно предоставляя информацию, необходимую для принятия решений, она поддерживает такие функции предприятия, как планирование, контроль и оперативное управление.
    [ http://www.lexikon.ru/dict/uprav/index.html]

    Тематики

    Синонимы

    EN

     

    информационно-управляющая система
    Формальная система обеспечения руководителей информацией, необходимой для принятия решений.
    [ http://tourlib.net/books_men/meskon_glossary.htm]

    Тематики

    EN

     

    несоответствие (линии)
    (МСЭ-Т G.984.3).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    управленческая информационная система
    УИС

    (ITIL Service Design)
    Набор инструментов, данных и информации, который используется для поддержки процесса или функции. Примеры управленческой информационной системы – система управления доступностью, система управления подрядчиками и контрактами.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    система управленческая информационная
    Система, состоящая из взаимосвязанных подсистем, которые выдают информацию, необходимую для управления фирмой, при этом бухгалтерская подсистема является наиболее важной, так как она играет ведущую роль в управлении потоком экономических данных и направлении их во всех подразделения фирмы, а также заинтересованным лицам вне фирмы.
    [ http://www.lexikon.ru/dict/buh/index.html]

    EN

    management information system
    MIS

    (ITIL Service Design) A set of tools, data and information that is used to support a process or function. Examples include the availability management information system and the supplier and contract management information system. See also service knowledge management system.
    [Словарь терминов ITIL® версия 1.0, 29 июля 2011 г.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > MIS

  • 46 actuator

    1. рукоятка, приводящая в действие некоторый механизм
    2. приводное устройство
    3. привод контактного аппарата
    4. привод
    5. орган управления
    6. механизм конечного выключателя, воздействующий на контакты
    7. исполнительный орган
    8. исполнительный механизм
    9. защелка (для фиксации сочленения розетки и плоского печатного проводника)
    10. воздействующее устройство

     

    воздействующее устройство
    источник сигнала


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    исполнительный механизм
    Устройство для управления арматурой, предназначенное для перемещения регулирующего элемента в соответствии с командной информацией, поступающей от внешнего источника энергии.
    [ ГОСТ Р 52720-2007]

    исполнительный механизм
    Механизм, являющийся функциональным блоком, предназначенным для управления исполнительным органом в соответствии с командной информацией.
    Примечание. В системах автоматического регулирования сред исполнительный механизм предназначен для перемещения затвора регулирующего органа
    [ ГОСТ 14691-69]

    исполнительный механизм
    Силовой механизм, используемый для движения машины и ее частей.
    [ ГОСТ Р МЭК 60204-1-2007]

    EN

    (electric) actuator
    device that produces a specified movement when excited by an electric signal
    SOURCE: 351-18-46 MOD
    [IEV ref 151-13-49]

    actuator

    In electrical engineering, the term actuator refers to a mechanism that causes a device to be turned on or off, adjusted or moved, usually in response to an electrical signal. In some literature the terms actor or effector are also used. The term “effector” is preferred by programmers, whereas engineers tend to favor “actuator.”
    An example of an actuator is a motor that closes blinds in response to a signal from a sunlight detector.
    Actuators enable computers to control complex manufacturing processes without human intervention or supervision.
    [ABB. Glossary of technical terms. 2010]

    FR

    actionneur (électrique), m
    dispositif qui produit un mouvement spécifié en réponse à un signal électrique
    SOURCE: 351-18-46 MOD
    [IEV ref 151-13-49]

     

    Тематики

    EN

     

    исполнительный орган

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    механизм конечного выключателя, воздействующий на контакты

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    Тематики

    • электротехника, основные понятия

    EN

     

    орган управления
    Часть системы аппарата управления, к которой прилагается извне усилие управления.
    МЭК 60050(441-15-22).
    Примечание. Орган управления может иметь форму рукоятки, ручки, нажимной кнопки, ролика, плунжера и т. п.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    орган управления

    Часть приводного механизма, к которой прикладывается внешняя сила воздействия.
    Примечание - Орган управления может иметь форму ручки, кнопки, ролика, поршня и т.д.
    [ ГОСТ Р 52726-2007]

    орган управления
    Часть системы привода, подвергаемая внешнему силовому воздействию.
    Примечания
    1. Орган управления может иметь форму ручки, рукоятки, нажимной кнопки, ролика, плунжера и т.д.
    2. Есть несколько способов приведения в действие, которые не требуют внешнего силового воздействия, а только какого-либо действия.
    [ГОСТ ЕН 1070-2003]

    орган управления
    Часть системы управления, которая предназначена непосредственно для воздействия оператором, например путем нажатия.
    [ГОСТ Р ЕН 614-1-2003]

    орган управления

    Часть системы приведения в действие, которая принимает воздействие человека.
    [ ГОСТ Р МЭК 60447-2000]

    орган управления
    Часть системы приведения в действие, которая воспринимает воздействие человека (ГОСТ Р МЭК 60447).
    Примечание
    В настоящем стандарте орган управления в виде интерактивного экранного устройства отображения является частью этого устройства, которое представляет функцию органа управления.
    [ ГОСТ Р МЭК 60073-2000]

    орган управления
    Часть механизма прибора управления, на который оказывается вручную внешнее силовое воздействие.
    Примечание.
    Орган управления может иметь форму ручки, рукоятки, кнопки, ролика, плунжера и т.д.
    Некоторые органы управления не требуют воздействия внешней силы, а только какого-либо действия.
    [ ГОСТ Р МЭК 60204-1-2007]

    органы управления
    Ручки, переключатели, потенциометры и другие органы, служащие для включения и регулировки аппаратуры. Термин относится преимущественно к аналоговым приборам.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    орган управления
    -
    [IEV number 442-04-14]

    средства оперирования
    -

    [Интент]

    EN

    actuator
    the part of the actuating system to which an external actuating force is applied
    NOTE – The actuator may take the form of a handle, knob, push-button, roller, plunger, etc.
    [IEV number 441-15-22]

    actuator
    part of a device to which an external manual action is to be applied
    NOTE 1 The actuator may take the form of a handle, knob, push-button, roller, plunger, etc.
    NOTE 2 There are some actuating means that do not require an external actuating force, but only an action.
    NOTE 3 See also 3.34.
    [IEC 60204-1 -2005]

    actuating member
    a part which is pulled, pushed, turned or otherwise moved to cause an operation of the switch
    [IEV number 442-04-14]

    FR

    organe de commande
    partie du mécanisme transmetteur à laquelle un effort extérieur de manoeuvre est appliqué
    NOTE – L'organe de commande peut prendre la forme d'une poignée, d'un bouton, d'un bouton-poussoir, d'une roulette, d'un plongeur, etc.
    [IEV number 441-15-22]

    organe de manoeuvre
    partie qui est tirée, poussée, tournée ou manipulée de toute autre façon pour provoquer le fonctionnement de l'interrupteur
    [IEV number 442-04-14]


    Аппарат должен оставаться механически действующим. Не допускается сваривание контактов, препятствующее операции размыкания при использовании нормальных средств оперирования.
    [ГОСТ  Р 50030.3-99 (МЭК  60947-3-99) ]

    ВДТ следует оперировать как при нормальной эксплуатации. Операции размыкания должны проводиться в следующем порядке:
    для первых 1000 циклов — с использованием ручных средств оперирования;
    ...
    [ ГОСТ Р 51326. 1-99 ( МЭК 61008-1-96)]

    Параллельные тексты EN-RU

    The operating means (for example, a handle) of the supply disconnecting device shall be easily accessible and located between 0,6 m and 1,9 m above the servicing level.
    [IEC 60204-1-2006]

    Органы управления, например, рукоятки аппаратов отключения питания, должны быть легко доступны и располагаться на высоте от 0,6 до 1,9 м от рабочей площадки.
    [Перевод Интент]

    Where the external operating means is not intended for emergency operations, it is recommended that it be coloured BLACK or GREY.
    [IEC 60204-1-2006]

    Если внешние средства оперирования не предназначены для выполнения действий при возникновении аварийных ситуаций, то рекомендуется, применять такие средства ЧЕРНОГО или СЕРОГО цвета.
    [Перевод Интент]

     

    1.2.2. Control devices

    Control devices must be:
    — clearly visible and identifiable and appropriately marked where necessary,
    — positioned for safe operation without hesitation or loss of time, and without ambiguity,
    — designed so that the movement of the control is consistent with its effect,
    — located outside the danger zones, except for certain controls where necessary, such as emergency stop, console for training of robots,
    — positioned so that their operation cannot cause additional risk,
    — designed or protected so that the desired effect, where a risk is involved, cannot occur without an intentional operation,
    — made so as to withstand foreseeable strain; particular attention must be paid to emergency stop devices liable to be subjected to considerable strain.

    1.2.2. Органы управления

    Органы управления должны быть:
    - четко видны, хорошо различимы и, где это необходимо, иметь соответствующее обозначение;
    - расположены так, чтобы ими можно было пользоваться без возникновения сомнений и потерь времени на выяснение их назначения;
    - сконструированы так, чтобы перемещение органа управления согласовывалось с их воздействием;
    - расположены вне опасных зон; исключение, где это необходимо, делается для определенных средств управления, таких, как средство экстренной остановки, пульт управления роботом;
    - расположены так, чтобы их использование не вызывало дополнительных рисков;
    - сконструированы или защищены так, чтобы в случаях, где возможно возникновение рисков, они не могли бы возникнуть без выполнения намеренных действий;
    - сделаны так, чтобы выдерживать предполагаемую нагрузку; при этом особое внимание уделяется органам аварийного останова, которые могут подвергаться значительным нагрузкам.

    Where a control is designed and constructed to perform several different actions, namely where there is no one-to-one correspondence (e.g. keyboards, etc.), the action to be performed must be clearly displayed and subject to confirmation where necessary.

    Если орган управления предназначен для выполнения разных действий, например, если в качестве органа управления используется клавиатура или аналогичное устройство, то должна выводиться четкая информация о предстоящем действии, и, если необходимо, должно выполняться подтверждение на выполнение такого действия.

    Controls must be so arranged that their layout, travel and resistance to operation are compatible with the action to be performed, taking account of ergonomic principles.

    Органы управления должны быть организованы таким образом, чтобы их расположение, перемещение их элементов и усилие, которое оператор затрачивает на их перемещение, соответствовали выполняемым операциям и принципам эргономики.

    Constraints due to the necessary or foreseeable use of personal protection equipment (such as footwear, gloves, etc.) must be taken into account.

    Необходимо учитывать скованность движений операторов при использовании необходимых или предусмотренных средств индивидуальной защиты (таких, как специальная обувь, перчатки и др.).

    Machinery must be fitted with indicators (dials, signals, etc.) as required for safe operation. The operator must be able to read them from the control position.

    Для обеспечения безопасной эксплуатации машинное оборудование должно быть оснащено индикаторами (циферблатами, устройствами сигнализации и т. д.). Оператор должен иметь возможность считывать их с места управления.

    From the main control position the operator must be able to ensure that there are no exposed persons in the danger zones.

    Находясь в главном пункте управления, оператор должен иметь возможность контролировать отсутствие незащищенных лиц.

    If this is impossible, the control system must be designed and constructed so that an acoustic and/ or visual warning signal is given whenever the machinery is about to start.

    Если это невозможно, то система управления должна быть разработана и изготовлена так, чтобы перед каждым пуском машинного оборудования подавался звуковой и/или световой предупредительный сигнал.

    The exposed person must have the time and the means to take rapid action to prevent the machinery starting up.

    [DIRECTIVE 98/37/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL]

    Незащищенное лицо должно иметь достаточно времени и средств для быстрого предотвращения пуска машинного оборудования.

    [Перевод Интент]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    привод
    Устройство для приведения в действие машин и механизмов.
    Примечание
    Привод состоит из источника энергии, механизма для передачи энергии (движения) и аппаратуры управления. Источником энергии служит двигатель (тепловой, электрический, пневматический, гидравлический и др.) или устройство, отдающее заранее накопленную механическую энергию (пружинный, инерционный, гиревой механизм и др.). В некоторых случаях привод осуществляется за счет мускульной силы. По характеру распределения энергии различают групповой, индивидуальный и многодвигательный привод. По назначению привод машин разделяют на стационарный, т.е. установленный неподвижно на раме или фундаменте; передвижной, используемый на движущихся рабочих машинах; транспортный, применяемый для различных транспортных средств. В производстве применяются также гидропривод машин и пневмопривод.
    [РД 01.120.00-КТН-228-06]

    привод

    Устройство для приведения в действие машин, состоящее из двигателя, механизма передачи и системы управления
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    • аппарат, изделие, устройство...

    EN

    DE

    FR

     

    привод контактного аппарата
    Устройство, предназначенное для создания или передачи силы, воздействующей на подвижные части контактного аппарата для выполнения функции этого аппарата.
    [ ГОСТ 17703-72]

    привод
    Устройство, предназначенное для создания и передачи силы, воздействующей на подвижные части выключателя для выполнения его функций, а также для удержания выключателя в конечном положении.
    [ ГОСТ Р 52565-2006]

    Приводы являются аппаратами для включения и удержания во включенном положении, а также отключения коммутационных аппаратов (масляного выключателя, выключателя нагрузки или разъединителя).
    С помощью приводов осуществляется ручное, автоматическое и дистанционное управление коммутационными аппаратами.

    По роду используемой энергии приводы разделяются

    • на ручные,
    • пружинные,
    • электромагнитные,
    • электродвигательные,
    • пневматические.

    По роду действия приводы бывают

    В приводах прямого действия движение включающего устройства передается непосредственно на приводной механизм выключателя в момент подачи импульса от источника энергии. Такие приводы потребляют большое количество энергии.
    В приводах косвенного действия энергия, необходимая для включения, предварительно запасается в специальных устройствах: маховиках, пружинах, грузах и т. д.
    [Цигельман И. Е. Электроснабжение гражданских зданий и коммунальных предприятий: Учеб. для электромеханич. спец. техникумов. - М.: Высш. шк. 1988.]


    Приводы служат для включения, удержания во включенном положении и отключения разъединителей и выключателей.
    Основные требования, предъявляемые к приводу выключателя, состоят в том, что каждый привод должен развивать мощность, достаточную для включения выключателя при самых тяжелых условиях работы (включение на короткое замыкание, пониженное напряжение питания), и быть быстродействующим, т. е. производить включение за весьма малый промежуток времени. При медленном включении на существующее в сети КЗ возможно приваривание контактов.
    При включении выключателя совершается большая работа по преодолению сопротивления отключающих пружин, сопротивления упругих частей контактов, трения в механизме, сопротивления масла движению подвижных частей выключателя, электродинамических сил, препятствующих включению, и др.
    При отключении привод выключателя совершает небольшую работу, необходимую только для освобождения запорного механизма, так как отключение выключателя происходит под действием его отключающих пружин.
    В зависимости от рода энергии, используемой для включения, приводы разделяются на ручные, грузовые, пружинно-грузовые, пружинные, электромагнитные, пневматические и гидравлические.

    К наиболее простым относятся ручные приводы, не требующие специального источника электроэнергии для подготовки операции включения. Однако эти приводы имеют ряд существенных недостатков: не позволяют осуществлять дистанционное включение, не могут быть применены в схемах АВР (автоматического включения резерва) и АПВ (автоматического повторного включения), требуют приложения значительной мускульной силы оператора и не позволяют получить высокие скорости подвижных контактов выключателя, необходимые при больших токах КЗ.
    Более совершенными, имеющими большие возможности, но в то же время и более сложными являются грузовые и пружинные приводы, которые обеспечивают значительно более высокие скорости включения выключателя по сравнению с ручными. Это в свою очередь позволяет увеличить включающую способность выключателя. Грузовые и пружинные приводы включают выключатель за счет заранее накопленной энергии поднятого груза или заведенной пружины. Накопление достаточного количества энергии может производиться в течение сравнительно большого промежутка времени (десятки секунд), поэтому мощность электродвигателей таких приводов может быть небольшой (0,1—0.3 кВт).

    Электромагнитные приводы включают выключатель за счет энергии включающего электромагнита. Электромагнитные приводы предназначены для работы на постоянном токе. Питание их осуществляют от аккумуляторных батарей или выпрямителей. По способу питания энергией приводы подразделяют на две группы: прямого и косвенного действия.

    У приводов прямого действия энергия, расходуемая на включение, сообщается приводу во время процесса включения. К приводам прямого действия относятся ручные с использованием мускульной силы человека и электромагнитные или соленоидные приводы. Работа приводов косвенного действия основана на предварительно запасаемой энергии. К таким приводам относятся грузовые, пружинно-грузовые и пружинные приводы, а также пневматические и гидравлические. Последние два типа приводов не нашли широкого применения для выключателей 6—10 кВ и поэтому нами не рассматриваются.
    Приводы прямого действия по конструкции более просты по сравнению с приводами косвенного действия, и в этом их преимущество. Однако поскольку приводы прямого действия питаются от источника энергии непосредственно во время процесса включения выключателя, то потребляемая ими мощность во много раз больше, чем у приводов косвенного действия. Это — существенный недостаток приводов прямого действия.
    Ко всем приводам выключателей предъявляют требование наличия механизма свободного расцепления, т. е. возможности освобождения выключателя от связи с удерживающим и заводящим механизмами привода при срабатывании отключающего устройства и отключения выключателя под действием своих отключающих пружин. Современные приводы имеют свободное расцепление почти на всем ходу контактов, т. е. практически в любой момент от начала включения может произойти отключение. Это особенно важно при включении на КЗ. В этом случае отключение произойдет в первый же момент возникновения дуги, что предотвратит опасность сильного оплавления и сваривания контактов.

    [http://forca.ru/stati/podstancii/privody-razediniteley-i-maslyanyh-vyklyuchateley-6-10-kv-i-ih-remont.html]

    Тематики

    • выключатель, переключатель
    • высоковольтный аппарат, оборудование...

    Классификация

    >>>

    Синонимы

    EN

    Смотри также

     

    приводное устройство

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    рукоятка, приводящая в действие некоторый механизм

    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    EN

    3.3.15 орган управления (actuator): Часть системы управления, к которой прилагают извне усилие управления.

    Примечание- Орган управления может иметь форму рукоятки, нажимной кнопки и т.д.

    Источник: ГОСТ Р 51731-2010: Контакторы электромеханические бытового и аналогичного назначения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > actuator

  • 47 EN

    1. эффективность
    2. цели в области качества
    3. характеристика качества
    4. характеристика
    5. управление качеством
    6. улучшение качества
    7. удовлетворенность потребителей
    8. требование
    9. соответствие
    10. снижение градации
    11. система управления измерениями
    12. система менеджмента качества
    13. система менеджмента
    14. система
    15. сигнал электрического интерфейса, уровень n
    16. руководство по качеству
    17. ремонт
    18. результативность
    19. разрешение на отступление
    20. разрешение на отклонение
    21. процесс квалификации
    22. процесс измерения
    23. процесс
    24. процедура
    25. прослеживаемость
    26. производственная среда
    27. проектирование и разработка
    28. проект
    29. продукция
    30. проверяемая организация
    31. предупреждающее действие
    32. потребитель
    33. постоянное улучшение
    34. поставщик
    35. политика в области качества
    36. планирование качества
    37. план качества
    38. переделка
    39. организация
    40. организационная структура
    41. объективное свидетельство
    42. обеспечение качества
    43. нормативная и техническая документация
    44. несоответствие
    45. надежность
    46. метрологическое подтверждение пригодности
    47. метрологическая характеристика
    48. метрологическая служба
    49. менеджмент качества
    50. менеджмент
    51. коррекция
    52. корректирующее действие
    53. контроль
    54. компетентность
    55. качество
    56. испытание
    57. инфраструктура
    58. информация
    59. измерительное оборудование
    60. запись
    61. заинтересованная сторона
    62. Европейский стандарт
    63. документ
    64. дефект
    65. градация
    66. высшее руководство
    67. выпуск
    68. возможности
    69. валидация
    70. анализ

     

    Европейский стандарт
    (МСЭ-Т Q.1741).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    сигнал электрического интерфейса, уровень n
    (МСЭ-Т Y.1453).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    • electrical interface signal, level n
    • En

    3.4.3 проект (en project; fr projet): Уникальный процесс (3.4.1), состоящий из совокупности скоординированной и управляемой деятельности с начальной и конечной датами, предпринятый для достижения цели, соответствующей конкретным требованиям (3.1.2), включающий ограничения сроков, стоимости и ресурсов.

    Примечания

    1 Отдельный проект может быть частью структуры более крупного проекта.

    2 В некоторых проектах цели совершенствуются, а характеристики (3.5.1) продукции определяются соответственно по мере развития проекта.

    3 Выходом проекта может быть одно изделие или несколько единиц продукции (3.4.2).

    4 Адаптировано из ИСО 10006.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.1.1 качество (en quality; fr qualité): Степень соответствия совокупности присущих характеристик (3.5.1) требованиям (3.1.2).

    Примечания*

    1 Термин «качество» может применяться с такими прилагательными, как плохое, хорошее или отличное.

    2 Термин «присущий» в отличие от термина «присвоенный» означает имеющийся в чем-то. Прежде всего это относится к постоянным характеристикам.

    __________

    * Примечания приведены в редакции, отличной от ИСО 9000.

    (Измененная редакция. Изм. № 1).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.1.2 требование (en requirement; fr exigence): Потребность или ожидание, которое установлено, обычно предполагается или является обязательным.

    Примечания

    1 «Обычно предполагается» означает, что это общепринятая практика организации (3.3.1), ее потребителей (3.3.5) и других заинтересованных сторон (3.3.7), когда предполагаются рассматриваемые потребности или ожидания.

    2 Для обозначения конкретного вида требования могут применяться определяющие слова, например требование к продукции, требование к менеджменту качества, требование потребителя.

    3 Установленным является такое требование, которое определено, например в документе (3.7.2).

    4 Требования могут выдвигаться различными заинтересованными сторонами.

    (Измененная редакция. Изм. № 1).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.1.3 градация (en grade; fr classe): Класс, сорт, категория или разряд, присвоенные различным требованиям (3.1.2) к качеству продукции (3.4.2), процессов (3.4.1) или систем (3.2.1), имеющих то же самое функциональное применение.

    Пример: класс авиабилета или категория гостиницы в справочнике гостиниц.

    Примечание - При определении требования к качеству градация обычно устанавливается.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.1.4 удовлетворенность потребителей (en customer satisfaction; fr satisfaction du client): Восприятие потребителями степени выполнения их требований (3.1.2).

    Примечания

    1 Жалобы потребителей являются показателем низкой удовлетворенности потребителей, однако их отсутствие не обязательно предполагает высокую удовлетворенность потребителей.

    2 Даже если требования потребителей были с ними согласованы и выполнены, это не обязательно обеспечивает высокую удовлетворенность потребителей.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.1.5 возможности (en capability; fr capacité): Способность организации (3.3.1), системы (3.2.1) или процесса (3.4.1) производить продукцию (3.4.2), которая будет соответствовать требованиям (3.1.2) к этой продукции.

    Примечание - Термины, относящиеся к возможностям процесса в области статистики, определены в ГОСТ Р 50779.11.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.1 система (en system; fr systéme): Совокупность взаимосвязанных или взаимодействующих элементов.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.2 система менеджмента (en management system; fr systéme de management): Система (3.2.1) для разработки политики и целей и достижения этих целей.

    Примечание - Система менеджмента организации (3.3.1) может включать различные системы менеджмента, такие как система менеджмента качества (3.2.3), система менеджмента финансовой деятельности или система менеджмента охраны окружающей среды.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.4 политика в области качества (en quality policy; fr politique qualité): Общие намерения и направление деятельности организации (3.3.1) в области качества (3.1.1), официально сформулированные высшим руководством (3.2.7).

    Примечания

    1 Как правило, политика в области качества согласуется с общей политикой организации и обеспечивает основу для постановки целей в области качества (3.2.5).

    2 Принципы менеджмента качества, изложенные в настоящем стандарте, могут служить основой для разработки политики в области качества.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.5 цели в области качества (en quality objective; fr objectif qualité): Цели, которых добиваются или к которым стремятся в области качества (3.1.1).

    Примечания

    1 Цели в области качества обычно базируются на политике организации в области качества (3.2.4).

    2 Цели в области качества обычно устанавливаются для соответствующих функций и уровней организации (3.3.1).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.6 менеджмент (en management; fr management): Скоординированная деятельность по руководству и управлению организацией (3.3.1).

    Примечание - В английском языке термин «management» иногда относится к людям, т.е. к лицу или группе работников, наделенных полномочиями и ответственностью для руководства и управления организацией. Когда «management» используется в этом смысле, его следует всегда применять с определяющими словами с целью избежания путаницы с понятием «management», определенным выше. Например не одобряется выражение «руководство должно...», в то время как «высшее руководство (3.2.7) должно...» - приемлемо.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.7 высшее руководство (en top management; fr direction): Лицо или группа работников, осуществляющих направление деятельности и управление организацией (3.3.1) на высшем уровне.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.8 менеджмент качества (en quality management; fr management de la qualité): Скоординированная деятельность по руководству и управлению организацией (3.3.1) применительно к качеству (3.1.1).

    Примечание - Руководство и управление применительно к качеству обычно включает разработку политики в области качества (3.2.4) и целей в области качества (3.2.5), планирование качества (3.2.9), управление качеством (3.2.10), обеспечение качества (3.2.11) и улучшение качества (3.2.12).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.9 планирование качества (en quality planning; fr planification de la qualité): Часть менеджмента качества (3.2.8), направленная на установление целей в области качества (3.2.5) и определяющая необходимые операционные процессы (3.4.1) жизненного цикла продукции и соответствующие ресурсы для достижения целей в области качества.

    Примечание - Разработка планов качества (3.7.5) может быть частью планирования качества.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.12 улучшение качества (en quality improvement; fr amélioration de la qualité): Часть менеджмента качества (3.2.8), направленная на увеличение способности выполнить требования (3.1.2) к качеству.

    Примечание - Требования могут относиться к любым аспектам, таким как результативность (3.2.14), эффективность (3.2.15) или прослеживаемость (3.5.4).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.13 постоянное улучшение (en continual improvement; fr amélioration continue): Повторяющаяся деятельность по увеличению способности выполнить требования (3.1.2).

    Примечание - Процесс (3.4.1) установления целей и поиска возможностей улучшения является постоянным процессом, использующим наблюдения аудита (проверки) (3.9.6) и заключения по результатам аудита (проверки) (3.9.7), анализ данных, анализ (3.8.7) со стороны руководства или другие средства и обычно ведущим к корректирующим действиям (3.6.5) или предупреждающим действиям (3.6.4).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.14 результативность (en effectiveness; fr efficacité): Степень реализации запланированной деятельности и достижения запланированных результатов.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.15 эффективность (en efficiency, fr efficience): Соотношение между достигнутым результатом и использованными ресурсами.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.1 организация (en organization; fr organisme): Группа работников и необходимых средств с распределением ответственности, полномочий и взаимоотношений.

    Примеры: компания, корпорация, фирма, предприятие, учреждение, благотворительная организация, предприятие розничной торговли, ассоциация, а также их подразделения или комбинация из них.

    Примечания

    1 Распределение обычно бывает упорядоченным.

    2 Организация может быть государственной или частной.

    3 Настоящее определение действительно применительно к стандартам на системы менеджмента качества (3.2.3). Термин «организация» определен иначе в руководстве ИСО/МЭК 2.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.2 организационная структура (en organizational structure; fr organisation): Распределение ответственности, полномочий и взаимоотношений между работниками.

    Примечания

    1 Распределение обычно бывает упорядоченным.

    2 Официально оформленная организационная структура часто содержится в руководстве по качеству (3.7.4) или в плане качества (3.7.5) проекта (3.4.3).

    3 Область применения организационной структуры может включать соответствующие взаимодействия с внешними организациями (3.3.1).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.3 инфраструктура (en infrastructure; fr infrastructure): < организация> Совокупность зданий, оборудования и служб обеспечения, необходимых для функционирования организации (3.3.1).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.4 производственная среда (en work environment; fr environnement de travail): Совокупность условий, в которых выполняется работа.

    Примечание - Условия включают физические, социальные, психологические и экологические факторы (такие как температура, системы признания и поощрения, эргономика и состав атмосферы).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.5 потребитель (en customer; fr client): Организация (3.3.1) или лицо, получающие продукцию (3.4.2).

    Примеры: клиент, заказчик, конечный пользователь, розничный торговец, бенефициар и покупатель.

    Примечание - Потребитель может быть внутренним или внешним по отношению к организации.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.6 поставщик (en supplier; fr fournisseur): Организация (3.3.1) или лицо, предоставляющие продукцию (3.4.2).

    Примеры: производитель, оптовик, предприятие розничной торговли или продавец продукции, исполнитель услуги, поставщик информации.

    Примечания

    1 Поставщик может быть внутренним или внешним по отношению к организации.

    2 В контрактной ситуации поставщика иногда называют «подрядчиком».

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.7 заинтересованная сторона (en interested party; fr partie intéressée): Лицо или группа, заинтересованные в деятельности или успехе организации (3.3.1).

    Примеры: потребители (3.3.5), владельцы, работники организации, поставщики (3.3.6), банкиры, ассоциации, партнеры или общество.

    Примечание - Группа может состоять из организации, ее части или из нескольких организаций.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.4.1 процесс (en process; fr processus): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечания

    1 Входами к процессу обычно являются выходы других процессов.

    2 Процессы в организации (3.3.1), как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности.

    3 Процесс, в котором подтверждение соответствия (3.6.1) конечной продукции (3.4.2) затруднено или экономически нецелесообразно, часто относят к «специальному процессу».

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.4.2 продукция (en product; fr produit): Результат процесса (3.4.1).

    Примечания

    1 Имеются четыре общие категории продукции:

    - услуги (например перевозки);

    - программные средства (например компьютерная программа, словарь);

    - технические средства (например узел двигателя);

    - перерабатываемые материалы (например смазка).

    Многие виды продукции содержат элементы, относящиеся к различным общим категориям продукции. Отнесение продукции к услугам, программным или техническим средствам или перерабатываемым материалам зависит от преобладающего элемента.

    Например поставляемая продукция «автомобиль» состоит из технических средств (например шин), перерабатываемых материалов (горючее, охлаждающая жидкость), программных средств (программное управление двигателем, инструкция водителю) и услуги (разъяснения по эксплуатации, даваемые продавцом).

    2 Услуга является результатом, по меньшей мере, одного действия, обязательно осуществленного при взаимодействии поставщика (3.3.6) и потребителя (3.3.5), она, как правило, нематериальна. Предоставление услуги может включать, к примеру, следующее:

    - деятельность, осуществленную на поставленной потребителем материальной продукции (например автомобиль, нуждающийся в ремонте);

    - деятельность, осуществленную на поставленной потребителем нематериальной продукции (например заявление о доходах, необходимое для определения размера налога);

    - предоставление нематериальной продукции (например информации в смысле передачи знаний);

    - создание благоприятных условий для потребителей (например в гостиницах и ресторанах).

    Программное средство содержит информацию и обычно является нематериальным, может также быть в форме подходов, операций или процедуры (3.4.5).

    Техническое средство, как правило, является материальным и его количество выражается исчисляемой характеристикой (3.5.1). Перерабатываемые материалы обычно являются материальными и их количество выражается непрерывной характеристикой. Технические средства и перерабатываемые материалы часто называются товарами.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.4.4 проектирование и разработка (en design and development; fr conception et développement): Совокупность процессов (3.4.1), переводящих требования (3.1.2) в установленные характеристики (3.5.1) или нормативную и техническую документацию (3.7.3) на продукцию (3.4.2), процесс (3.4.1) или систему (3.2.1).

    Примечания

    1 Термины «проектирование» и «разработка» иногда используют как синонимы, а иногда - для определения различных стадий процесса проектирования и разработки в целом.

    2 Для обозначения объекта проектирования и разработки могут применяться определяющие слова (например проектирование и разработка продукции или проектирование и разработка процесса).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.11 разрешение на отклонение (en concession; fr dérogation (aprés production): Разрешение на использование или выпуск (3.6.13) продукции (3.4.2), которая не соответствует установленным требованиям (3.1.2).

    Примечание - Разрешение на отклонение обычно распространяется на поставку продукции с несоответствующими характеристиками (3.5.1) для установленных согласованных ограничений по времени или количеству данной продукции.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.4.5 процедура (en procedure; fr procédure): Установленный способ осуществления деятельности или процесса (3.4.1).

    Примечания

    1 Процедуры могут быть документированными или недокументированными.

    2 Если процедура документирована, часто используется термин «письменная процедура» или «документированная процедура». Документ (3.7.2), содержащий процедуру, может называться «документированная процедура».

    <3>3.5 Термины, относящиеся к характеристикам

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.5.1 характеристика (en characteristic; fr caractéristique): Отличительное свойство.

    Примечания

    1 Характеристика может быть собственной или присвоенной.

    2 Характеристика может быть качественной или количественной.

    3 Существуют различные классы характеристик, такие как:

    - физические (например механические, электрические, химические или биологические характеристики);

    - органолептические (например связанные с запахом, осязанием, вкусом, зрением, слухом);

    - этические (например вежливость, честность, правдивость);

    - временные (например пунктуальность, безотказность, доступность);

    - эргономические (например физиологические характеристики или связанные с безопасностью человека);

    - функциональные (например максимальная скорость самолета).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.5.2 характеристика качества (en quality characteristic; fr caractéristique qualité): Присущая характеристика (3.5.1) продукции (3.4.2), процесса (3.4.1) или системы (3.2.1), вытекающая из требования (3.1.2).

    Примечания

    1 «Присущая» означает имеющаяся в чем-то. Прежде всего это относится к постоянной характеристике.

    2 Присвоенные характеристики продукции, процесса или системы (например цена продукции, владелец продукции) не являются характеристиками качества этой продукции, процесса или системы.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.5.3 надежность (en dependability; fr sûreté de fonctionnement): Собирательный термин, применяемый для описания свойства готовности и влияющих на него свойств безотказности, ремонтопригодности и обеспеченности технического обслуживания и ремонта.

    Примечание - Надежность применяется только для общего неколичественного описания свойства. [МЭК 60050-191:1990].

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.5.4 прослеживаемость (en traceability; fr tracabilité): Возможность проследить историю, применение или местонахождение того, что рассматривается.

    Примечания

    1 При рассмотрении продукции (3.4.2) прослеживаемость может относиться к:

    - происхождению материалов и комплектующих;

    - истории обработки;

    - распределению и местонахождению продукции после поставки.

    2 В области метрологии определение, приведенное в VIM-1993, 6.10, является принятым.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.1 соответствие (en conformity; fr conformite): Выполнение требования (3.1.2).

    Примечания

    1 Настоящее определение согласуется с приведенным в Руководстве ИСО/МЭК 2, но отличается от него формулировкой, чтобы соответствовать концепции ИСО 9000.

    2 В английском языке термин «conformance» является синонимом, но он вызывает возражения.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.3 дефект (en defect; fr defaut): Невыполнение требования (3.1.2), связанного с предполагаемым или установленным использованием.

    Примечания

    1 Различие между понятиями дефект и несоответствие (3.6.2) является важным, так как имеет подтекст юридического характера, связанный с вопросами ответственности за качество продукции. Следовательно, термин «дефект» надо использовать чрезвычайно осторожно.

    2 Использование, предполагаемое потребителем (3.3.5), может зависеть от характера информации, такой как инструкции по использованию и техническому обслуживанию, предоставляемые поставщиком (3.3.6).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.4 предупреждающее действие (en preventive; fr action preventive): Действие, предпринятое для устранения причины потенциального несоответствия (3.6.2) или другой потенциально нежелательной ситуации.

    Примечания

    1 У потенциального несоответствия может быть несколько причин.

    2 Предупреждающее действие предпринимается для предотвращения возникновения события, тогда как корректирующее действие (3.6.5) - для предотвращения повторного возникновения события.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.5 корректирующее действие (en corrective action; fr action corrective): Действие, предпринятое для устранения причины обнаруженного несоответствия (3.6.2) или другой нежелательной ситуации.

    Примечания

    1 У несоответствия может быть несколько причин.

    2 Корректирующее действие предпринимается для предотвращения повторного возникновения события, тогда как предупреждающее действие (3.6.4) - для предотвращения возникновения события.

    3 Существует различие между коррекцией (3.6.6) и корректирующим действием.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.6 коррекция (en correction; fr correction): Действие, предпринятое для устранения обнаруженного несоответствия (3.6.2).

    Примечания

    1 Коррекция может осуществляться в сочетании с корректирующим действием (3.6.5).

    2 Коррекция может включать, например переделку (3.6.7) или снижение градации (3.6.8).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.7 переделка (en rework; fr reprise): Действие, предпринятое в отношении несоответствующей продукции (3.4.2), с тем чтобы она соответствовала требованиям (3.1.2).

    Примечание - В отличие от переделки ремонт (3.6.9) может состоять в воздействии на отдельные части несоответствующей продукции или в их замене.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.8 снижение градации (en regrade; fr reclassement): Изменение градации (3.1.3) несоответствующей продукции (3.4.2), чтобы она соответствовала требованиям (3.1.2), отличным от исходных.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.9 ремонт (en repair; fr réparation): Действие, предпринятое в отношении несоответствующей продукции (3.4.2), чтобы сделать ее приемлемой для предполагаемого использования.

    Примечания

    1 Ремонт включает действие по исправлению, предпринятое в отношении ранее соответствовавшей продукции для ее восстановления с целью использования, например как часть технического обслуживания.

    2 В отличие от переделки (3.6.7) ремонт может воздействовать на отдельные части несоответствующей продукции или изменять их.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.12 разрешение на отступление (en deviation permit; fr dérogation (avant production): Разрешение на отступление от исходных установленных требований (3.1.2) к продукции (3.4.2) до ее производства.

    Примечание - Разрешение на отступление, как правило, дается на ограниченное количество продукции или период времени, а также для конкретного использования.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.13 выпуск (en release; fr libération): Разрешение на переход к следующей стадии процесса (3.4.1).

    Примечание - В английском языке, в контексте компьютерных программных средств, термином «release» часто называют версию самих программных средств.

    <3>3.7 Термины, относящиеся к документации

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7.2 документ (en document; fr document): Информация (3.7.1) и соответствующий носитель.

    Примеры: записи (3.7.6), нормативная и техническая документация (3.7.3), процедурный документ, чертеж, отчет, стандарт.

    Примечания

    1 Носитель может быть бумажным, магнитным, электронным или оптическим компьютерным диском, фотографией или эталонным образцом, или комбинацией из них.

    2 Комплект документов, например технических условий и записей, часто называется «документацией».

    3 Некоторые требования (3.1.2) (например требование к разборчивости) относятся ко всем видам документов, однако могут быть иные требования к техническим условиям (например требование к управлению пересмотрами) и записям (например требование к восстановлению).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7.3 нормативная и техническая документация (en specification; fr spécification): Документы (3.7.2), устанавливающие требования (3.1.2).

    Примечания

    1 Нормативные документы могут относиться к деятельности (например документированная процедура, технологическая документация на процесс или методику испытаний) или продукции (3.4.2) (например технические условия на продукцию, эксплуатационная документация и чертежи).

    2 Термин дан в редакции, отличной от приведенной в ИСО 9000, в соответствии с терминологией, принятой в Российской Федерации.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7.4 руководство по качеству (en quality manual; fr manuеl qualité): Документ (3.7.2), определяющий систему менеджмента качества (3.2.3) организации (3.3.1).

    Примечание - Руководства по качеству могут различаться по форме и детальности изложения, исходя из соответствия размеру и сложности организации.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7.5 план качества (en quality plan; fr qualité): Документ (3.7.2), определяющий, какие процедуры (3.4.5) и соответствующие ресурсы, кем и когда должны применяться к конкретному проекту (3.4.3), продукции (3.4.2), процессу (3.4.1) или контракту.

    Примечания

    1 Эти процедуры обычно включают те процедуры, которые имеют ссылки на процессы менеджмента качества и процессы производства продукции.

    2 План качества часто содержит ссылки на разделы руководства по качеству (3.7.4) или документированные процедуры.

    3 План качества, как правило, является одним из результатов планирования качества (3.2.9).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7.6 запись (en record; fr enregistrement): Документ (3.7.2), содержащий достигнутые результаты или свидетельства осуществленной деятельности.

    Примечания

    1 Записи могут использоваться, например для документирования прослеживаемости (3.5.4), свидетельства проведения верификации (3.8.4), предупреждающих действий (3.6.4) и корректирующих действий (3.6.5).

    2 Обычно пересмотры записей не нуждаются в управлении.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.8.1 объективное свидетельство (en objective evidence; fr preuve tangible): Данные, подтверждающие наличие или истинность чего-либо.

    Примечание - Объективное свидетельство может быть получено путем наблюдения, измерения, испытания (3.8.3) или другими способами.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.8.2 контроль (en inspection; fr contrôle): Процедура оценивания соответствия путем наблюдения и суждений, сопровождаемых соответствующими измерениями, испытаниями или калибровкой. [Руководство ИСО/МЭК 2].

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.8.5 валидация (en validation; fr validation): Подтверждение на основе представления объективных свидетельств (3.8.1) того, что требования (3.1.2), предназначенные для конкретного использования или применения, выполнены.

    Примечания

    1 Термин «подтверждено» используется для обозначения соответствующего статуса.

    2 Условия применения могут быть реальными или смоделированными.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.8.6 процесс квалификации (en qualification process; fr processus de qualification): Процесс (3.4.1) демонстрации способности выполнить установленные требования (3.1.2).

    Примечания

    1 Термин «квалифицирован» используется для обозначения соответствующего статуса.

    2 Квалификация может распространяться на работников, продукцию (3.4.2), процессы или системы (3.2.1).

    Пример: квалификация аудиторов (экспертов по сертификации систем качества), квалификация материала.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.8.7 анализ (en review; fr revue): Деятельность, предпринимаемая для установления пригодности, адекватности, результативности (3.2.14) рассматриваемого объекта для достижения установленных целей.

    Примечание - Анализ может также включать определение эффективности (3.2.15).

    Примеры: анализ со стороны руководства, анализ проектирования и разработки, анализ требований потребителей и анализ несоответствий.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.10.1 система управления измерениями (en measurement control system; fr systéme de maîtrise de la measure): Совокупность взаимосвязанных или взаимодействующих элементов, необходимых для достижения метрологического подтверждения пригодности (3.10.3) и постоянного управления процессами измерения (3.10.2).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.10.3 метрологическое подтверждение пригодности (en metrological confirmation; fr confirmation métrologique): Совокупность операций, необходимая для обеспечения соответствия измерительного оборудования (3.10.4) требованиям (3.1.2), отвечающим его назначению.

    Примечания

    1 Метрологическое подтверждение пригодности обычно включает калибровку или верификацию (3.8.4), любую необходимую юстировку или ремонт (3.6.9) и последующую перекалибровку, сравнение с метрологическими требованиями для предполагаемого использования оборудования, а также требуемое пломбирование и маркировку.

    2 Метрологическое подтверждение пригодности не выполнено до тех пор, пока пригодность измерительного оборудования для использования по назначению не будет продемонстрирована и задокументирована.

    3 Требования к использованию по назначению включают такие характеристики, как диапазон, разрешающая способность, максимально допустимые погрешности и т.д.

    4 Требования к метрологическому подтверждению пригодности обычно отличаются от требований на продукцию и в них не регламентируются.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.10.4 измерительное оборудование (en measuring equipment; fr équipement de mesure): Средства измерения, программные средства, эталоны, стандартные образцы, вспомогательная аппаратура или комбинация из них, необходимые для выполнения процесса измерения (3.10.2).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.10.5 метрологическая характеристика (en metrological characteristic; fr caractéristique metrologyque): Отличительная особенность, которая может повлиять на результаты измерения.

    Примечания

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    Англо-русский словарь нормативно-технической терминологии > EN

  • 48 smart metering

    1. интеллектуальный учет электроэнергии

     

    интеллектуальный учет электроэнергии
    -
    [Интент]

    Учет электроэнергии

    Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
    Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.

    SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ

    Определения и задачи
    По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
    • «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
    • основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
    • эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
    • средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
    Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
    В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
    • различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
    • расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
    • двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.

    ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?

    Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
    «…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
    Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
    …Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
    1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
    2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
    3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
    4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
    5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
    6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
    Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
    На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
    Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
    1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
    2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
    3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
    Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.

    БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»

    В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
    1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
    2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
    Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
    в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
    в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».

    ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»

    Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
    • дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
    • расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
    • контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
    • обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
    • применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
    • анализ технического состояния и отказов приборов учета;
    • подготовка отчетных документов об электропотреблении;
    • интеграция с биллинговыми системами.

    «ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»

    Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
    Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
    Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
    • коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
    • коммерческий учет на РРЭ (технические средства – АСКУЭ).
    Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
    Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
    Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
    Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
    Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
    При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
    В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
    Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
    1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
    2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
    3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
    Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
    Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
    Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
    По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
    Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
    Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.

    ПРЕИМУЩЕСТВА ИСУЭ

    Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
    Для самой компании:
    1. Повышение эффективности существующего бизнеса.
    2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
    3. Обеспечение внедрения технологий Smart grid.
    4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
    Для энергосбытовой деятельности:
    1. Автоматический мониторинг потребления.
    2. Легкое определение превышения фактических показателей над планируемыми.
    3. Определение неэффективных производств и процессов.
    4. Биллинг.
    5. Мониторинг коэффициента мощности.
    6. Мониторинг показателей качества (напряжение и частота).
    Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
    1. Готовый вариант на все случаи жизни.
    2. Надежность.
    3. Гарантия качества услуг.
    4. Оптимальная и прозрачная стоимость услуг сетевой компании.
    5. Постоянное внедрение инноваций.
    6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
    7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
    8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
    Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.

    ЛИТЕРАТУРА

    1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
    2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.

    [ http://www.news.elteh.ru/arh/2011/71/14.php]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > smart metering

  • 49 controller

    1. орган управления
    2. контроллер (электрический аппарат)
    3. контроллер (регулятор)
    4. контроллер (в системах охраны и безопасности)
    5. контроллер (в автотранспортных средствах)
    6. Аппарат управляемой искусственной вентиляции легких
    7. автоматическое регулирующее устройство

     

    автоматическое регулирующее устройство
    контроллер


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    контроллер
    Компонент, сконструированный для анализа данных, переданных датчиком (датчиками), и передачи сигнала в модулятор.
    [ ГОСТ Р 41.13-2007]

    Тематики

    EN

     

    контроллер
    Программируемый прибор управления, считывающий информацию с ее носителя и регистрирующий ее.
    [ ГОСТ Р 52551-2006]

    контроллер
    Программируемый прибор управления, имеющий нормированный ресурс функциональных возможностей, свойств и параметров
    [РД 25.03.001-2002] 

    Тематики

    EN

     

    контроллер (регулятор)

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Тематики

    EN

     

    контроллер
    Электрический аппарат с большим числом контактов для пуска, реверсирования и регулирования нагрузки электродвигателей постоянного и переменного тока.
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]


    контроллер
    Многопозиционный аппарат, предназначенный для управления электрическими машинами и трансформаторами путем коммутации резисторов, обмоток машин и (или) трансформаторов.
    [ ГОСТ 17703-72]

    Тематики

    • аппарат, изделие, устройство...

    EN

    DE

    FR

     

    орган управления
    Часть системы аппарата управления, к которой прилагается извне усилие управления.
    МЭК 60050(441-15-22).
    Примечание. Орган управления может иметь форму рукоятки, ручки, нажимной кнопки, ролика, плунжера и т. п.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    орган управления

    Часть приводного механизма, к которой прикладывается внешняя сила воздействия.
    Примечание - Орган управления может иметь форму ручки, кнопки, ролика, поршня и т.д.
    [ ГОСТ Р 52726-2007]

    орган управления
    Часть системы привода, подвергаемая внешнему силовому воздействию.
    Примечания
    1. Орган управления может иметь форму ручки, рукоятки, нажимной кнопки, ролика, плунжера и т.д.
    2. Есть несколько способов приведения в действие, которые не требуют внешнего силового воздействия, а только какого-либо действия.
    [ГОСТ ЕН 1070-2003]

    орган управления
    Часть системы управления, которая предназначена непосредственно для воздействия оператором, например путем нажатия.
    [ГОСТ Р ЕН 614-1-2003]

    орган управления

    Часть системы приведения в действие, которая принимает воздействие человека.
    [ ГОСТ Р МЭК 60447-2000]

    орган управления
    Часть системы приведения в действие, которая воспринимает воздействие человека (ГОСТ Р МЭК 60447).
    Примечание
    В настоящем стандарте орган управления в виде интерактивного экранного устройства отображения является частью этого устройства, которое представляет функцию органа управления.
    [ ГОСТ Р МЭК 60073-2000]

    орган управления
    Часть механизма прибора управления, на который оказывается вручную внешнее силовое воздействие.
    Примечание.
    Орган управления может иметь форму ручки, рукоятки, кнопки, ролика, плунжера и т.д.
    Некоторые органы управления не требуют воздействия внешней силы, а только какого-либо действия.
    [ ГОСТ Р МЭК 60204-1-2007]

    органы управления
    Ручки, переключатели, потенциометры и другие органы, служащие для включения и регулировки аппаратуры. Термин относится преимущественно к аналоговым приборам.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    орган управления
    -
    [IEV number 442-04-14]

    средства оперирования
    -

    [Интент]

    EN

    actuator
    the part of the actuating system to which an external actuating force is applied
    NOTE – The actuator may take the form of a handle, knob, push-button, roller, plunger, etc.
    [IEV number 441-15-22]

    actuator
    part of a device to which an external manual action is to be applied
    NOTE 1 The actuator may take the form of a handle, knob, push-button, roller, plunger, etc.
    NOTE 2 There are some actuating means that do not require an external actuating force, but only an action.
    NOTE 3 See also 3.34.
    [IEC 60204-1 -2005]

    actuating member
    a part which is pulled, pushed, turned or otherwise moved to cause an operation of the switch
    [IEV number 442-04-14]

    FR

    organe de commande
    partie du mécanisme transmetteur à laquelle un effort extérieur de manoeuvre est appliqué
    NOTE – L'organe de commande peut prendre la forme d'une poignée, d'un bouton, d'un bouton-poussoir, d'une roulette, d'un plongeur, etc.
    [IEV number 441-15-22]

    organe de manoeuvre
    partie qui est tirée, poussée, tournée ou manipulée de toute autre façon pour provoquer le fonctionnement de l'interrupteur
    [IEV number 442-04-14]


    Аппарат должен оставаться механически действующим. Не допускается сваривание контактов, препятствующее операции размыкания при использовании нормальных средств оперирования.
    [ГОСТ  Р 50030.3-99 (МЭК  60947-3-99) ]

    ВДТ следует оперировать как при нормальной эксплуатации. Операции размыкания должны проводиться в следующем порядке:
    для первых 1000 циклов — с использованием ручных средств оперирования;
    ...
    [ ГОСТ Р 51326. 1-99 ( МЭК 61008-1-96)]

    Параллельные тексты EN-RU

    The operating means (for example, a handle) of the supply disconnecting device shall be easily accessible and located between 0,6 m and 1,9 m above the servicing level.
    [IEC 60204-1-2006]

    Органы управления, например, рукоятки аппаратов отключения питания, должны быть легко доступны и располагаться на высоте от 0,6 до 1,9 м от рабочей площадки.
    [Перевод Интент]

    Where the external operating means is not intended for emergency operations, it is recommended that it be coloured BLACK or GREY.
    [IEC 60204-1-2006]

    Если внешние средства оперирования не предназначены для выполнения действий при возникновении аварийных ситуаций, то рекомендуется, применять такие средства ЧЕРНОГО или СЕРОГО цвета.
    [Перевод Интент]

     

    1.2.2. Control devices

    Control devices must be:
    — clearly visible and identifiable and appropriately marked where necessary,
    — positioned for safe operation without hesitation or loss of time, and without ambiguity,
    — designed so that the movement of the control is consistent with its effect,
    — located outside the danger zones, except for certain controls where necessary, such as emergency stop, console for training of robots,
    — positioned so that their operation cannot cause additional risk,
    — designed or protected so that the desired effect, where a risk is involved, cannot occur without an intentional operation,
    — made so as to withstand foreseeable strain; particular attention must be paid to emergency stop devices liable to be subjected to considerable strain.

    1.2.2. Органы управления

    Органы управления должны быть:
    - четко видны, хорошо различимы и, где это необходимо, иметь соответствующее обозначение;
    - расположены так, чтобы ими можно было пользоваться без возникновения сомнений и потерь времени на выяснение их назначения;
    - сконструированы так, чтобы перемещение органа управления согласовывалось с их воздействием;
    - расположены вне опасных зон; исключение, где это необходимо, делается для определенных средств управления, таких, как средство экстренной остановки, пульт управления роботом;
    - расположены так, чтобы их использование не вызывало дополнительных рисков;
    - сконструированы или защищены так, чтобы в случаях, где возможно возникновение рисков, они не могли бы возникнуть без выполнения намеренных действий;
    - сделаны так, чтобы выдерживать предполагаемую нагрузку; при этом особое внимание уделяется органам аварийного останова, которые могут подвергаться значительным нагрузкам.

    Where a control is designed and constructed to perform several different actions, namely where there is no one-to-one correspondence (e.g. keyboards, etc.), the action to be performed must be clearly displayed and subject to confirmation where necessary.

    Если орган управления предназначен для выполнения разных действий, например, если в качестве органа управления используется клавиатура или аналогичное устройство, то должна выводиться четкая информация о предстоящем действии, и, если необходимо, должно выполняться подтверждение на выполнение такого действия.

    Controls must be so arranged that their layout, travel and resistance to operation are compatible with the action to be performed, taking account of ergonomic principles.

    Органы управления должны быть организованы таким образом, чтобы их расположение, перемещение их элементов и усилие, которое оператор затрачивает на их перемещение, соответствовали выполняемым операциям и принципам эргономики.

    Constraints due to the necessary or foreseeable use of personal protection equipment (such as footwear, gloves, etc.) must be taken into account.

    Необходимо учитывать скованность движений операторов при использовании необходимых или предусмотренных средств индивидуальной защиты (таких, как специальная обувь, перчатки и др.).

    Machinery must be fitted with indicators (dials, signals, etc.) as required for safe operation. The operator must be able to read them from the control position.

    Для обеспечения безопасной эксплуатации машинное оборудование должно быть оснащено индикаторами (циферблатами, устройствами сигнализации и т. д.). Оператор должен иметь возможность считывать их с места управления.

    From the main control position the operator must be able to ensure that there are no exposed persons in the danger zones.

    Находясь в главном пункте управления, оператор должен иметь возможность контролировать отсутствие незащищенных лиц.

    If this is impossible, the control system must be designed and constructed so that an acoustic and/ or visual warning signal is given whenever the machinery is about to start.

    Если это невозможно, то система управления должна быть разработана и изготовлена так, чтобы перед каждым пуском машинного оборудования подавался звуковой и/или световой предупредительный сигнал.

    The exposed person must have the time and the means to take rapid action to prevent the machinery starting up.

    [DIRECTIVE 98/37/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL]

    Незащищенное лицо должно иметь достаточно времени и средств для быстрого предотвращения пуска машинного оборудования.

    [Перевод Интент]

    Тематики

    Синонимы

    EN

    DE

    FR

    10. Аппарат управляемой искусственной вентиляции легких

    Аппарат управляемой ИВЛ

    D.    Gerat fur eine kontrollierte kunstlichen Lungenventilation

    E.    Controller

    Аппарат искусственной вентиляции легких, который вентилирует легкие пациента независимо от его дыхательного усилия

    Источник: ГОСТ 17807-83: Аппараты ингаляционного наркоза и искусственной вентиляции легких. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > controller

  • 50 client

    1. клиенты (олимпийских игр)
    2. клиент (сети и системы связи)
    3. клиент (в информационных технологиях)
    4. клиент
    5. заказчик

     

    заказчик
    Организация, предприятие или учреждение, имеющие выделенные в установленном порядке средства для осуществления капитального строительства или ремонта и заключающие в этих целях договор на производство проектно-изыскательских и строительно-монтажных работ с подрядной организацией
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    заказчик
    Юридическое лицо, осуществляющее в процессе строительства, капитального ремонта и реконструкции объектов магистральных трубопроводов функции, регламентированные законодательством, в числе которых право и обязанность по организации технического надзора за качеством строительства, капитального ремонта и реконструкции указанных объектов.
    [РД 01.120.00-КТН-228-06]

    заказчик
    Юридическое лицо, в интересах и за счет средств которого осуществляются закупки. Заказчиком выступает собственник средств или их законный распорядитель, а выразителями его интересов - руководители, наделенные правом совершать от его имени сделки по закупкам.
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    Тематики

    EN

    DE

    FR

     

    клиент
    Пользователь, которому предоставляются услуги электросвязи в пунктах общего пользования.
    [Руководящий документ "Основные положения развития Взаимоувязанной сети связи Российской Федерации на перспективу до 2005 года"]

    клиент
    Организация, заказывающая аудит.
    Примечание
    Клиент может быть проверяемой или другой организацией, имеющей право заказать аудит согласно регламенту или контракту.
    [ ГОСТ Р ИСО 14050-99]

    Тематики

    EN

     

    клиент
    клиентская часть ПО

    Пользователь, компьютер или программа, запрашивающая услуги, ресурсы, данные или обработку у другой программы или другого компьютера.
    Компьютер, с которого осуществляется доступ к серверу с целью обмена или получения информации.
    [ http://www.morepc.ru/dict/]

    клиент
    Потребитель услуг одного или более серверов.
    [ ГОСТ Р 54456-2011]

    клиент (в информационных технологиях)

    Общий термин, используемый для обозначения заказчика, бизнеса или бизнес-заказчика. Например, термин «менеджер по работе с клиентами» может быть синонимом для термина «менеджер по взаимоотношениям с бизнесом». Этот термин также используется для обозначения:
    • Компьютера, который используется непосредственно пользователем. Например, персональный компьютер, портативный компьютер или рабочая станция.
    • Части приложения с клиент-серверной архитектурой, с которой непосредственно взаимодействует пользователь. Например, клиент электронной почты.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    client
    A generic term that means a customer, the business or a business customer. For example, client manager may be used as a synonym for business relationship manager. The term is also used to mean:
    • A computer that is used directly by a user - for example, a PC, a handheld computer or a work station.
    • The part of a client server application that the user directly interfaces with - for example, an email client.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Клие́нт — это аппаратный или программный компонент вычислительной системы, посылающий запросы серверу.

    Программа, являющаяся клиентом, взаимодействует с сервером, используя определённый протокол. Она может запрашивать с сервера какие-либо данные, манипулировать данными непосредственно на сервере, запускать на сервере новые процессы и т. п. Полученные от сервера данные клиентская программа может предоставлять пользователю или использовать как-либо иначе, в зависимости от назначения программы. Программа-клиент и программа-сервер могут работать как на одном и том же компьютере, так и на разных. Во втором случае для обмена информацией между ними используется сетевое соединение.

    Разновидностью клиентов являются терминалы — рабочие места на многопользовательских ЭВМ, оснащённые монитором с клавиатурой, и не способные работать без сервера. В 1990-е годы появились сетевые компьютеры — нечто среднее между терминалом и персональным компьютером. Сетевые компьютеры имеют упрощённую структуру и во многом зависят от сервера. Иногда под терминалом понимают любой клиент, или только тонкий клиент.

    Тем не менее не всегда под клиентом подразумевается компьютер со слабыми вычислительными ресурсами. Чаще всего понятия «клиент» и «сервер» описывают распределение ролей при выполнении конкретной задачи, а не вычислительные мощности. На одном и том же компьютере могут одновременно работать программы, выполняющие как клиентские, так и серверные функции. Например, веб-сервер может в качестве клиента получать данные для формирования страниц от SQL-сервера (так работает Википедия).

    [ Википедия]

    Тематики

    Синонимы

    EN

     

    клиент (сети и системы связи)
    Объект, запрашивающий сервис у сервера или получающий от сервера незатребованные данные.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    client
    entity that requests a service from a server, or which receives unsolicited data from a server
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

     

    клиенты
    основные группы клиентов

    Различные группы людей или организации, которым полагается персональное обслуживание в рамках программы распространения билетов, что обусловлено договорными обязательствами или соображениями целевого маркетинга. К числу клиентов Игр относятся:
    • делегации Национальных Олимпийских комитетов;
    • Международные спортивные федерации;
    • пресса;
    • вещательные организации;
    • МОК;
    • маркетинговые партнеры;
    • зрители;
    • обслуживающий персонал;
    • широкая публика/ местное сообщество.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    client
    key client

    Different groups of people or organizations which are given direct personal service by the ticketing program for reasons of contractual requirements or targeted marketing. “Clients” refers to the following Games customers:
    • NOC Delegations
    • International Federations
    • Press
    • Broadcasters
    • IOC
    • Marketing Partners
    • Spectators
    • Workforce
    • General public / community
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    Синонимы

    EN

    2.10 клиент (client): Субъект (пользователь или процесс), запрашивающий услуги, предоставляемые на другом процессоре (т.е. сервере).

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    2.4 клиент (client): Организация, предоставляющая запрос на проведение оценки.

    Пример - Собственник участка, объект экологической оценки или любая другая сторона.

    Источник: ГОСТ Р ИСО 14015-2007: Экологический менеджмент. Экологическая оценка участков и организаций оригинал документа

    3.7 Клиент (client) - организация, заказывающая аудит.

    Примечание - Клиент может быть проверяемой или другой организацией, имеющей право заказать аудит согласно регламенту или контракту.

    3.8 Постоянное улучшение (continual improvement) - процесс усовершенствования системы управления окружающей средой с целью повышения общей экологической эффективности в соответствии с экологической политикой организации.

    Примечание - Этот процесс необязательно происходит одновременно во всех сферах деятельности.

    3.9 Окружающая среда - внешняя среда, в которой функционирует организация, включая воздух, воду, землю, природные ресурсы, флору, фауну, человека и их взаимодействие.

    Примечание - В данном контексте внешняя среда простирается от среды в пределах организации до глобальной системы.

    3.10 Экологический аспект (environmental aspect) - элемент деятельности организации, ее продукции или услуг, который может взаимодействовать с окружающей средой.

    Примечание - Важным является тот экологический аспект, который оказывает или может оказать существенное воздействие на окружающую среду.

    3.11 Экологический аудит (environmental audit) - систематический документально оформленный процесс проверки объективно получаемых и оцениваемых аудиторских данных для определения соответствия или несоответствия критериям аудита определенных видов экологической деятельности, событий, условий, систем административного управления или информация об этих объектах, а также сообщения клиенту результатов, полученных в ходе этого процесса.

    3.12 Аудитор в области экологии (аудитор-эколог) (environmental auditor) - лицо, квалифицированное для проведения экологических аудитов.

    3.13 Воздействие на окружающую среду (environmental impact) - любое отрицательное или положительное изменение в окружающей среде, полностью или частично являющееся результатом деятельности организации, ее продукции или услуг.

    3.14 Система управления окружающей средой (environmental management system) - часть общей системы административного управления, которая включает в себя организационную структуру, планирование, ответственность, методы, процедуры, процессы и ресурсы, необходимые для разработки, внедрения, реализации, анализа и поддержания экологической политики.

    3.15 Аудит системы управления окружающей средой (environmental management system audit) - систематический и документально оформленный процесс проверки объективно получаемых и оцениваемых аудиторских данных для определения соответствия (или несоответствия) системы управления окружающей средой, принятой в организации, критериям аудита такой системы, а также сообщение клиенту результатов, полученных в ходе этого процесса.

    3.16 Аудит системы управления окружающей средой (environmental management system audit) - < внутренний> систематический документально оформленный процесс проверки объективно получаемых и оцениваемых данных для определения соответствия (или несоответствия) системы управления окружающей средой в организации критериям аудита такой системы, установленным данной организацией, а также сообщения руководству результатов, полученных в ходе этого процесса.

    Источник: ГОСТ Р ИСО 14050-99: Управление окружающей средой. Словарь оригинал документа

    2.25 клиент (client): Организация или лицо, запрашивающее валидацию или верификацию.

    Примечание - Клиент может быть ответственной стороной, администратором программы по ПГ или другим заинтересованным лицом.

    Источник: ГОСТ Р ИСО 14064-1-2007: Газы парниковые. Часть 1. Требования и руководство по количественному определению и отчетности о выбросах и удалении парниковых газов на уровне организации оригинал документа

    2.27 клиент (client): Организация или лицо, запрашивающее валидацию (2.32) или верификацию (2.36).

    Примечание - Клиент может быть ответственной стороной (2.24), администратором программы по ПГ или другим заинтересованным лицом.

    Источник: ГОСТ Р ИСО 14064-3-2007: Газы парниковые. Часть 3. Требования и руководство по валидации и верификации утверждений, касающихся парниковых газов оригинал документа

    3.2 клиент (client): Отдельное лицо или группа лиц, которые заключили договор с поставщиком услуг для аквалангистов для личного использования этих услуг.

    Источник: ГОСТ Р ИСО 24803-2009: Дайвинг для активного отдыха и развлечений. Требования к поставщикам услуг для аквалангистов оригинал документа

    3.9 заказчик (client):

    в контексте «оценки»: организация (3.4), поручающая проведение оценки.

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    3.2.1 клиент (client): Организация или лицо, запрашивающее валидацию или верификацию.

    Примечание - Клиент может быть ответственной стороной, администратором программы по ПГ или другим заинтересованным лицом.

    [ИСО 14064-3:2006, статья 2.27]

    Источник: ГОСТ Р ИСО 14065-2010: Газы парниковые. Требования к органам по валидации и верификации парниковых газов для их применения при аккредитации или других формах признания оригинал документа

    Англо-русский словарь нормативно-технической терминологии > client

  • 51 automated control system

    1. автоматизированная система управления
    2. автоматизированная система контроля

     

    автоматизированная система контроля
    Система контроля, обеспечивающая проведение контроля с частичным непосредственным участием человека.
    Пояснения
    Автоматическая система контроля состоит из средств контроля, выполняющая все функции контролеров. В автоматизированной системе контроля средства контроля выполняют лишь часть функций контролеров.
    [ ГОСТ 16504-81]

    автоматизированная система контроля

    Система контроля, обеспечивающая проведение контроля с частичным непосредственным участием человека.
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    Тематики

    EN

    FR

     

    автоматизированная система, управляющая
    АСУ

    Управляющая система, часть функций которой, главным образом функцию принятия решений, выполняет человек-оператор.
    Примечание
    В зависимости от объектов управления различают, например: АСУ П, когда объектом управления является предприятие; АСУ ТП, когда объектом управления является технологический процесс; ОАСУ, когда объектом управления является организационный объект или комплекс.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.  Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    автоматизированная система управления
    АСУ

    Совокупность математических методов, технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом (процессом) в соответствии с заданной целью. АСУ принято делить на основу и функциональную часть. В основу входят информационное, техническое и математическое обеспечение. К функциональной части относят набор взаимосвязанных программ, автоматизирующих конкретные функции управления (планирование, финансово-бухгалтерскую деятельность и др.). Различают АСУ объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональными автоматизированными системами, например, проектирования, расчетов, материально-технического и др. обеспечения.
    [ http://www.morepc.ru/dict/]

    автоматизированная система управления
    АСУ

    Система управления, в которой применяются современные автоматические средства обработки данных и экономико-математические методы для решения основных задач управления производственно-хозяйственной деятельностью. Это человеко-машинная система: в ней ряд операций и действий передается для исполнения машинам и другим устройствам (особенно это относится к так называемым рутинным, повторяющимся, стандартным операциям расчетов), но главное решение всегда остается за человеком. Этим АСУ отличаются от автоматических систем, т.е. таких технических устройств, которые действуют самостоятельно, по установленной для них программе, без вмешательства человека. АСУ подразделяются прежде всего на два класса: автоматизированные системы организационного управления и автоматизированные системы управления технологическими процессами (последние часто бывают автоматическими, первые ими принципиально быть не могут). Традиционно термин АСУ закрепился за первым из названных классов. Отличие АСУ от обычной, неавтоматизированной, но также использующей ЭВМ, системы управления показано на рис. А.1, а, б. Стрелками обозначены потоки информации. В первом случае компьютер используется для решения отдельных задач управления, например для производства плановых расчетов, результаты которых рассматриваются органом управления и либо принимаются, либо отвергаются. При этом необходимые данные собираются специально для решения каждой задачи и вводятся в компьютер, а потом за ненадобностью уничтожаются. Во втором случае существенная часть информации от объекта управления собирается непосредственно вычислительным центром, в том числе по каналам связи. При этом нет необходимости каждый раз вводить в компьютер все данные: часть из них (цены, нормативы и т. п.) хранится в ее запоминающем устройстве. Из вычислительного центра выработанные задания поступают, с одной стороны, в орган управления, а с другой (обычно через контрольное звено) — к объекту управления. В свою очередь информация, поступающая от объекта управления, влияет на принимаемые решения, т.е. здесь используется кибернетический принцип обратной связи. Это — АСУ. Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций — того, что и как она делает, и с точки зрения ее схемы, т.е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем — функциональные и обеспечивающие. Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т.д.) — не разовое мероприятие, а длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически «вписывается» в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером, на основе получаемых им данных, оперативных управляющих «команд». Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т.д. Экономическая эффективность АСУ определяется прежде всего ростом эффективности самого производства в результате лучшей загрузки оборудования, повышения ритмичности, сокращения незавершенного производства и других материальных запасов, повышения качества продукции. РисА.1. Системы управления с использованием компьютеров а — неавтоматизированная, б — автоматизированная; I — управляющий центр; II — автоматизированная управляемая система (например, производство), III — контроль; тонкая черная стрелка — канал непосредственного управления компьютером некоторыми технологическими процессами (бывает не во всех АСУ); тонкая пунктирная стрелка показывает ту часть информации, которая поступает непосредственно в центр, минуя компьютер.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    96. Автоматизированная система контроля*

    E. Automated control system

    F. Système de contrôle automatisé

    Система контроля, обеспечивающая проведение контроля с частичным непосредственным участием человека

    Источник: ГОСТ 16504-81: Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > automated control system

  • 52 computerized control system

    1. автоматизированная система управления
    2. автоматизированная система контроля

     

    автоматизированная система контроля
    Система контроля, обеспечивающая проведение контроля с частичным непосредственным участием человека.
    Пояснения
    Автоматическая система контроля состоит из средств контроля, выполняющая все функции контролеров. В автоматизированной системе контроля средства контроля выполняют лишь часть функций контролеров.
    [ ГОСТ 16504-81]

    автоматизированная система контроля

    Система контроля, обеспечивающая проведение контроля с частичным непосредственным участием человека.
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    Тематики

    EN

    FR

     

    автоматизированная система, управляющая
    АСУ

    Управляющая система, часть функций которой, главным образом функцию принятия решений, выполняет человек-оператор.
    Примечание
    В зависимости от объектов управления различают, например: АСУ П, когда объектом управления является предприятие; АСУ ТП, когда объектом управления является технологический процесс; ОАСУ, когда объектом управления является организационный объект или комплекс.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.  Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    автоматизированная система управления
    АСУ

    Совокупность математических методов, технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом (процессом) в соответствии с заданной целью. АСУ принято делить на основу и функциональную часть. В основу входят информационное, техническое и математическое обеспечение. К функциональной части относят набор взаимосвязанных программ, автоматизирующих конкретные функции управления (планирование, финансово-бухгалтерскую деятельность и др.). Различают АСУ объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональными автоматизированными системами, например, проектирования, расчетов, материально-технического и др. обеспечения.
    [ http://www.morepc.ru/dict/]

    автоматизированная система управления
    АСУ

    Система управления, в которой применяются современные автоматические средства обработки данных и экономико-математические методы для решения основных задач управления производственно-хозяйственной деятельностью. Это человеко-машинная система: в ней ряд операций и действий передается для исполнения машинам и другим устройствам (особенно это относится к так называемым рутинным, повторяющимся, стандартным операциям расчетов), но главное решение всегда остается за человеком. Этим АСУ отличаются от автоматических систем, т.е. таких технических устройств, которые действуют самостоятельно, по установленной для них программе, без вмешательства человека. АСУ подразделяются прежде всего на два класса: автоматизированные системы организационного управления и автоматизированные системы управления технологическими процессами (последние часто бывают автоматическими, первые ими принципиально быть не могут). Традиционно термин АСУ закрепился за первым из названных классов. Отличие АСУ от обычной, неавтоматизированной, но также использующей ЭВМ, системы управления показано на рис. А.1, а, б. Стрелками обозначены потоки информации. В первом случае компьютер используется для решения отдельных задач управления, например для производства плановых расчетов, результаты которых рассматриваются органом управления и либо принимаются, либо отвергаются. При этом необходимые данные собираются специально для решения каждой задачи и вводятся в компьютер, а потом за ненадобностью уничтожаются. Во втором случае существенная часть информации от объекта управления собирается непосредственно вычислительным центром, в том числе по каналам связи. При этом нет необходимости каждый раз вводить в компьютер все данные: часть из них (цены, нормативы и т. п.) хранится в ее запоминающем устройстве. Из вычислительного центра выработанные задания поступают, с одной стороны, в орган управления, а с другой (обычно через контрольное звено) — к объекту управления. В свою очередь информация, поступающая от объекта управления, влияет на принимаемые решения, т.е. здесь используется кибернетический принцип обратной связи. Это — АСУ. Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций — того, что и как она делает, и с точки зрения ее схемы, т.е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем — функциональные и обеспечивающие. Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т.д.) — не разовое мероприятие, а длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически «вписывается» в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером, на основе получаемых им данных, оперативных управляющих «команд». Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т.д. Экономическая эффективность АСУ определяется прежде всего ростом эффективности самого производства в результате лучшей загрузки оборудования, повышения ритмичности, сокращения незавершенного производства и других материальных запасов, повышения качества продукции. РисА.1. Системы управления с использованием компьютеров а — неавтоматизированная, б — автоматизированная; I — управляющий центр; II — автоматизированная управляемая система (например, производство), III — контроль; тонкая черная стрелка — канал непосредственного управления компьютером некоторыми технологическими процессами (бывает не во всех АСУ); тонкая пунктирная стрелка показывает ту часть информации, которая поступает непосредственно в центр, минуя компьютер.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > computerized control system

  • 53 automated

    1. автоматизированный (в криптографии)
    2. автоматизированная система управления

     

    автоматизированная система, управляющая
    АСУ

    Управляющая система, часть функций которой, главным образом функцию принятия решений, выполняет человек-оператор.
    Примечание
    В зависимости от объектов управления различают, например: АСУ П, когда объектом управления является предприятие; АСУ ТП, когда объектом управления является технологический процесс; ОАСУ, когда объектом управления является организационный объект или комплекс.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.  Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    автоматизированная система управления
    АСУ

    Совокупность математических методов, технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом (процессом) в соответствии с заданной целью. АСУ принято делить на основу и функциональную часть. В основу входят информационное, техническое и математическое обеспечение. К функциональной части относят набор взаимосвязанных программ, автоматизирующих конкретные функции управления (планирование, финансово-бухгалтерскую деятельность и др.). Различают АСУ объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональными автоматизированными системами, например, проектирования, расчетов, материально-технического и др. обеспечения.
    [ http://www.morepc.ru/dict/]

    автоматизированная система управления
    АСУ

    Система управления, в которой применяются современные автоматические средства обработки данных и экономико-математические методы для решения основных задач управления производственно-хозяйственной деятельностью. Это человеко-машинная система: в ней ряд операций и действий передается для исполнения машинам и другим устройствам (особенно это относится к так называемым рутинным, повторяющимся, стандартным операциям расчетов), но главное решение всегда остается за человеком. Этим АСУ отличаются от автоматических систем, т.е. таких технических устройств, которые действуют самостоятельно, по установленной для них программе, без вмешательства человека. АСУ подразделяются прежде всего на два класса: автоматизированные системы организационного управления и автоматизированные системы управления технологическими процессами (последние часто бывают автоматическими, первые ими принципиально быть не могут). Традиционно термин АСУ закрепился за первым из названных классов. Отличие АСУ от обычной, неавтоматизированной, но также использующей ЭВМ, системы управления показано на рис. А.1, а, б. Стрелками обозначены потоки информации. В первом случае компьютер используется для решения отдельных задач управления, например для производства плановых расчетов, результаты которых рассматриваются органом управления и либо принимаются, либо отвергаются. При этом необходимые данные собираются специально для решения каждой задачи и вводятся в компьютер, а потом за ненадобностью уничтожаются. Во втором случае существенная часть информации от объекта управления собирается непосредственно вычислительным центром, в том числе по каналам связи. При этом нет необходимости каждый раз вводить в компьютер все данные: часть из них (цены, нормативы и т. п.) хранится в ее запоминающем устройстве. Из вычислительного центра выработанные задания поступают, с одной стороны, в орган управления, а с другой (обычно через контрольное звено) — к объекту управления. В свою очередь информация, поступающая от объекта управления, влияет на принимаемые решения, т.е. здесь используется кибернетический принцип обратной связи. Это — АСУ. Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций — того, что и как она делает, и с точки зрения ее схемы, т.е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем — функциональные и обеспечивающие. Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т.д.) — не разовое мероприятие, а длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически «вписывается» в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером, на основе получаемых им данных, оперативных управляющих «команд». Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т.д. Экономическая эффективность АСУ определяется прежде всего ростом эффективности самого производства в результате лучшей загрузки оборудования, повышения ритмичности, сокращения незавершенного производства и других материальных запасов, повышения качества продукции. РисА.1. Системы управления с использованием компьютеров а — неавтоматизированная, б — автоматизированная; I — управляющий центр; II — автоматизированная управляемая система (например, производство), III — контроль; тонкая черная стрелка — канал непосредственного управления компьютером некоторыми технологическими процессами (бывает не во всех АСУ); тонкая пунктирная стрелка показывает ту часть информации, которая поступает непосредственно в центр, минуя компьютер.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

     

    автоматизированный

    [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > automated

  • 54 automated controlling system

    1. автоматизированная система управления

     

    автоматизированная система, управляющая
    АСУ

    Управляющая система, часть функций которой, главным образом функцию принятия решений, выполняет человек-оператор.
    Примечание
    В зависимости от объектов управления различают, например: АСУ П, когда объектом управления является предприятие; АСУ ТП, когда объектом управления является технологический процесс; ОАСУ, когда объектом управления является организационный объект или комплекс.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.  Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    автоматизированная система управления
    АСУ

    Совокупность математических методов, технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом (процессом) в соответствии с заданной целью. АСУ принято делить на основу и функциональную часть. В основу входят информационное, техническое и математическое обеспечение. К функциональной части относят набор взаимосвязанных программ, автоматизирующих конкретные функции управления (планирование, финансово-бухгалтерскую деятельность и др.). Различают АСУ объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональными автоматизированными системами, например, проектирования, расчетов, материально-технического и др. обеспечения.
    [ http://www.morepc.ru/dict/]

    автоматизированная система управления
    АСУ

    Система управления, в которой применяются современные автоматические средства обработки данных и экономико-математические методы для решения основных задач управления производственно-хозяйственной деятельностью. Это человеко-машинная система: в ней ряд операций и действий передается для исполнения машинам и другим устройствам (особенно это относится к так называемым рутинным, повторяющимся, стандартным операциям расчетов), но главное решение всегда остается за человеком. Этим АСУ отличаются от автоматических систем, т.е. таких технических устройств, которые действуют самостоятельно, по установленной для них программе, без вмешательства человека. АСУ подразделяются прежде всего на два класса: автоматизированные системы организационного управления и автоматизированные системы управления технологическими процессами (последние часто бывают автоматическими, первые ими принципиально быть не могут). Традиционно термин АСУ закрепился за первым из названных классов. Отличие АСУ от обычной, неавтоматизированной, но также использующей ЭВМ, системы управления показано на рис. А.1, а, б. Стрелками обозначены потоки информации. В первом случае компьютер используется для решения отдельных задач управления, например для производства плановых расчетов, результаты которых рассматриваются органом управления и либо принимаются, либо отвергаются. При этом необходимые данные собираются специально для решения каждой задачи и вводятся в компьютер, а потом за ненадобностью уничтожаются. Во втором случае существенная часть информации от объекта управления собирается непосредственно вычислительным центром, в том числе по каналам связи. При этом нет необходимости каждый раз вводить в компьютер все данные: часть из них (цены, нормативы и т. п.) хранится в ее запоминающем устройстве. Из вычислительного центра выработанные задания поступают, с одной стороны, в орган управления, а с другой (обычно через контрольное звено) — к объекту управления. В свою очередь информация, поступающая от объекта управления, влияет на принимаемые решения, т.е. здесь используется кибернетический принцип обратной связи. Это — АСУ. Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций — того, что и как она делает, и с точки зрения ее схемы, т.е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем — функциональные и обеспечивающие. Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т.д.) — не разовое мероприятие, а длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически «вписывается» в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером, на основе получаемых им данных, оперативных управляющих «команд». Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т.д. Экономическая эффективность АСУ определяется прежде всего ростом эффективности самого производства в результате лучшей загрузки оборудования, повышения ритмичности, сокращения незавершенного производства и других материальных запасов, повышения качества продукции. РисА.1. Системы управления с использованием компьютеров а — неавтоматизированная, б — автоматизированная; I — управляющий центр; II — автоматизированная управляемая система (например, производство), III — контроль; тонкая черная стрелка — канал непосредственного управления компьютером некоторыми технологическими процессами (бывает не во всех АСУ); тонкая пунктирная стрелка показывает ту часть информации, которая поступает непосредственно в центр, минуя компьютер.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > automated controlling system

  • 55 automatized control system

    1. автоматизированная система управления

     

    автоматизированная система, управляющая
    АСУ

    Управляющая система, часть функций которой, главным образом функцию принятия решений, выполняет человек-оператор.
    Примечание
    В зависимости от объектов управления различают, например: АСУ П, когда объектом управления является предприятие; АСУ ТП, когда объектом управления является технологический процесс; ОАСУ, когда объектом управления является организационный объект или комплекс.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.  Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    автоматизированная система управления
    АСУ

    Совокупность математических методов, технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом (процессом) в соответствии с заданной целью. АСУ принято делить на основу и функциональную часть. В основу входят информационное, техническое и математическое обеспечение. К функциональной части относят набор взаимосвязанных программ, автоматизирующих конкретные функции управления (планирование, финансово-бухгалтерскую деятельность и др.). Различают АСУ объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональными автоматизированными системами, например, проектирования, расчетов, материально-технического и др. обеспечения.
    [ http://www.morepc.ru/dict/]

    автоматизированная система управления
    АСУ

    Система управления, в которой применяются современные автоматические средства обработки данных и экономико-математические методы для решения основных задач управления производственно-хозяйственной деятельностью. Это человеко-машинная система: в ней ряд операций и действий передается для исполнения машинам и другим устройствам (особенно это относится к так называемым рутинным, повторяющимся, стандартным операциям расчетов), но главное решение всегда остается за человеком. Этим АСУ отличаются от автоматических систем, т.е. таких технических устройств, которые действуют самостоятельно, по установленной для них программе, без вмешательства человека. АСУ подразделяются прежде всего на два класса: автоматизированные системы организационного управления и автоматизированные системы управления технологическими процессами (последние часто бывают автоматическими, первые ими принципиально быть не могут). Традиционно термин АСУ закрепился за первым из названных классов. Отличие АСУ от обычной, неавтоматизированной, но также использующей ЭВМ, системы управления показано на рис. А.1, а, б. Стрелками обозначены потоки информации. В первом случае компьютер используется для решения отдельных задач управления, например для производства плановых расчетов, результаты которых рассматриваются органом управления и либо принимаются, либо отвергаются. При этом необходимые данные собираются специально для решения каждой задачи и вводятся в компьютер, а потом за ненадобностью уничтожаются. Во втором случае существенная часть информации от объекта управления собирается непосредственно вычислительным центром, в том числе по каналам связи. При этом нет необходимости каждый раз вводить в компьютер все данные: часть из них (цены, нормативы и т. п.) хранится в ее запоминающем устройстве. Из вычислительного центра выработанные задания поступают, с одной стороны, в орган управления, а с другой (обычно через контрольное звено) — к объекту управления. В свою очередь информация, поступающая от объекта управления, влияет на принимаемые решения, т.е. здесь используется кибернетический принцип обратной связи. Это — АСУ. Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций — того, что и как она делает, и с точки зрения ее схемы, т.е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем — функциональные и обеспечивающие. Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т.д.) — не разовое мероприятие, а длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически «вписывается» в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером, на основе получаемых им данных, оперативных управляющих «команд». Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т.д. Экономическая эффективность АСУ определяется прежде всего ростом эффективности самого производства в результате лучшей загрузки оборудования, повышения ритмичности, сокращения незавершенного производства и других материальных запасов, повышения качества продукции. РисА.1. Системы управления с использованием компьютеров а — неавтоматизированная, б — автоматизированная; I — управляющий центр; II — автоматизированная управляемая система (например, производство), III — контроль; тонкая черная стрелка — канал непосредственного управления компьютером некоторыми технологическими процессами (бывает не во всех АСУ); тонкая пунктирная стрелка показывает ту часть информации, которая поступает непосредственно в центр, минуя компьютер.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > automatized control system

  • 56 automatized management system

    1. автоматизированная система управления

     

    автоматизированная система, управляющая
    АСУ

    Управляющая система, часть функций которой, главным образом функцию принятия решений, выполняет человек-оператор.
    Примечание
    В зависимости от объектов управления различают, например: АСУ П, когда объектом управления является предприятие; АСУ ТП, когда объектом управления является технологический процесс; ОАСУ, когда объектом управления является организационный объект или комплекс.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.  Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    автоматизированная система управления
    АСУ

    Совокупность математических методов, технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом (процессом) в соответствии с заданной целью. АСУ принято делить на основу и функциональную часть. В основу входят информационное, техническое и математическое обеспечение. К функциональной части относят набор взаимосвязанных программ, автоматизирующих конкретные функции управления (планирование, финансово-бухгалтерскую деятельность и др.). Различают АСУ объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональными автоматизированными системами, например, проектирования, расчетов, материально-технического и др. обеспечения.
    [ http://www.morepc.ru/dict/]

    автоматизированная система управления
    АСУ

    Система управления, в которой применяются современные автоматические средства обработки данных и экономико-математические методы для решения основных задач управления производственно-хозяйственной деятельностью. Это человеко-машинная система: в ней ряд операций и действий передается для исполнения машинам и другим устройствам (особенно это относится к так называемым рутинным, повторяющимся, стандартным операциям расчетов), но главное решение всегда остается за человеком. Этим АСУ отличаются от автоматических систем, т.е. таких технических устройств, которые действуют самостоятельно, по установленной для них программе, без вмешательства человека. АСУ подразделяются прежде всего на два класса: автоматизированные системы организационного управления и автоматизированные системы управления технологическими процессами (последние часто бывают автоматическими, первые ими принципиально быть не могут). Традиционно термин АСУ закрепился за первым из названных классов. Отличие АСУ от обычной, неавтоматизированной, но также использующей ЭВМ, системы управления показано на рис. А.1, а, б. Стрелками обозначены потоки информации. В первом случае компьютер используется для решения отдельных задач управления, например для производства плановых расчетов, результаты которых рассматриваются органом управления и либо принимаются, либо отвергаются. При этом необходимые данные собираются специально для решения каждой задачи и вводятся в компьютер, а потом за ненадобностью уничтожаются. Во втором случае существенная часть информации от объекта управления собирается непосредственно вычислительным центром, в том числе по каналам связи. При этом нет необходимости каждый раз вводить в компьютер все данные: часть из них (цены, нормативы и т. п.) хранится в ее запоминающем устройстве. Из вычислительного центра выработанные задания поступают, с одной стороны, в орган управления, а с другой (обычно через контрольное звено) — к объекту управления. В свою очередь информация, поступающая от объекта управления, влияет на принимаемые решения, т.е. здесь используется кибернетический принцип обратной связи. Это — АСУ. Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций — того, что и как она делает, и с точки зрения ее схемы, т.е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем — функциональные и обеспечивающие. Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т.д.) — не разовое мероприятие, а длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически «вписывается» в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером, на основе получаемых им данных, оперативных управляющих «команд». Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т.д. Экономическая эффективность АСУ определяется прежде всего ростом эффективности самого производства в результате лучшей загрузки оборудования, повышения ритмичности, сокращения незавершенного производства и других материальных запасов, повышения качества продукции. РисА.1. Системы управления с использованием компьютеров а — неавтоматизированная, б — автоматизированная; I — управляющий центр; II — автоматизированная управляемая система (например, производство), III — контроль; тонкая черная стрелка — канал непосредственного управления компьютером некоторыми технологическими процессами (бывает не во всех АСУ); тонкая пунктирная стрелка показывает ту часть информации, которая поступает непосредственно в центр, минуя компьютер.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > automatized management system

  • 57 plc

    1. связь по ЛЭП
    2. программируемый логический контроллер
    3. несущая в канале ВЧ-связи по ЛЭП
    4. маскирование потери пакета
    5. контроллер с программируемой логикой
    6. акционерная компания с ограниченной ответственностью

     

    акционерная компания с ограниченной ответственностью
    AG - аббревиатура для обозначения AKTIENGESELLSCHAFT (акционерное общество). Оно пишется после названия немецких, австрийских или швейцарских компаний и является эквивалентом английской аббревиатуры plc (public limited company-акционерная компания с ограниченной ответственностью). Сравни: GmbH.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

    DE

    • AG

     

    контроллер с программируемой логикой

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    маскирование потери пакета
    Метод сокрытия факта потери медиапакетов путем генерирования синтезируемых пакетов (МСЭ-T G.1050).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    несущая в канале ВЧ-связи по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

     

    связь по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > plc

  • 58 control device

    1. фонтанная задвижка
    2. устройство цепи управления
    3. устройство управления
    4. устройство контроля
    5. устройство для регулирования дебета
    6. управляющее устройство (электропривода)
    7. управляющее устройство
    8. орган управления
    9. контрольное устройство
    10. контрольно-измерительное оборудование
    11. аппарат управления

     

    аппарат управления
    Контактный коммутационный аппарат для управления аппаратурой распределения или управления, в том числе для сигнализации, электрической блокировки и т. п.
    Примечание. Аппарат управления состоит из одного или нескольких контактных элементов с общей системой управления.
    МЭК 60050(441-14-46).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    EN

    control switch (for control and auxiliary circuits)
    a mechanical switching device which serves the purpose of controlling the operation of switchgear or controlgear, including signalling, electrical interlocking, etc
    NOTE – A control switch consists of one or more contact elements with a common actuating system.
    [IEV number 441-14-46]

    FR

    auxiliaire de commande (pour circuits auxiliaires de commande)
    appareil mécanique de connexion dont la fonction est de commander la manoeuvre d'un appareillage, y compris la signalisation, le verrouillage électrique, etc
    NOTE – Un auxiliaire de commande comporte un ou plusieurs éléments de contact et un mécanisme transmetteur commun.
    [IEV number 441-14-46]

    Тематики

    • аппарат, изделие, устройство...

    Синонимы

    EN

    DE

    FR

     

    контрольно-измерительное оборудование

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    орган управления
    Часть системы аппарата управления, к которой прилагается извне усилие управления.
    МЭК 60050(441-15-22).
    Примечание. Орган управления может иметь форму рукоятки, ручки, нажимной кнопки, ролика, плунжера и т. п.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    орган управления

    Часть приводного механизма, к которой прикладывается внешняя сила воздействия.
    Примечание - Орган управления может иметь форму ручки, кнопки, ролика, поршня и т.д.
    [ ГОСТ Р 52726-2007]

    орган управления
    Часть системы привода, подвергаемая внешнему силовому воздействию.
    Примечания
    1. Орган управления может иметь форму ручки, рукоятки, нажимной кнопки, ролика, плунжера и т.д.
    2. Есть несколько способов приведения в действие, которые не требуют внешнего силового воздействия, а только какого-либо действия.
    [ГОСТ ЕН 1070-2003]

    орган управления
    Часть системы управления, которая предназначена непосредственно для воздействия оператором, например путем нажатия.
    [ГОСТ Р ЕН 614-1-2003]

    орган управления

    Часть системы приведения в действие, которая принимает воздействие человека.
    [ ГОСТ Р МЭК 60447-2000]

    орган управления
    Часть системы приведения в действие, которая воспринимает воздействие человека (ГОСТ Р МЭК 60447).
    Примечание
    В настоящем стандарте орган управления в виде интерактивного экранного устройства отображения является частью этого устройства, которое представляет функцию органа управления.
    [ ГОСТ Р МЭК 60073-2000]

    орган управления
    Часть механизма прибора управления, на который оказывается вручную внешнее силовое воздействие.
    Примечание.
    Орган управления может иметь форму ручки, рукоятки, кнопки, ролика, плунжера и т.д.
    Некоторые органы управления не требуют воздействия внешней силы, а только какого-либо действия.
    [ ГОСТ Р МЭК 60204-1-2007]

    органы управления
    Ручки, переключатели, потенциометры и другие органы, служащие для включения и регулировки аппаратуры. Термин относится преимущественно к аналоговым приборам.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    орган управления
    -
    [IEV number 442-04-14]

    средства оперирования
    -

    [Интент]

    EN

    actuator
    the part of the actuating system to which an external actuating force is applied
    NOTE – The actuator may take the form of a handle, knob, push-button, roller, plunger, etc.
    [IEV number 441-15-22]

    actuator
    part of a device to which an external manual action is to be applied
    NOTE 1 The actuator may take the form of a handle, knob, push-button, roller, plunger, etc.
    NOTE 2 There are some actuating means that do not require an external actuating force, but only an action.
    NOTE 3 See also 3.34.
    [IEC 60204-1 -2005]

    actuating member
    a part which is pulled, pushed, turned or otherwise moved to cause an operation of the switch
    [IEV number 442-04-14]

    FR

    organe de commande
    partie du mécanisme transmetteur à laquelle un effort extérieur de manoeuvre est appliqué
    NOTE – L'organe de commande peut prendre la forme d'une poignée, d'un bouton, d'un bouton-poussoir, d'une roulette, d'un plongeur, etc.
    [IEV number 441-15-22]

    organe de manoeuvre
    partie qui est tirée, poussée, tournée ou manipulée de toute autre façon pour provoquer le fonctionnement de l'interrupteur
    [IEV number 442-04-14]


    Аппарат должен оставаться механически действующим. Не допускается сваривание контактов, препятствующее операции размыкания при использовании нормальных средств оперирования.
    [ГОСТ  Р 50030.3-99 (МЭК  60947-3-99) ]

    ВДТ следует оперировать как при нормальной эксплуатации. Операции размыкания должны проводиться в следующем порядке:
    для первых 1000 циклов — с использованием ручных средств оперирования;
    ...
    [ ГОСТ Р 51326. 1-99 ( МЭК 61008-1-96)]

    Параллельные тексты EN-RU

    The operating means (for example, a handle) of the supply disconnecting device shall be easily accessible and located between 0,6 m and 1,9 m above the servicing level.
    [IEC 60204-1-2006]

    Органы управления, например, рукоятки аппаратов отключения питания, должны быть легко доступны и располагаться на высоте от 0,6 до 1,9 м от рабочей площадки.
    [Перевод Интент]

    Where the external operating means is not intended for emergency operations, it is recommended that it be coloured BLACK or GREY.
    [IEC 60204-1-2006]

    Если внешние средства оперирования не предназначены для выполнения действий при возникновении аварийных ситуаций, то рекомендуется, применять такие средства ЧЕРНОГО или СЕРОГО цвета.
    [Перевод Интент]

     

    1.2.2. Control devices

    Control devices must be:
    — clearly visible and identifiable and appropriately marked where necessary,
    — positioned for safe operation without hesitation or loss of time, and without ambiguity,
    — designed so that the movement of the control is consistent with its effect,
    — located outside the danger zones, except for certain controls where necessary, such as emergency stop, console for training of robots,
    — positioned so that their operation cannot cause additional risk,
    — designed or protected so that the desired effect, where a risk is involved, cannot occur without an intentional operation,
    — made so as to withstand foreseeable strain; particular attention must be paid to emergency stop devices liable to be subjected to considerable strain.

    1.2.2. Органы управления

    Органы управления должны быть:
    - четко видны, хорошо различимы и, где это необходимо, иметь соответствующее обозначение;
    - расположены так, чтобы ими можно было пользоваться без возникновения сомнений и потерь времени на выяснение их назначения;
    - сконструированы так, чтобы перемещение органа управления согласовывалось с их воздействием;
    - расположены вне опасных зон; исключение, где это необходимо, делается для определенных средств управления, таких, как средство экстренной остановки, пульт управления роботом;
    - расположены так, чтобы их использование не вызывало дополнительных рисков;
    - сконструированы или защищены так, чтобы в случаях, где возможно возникновение рисков, они не могли бы возникнуть без выполнения намеренных действий;
    - сделаны так, чтобы выдерживать предполагаемую нагрузку; при этом особое внимание уделяется органам аварийного останова, которые могут подвергаться значительным нагрузкам.

    Where a control is designed and constructed to perform several different actions, namely where there is no one-to-one correspondence (e.g. keyboards, etc.), the action to be performed must be clearly displayed and subject to confirmation where necessary.

    Если орган управления предназначен для выполнения разных действий, например, если в качестве органа управления используется клавиатура или аналогичное устройство, то должна выводиться четкая информация о предстоящем действии, и, если необходимо, должно выполняться подтверждение на выполнение такого действия.

    Controls must be so arranged that their layout, travel and resistance to operation are compatible with the action to be performed, taking account of ergonomic principles.

    Органы управления должны быть организованы таким образом, чтобы их расположение, перемещение их элементов и усилие, которое оператор затрачивает на их перемещение, соответствовали выполняемым операциям и принципам эргономики.

    Constraints due to the necessary or foreseeable use of personal protection equipment (such as footwear, gloves, etc.) must be taken into account.

    Необходимо учитывать скованность движений операторов при использовании необходимых или предусмотренных средств индивидуальной защиты (таких, как специальная обувь, перчатки и др.).

    Machinery must be fitted with indicators (dials, signals, etc.) as required for safe operation. The operator must be able to read them from the control position.

    Для обеспечения безопасной эксплуатации машинное оборудование должно быть оснащено индикаторами (циферблатами, устройствами сигнализации и т. д.). Оператор должен иметь возможность считывать их с места управления.

    From the main control position the operator must be able to ensure that there are no exposed persons in the danger zones.

    Находясь в главном пункте управления, оператор должен иметь возможность контролировать отсутствие незащищенных лиц.

    If this is impossible, the control system must be designed and constructed so that an acoustic and/ or visual warning signal is given whenever the machinery is about to start.

    Если это невозможно, то система управления должна быть разработана и изготовлена так, чтобы перед каждым пуском машинного оборудования подавался звуковой и/или световой предупредительный сигнал.

    The exposed person must have the time and the means to take rapid action to prevent the machinery starting up.

    [DIRECTIVE 98/37/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL]

    Незащищенное лицо должно иметь достаточно времени и средств для быстрого предотвращения пуска машинного оборудования.

    [Перевод Интент]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    управляющее устройство
    Устройство, включенное в цепь управления и используемое для управления работой машины (например, датчик положения, ручной контрольный переключатель, реле, электромагнитный клапан).
    [ГОСТ ЕН 1070-2003]

    EN

    DE

    FR

     

    управляющее устройство (электропривода)
    Устройство, предназначенное для формирования управляющих воздействий в электроприводе.
    [ ГОСТ Р 50369-92]

    Тематики

    EN

    DE

     

    устройство контроля
    контрольный прибор
    средство контроля


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    прибор устройство цепи управления
    Прибор Устройство, включенныйое в цепь управления и используемыйое для управления работой машины (например, датчик положения, ручной выключатель управления, реле, контактор, электромагнитный клапан).
    [ ГОСТ Р МЭК 60204-1-2007]

    EN

    control device
    device connected into the control circuit and used for controlling the operation of the machine (for example position sensor, manual control switch, relay, contactor, magnetically operated valve)
    [IEC 60204-1, ed. 5.0 (2005-10)]
    [IEC 60204-1-2006]

    FR

    appareil de commande
    appareil raccordé au circuit de commande et servant à commander le fonctionnement de la machine (par exemple un capteur de position, un auxiliaire manuel de commande, un relais, un contacteur, un électrodistributeur)
    [IEC 60204-1, ed. 5.0 (2005-10)]

    Номинальный ток коммутационной аппаратуры выбирают с учетом мощностей, потребляемых  всеми  устройствами  цепи  управления.
    [ ГОСТ Р ИСО 8528-4—2005]

    Одно устройство для цепи управления может иметь несколько групп механически связанных контактных элементов.
    [ ГОСТ Р 50030.5.1-2005 (МЭК 60947-5-1:2003)]

    Электромеханические устройства цепей управления
    [МЭК 60947-5-1:2003]

    При питании от понижающего трансформатора через выпрямительное устройство цепей управления постоянного тока, имеющих выключатели безопасности, один из полюсов этого устройства на стороне выпрямленного напряжения должен быть заземлен.
    [Правила устройства и безопасной эксплуатации лифтов ]

     

    Недопустимые, нерекомендуемые

    Примечание(1)- Мнение автора карточки

    Тематики

    EN

    FR

    устройство управления (control device): Средство, с помощью которого пользователь управляет креслом-коляской с электроприводом, чтобы двигаться с выбранной скоростью в выбранном направлении.

    Источник: ГОСТ Р ИСО 7176-22-2004: Кресла-коляски. Часть 22. Правила установки оригинал документа

    3.1.14 контрольное устройство (control device): Устройство, показывающее нормальную работу объекта или необходимость приведения его в действие.


    Источник: ГОСТ Р ИСО 12509-2010: Машины землеройные. Осветительные, сигнальные и габаритные огни и светоотражатели оригинал документа

    Англо-русский словарь нормативно-технической терминологии > control device

  • 59 programmable logic controller

    1. программируемый логический контроллер
    2. контроллер с программируемой логикой

     

    контроллер с программируемой логикой

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > programmable logic controller

  • 60 programmable controller

    1. программируемый логический контроллер
    2. программируемый контроллер

     

    программируемый контроллер

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > programmable controller

См. также в других словарях:

  • Системы управления — 8. Системы управления: система дистанционного управления реверсом и газом подвесного мотора Примечания: 1. Обозначение  означает, что установка и (или) поставка изделия предприятием изготовителем обязательна. 2. Для пластмассовых судов ремонтная… …   Словарь-справочник терминов нормативно-технической документации

  • Системы управления цепочками поставок — Системы управления цепями поставок (англ. Supply Chain Management, SCM) предназначены для автоматизации и управления всеми этапами снабжения предприятия и для контроля всего товародвижения на предприятии. Система SCM позволяет значительно… …   Википедия

  • Системы управления IT-инфраструктурой — предназначены для сбора информации об IT активах компании ( инвентаризации), мониторинга их состояния, контроля за активностью пользователей, управлением закупками IT активов, проведения аналитики работы IT подразделения с помощью построения… …   Википедия

  • системы управления Играми (СУИ) — Прикладные области, связанные с управлением Играми, или отвечающей за них организацией. Примеры таких областей — аккредитация, укомплектование персоналом Игр, транспортное обеспечение, контроль доступа и логистика. В качестве организации… …   Справочник технического переводчика

  • Системы управления библиографической информацией — Пример системы управления библиографической информацией  JabRef Системы управления библиографической информацией  это системы, позволяющие исследователям, учёным и писателям создават …   Википедия

  • СИСТЕМЫ УПРАВЛЕНИЯ ДВИЖЕНИЕМ В МАШИНАХ-АВТОМАТАХ — см. также о словаре вход системы управления машины входной сигнал выход системы управления машины …   Теория механизмов и машин

  • Системы управления временем в играх — …   Википедия

  • Системы управления и защиты — 45. Системы управления и защиты совокупность средств технического, программного и информационного обеспечения, предназначенных для обеспечения безопасного протекания цепной реакции. Системы управления и защиты системы, важные для безопасности,… …   Словарь-справочник терминов нормативно-технической документации

  • СИСТЕМЫ УПРАВЛЕНИЯ АВТОМАТИЗИРОВАННЫЕ — (см. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ) …   Энциклопедический словарь экономики и права

  • системы управления электроэрозионными ЭЭ оборудованием или ЭЭ системами — 3.5. системы управления электроэрозионными ЭЭ оборудованием или ЭЭ системами (control system for EDM equipment or EDM system): Система, обеспечивающая управление оборудованием от точки ввода управляющего сигнала (например, пусковой кнопки или… …   Словарь-справочник терминов нормативно-технической документации

  • Системы управления — …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»