-
1 reference ambient air temperature
контрольная температура окружающего воздуха
Температура окружающего воздуха, при которой устанавливают время-токовые характеристики.
[ ГОСТ Р 50345-99( МЭК 60898-95)]EN
reference ambient air temperature
the ambient air temperature on which the time-current characteristics are based
[IEC 60898-1, ed. 1.0 (2002-01)]FR
température de référence de l'air ambiant
température de l'air ambiant sur laquelle sont basées les caractéristiques de temps-courant
[IEC 60898-1, ed. 1.0 (2002-01)]При отсутствии других указаний:
- для тепловых расцепителей значения срабатывания указывают для контрольной температуры (30±2) °С.
Рабочие характеристики расцепителей, зависящие от температуры окружающего воздуха, следует проверять при контрольной температуре (см. 4.7.3 и 5.2Ь), подавая испытательный ток во все фазные полюса расцепителя
[ ГОСТ Р 50030. 2-99 ( МЭК 60947-2-98)]
Для АВО, калиброванных на контрольную температуру, отличную от (23±2) °С, испытание должно проводиться при этой температуре с допуском ±2 °С.
[ ГОСТ Р 50031-99( МЭК 60934-93)]
Номинальный ток (In)
Установленный изготовителем ток, который выключатель способен проводить в продолжительном режиме (см. 4.3.2.14) при указанной контрольной температуре окружающего воздуха.
Стандартная контрольная температура окружающего воздуха 30 °С. Если для данного выключателя используется другое контрольное значение температуры окружающего воздуха, необходимо учитывать ее влияние на защиту кабелей от перегрузки, так как согласно монтажным правилам она также основывается на контрольной температуре окружающего воздуха.
Примечание — Контрольную температуру для защиты кабелей от перегрузок принимают 25 °С по МЭК 369 [5].
[ ГОСТ Р 50345-99( МЭК 60898-95)]
Параллельные тексты EN-RUThe operating characteristic of the breaker with a thermal magnetic trip element changes as the base ambient temperature is adjusted to 40°C.
[LS Industrial Systems]Значения рабочих характеристик автоматических выключателей с теплоэлектромагнитным расцепителем зависят от температуры окружающего воздуха и отличаются от значений, указанных для контрольной температуры 40 °С.
[Перевод Интент]Rated current compensation in accordance with ambient temperature
When normal ambient temperature exceeds the temperature specified in the environment the following formula help to select the applicable current.
[LS Industrial Systems]Изменение номинального тока в зависимости от температуры окружающего воздуха
Если температура окружающего воздуха будет превышать контрольную температуру, то допустимый рабочий ток можно рассчитать по приведенной ниже формуле.
[Перевод Интент]Тематики
EN
- base ambient temperature
- normal ambient temperature
- reference ambient air temperature
- reference temperature
FR
3.2.10.2 контрольная температура (reference ambient air temperature): Температура окружающего воздуха, при которой устанавливают время-токовые характеристики.
Источник: ГОСТ Р 50345-2010: Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения. Часть 1. Автоматические выключатели для переменного тока оригинал документа
Англо-русский словарь нормативно-технической терминологии > reference ambient air temperature
-
2 reference temperature
контрольная температура окружающего воздуха
Температура окружающего воздуха, при которой устанавливают время-токовые характеристики.
[ ГОСТ Р 50345-99( МЭК 60898-95)]EN
reference ambient air temperature
the ambient air temperature on which the time-current characteristics are based
[IEC 60898-1, ed. 1.0 (2002-01)]FR
température de référence de l'air ambiant
température de l'air ambiant sur laquelle sont basées les caractéristiques de temps-courant
[IEC 60898-1, ed. 1.0 (2002-01)]При отсутствии других указаний:
- для тепловых расцепителей значения срабатывания указывают для контрольной температуры (30±2) °С.
Рабочие характеристики расцепителей, зависящие от температуры окружающего воздуха, следует проверять при контрольной температуре (см. 4.7.3 и 5.2Ь), подавая испытательный ток во все фазные полюса расцепителя
[ ГОСТ Р 50030. 2-99 ( МЭК 60947-2-98)]
Для АВО, калиброванных на контрольную температуру, отличную от (23±2) °С, испытание должно проводиться при этой температуре с допуском ±2 °С.
[ ГОСТ Р 50031-99( МЭК 60934-93)]
Номинальный ток (In)
Установленный изготовителем ток, который выключатель способен проводить в продолжительном режиме (см. 4.3.2.14) при указанной контрольной температуре окружающего воздуха.
Стандартная контрольная температура окружающего воздуха 30 °С. Если для данного выключателя используется другое контрольное значение температуры окружающего воздуха, необходимо учитывать ее влияние на защиту кабелей от перегрузки, так как согласно монтажным правилам она также основывается на контрольной температуре окружающего воздуха.
Примечание — Контрольную температуру для защиты кабелей от перегрузок принимают 25 °С по МЭК 369 [5].
[ ГОСТ Р 50345-99( МЭК 60898-95)]
Параллельные тексты EN-RUThe operating characteristic of the breaker with a thermal magnetic trip element changes as the base ambient temperature is adjusted to 40°C.
[LS Industrial Systems]Значения рабочих характеристик автоматических выключателей с теплоэлектромагнитным расцепителем зависят от температуры окружающего воздуха и отличаются от значений, указанных для контрольной температуры 40 °С.
[Перевод Интент]Rated current compensation in accordance with ambient temperature
When normal ambient temperature exceeds the temperature specified in the environment the following formula help to select the applicable current.
[LS Industrial Systems]Изменение номинального тока в зависимости от температуры окружающего воздуха
Если температура окружающего воздуха будет превышать контрольную температуру, то допустимый рабочий ток можно рассчитать по приведенной ниже формуле.
[Перевод Интент]Тематики
EN
- base ambient temperature
- normal ambient temperature
- reference ambient air temperature
- reference temperature
FR
2.2.35 опорная температура (reference temperature): Температура, при которой выполняют конкретные измерения параметров кварцевого резонатора. Для термостатированных кварцевых резонаторов опорная температура - это температура в средней точке интервала температур термостатирования. Для нетермостатированных кварцевых резонаторов опорной температурой обычно считают (25 ± 2) °С.
Источник: ГОСТ Р МЭК 60122-1-2009: Резонаторы оцениваемого качества кварцевые. Часть 1. Общие технические условия оригинал документа
Англо-русский словарь нормативно-технической терминологии > reference temperature
-
3 base ambient temperature
контрольная температура окружающего воздуха
Температура окружающего воздуха, при которой устанавливают время-токовые характеристики.
[ ГОСТ Р 50345-99( МЭК 60898-95)]EN
reference ambient air temperature
the ambient air temperature on which the time-current characteristics are based
[IEC 60898-1, ed. 1.0 (2002-01)]FR
température de référence de l'air ambiant
température de l'air ambiant sur laquelle sont basées les caractéristiques de temps-courant
[IEC 60898-1, ed. 1.0 (2002-01)]При отсутствии других указаний:
- для тепловых расцепителей значения срабатывания указывают для контрольной температуры (30±2) °С.
Рабочие характеристики расцепителей, зависящие от температуры окружающего воздуха, следует проверять при контрольной температуре (см. 4.7.3 и 5.2Ь), подавая испытательный ток во все фазные полюса расцепителя
[ ГОСТ Р 50030. 2-99 ( МЭК 60947-2-98)]
Для АВО, калиброванных на контрольную температуру, отличную от (23±2) °С, испытание должно проводиться при этой температуре с допуском ±2 °С.
[ ГОСТ Р 50031-99( МЭК 60934-93)]
Номинальный ток (In)
Установленный изготовителем ток, который выключатель способен проводить в продолжительном режиме (см. 4.3.2.14) при указанной контрольной температуре окружающего воздуха.
Стандартная контрольная температура окружающего воздуха 30 °С. Если для данного выключателя используется другое контрольное значение температуры окружающего воздуха, необходимо учитывать ее влияние на защиту кабелей от перегрузки, так как согласно монтажным правилам она также основывается на контрольной температуре окружающего воздуха.
Примечание — Контрольную температуру для защиты кабелей от перегрузок принимают 25 °С по МЭК 369 [5].
[ ГОСТ Р 50345-99( МЭК 60898-95)]
Параллельные тексты EN-RUThe operating characteristic of the breaker with a thermal magnetic trip element changes as the base ambient temperature is adjusted to 40°C.
[LS Industrial Systems]Значения рабочих характеристик автоматических выключателей с теплоэлектромагнитным расцепителем зависят от температуры окружающего воздуха и отличаются от значений, указанных для контрольной температуры 40 °С.
[Перевод Интент]Rated current compensation in accordance with ambient temperature
When normal ambient temperature exceeds the temperature specified in the environment the following formula help to select the applicable current.
[LS Industrial Systems]Изменение номинального тока в зависимости от температуры окружающего воздуха
Если температура окружающего воздуха будет превышать контрольную температуру, то допустимый рабочий ток можно рассчитать по приведенной ниже формуле.
[Перевод Интент]Тематики
EN
- base ambient temperature
- normal ambient temperature
- reference ambient air temperature
- reference temperature
FR
Англо-русский словарь нормативно-технической терминологии > base ambient temperature
-
4 normal ambient temperature
контрольная температура окружающего воздуха
Температура окружающего воздуха, при которой устанавливают время-токовые характеристики.
[ ГОСТ Р 50345-99( МЭК 60898-95)]EN
reference ambient air temperature
the ambient air temperature on which the time-current characteristics are based
[IEC 60898-1, ed. 1.0 (2002-01)]FR
température de référence de l'air ambiant
température de l'air ambiant sur laquelle sont basées les caractéristiques de temps-courant
[IEC 60898-1, ed. 1.0 (2002-01)]При отсутствии других указаний:
- для тепловых расцепителей значения срабатывания указывают для контрольной температуры (30±2) °С.
Рабочие характеристики расцепителей, зависящие от температуры окружающего воздуха, следует проверять при контрольной температуре (см. 4.7.3 и 5.2Ь), подавая испытательный ток во все фазные полюса расцепителя
[ ГОСТ Р 50030. 2-99 ( МЭК 60947-2-98)]
Для АВО, калиброванных на контрольную температуру, отличную от (23±2) °С, испытание должно проводиться при этой температуре с допуском ±2 °С.
[ ГОСТ Р 50031-99( МЭК 60934-93)]
Номинальный ток (In)
Установленный изготовителем ток, который выключатель способен проводить в продолжительном режиме (см. 4.3.2.14) при указанной контрольной температуре окружающего воздуха.
Стандартная контрольная температура окружающего воздуха 30 °С. Если для данного выключателя используется другое контрольное значение температуры окружающего воздуха, необходимо учитывать ее влияние на защиту кабелей от перегрузки, так как согласно монтажным правилам она также основывается на контрольной температуре окружающего воздуха.
Примечание — Контрольную температуру для защиты кабелей от перегрузок принимают 25 °С по МЭК 369 [5].
[ ГОСТ Р 50345-99( МЭК 60898-95)]
Параллельные тексты EN-RUThe operating characteristic of the breaker with a thermal magnetic trip element changes as the base ambient temperature is adjusted to 40°C.
[LS Industrial Systems]Значения рабочих характеристик автоматических выключателей с теплоэлектромагнитным расцепителем зависят от температуры окружающего воздуха и отличаются от значений, указанных для контрольной температуры 40 °С.
[Перевод Интент]Rated current compensation in accordance with ambient temperature
When normal ambient temperature exceeds the temperature specified in the environment the following formula help to select the applicable current.
[LS Industrial Systems]Изменение номинального тока в зависимости от температуры окружающего воздуха
Если температура окружающего воздуха будет превышать контрольную температуру, то допустимый рабочий ток можно рассчитать по приведенной ниже формуле.
[Перевод Интент]Тематики
EN
- base ambient temperature
- normal ambient temperature
- reference ambient air temperature
- reference temperature
FR
Англо-русский словарь нормативно-технической терминологии > normal ambient temperature
-
5 be based on
1) Общая лексика: основываться на (Capacities shown above are based on condensate at saturation temperature. - основываются на)2) Математика: быть основанным на, зиждиться, опереться, опираться, основываться, учитывать3) Макаров: базироваться (о выводах, теории) -
6 p-nitrophenol permeability and temperature characteristics of an acryloyl-L-proline methyl ester-based porous gel membrane
Универсальный англо-русский словарь > p-nitrophenol permeability and temperature characteristics of an acryloyl-L-proline methyl ester-based porous gel membrane
-
7 set the temperature in the room based on an individual's comfort level
Универсальный англо-русский словарь > set the temperature in the room based on an individual's comfort level
-
8 control
1) управление; регулирование; регулировка || управлять; регулировать; задавать2) контроль; проверка || контролировать; проверять3) орган управления; орган регулировки, регулятор; орган настройки4) устройство управления; блок управления6) рукоятка или рычаг управления7) профилактические мероприятия, надзор•"operation is under control" — всё предусмотрено для нормальной работы;to gain control — вчт. получать управление:to go out of control — становиться неуправляемым;to operate ( to handle) the flight controls — оперировать органами управления полётом;to pass control — вчт. передавать управление;to return control — вчт. возвращать управление;to take over control — брать управление на себя;to transfer control — вчт. передавать управление-
cascaded control-
cathode control-
CO/O2 combustion control-
communications control-
computer control-
contactor-type control-
continuous-path control-
course gage control-
current-mode control-
dispatcher control-
focusing control-
holding control-
horizontal-frequency control-
hue range control-
long-distance control-
managerial control-
microprogramming control-
numerical program control-
on-off action control-
position-based control-
slide control-
step-by-step control-
time-pattern control -
9 material
1. материал3. тканьablating material — абляционный материал
ablative material — абляционный материал
ablative coating material — абляционный материал покрытия
ablative cooling material — абляционный теплозащитный материал
ablative heat shield material — абляционный материал для теплозащитного экрана
ablative-insulative material — абляционный изоляционный материал
ablative liner material — абляционный облицовочный материал
ablative plastic composite material — абляционный материал из композиционного пластика
absorbing material — поглощающий материал, поглотитель
acidproof material — кислотоупорный материал
acid-resistant material — кислотостойкий материал
acoustic material — звукоизолирующий материал
advanced composite material — перспективный композиционный материал
aerospace material — материал для авиационно-космической техники, авиационно-космический материал
aircraft material — авиационный материал
aircraft interior material — материал для внутренней отделки самолёта
aluminum-boron composite material — композиционный материал на основе алюминия и бора
anisotropic material — анизотропный материал
antenna material — материал для антенн
anticorrosive material — антикоррозионный материал
antiferroelectric material — антисегнетоэлектрик
antifriction heat-conducting material — антифрикционный теплопроводящий материал
armor material — бронематериал, броня
asbestos-reinforced material — материал, армированный асбестом
aviation heat-insulating material — авиационный теплоизоляционный материал
backing material — материал подложки
ballistic re-entry heat shield material — теплозащитный материал при баллистическом входе в плотную атмосферу
barrier material — барьерный [защитный, изолирующий] материал
benzine-resistant material — бензиностойкий материал
binding material — связующий [вяжущий, цементирующий] материал
biocompatible material — биологически совместимый материал
bladder material — материал для эластичных мешков ( используемых для подачи хранимых топлив)
blading material — материал для лопаток, лопаточный материал
bonding material — связывающий материал
boron-aluminum composite material — бороалюминиевый композиционный материал
boron-filament-reinforced aluminum matrix material — композиционный материал на основе алюминиевой матрицы, армированной борволокном
boron-polyimide material — борополиимидный материал, полиимидный боропластик
borsic-aluminum material — композиционный материал на основе алюминия, армированного волокном борсика
brass seal material — латунь для уплотнений
brazing filler material — присадочный материал для пайки
bronze-graphite material — бронзографитовый материал
bumper material — демпфирующий [амортизационный] материал
carbon-fiber-based honeycomb material — сотовый материал, покрытый углеродным волокном
carbon-graphite material — углеродно-графитовый материал
cellular material — ячеистый [пористый] материал
ceramic material — керамический материал
ceramic heat-resisting material — керамический теплостойкий материал
ceramic radome material — керамический материал для антенных обтекателей
cermet material — металлокерамический материал, металлокерамика
char-forming material — коксующийся [обугливающийся] материал
charring material — обугливающийся [коксующийся] материал
chemically resistant material — химически инертный материал
chemical vapor-deposited material — материал, полученный химическим газофазным осаждением
chemiluminescent material — хемилюминесцентный материал
cladded material — плакированный материал
cladding material — 1) плакирующий материал 2) оболочковый материал
coating material — материал для покрытий
cohesive material — вяжущий материал [вещество]
combustible material — горючий материал
compatible construction material — совместимый конструкционный материал
compatible matrix material — совместимый матричный [связующий] материал
complex material — 1) комплексный [сложный] материал 2) композиционный материал
composite material — композиционный материал, композиция
composite plastic material — композиционный пластмассовый материал
composite self-lubricating bearing material — композиционный самосмазывающийся подшипниковый материал
conducting material — проводящий материал, проводник
constructional material — конструкционный материал
container material — материал для ёмкостей
control material — материал для регулирующих стержней ( ядерных реакторов)
coolant material — охлаждающий материал, охладитель
core material — 1) материал для заполнителей 2) материал активной зоны ( ядерного реактора)
corrosion-resistant material — коррозионностойкий материал
corrugated material — гофрированный материал
corrugated sandwich material — слоистый материал с гофрированным заполнителем
corrugated truss material — гофрированный ферменный материал, гофрированный материал фермы
critical material — дефицитный материал
cryogenic material — материал для криогенных температур, криогенный [низкотемпературный] материал
cryopanel material — панельный материал для криогенных температур
damping material — 1) вибропоглощающий материал 2) звукопоглощающий материал 3) демпфирующая среда
diamagnetic material — диамагнитное вещество, диамагнетик
dielectric material — диэлектрический материал
diffusion-coated material — материал с диффузионным покрытием
difunctional material — двухфункциональный материал
dimensional stable material — размерно-устойчивый материал
disc material — материал для дисков
disordered material — разупорядоченный материал
dispersed-particle cermet material — металлокерамический материал с диспергированными частицами
dispersed-particle-tungsten-copper composite material — композиционный материал на основе меди, упрочнённый дисперсными частицами вольфрама
dispersion-hardened material — дисперсионно-упрочнённый материал
dispersion-strengthened material — дисперсно-упрочнённый материал
display material — индикаторный материал
doubly refracting material — двоякопреломляющее вещество [материал, среда]
ductile material — пластичный материал
elastic-plastic material — упруго-пластичный материал
elastomer sponge material — материал для эластомерной губки
electrical contact material — электроконтактный материал
electrical insulation material — электроизоляционный материал
electromagnetic-wave absorbing material — материал, поглощающий электромагнитные волны
electrooptic material — электрооптический материал
emission material — эмиссионный материал, вещество активного эмиссионного покрытия
emitting material — эмиттирующее вещество
encapsulating material — герметизирующий материал
energy-absorbing material — материал, поглощающий энергию; энергопоглощающий материал
epitaxial material — эпитаксиальный материал
erosion-resistant material — эрозионно-стойкий материал
eutectic material — эвтектический матетериал
exotic material — необычный [жаропрочный] материал (с температурой плавления выше 1650°C)
facing material — облицовочный материал, материал для обшивки
ferrimagnetic material — ферримагнитный материал, ферримагнетик
ferrite material — ферритовый [ферритный] материал, феррит
ferroelectric material — сегнетоэлектрический материал, сегнетоэлектрик
ferromagnetic material — ферромагнитный материал, ферромагнетик
ferrous material — чёрный металл
fiber material — 1) волокнистый материал 2) волокно
fiber carbonaceous material — материал из карбонизованного волокна
fiber composite material — волокнистый композиционный материал
fiber-filled molding material — 1) материал с волокнистым наполнителем 2) волокнит
fiber-glass-epoxy honeycomb material — сотовый материал из эпоксидного стеклопластика
fiber-glass-reinforced material — материал, армированный стекловолокном
fiber-reinforced material — 1) материал, армированный волокном 2) волокнит
fiber-strengthened material — 1) материал, упрочнённый волокном 2) волокнит
fibrous material — 1) волокнистый материал 2) волокнит
fibrous composite material — волокнистый композиционный материал
fibrous structure material — 1) материал с волокнистой структурой 2) волокнит
filamentary composite material — волокнистый композиционный материал
filamenting material — 1) волокнистый материал 2) волокнит
filamentous material — 1) волокнистый материал 2) волокнит
filament-reinforced material — 1) материал, армированный волокном 2) волокнит
filament-reinforced composite material — композиционный материал, армированный волокном
filament-wound material — материал, изготовленный [полученный] намоткой нити [волокна]
filled elastomeric ablation material — абляционный материал с эластомерным наполнителем
filler material — присадочный материал
filling material — наполнитель, заполняющее вещество
film material — плёночный материал
film-forming material — плёнкообразующий материал
fine-particle ceramic material — мелкозернистый керамический материал
fissible material — 1) расщепляющийся материал, делящееся вещество 2) ядерное горючее
fissionable material — 1) расщепляющийся материал, делящееся вещество 2) ядерное горючее
fluorescent material — флуоресцирующее [люминесцентное] вещество
fluorescent penetrant material — люминесцентное проникающее вещество
fluorine-bearing material — фторсодержащий материал
fluorine-containing material — фторсодержащий материал
fluted-core sandwich material — слоистый материал с рифлёным заполнителем
foamed material — пеноматериал
gasketing material — уплотнительный [прокладочный] материал
gas turbine material — материал для газовых турбин
getter material — газопоглощающий материал, геттер, газопоглотитель
glass-ceramic material — стеклокерамика, стеклокерамический материал
glass electromagnetic window material — электромагнитный материал для окон ( антенных обтекателей)
glass-fiber material — стекловолокнистый материал, стекловолокно
glass fibrous material — стекловолокнистый материал, стекловолокно
glass-filament-wound material — материал, полученный намоткой стекловолокна
glass-plastic honeycomb material — сотовый стеклопластик
glass-reinforced honeycomb material — сотовый материал, армированный стеклом
glass-sphere-containing material — материал с наполнителем из стеклосфер
glass-to-metal sealing material — материал для соединения [запайки] стекла с металлом
graphite material — 1) графитовый материал, графит 2) графитовая ткань
graphite composite material — графитовый композиционный материал
graphite fabric material — графитовая ткань
graphite polyimide material — полиимидный графитопласт
half-finished material — 1) полуфабрикат 2) заготовка
hard-magnetic material — магнитожёсткий [магнитотвёрдый] материал
heat-absorbing material — теплопоглощающий материал
heat-barrier material — теплозащитный материал
heat-conducting material — теплопроводный материал
heat-insulating material — теплоизоляционный материал
heat-protective material — теплозащитный материал
heat-reflecting material — теплоотражающий материал
heat-resistant material — теплостойкий материал
heat-sensitive material — теплочувствительный материал
heat-shielding material — теплозащитный материал
heat-sink material — теплопоглощающий материал, теплопоглотитель
heat-transfer material — теплопередающий материал
high-alumina core material — материал для заполнителей с высоким содержанием окиси алюминия
high-capture material — материал, сильно поглощающий нейтроны
high-emittance material — материал с высокой лучеиспускательной способностью
high-impact resistant material — материал с высокой ударопрочностью
highly alloyed material — высоколегированный материал
high-modulus material — высокомодульный материал, материал с высоким модулем упругости
high-performance material — материал с высокими характеристиками
high-polymeric material — высокополимерный материал
high-purity material — материал высокой чистоты
high-stiffness material — материал с высокой жёсткостью
high-strength material — высокопрочный материал
high-temperature material — высокотемпературный [жаропрочный] материал, материал для высоких температур
high-temperature alloy engine material — материал из жаропрочных сплавов для двигателей
high-thermal conductivity polymeric material — полимерный материал с высокой теплопроводностью
honeycomb composite material — сотовый композиционный материал
honeycomb core material — 1) материал для сотовых заполнителей 2) ячеистый [сотовый] материал
honeycomb-reinforced insulation material — армированный сотовый изоляционный материал
honeycomb sandwich material — слоистый материал с сотовым заполнителем
hot-pressed material — горячепрессованный материал
hyperthermal material — высокотемпературный [жаропрочный] материал
impact material — ударопрочный материал
impregnated-resin reinforcing material — армирующий материал, пропитанный смолой
incombustible material — негорючий материал
incompatible material — несовместимый материал
infrared emissive material — материал с инфракрасным излучением
inhibiting material — 1) бронирующий материал, бронематериал 2) вещество, задерживающее химическую реакцию 3) антикоррозионное вещество
inorganic material — неорганический материал
insulating material — изоляционный [изолирующий] материал
insulation material — изоляционный [изолирующий] материал
iron-graphite cermet material — железо-графитовый металлокерамический материал
irradiated material — облучённый материал
jet-engine material — материал для реактивных двигателей
jointing material — уплотнительный материал
kerosine-resistant material — керосино-стойкий материал
laminated material — 1) слоистый материал 2) слоистый пластик
laminating material — 1) слоистый материал 2) слоистый пластик
laser material — материал для лазеров [оптических квантовых генераторов]
lifting re-entry heat-shield material — теплозащитный материал для аппаратов с аэродинамическим входом в плотную атмосферу
lightweight armor material — лёгкий бронематериал
linear viscoelastic material — материал с линейной вязкоупругостью
liner material — облицовочный материал
lining material — облицовочный материал
load-carrying material — материал для силовых конструкций
low-capture material — слабо поглощающий ( нейтроны) материал
low-coercivity material — магнитомягкий материал
low-density ablation material — абляционный материал низкой плотности
low-modulus material — низкомодульный материал, материал с низким модулем упругости
low-temperature material — низкотемпературный материал, материал для низких температур
luminescent material — люминесцентное [люминесцирующее] вещество, люминофор
lunar material — лунный материал [порода, грунт]
machinable material — механически обрабатываемый материал
magnetic material — магнитный материал, магнетик
magnetostrictive material — магнитострикционный материал
man-made material — синтетический материал
matrix material — матричный [связующий] материал
memory material — материал для запоминающих устройств
metal-graphite bearing material — металлографитовый подшипниковый материал
metal-matrix composite material — композиционный материал с металлической матрицей
mica-ceramic material — слюдокерамический [миканито-керамический] материал
microelectronic material — материал для микроэлектронной техники
mineral wool insulation material — изоляционный материал из минеральной ваты
mirror material — зеркальный материал, материал для отражателей
missile material — ракетный материал, материал для ракет
moderating material — замедляющий материал, материал для замедлителей
moderator material — материал для замедлителей, замедляющий материал
moisture seal gasket material — материал для влагозащитных уплотнительных прокладок
molding material — 1) формовочный материал 2) пресс-масса
moon material — лунный материал [порода, грунт]
multicornponent material — многокомпонентный [композиционный] материал
multifunctional material — материал с многофункциональными свойствами
multiphase material — многофазный материал
neutron-absorbing material — вещество, поглощающее нейтроны
neutron-blocking material — материал, блокирующий нейтроны
neutron-gamma shielding material — материал, защищающий от гамма-лучей
noncharring material — необугливающийся [некоксующийся] материал
noncombustible material — негорючий материал
nonconducting material — 1) непроводящий материал 2) непроводящее вещество
nonlinear optical material — материал для нелинейной оптики
nonmetallic material — неметаллический материал
nonporous material — непористый материал
nonstructural material — неконструкционный материал
nose-cone material — материал для головных частей ( ракет)
nose-tip material — материал для головных частей ( ракет)
nozzle material — материал для сопел
nozzle-insert material — материал для сопловых вкладышей
nuclear reactor material — материал для ядерных реакторов
nuclear rocket material — материал для ядерных ракетных двигателей
nuclear shielding material — защитный [экранирующий] материал от ядерного [атомного] излучения
oil-resistant material — маслостойкий материал
optical material — оптический материал
ordered material — упорядоченный материал
organic material — органический материал
organometallic material — металлоорганический материал
oxidation material — окисляющее вещество, окислитель
oxidation-resistant material — материал, стойкий к окислению
oxidation-resistant thermal protection material — теплозащитный материал, стойкий к окислению
oxide-metal cermet-type material — окисная металлокерамика
oxide thermoelectric material — окисный термоэлектрический материал, термоэлектрическая керамика
oxidizer-resistant material — материал, стойкий к воздействию окислителя
ozone-resistant material — озоностойкий материал
packaging material — упаковочный материал
paper-core honeycomb material — сотовый материал с бумажным заполнителем
particle-reinforced material — материал, армированный частицами
particle-strengthened material — материал, упрочнённый частицами
penetrant inspection material — проникающее вещество для контроля ( при дефектоскопии)
permeable material — проницаемый материал
phase-change material — материал с изменяющимися фазами
phenolic glass-fiber composite material — фенопласт, армированный стекловолокном, фенольный стеклотекстолит
phosphorescent material — фосфоресцирующее вещество, фосфор
photochromic material — материал для цветной фотографии
photoelastic material — фотоупругий материал
photoemissive material — фотоэмиссионный материал
photopolymer material — фотополимерный материал
phototropic material — фототропный материал
photoviscoelastic material — вязкофотоупругий материал
piezoelectric material — пьезоэлектрический материал
plastic material — 1) пластичный материал 2) пластическая масса, пластмасса, пластик
plastic-filled honeycomb material — сотовый материал с пластмассовым заполнителем
polycrystalline material — поликристаллический материал
polymer-containing fibrous material — волокнистый материал с содержанием полимера
polymeric material — полимерный материал
porous material — 1) пористый [проницаемый] материал 2) фильтр
powdered material — порошковый материал
powder-like material — порошкообразный материал
precipitation-hardened material — дисперсионно-твердеющий материал
precoated material — материал с предварительным покрытием, предварительно покрытый материал
predeterminated-properties material — материал с заданными свойствами
pre-finished material — предварительно обработанный [покрытый] материал
pre-impregnated fabric material — предварительно пропитанный тканевый материал
prepreg resin material — материал, предварительно пропитанный ( смолой); препрег
press material — 1) пресс-материал 2) пластическая масса, пластмасса, пластик
pressure vessel material — материал для сосудов высокого давления
primer material — грунтовочный материал, грунтовка
propellant material — 1) материал для ракетного топлива 2) ракетное топливо
propulsion material — материал для силовых установок
pyrolytic material — пиролитический материал
pyrolytic graphite composite material — пирографитовый композиционный материал
radar absorbent material — материал для противорадиолокационных покрытий
radiation shielding material — защитный [экранирующий] материал от радиоактивного излучения
radioactive shielding material — защитный [экранирующий] материал от радиоактивного излучения
radiation-resistant material — материал, стойкий к облучению
radioactive material — 1) радиоактивный материал 2) радиоактивное вещество
radioluminescent material — радиолюминесцентный материал
radome material — материал для антенных обтекателей
re-entry shield material — материал для защиты аппаратов, возвращаемых в плотную атмосферу
re-entry vehicle material — материал для аппаратов, возвращаемых в плотную атмосферу
reflecting material — 1) материал для отражателей 2) отражающее вещество
refractory material — тугоплавкий [огнеупорный] материал, огнеупор
refractory semiconductor material — тугоплавкий полупроводник
reinforced material — армированный [упрочнённый] материал
reinforced ceramic material — армированная керамика
reinforced thermosetting plastic material — армированный термореактопласт [термореактивный пластик]
reinforcement material — армирующий [упрочняющий] материал
reinforcing material — армирующий [упрочняющий] материал
reinforcing composite material — армирующий композиционный материал
resilient material — упругий [эластичный] материал
resin-ceramic material — материал из керамики и смолы, материал из керамопластика
resin-impregnated material — материал, пропитанный смолой
resinous material — смолистый материал, смола
retentive material — магнитотвёрдый материал
rigid foam material — жёсткий пеноматериал
rigid insulation material — жёсткий изоляционный материал
rigid-plastic material — 1) жёстко-пластичный материал 2) жёсткая пластмасса
rocket ablative material — абляционный материал для ракет
rocket engine material — материал для ракетных двигателей
rocket liner material — материал для ракетных вкладышей, облицовочный материал для ракет
rocket nozzle material — материал для сопел ракетных двигателей
rocket nozzle throat material — материал для критического сечения сопел ракетных двигателей
rocket structural material — конструкционный материал для ракет
rubber material — 1) каучук, каучуковый материал 2) резина, резиновый материал
rubber-fabric material — резинотканевый материал
rubber foam material — пенорезина
rubber-like material — резиноподобный [каучукоподобный] материал
rubber lining material — резиновый прокладочный материал
rubbery material — 1) материал на основе каучука 2) резиноподобный [каучукоподобный] материал
rust inhibitor material — противокоррозионный [антикоррозионный] материал
sandwich material — слоистый материал с сотовым заполнителем
sandwich foam material — слоистый материал с пенозаполнителем
satellite material — материал для спутников
screening material — защитный [экранирующий] материал
sealing material — уплотнительный [герметизирующий] материал, герметик
sealant material — уплотнительный [герметизирующий] материал, герметик
sectional material — фасонный [профильный, сортовой] материал
self-extinguishing material — самогасящийся материал
self-hardening molding material — самотвердеющий формовочный материал
self-thermostatic material — самотермостатический материал
semiconducting material — полупроводниковый [полупроводящий] материал, полупроводник
semiconductive material — полупроводниковый [полупроводящий] материал, полупроводник
semiconductor material — полупроводниковый [полупроводящий] материал, полупроводник
semi-finished material — полуфабрикат
semirigid foam material — полужёсткий пеноматериал
sensitive explosive material — материал, чувствительный к взрыву
sheath material — 1) армирующий материал 2) защитный материал 3) материал для обшивки
shielding material — экранирующий [защитный] материал
shielding gasket material — материал для защитных [экранирующих] прокладок
shock-absorbing material — ударопоглощающий [амортизирующий] материал
shock-resistant material — ударопрочный материал
silica material — кремнезёмный материал
silica-fiber-reinforced material — материал, армированный кремнезёмным волокном
silicone material — кремнийорганический [силиконовый] материал
silicone-based material — материал на основе кремнийорганических соединений
silicone-resin ablative material — абляционный материал из кремнийорганической смолы
silicone-rubber material — кремнекаучуковый материал, кремнекаучук
single-crystal material — монокристаллический материал
sintered material — 1) спечённый материал, полученный спеканием материал 2) керамический материал
sintered-metal friction material — фрикционный материал из спечённого металла
soft-magnetic material — магнитомягкий материал
solid-foamed material — 1) твёрдый пеноматериал 2) твёрдый пенопласт
solid rocket motor material — материал для ракетных двигателей твёрдого топлива [РДТТ]
solvent-resistant material — материал, стойкий к растворителям
sound-absorbent material — 1) звукопоглощающий материал 2) звукоизоляционный материал
sound-absorbing material — 1) звукопоглощающий материал 2) звукоизоляционный материал
sound-damping material — звукопоглощающий материал
soundproof material — звуконепроницаемый [звукоизолирующий] материал
soundresistant material — звуконепроницаемый [звукоизолирующий] материал
space-age material — материал для космической техники
space cabin material — материал для кабин космических аппаратов
spacecraft material — материал для космических аппаратов
spacecraft hardware material — конструкционный материал для космических аппаратов
spacecraft structure material — конструкционный материал для космических аппаратов
space power material — материал для силовых установок космических аппаратов
space-shielding material — защитный [экранирующий] материал для космических аппаратов
space-technology material — материал для космической техники
space thermal-control material — терморегулируемый материал для космической техники
spongeous material — губчатый материал
spongy material — губчатый материал
spring material — пружинный материал, материал для рессор [амортизаторов]
storable propellant bladder material — материал для эластичных мешков, используемых для подачи хранимых топлив
strain-hardening material — деформационно-упрочняющийся материал
strategical material — стратегический материал
structural material — конструкционный материал
sublimator material — сублимирующий материал
substrate material — подложка
sulfidized iron-graphite material — сульфидированный железографитовый материал
superconducting material — сверхпроводящий материал, сверхпроводник
superconductive material — сверхпроводящий материал, сверхпроводник
superhard material — сверхтвёрдый [сверхпрочный] материал
superhigh-heat resistance material — сверхжаростойкий материал
superhigh-pure material — сверхчистый материал
superlight ablative material — сверхлёгкий абляционный материал
superplasticity material — сверхпластичный материал
superstrength material — сверхпрочный материал
surface-finish material — 1) материал для поверхностной отделки 2) аппретирующий материал
tailored material — материал с заданными свойствами
tailor-made material — материал с заданными свойствами
tankage material — материал для баков [ёмкостей]
tape graphite material — графитовый ленточный материал
temperature-control material — терморегулируемый материал; материал, обеспечивающий регулирование температурного режима
temperature-resistant material — теплостойкий материал
temperature-sensitive material — теплочувствительный материал
textile fibrous material — волокнистый текстильный материал
thermal barrier material — термозащитный [теплозащитный] материал
thermal control material — терморегулируемый материал; материал, обеспечивающий регулирование температурного режима
thermal-insulating material — теплоизоляционный материал
thermally stable material — термостойкий материал
thermal protection material — теплозащитный материал
thermal-radiating material — теплоизлучающий материал
thermal shield material — термозащитный [теплозащитный] материал
thermionic emitter material — термоэлектронный эмиттер
thermochromic material — термохромный материал
thermoforming material — термоформующийся материал
thermoinsulation material — термоизоляционный материал
thermoplastic material — 1) термопластичный материал 2) термопластик
thermosetting material — 1) термореактивный материал 2) термореактивная пластмасса
thermostat material — термостатный материал
thin-film material — тонкоплёночный материал
thoria-based material — материал [керамика] на основе окисла тория
three-dimensional material — 1) материал с одинаковыми свойствами во всех направлениях 2) объёмный [трёхмерный] материал
three-dimensionally reinforced material — объёмно-армированный материал
time-dependent composite material — композиционный материал с зависящими от времени свойствами
tough material — 1) прочный [твёрдый] материал 2) вязкий [тягучий] материал
tracer material — индикаторное вещество, трассер
translucent material — полупрозрачный [просвечивающий] материал
transparent material — прозрачный материал
transpiration-cooled material — материал с испарительным охлаждением
trifunctional material — трёхфункциональный материал
turbine blade material — материал для турбинных лопаток
turbine vane material — материал для турбинных лопаток
two-phase composite material — двухфазный композиционный материал
ultra-abrasion-resistant material — материал с высокой стойкостью к истиранию
ultra-hard material — сверхтвёрдый [сверхпрочный] материал
ultra-high-strength material — сверхвысокопрочный материал
ultra-high-temperature material — материал для сверхвысоких температур, сверхжаропрочный материал
ultra-pure material — материал сверхвысокой чистоты, сверхчистый материал
ultra-purity material — сверхчистый материал, материал сверхвысокой чистоты
ultra-refractory material — сверхтугоплавкий материал
ultra-strength material — сверхпрочный материал
ultraviolet sensitive material — материал, чувствительный к ультрафиолетовому излучению
upgrading material — материал с повышенными характеристиками
UV-curable material — материал, отверждаемый ультрафиолетовым излучением
UV-curing material — материал, отверждаемый ультрафиолетовым излучением
vapor-deposited material — материал, осаждённый в паровой [газовой] фазе
vaporizing material — испаряющийся материал
versatile material — гибкий материал
vibration-absorptive material — вибропоглощающий материал
vibration-damping material — вибропоглощающий материал
vinyl-metal material — металлический материал, покрытый винилопластом
vinyl sandwich material — слоистый винилопласт
viscoelastic material — вязкоупругий материал
viscoelastic fiber-reinforced material — вязкоупругий материал с волокнистым наполнителем
vitreous material — стекловидный материал
vitrified material — стекловидный материал
waterproofing material — водонепроницаемый [гидроизоляционный] материал
wear-resistant material — износостойкий [износоустойчивый] материал
web material — тканевый материал, ткань
whisker material — 1) материал, армированный нитевидными кристаллами 2) нитевидные кристаллы, усы
whisker-reinforced material — материал, армированный нитевидными кристаллами
whisker-strengthened material — материал, упрочнённый нитевидными кристаллами
winding material — намоточный материал
windshield material — материал для лобовых стёкол
wire-wound composite material — композиционный материал, полученный намоткой проволоки
wood material — древесный материал, древесина
workhorse material — силовой [конструкционный] материал
woven material — плетёный [тканый] материал
yielding material — вязкопластичный [растекающийся] материал
zircon-based material — материал на основе циркона
English-Russian dictionary of aviation and space materials > material
-
10 control
1) управление; регулирование || управлять; регулировать2) контроль || контролировать3) управляющее устройство; устройство управления; регулятор4) профессиональное мастерство, квалификация, техническая квалификация5) pl органы управления•"in control" — "в поле допуска" ( о результатах измерения)
to control closed loop — управлять в замкнутой системе; регулировать в замкнутой системе
- 2-handed controlsto control open loop — управлять в разомкнутой системе; регулировать в разомкнутой системе
- 32-bit CPU control
- acceptance control
- access control
- acknowledge control
- active process control
- adaptable control
- adaptive constraint control
- adaptive control for optimization
- adaptive control
- adaptive feed rate control
- adaptive quality control
- adjustable feed control
- adjustable rotary control
- adjustable speed control
- adjusting control
- adjustment control
- AI control
- air logic control
- analog data distribution and control
- analogical control
- analytical control
- application control
- arrows-on-curves control
- autodepth control
- autofeed control
- automated control of a document management system
- automated technical control
- automatic backlash control
- automatic control
- automatic editing control
- automatic gain control
- automatic gripper control
- automatic level control
- automatic process closed loop control
- automatic remote control
- automatic sensitivity control
- automatic sequence control
- automatic speed control
- automatic stability controls
- auxiliaries control
- balanced controls
- band width control
- bang-bang control
- bang-bang-off control
- basic CNC control
- batch control
- bibliographic control
- bin level control
- boost control
- built-in control
- button control
- cam control
- cam throttle control
- camshaft control
- carriage control
- Cartesian path control
- Cartesian space control
- cascade control
- C-axis spindle control
- cell control
- center control
- central control
- central supervisory control
- centralized control
- centralized electronic control
- central-station control
- changeover control
- chip control
- circumferential register control
- close control
- closed cycle control
- closed loop control
- closed loop machine control
- closed loop manual control
- closed loop numerical control
- closed loop position control
- clutch control
- CNC control
- CNC indexer control
- CNC programmable control
- CNC symbolic conversational control
- CNC/CRT control
- CNC/MDI control
- coarse control
- coded current control
- coded current remote control
- color control
- combination control
- command-line control
- compensatory control
- composition control
- compound control
- computed-current control
- computed-torque control
- computer control
- computer numerical control
- computer process control
- computer-aided measurement and control
- computer-integrated manufacturing control
- computerized control
- computerized numerical control
- computerized process control
- constant surface speed control
- constant value control
- contactless control
- contact-sensing control
- contamination control
- continuous control
- continuous path control
- continuous process control
- contour profile control
- contouring control
- conventional hardware control
- conventional numerical control
- conventional tape control
- convergent control
- conversational control
- conversational MDI control
- coordinate positioning control
- coordinate programmable control
- copymill control
- counter control
- crossed controls
- current control
- cycle control
- dash control
- data link control
- data storage control
- deadman's handle controls
- depth control
- derivative control
- dial-in control
- differential control
- differential gaging control
- differential gain control
- differential temperature control
- digital brushless servo control
- digital control
- digital position control
- digital readout controls
- dimensional control
- direct computer control
- direct control
- direct digital control
- direct numerical control
- direction control
- directional control
- dirt control
- discontinuous control
- discrete control
- discrete event control
- discrete logic controls
- dispatching control
- displacement control
- distance control
- distant control
- distributed control
- distributed numerical control
- distributed zone control
- distribution control
- dog control
- drum control
- dual control
- dual-mode control
- duplex control
- dust control
- dynamic control
- eccentric control
- edge position control
- EDP control
- electrical control
- electrofluidic control
- electromagnetic control
- electronic control
- electronic level control
- electronic speed control
- electronic swivel control
- elevating control
- emergency control
- end-point control
- engineering change control
- engineering control
- entity control
- environmental control
- error control
- error plus error-rate control
- error-free control
- external beam control
- factory-floor control
- false control
- feed control
- feed drive controls
- feedback control
- feed-forward control
- field control
- fine control
- finger-tip control
- firm-wired numerical control
- fixed control
- fixed-feature control
- fixture-and-tool control
- flexible-body control
- floating control
- flow control
- fluid flow control
- follow-up control
- foot pedal control
- force adaptive control
- forecasting compensatory control
- fork control
- four quadrant control
- freely programmable CNC control
- frequency control
- FROG control
- full computer control
- full order control
- full spindle control
- gage measurement control
- gain control
- ganged control
- gap control
- gear control
- generative numerical control
- generic path control
- geometric adaptive control
- graphic numerical control
- group control
- grouped control
- guidance control
- hairbreath control
- hand control
- hand feed control
- hand wheel control
- hand-held controls
- handle-type control
- hand-operated controls
- hardened computer control
- hardwared control
- hardwared numerical control
- heating control
- heterarchical control
- hierarchical control
- high-integrity control
- high-level robot control
- high-low control
- high-low level control
- high-technology control
- horizontal directional control
- humidity control
- hybrid control
- hydraulic control
- I/O control
- immediate postprocess control
- inching control
- in-cycle control
- independent control
- indexer control
- indirect control
- individual control
- industrial processing control
- industrial-style controls
- infinite control
- infinite speed control
- in-process control
- in-process size control
- in-process size diameters control
- input/output control
- integral CNC control
- integral control
- integrated control
- intelligent control
- interacting control
- interconnected controls
- interlinking control
- inventory control
- job control
- jogging control
- joint control
- joystick control
- just-in-time control
- language-based control
- laser health hazards control
- latching control
- lead control
- learning control
- lever control
- lever-operated control
- line motion control
- linear control
- linear path control
- linearity control
- load control
- load-frequency control
- local control
- local-area control
- logic control
- lubricating oil level control
- machine control
- machine programming control
- machine shop control
- macro control
- magnetic control
- magnetic tape control
- main computer control
- malfunction control
- management control
- manual control
- manual data input control
- manual stop control
- manually actuatable controls
- manufacturing change control
- manufacturing control
- master control
- material flow control
- MDI control
- measured response control
- mechanical control
- memory NC control
- memory-type control
- metering control
- metrological control of production field
- microbased control
- microcomputer CNC control
- microcomputer numerical control
- microcomputer-based sequence control
- microprocessor control
- microprocessor numerical control
- microprogrammed control
- microprogramming control
- milling control
- model reference adaptive control
- model-based control
- moisture control
- motion control
- motor control
- motor speed control
- mouse-driven control
- movable control
- multicircuit control
- multidiameter control
- multilevel control
- multimachine tool control
- multiple control
- multiple-processor control
- multiposition control
- multistep control
- multivariable control
- narrow-band proportional control
- navigation control
- NC control
- neural network adaptive control
- noise control
- noncorresponding control
- noninteracting control
- noninterfacing control
- nonreversable control
- nonsimultaneous control
- numerical contouring control
- numerical control
- numerical program control
- odd control
- off-line control
- oligarchical control
- on-board control
- one-axis point-to-point control
- one-dimensional point-to-point control
- on-line control
- on-off control
- open loop control
- open loop manual control
- open loop numerical control
- open-architecture control
- operating control
- operational control
- operator control
- optical pattern tracing control
- optimal control
- optimalizing control
- optimizing control
- oral numerical control
- organoleptic control
- overall control
- overheat control
- override control
- p. b. control
- palm control
- parameter adaptive control
- parameter adjustment control
- partial d.o.f. control
- path control
- pattern control
- pattern tracing control
- PC control
- PC-based control
- peg board control
- pendant control
- pendant-actuated control
- pendant-mounted control
- performance control
- photoelectric control
- physical alignment control
- PIC control
- PID control
- plugboard control
- plug-in control
- pneumatic control
- point-to-point control
- pose-to-pose control
- position/contouring numerical control
- position/force control
- positional control
- positioning control
- positive control
- postprocess quality control
- power adaptive control
- power control
- power feed control
- power-assisted control
- powered control
- power-operated control
- precision control
- predictor control
- preselective control
- preset control
- presetting control
- pressbutton control
- pressure control
- preview control
- process control
- process quality control
- production activity control
- production control
- production result control
- programmable adaptive control
- programmable cam control
- programmable control
- programmable logic adaptive control
- programmable logic control
- programmable machine control
- programmable microprocessor control
- programmable numerical control
- programmable sequence control
- proportional plus derivative control
- proportional plus floating control
- proportional plus integral control
- prototype control
- pulse control
- pulse duration control
- punched-tape control
- purpose-built control
- pushbutton control
- quality control
- radio remote control
- radium control
- rail-elevating control
- ram stroke control
- ram-positioning control
- rapid-traverse controls for the heads
- rate control
- ratio control
- reactive control
- real-time control
- reduced-order control
- register control
- registration control
- relay control
- relay-contactor control
- remote control
- remote program control
- remote switching control
- remote valve control
- remote-dispatch control
- resistance control
- resolved motion rate control
- retarded control
- reversal control
- revolution control
- rigid-body control
- robot control
- robot perimeter control
- robot teach control
- rod control
- safety control
- sampled-data control
- sampling control
- schedule control
- SCR's control
- second derivative control
- selective control
- selectivity control
- self-acting control
- self-adaptive control
- self-adjusting control
- self-aligning control
- self-operated control
- self-optimizing control
- self-programming microprocessor control
- semi-automatic control
- sensitivity control
- sensor-based control
- sequence control
- sequence-type control
- sequential control
- series-parallel control
- servo control
- servo speed control
- servomotor control
- servo-operated control
- set value control
- shaft speed control
- shape control
- shift control
- shop control
- shower and high-pressure oil temperature control
- shut off control
- sight control
- sign control
- single variable control
- single-flank control
- single-lever control
- size control
- slide control
- smooth control
- software-based NC control
- softwared numerical control
- solid-state logic control
- space-follow-up control
- speed control
- stabilizing control
- stable control
- standalone control
- start controls
- static control
- station control
- statistical quality control
- steering control
- step-by-step control
- stepless control
- stepped control
- stick control
- stock control
- stop controls
- stop-point control
- storage assignment control
- straight cut control
- straight line control
- stroke control
- stroke length control
- supervisor production control
- supervisory control
- swarf control
- switch control
- symbolic control
- synchronous data link control
- table control
- tap-depth controls
- tape control
- tape loop control
- teach controls
- temperature control
- temperature-humidity air control
- template control
- tension control
- test control
- thermal control
- thermostatic control
- three-axis contouring control
- three-axis point-to-point control
- three-axis tape control
- three-mode control
- three-position control
- throttle control
- thumbwheel control
- time control
- time cycle control
- time optimal control
- time variable control
- time-critical control
- time-proportional control
- timing control
- token-passing access control
- tool life control
- tool run-time control
- torque control
- total quality control
- touch-panel NC control
- touch-screen control
- tracer control
- tracer numerical control
- trajectory control
- triac control
- trip-dog control
- TRS/rate control
- tuning control
- turnstile control
- two-axis contouring control
- two-axis point-to-point control
- two-dimension control
- two-hand controls
- two-position control
- two-position differential gap control
- two-step control
- undamped control
- user-adjustable override controls
- user-programmable NC control
- variable flow control
- variable speed control
- variety control
- varying voltage control
- velocity-based look-ahead control
- vise control
- vision responsive control
- visual control
- vocabulary control
- vocal CNC control
- vocal numerical control
- voltage control
- warehouse control
- washdown control
- water-supply control
- welding control
- wheel control
- wide-band control
- zero set control
- zoned track controlEnglish-Russian dictionary of mechanical engineering and automation > control
-
11 system
система; установка; устройство; ркт. комплекс"see to land" system — система посадки с визуальным приземлением
A.S.I. system — система указателя воздушной скорости
ablating heat-protection system — аблирующая [абляционная] система тепловой защиты
ablating heat-shield system — аблирующая [абляционная] система тепловой защиты
active attitude control system — ксм. активная система ориентации
aft-end rocket ignition system — система воспламенения заряда с задней части РДТТ [со стороны сопла]
aircraft response sensing system — система измерений параметров, характеризующих поведение ЛА
air-inlet bypass door system — дв. система перепуска воздуха на входе
antiaircraft guided missile system — ракетная система ПВО; зенитный ракетный комплекс
antiaircraft guided weapons system — ракетная система ПВО; зенитный ракетный комплекс
attenuated intercept satellite rendez-vous system — система безударного соединения спутников на орбите
attitude and azimuth reference system — система измерения или индикации углов тангажа, крена и азимута
automatic departure prevention system — система автоматического предотвращения сваливания или вращения после сваливания
automatic drift kick-off system — система автоматического устранения угла упреждения сноса (перед приземлением)
automatic hovering control system — верт. система автостабилизации на висении
automatic indicating feathering system — автоматическая система флюгирования с индикацией отказа (двигателя)
automatic mixture-ratio control system — система автоматического регулирования состава (топливной) смеси
automatic pitch control system — автомат тангажа; автоматическая система продольного управления [управления по каналу тангажа]
B.L.C. high-lift system — система управления пограничным слоем для повышения подъёмной силы (крыла)
backpack life support system — ксм. ранцевая система жизнеобеспечения
beam-rider (control, guidance) system — ркт. система наведения по лучу
biowaste electric propulsion system — электрический двигатель, работающий на биологических отходах
buddy (refueling, tank) system — (подвесная) автономная система дозаправки топливом в полете
closed(-circuit, -cycle) system — замкнутая система, система с замкнутым контуром или циклом; система с обратной связью
Cooper-Harper pilot rating system — система баллов оценки ЛА лётчиком по Куперу — Харперу
deployable aerodynamic deceleration system — развёртываемая (в атмосфере) аэродинамическая тормозная система
depressurize the fuel system — стравливать избыточное давление (воздуха, газа) в топливной системе
driver gas heating system — аэрд. система подогрева толкающего газа
dry sump (lubrication) system — дв. система смазки с сухим картером [отстойником]
electrically powered hydraulic system — электронасосная гидросистема (в отличие от гидросистемы с насосами, приводимыми от двигателя)
exponential control flare system — система выравнивания с экспоненциальным управлением (перед приземлением)
flywheel attitude control system — ксм. инерционная система ориентации
gas-ejection attitude control system — ксм. газоструйная система ориентация
gas-jet attitude control system — ксм. газоструйная система ориентация
ground proximity extraction system — система извлечения грузов из самолёта, пролетающего на уровне земли
hot-air balloon water recovery system — система спасения путем посадки на воду с помощью баллонов, наполняемых горячими газами
hypersonic air data entry system — система для оценки аэродинамики тела, входящего в атмосферу планеты с гиперзвуковой скоростью
igh-temperature fatigue test system — установка для испытаний на выносливость при высоких температурах
interceptor (directing, vectoring) system — система наведения перехватчиков
ion electrical propulsion system — ксм. ионная двигательная установка
isotope-heated catalytic oxidizer system — система каталитического окислителя с нагревом от изотопного источника
jet vane actuation system — ркт. система привода газового руля
laminar flow pumping system — система насосов [компрессоров] для ламинаризации обтекания
launching range safety system — система безопасности ракетного полигона; система обеспечения безопасности космодрома
leading edge slat system — система выдвижных [отклоняемых] предкрылков
low-altitude parachute extraction system — система беспосадочного десантирования грузов с малых высот с использованием вытяжных парашютов
magnetic attitude control system — ксм. магнитная система ориентации
magnetically slaved compass system — курсовая система с магнитной коррекцией, гироиндукционная курсовая система
mass-expulsion attitude control system — система ориентации за счёт истечения массы (газа, жидкости)
mass-motion attitude control system — ксм. система ориентации за счёт перемещения масс
mass-shifting attitude control system — ксм. система ориентации за счёт перемещения масс
monopropellant rocket propulsion system — двигательная установка с ЖРД на унитарном [однокомпонентном] топливе
nucleonic propellant gauging and utilization system — система измерения и регулирования подачи топлива с использованием радиоактивных изотопов
open(-circuit, -cycle) system — открытая [незамкнутая] система, система с незамкнутым контуром или циклом; система без обратной связи
plenum chamber burning system — дв. система сжигания топлива во втором контуре
positioning system for the landing gear — система регулирования высоты шасси (при стоянке самолёта на земле)
radar altimeter low-altitude control system — система управления на малых высотах с использованием радиовысотомера
radar system for unmanned cooperative rendezvous in space — радиолокационная система для обеспечения встречи (на орбите) беспилотных кооперируемых КЛА
range and orbit determination system — система определения дальностей [расстояний] и орбит
real-time telemetry processing system — система обработки радиотелеметрических данных в реальном масштабе времени
recuperative cycle regenerable carbon dioxide removal system — система удаления углекислого газа с регенерацией поглотителя, работающая по рекуперативному циклу
rendezvous beacon and command system — маячно-командная система обеспечения встречи («а орбите)
satellite automatic terminal rendezvous and coupling system — автоматическая система сближения и стыковки спутников на орбите
Schuler tuned inertial navigation system — система инерциальной навигации на принципе маятника Шулера
sodium superoxide carbon dioxide removal system — система удаления углекислого газа с помощью надперекиси натрия
space shuttle separation system — система разделения ступеней челночного воздушно-космического аппарата
stellar-monitored astroinertial navigation guidance system — астроинерциальная система навигации и управления с астрокоррекцией
terminal control landing system — система управления посадкой по траектории, связанной с выбранной точкой приземления
terminal descent control system — ксм. система управления на конечном этапе спуска [снижения]
terminal guidance system for a satellite rendezvous — система управления на конечном участке траектории встречи спутников
test cell flow system — ркт. система питания (двигателя) топливом в огневом боксе
vectored thrust (propulsion) system — силовая установка с подъёмно-маршевым двигателем [двигателями]
water to oxygen system — ксм. система добывания кислорода из воды
wind tunnel data acquisition system — система регистрации (и обработки) данных при испытаниях в аэродинамической трубе
— D system -
12 alloy
1) сплав || сплавлять2) легирующий элемент || легировать•- abrasion-resisting alloy
- acid-resistant alloy
- addition alloy
- age-hardening alloy
- aging alloy
- air-hardening alloy
- air-melted alloy
- alkali metal alloy
- alkaline earth alloy
- alkaline earth metal-aluminum alloy
- alkali-resistant alloy
- alkali-resisting alloy
- all-alpha alloy
- all-beta alloy
- alpha alloy
- alpha iron alloy
- alpha+beta alloy
- alpha-beta alloy
- alpha-phase alloy
- alpha-titanium alloy
- aluminum alloy of iron
- aluminum alloy
- aluminum casting alloy
- aluminum piston alloy
- aluminum-base alloy
- aluminum-bearing alloy
- aluminum-copper alloy
- aluminum-copper-magnesium alloy
- aluminum-copper-magnesium-nickel alloy
- aluminum-copper-silicon alloy
- aluminum-copper-silicon-magnesium alloy
- aluminum-magnesium alloy
- aluminum-magnesium-silicon alloy
- aluminum-manganese alloy
- aluminum-manganese-magnesium alloy
- aluminum-nickel-iron alloy
- aluminum-silicon alloy
- aluminum-zinc-silicon alloy
- anticorrosion alloy
- antifriction alloy
- as-cast alloy
- austenitic alloy
- barium-aluminum alloy
- bearing alloy
- beryllium alloy of iron
- beryllium-copper alloy
- beryllium-copper-aluminum alloy
- beta alloy
- beta-phase alloy
- beta-titanium alloy
- binary alloy
- bismuth alloy
- body-centered cubic alloy
- boron-bearing alloy
- brass brazing alloy
- brazing alloy
- cadmium alloy
- cadmium-nickel alloy
- cadmium-silver alloy
- carbide-strengthened alloy
- carbon-bearing alloy
- carbon-free alloy
- cast alloy
- castable alloy
- casting alloy
- chrome alloy
- chrome-base alloy
- chrome-bearing alloy
- chrome-nickel alloy
- chromium-nickel-tungsten alloy
- chromium-rich alloy
- chromium-tantalum alloy
- chromium-titanium alloy
- chromium-tungsten-zirconium alloy
- chromium-yttrium alloy
- close-packed alloy
- cobalt alloy
- cobalt-base alloy
- cobalt-bearing alloy
- cobalt-chromium alloy
- cobalt-chromium-nickel alloy
- cobalt-chromium-tungsten-molybdenum alloy
- coinage alloy
- columbium alloy
- columbium-base alloy
- columbium-molybdenum-titanium alloy
- column's alloys
- commercial alloy
- complex alloy
- constant-modulus alloy
- constructional alloy
- controlled-expansion alloy
- copper alloy
- copper-base alloy
- copper-bearing alloy
- copper-free alloy
- copper-gold alloy
- copper-lead alloy
- copper-silver alloy
- copper-tin alloy
- copper-zinc alloy
- corrosion-resistant alloy
- corrosion-resisting alloy
- creep-resistant alloy
- cupronickel alloy
- die-casting alloy
- difficult-to-extrude alloy
- dilute alloy
- disordered alloy
- dispersion-hardened alloy
- dispersion-strengthened alloy
- ductile alloy
- duplex alloy
- electrically conductive alloy
- electrically superconducting alloy
- electrical-resistance alloy
- electrical-resistant alloy
- embrittlement-resistant alloy
- eutectic alloy
- eutectoid alloy
- extra-hard alloy
- extrahigh tensile alloy
- face-centered cubic alloy
- ferrite alloy
- ferromagnetic alloy
- ferrous alloy
- fine-grained alloy
- forging alloy
- foundry alloy
- four-component alloy
- four-part alloy
- free-cutting alloy
- free-machining alloy
- fusible alloy
- G.-P. zone alloy
- gamma-iron alloy
- gamma-phase alloy
- gold-base alloy
- graphitized alloy
- Guthrie's alloy
- hard alloy
- hard magnetic alloy
- hard superconducting alloy
- hard-facing alloy
- heat-resistant alloy
- heat-resisting alloy
- heat-sensitive alloy
- heat-treatable alloy
- heat-treated alloy
- heavy alloy
- heterogeneous alloy
- Heusler alloy
- hexagonal alloy
- high alloy
- high-carbon alloy
- high-chrome alloy
- high-cobalt alloy
- high-coercivity alloy
- high-damping alloy
- high-density alloy
- high-ductile alloy
- high-expansion alloy
- high-initial-permeability alloy
- high-melting alloy
- high-melting point alloy
- high-melting-temperature alloy
- high-nickel alloy
- high-permeability alloy
- high-resistance alloy
- high-strength alloy
- high-temperature alloy
- high-tensile alloy
- high-yield alloy
- homogeneous alloy
- homogenized alloy
- hot-strength alloy
- hypereutectic alloy
- hypereutectoid alloy
- hypoeutectic alloy
- hypoeutectoid alloy
- ignition alloy
- industrial alloy
- intermediate-strength alloy
- intermetallic alloy
- internally oxidized alloy
- iron alloy
- iron-aluminum-nickel alloy
- iron-bearing alloy
- iron-carbon alloy
- iron-chrome alloy
- iron-chromium-aluminum alloy
- iron-chromium-nickel alloy
- iron-cobalt alloy
- iron-cobalt-molybdenum alloy
- iron-cobalt-nickel alloy
- iron-cobalt-tungsten alloy
- iron-manganese alloy
- iron-nickel alloy
- iron-nickel-aluminum alloy
- iron-nickel-chromium alloy
- iron-nickel-cobalt alloy
- jet alloy
- lead alloy
- lead-antimony alloy
- lead-antimony-tin alloy
- lead-base alloy
- lead-bearing alloy
- lead-bismuth alloy
- lead-calcium alloy
- lead-tin alloy
- lean alloy
- Lichtenberg's alloy
- light alloy
- low alloy
- low-carbon alloy
- low-chrome alloy
- low-density alloy
- low-ductile alloy
- low-expansion alloy
- low-melting alloy
- low-nickel alloy
- low-permeability alloy
- low-quality alloy
- low-resistance alloy
- low-strength alloy
- low-temperature alloy
- low-tensile alloy
- low-yield alloy
- magnesium alloy
- magnesium-aluminum alloy
- magnesium-aluminum-zinc alloy
- magnesium-bearing alloy
- magnesium-manganese alloy
- magnesium-manganese-thorium alloy
- magnesium-thorium-zirconium alloy
- magnesium-zinc-zirconium alloy
- magnetic alloy
- magnetically hard alloy
- magnetically soft alloy
- master alloy
- medium alloy
- medium-carbon alloy
- medium-chrome alloy
- medium-nickel alloy
- medium-strength alloy
- memory alloy
- Mishima alloy
- molybdenum-titanium alloy
- multilayer brazing alloy
- multiphase alloy
- natural aging alloy
- nickel alloy
- nickel aluminide alloy
- nickel-base alloy
- nickel-based alloy
- nickel-cadmium alloy
- nickel-chrome-molybdenum alloy
- nickel-chromium alloy
- nickel-cobalt alloy
- nickel-copper alloy
- nickel-iron alloy
- nickel-molybdenum alloy
- nickel-molybdenum-iron alloy
- nickel-rich alloy
- nickel-silicon alloy
- noble metal alloy
- no-coolant alloy
- nonaging alloy
- noncorrosive alloy
- nonferrous metal alloy
- non-heat-treatable alloy
- nonmagnetic alloy
- nonordered alloy
- nonoxidizable alloy
- nonscaling alloy
- nonsparking alloy
- one-phase alloy
- ordered alloy
- oxidation-resistant alloy
- oxidation-resisting alloy
- palladium-silver alloy
- peritectic alloy
- peritectoid alloy
- permanent-magnet alloy
- phosphorous-copper alloy
- piston alloy
- plating alloy
- platinum alloy
- platinum-cobalt alloy
- platinum-metal alloy
- platinum-rhodium alloy
- plural-phase alloy
- polyphase alloy
- powder metallurgical alloy
- powder-brazing alloy
- precipitation hardening alloy
- preferred-orientation alloy
- preformed brazing alloy
- preliminary alloy
- process alloy
- pyrophoric alloy
- quasi-binary alloy
- quasi-eutectic alloy
- quasi-eutectoid alloy
- quaternary alloy
- quinary alloy
- random alloy
- random-orientation alloy
- rare-earth alloy
- rare-earth metal master alloy
- reduction alloy
- refractory alloy
- resistance alloy
- rich alloy
- Rose's alloy
- ruthenium-palladium alloy
- sand-cast alloy
- scale-resisting alloy
- self-fluxing brazing alloy
- semicommercial alloy
- semiconducting alloy
- shape memory alloy
- sheet alloy
- silicon alloy
- silicon-aluminum alloy
- silver brazing alloy
- single-phase alloy
- sintered alloy
- sintered hard alloy
- soft-magnetic alloy
- solder alloy
- solid solution alloy
- solution-treated alloy
- sparking alloy
- spelter-brazing alloy
- spring alloy
- stable alloy
- steam corrosion-resistant alloy
- steel alloy
- strain-hardened alloy
- structural alloy
- substitute alloy
- substitutional alloy
- superconducting alloy
- superconductive alloy
- superconductor alloy
- supercooled alloy
- superhard alloy
- superplastic alloy
- supersaturated alloy
- supersaturated substitutional alloy
- tailored alloy
- tantalum alloy of iron
- tantalum alloy
- tantalum-base alloy
- tantalum-tungsten alloy
- temperature compensation alloy
- ternary alloy
- thallium-lead alloy
- thermomagnetic alloy
- three-component alloy
- three-part alloy
- three-phase alloy
- tin-base alloy
- tin-bearing alloy
- titanium alloy
- titanium-aluminum-manganese alloy
- titanium-aluminum-molybdenum alloy
- titanium-aluminum-tin alloy
- titanium-aluminum-vanadium alloy
- titanium-base alloy
- tough alloy
- transition alloy
- tungsten alloy
- two-component alloy
- two-phase alloy
- type-metal alloy
- unsaturated alloy
- untarnishable alloy
- vacuum alloy
- vacuum annealed alloy
- vacuum-arc-refining alloy
- vacuum-induction-melting alloy
- vacuum-remelted alloy
- virgin alloy
- wear-resistant alloy
- wear-resisting alloy
- welding alloy
- Wood's alloy
- work-hardening alloy
- wrought alloy
- zinc alloy
- zinc-aluminum alloy
- zinc-base alloy
- zinc-bearing alloy
- zinc-copper alloy
- zirconium alloy of ironEnglish-Russian dictionary of mechanical engineering and automation > alloy
-
13 alloy
сплав; припой; легирующий элемент; примесь; сплавлять; легироватьberyllium filamented reinforced alloy — сплав, армированный нитями бериллия
boron-fiber reinforced aluminum alloy — алюминиевый сплав, армированный борволокном
differentially solidified nickel-based alloy alloy — дифференциально закристаллизованный сплав на никелевой основе
high-melting point brazing alloy — тугоплавкий [жаропрочный] припой
stainless-steel-wire reinforced aluminum alloy — алюминиевый сплав, армированный проволокой из нержавеющей стали
steel-fiber reinforced aluminum alloy — сплав алюминия, армированный стальной нитью
tungsten reinforced oxidation resistant columbium alloy — стойкий к окислению ниобиевый сплав, армированный вольфрамом
— - chromium alloy -
14 continuous current-carrying capacity
длительная пропускная способность по току
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Англо-русский словарь нормативно-технической терминологии > continuous current-carrying capacity
-
15 ampacity (US)
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Англо-русский словарь нормативно-технической терминологии > ampacity (US)
-
16 continuous current
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
непрерывный ток
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]Тематики
- электротехника, основные понятия
EN
Англо-русский словарь нормативно-технической терминологии > continuous current
-
17 current-carrying capacity
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
предельно допустимый ток
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
прочность печатной платы к токовой нагрузке
Свойство печатной платы сохранять электрические и механические характеристики после воздействия максимально допустимой токовой нагрузки на печатный проводник или металлизированное отверстие печатной платы.
[ ГОСТ Р 53386-2009]Тематики
EN
Англо-русский словарь нормативно-технической терминологии > current-carrying capacity
-
18 modular data center
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Англо-русский словарь нормативно-технической терминологии > modular data center
-
19 control
управление; регулирование; контроль; орган [рычаг] управления; руль; pl. система управления или регулирования; управлять; регулироватьback seat flight control — управление ЛА из задней кабины [с места заднего лётчика]; pl. дублирующие органы управления в задней кабине
be out of control — терять управление [управляемость]; выходить из-под управления [контроля]
continuously variable thrust control — плавное [бесступенчатое] регулирование тяги
control c.g. control — регулирование центровки (ЛА)
control of missile attitude — стабилизация ракеты; управление пространственным положением ракеты
control of the air — превосходство или господство в воздухе; превосходство в области авиации [в авиационной технике]; контроль воздушного пространства
control of the yoke — разг. управление штурвалом
control of thrust orientation — управление ориентированием [направлением вектора] тяги
flight deck lighting controls — органы управления [ручки регулировки] освещением кабины экипажа
fling the controls over — перебрасывать органы управления (в противоположную сторону),
flow control with altitude compensation — регулятор расхода [подачи] с высотным корректором
fuel dump valve control — кран [рычаг крана] аварийного слива топлива
gas jet attitude control — управление пространственным положением с помощью системы газоструйных рулей
go out of control — терять управление, выходить из-под управления [контроля]
ground rollout rudder steering control — управление пробегом [на пробеге] с помощью руля направления
interconnected fuel and propeller controls — объединённая система регулирования подачи топлива и шага винта
jet tab thrust vector control — управление вектором тяги с помощью газовых рулей; дефлекторное управление вектором тяги
jet(-deflection, -direction) control — реактивное [струйное] управление; управление изменением направления тяги; струйный руль
manual mixture shut-off control — рычаг отсечки подачи горючей смеси, рычаг останова [выключения] двигателя
maximum boundary layer control — управление пограничным слоем при наибольшей эффективности [производительности, интенсивности работы] системы
recover the control — восстанавливать управление [управляемость]
respond to the controls — реагировать [отвечать] на отклонение рулей [органов управления]
space shuttle orbiter control — управление орбитальной ступенью челночного воздушно-космического аппарата
throttle and collective pitch control — верт. рычаг «шаг — газ»
-
20 gage
1) средство (для) измерений; (контрольно-)измерительный прибор; измеритель; (контрольно-)измерительный инструмент; измерительное устройство || измерять2) калибр; мера; размер; сортамент; толщина ( листового металла); диаметр ( проволоки или винта)3) поверять; калибровать; градуировать4) шаблон; лекало5) эталон6) датчик, (первичный) измерительный преобразователь7) манометр; вакуумметр, вакуумный манометр8) гидр. уровнемер; водомер10) матем. калибр ( топологического пространства)11) номер сита12) маяк, правило ( при устройстве асфальтобетонного или бетонного покрытия)13) рейсмус || размечать с помощью рейсмуса16) колея, ширина колеи18) гейч ( вязальной машины)19) класс ( трикотажной машины)•to encase strain gage in cement — изготавливать тензодатчик в плёнке клея;to keep material on gage — поддерживать параметры материала (напр. толщину) в заданных пределах;to mount strain gage — устанавливать тензодатчик;to reverse a gage — менять меру (напр. длины) концами;gage with metric scale — индикатор с метрической шкалой-
absolute gage
-
absolute vacuum gage
-
acceptance gage
-
accumulative precipitation gage
-
acoustical strain gage
-
acoustic strain gage
-
active strain gage
-
adjustable gage
-
adjustable rail gage
-
adjuster gage
-
adzing gage
-
AE gage
-
Agir water gage
-
air filter vacuum gage
-
air gage
-
air pressure gage
-
air restriction gage
-
air-operated gage
-
alarm pressure gage
-
alcohol gage
-
American wire gage
-
angular gage
-
auxiliary staff gage
-
back gage
-
ball gage
-
ball plug gage
-
battery gage
-
Bayard-Alpert gage
-
bayonet gage
-
bellows gage
-
belt strand tension gage
-
bench gage
-
beta-absorption gage
-
beta gage
-
Birmingham wire gage
-
block gage
-
bonded strain gage
-
bottom-hole pressure gage
-
Bourdon pressure gage
-
box gage
-
brine gage
-
broad based depth gage
-
broad gage
-
bubble gage
-
buoyant-element level gage
-
butt gage
-
caliper gage
-
cap gage
-
capacitance strain gage
-
capacitance gage
-
center gage
-
charge gage
-
check gage
-
circumferential strain gage
-
clapboard gage
-
clearance gage
-
cold-cathode ionization gage
-
Collins flow gage
-
comb gage
-
combination gage
-
combined pressure gage
-
compression gage
-
concentricity gage
-
consistency gage
-
contact gage
-
contact pressure gage
-
contour gage
-
control gage
-
convergence gage
-
counter gage
-
crankshaft gage
-
curve gage
-
cutting gage
-
damped pressure gage
-
deadweight gage
-
deep-sea tsunami gage
-
density gage
-
depth gage
-
dew gage
-
dial bore gage
-
dial gage
-
diametral gage
-
diaphragm pressure gage
-
differential pressure gage
-
differential vacuum gage
-
digital pressure gage
-
digital weighing gage
-
dimension gage
-
direct pressure gage
-
direct-measuring gage
-
direct-reading gage
-
discharge gage
-
downhole casing wall thickness gage
-
draft gage
-
drainage gage
-
draught gage
-
drift diameter pipe gage
-
drilling bit gage
-
dual boost gage
-
dummy strain gage
-
edge-reading gage
-
elastic-element pressure gage
-
electrical resistance strain gage
-
electrical strain gage
-
electrical temperature gage
-
electrically heated snow gage
-
electrical-type strain gage
-
electromagnetic strain gage
-
end gage
-
engine coolant level gage
-
evapotranspiration gage
-
extended track position gage
-
external gage
-
external strain gage
-
fast-response gage
-
fast gage
-
feeler gage
-
female gage
-
fillet gage
-
film gage
-
fixed river gage
-
flat-ended gage
-
flatness gage
-
flexible gage
-
float gage
-
flood gage
-
flow gage
-
flowmeter pressure gage
-
fluid content gage
-
foil strain gage
-
force gage
-
force-feedback gage
-
frame gage
-
free-piston gage
-
fuel level gage
-
fuel pressure gage
-
fuel quantity gage
-
gamma-absorption gage
-
gap gage
-
gas density gage
-
gas gage
-
gasoline gage
-
general-purpose pressure gage
-
glass gage
-
go gage
-
go-no-go gage
-
grinding gage
-
grouser height depth gage
-
hardness gage
-
high-water gage
-
hook gage
-
horseshoe gage
-
hose skiving gage
-
hot-cathode ionization gage
-
hot-cathode magnetron gage
-
inclined staff gage
-
indentation depth gage
-
indicating gage
-
inductance strain gage
-
industrial gage
-
inprocess gage
-
inside gage
-
inspection gage
-
integral pressure gage
-
internal gage
-
ionization gage
-
ion gage
-
ionization pressure gage
-
irradiated fuel assay gage
-
jaw gage
-
Johansson gage
-
joint clearance gage
-
keyway gage
-
Knudsen gage
-
laser gage
-
laser rain gage
-
lead gage
-
length gage
-
level difference gage
-
level gage
-
lever gage
-
lever-type piston gage
-
limit gage
-
limit plug gage
-
line gage
-
line space gage
-
liquid level gage
-
loading gage
-
low-water gage
-
magnetron gage
-
male gage
-
manometer gage
-
marking gage
-
master gage
-
McLeod gage
-
mechanical pressure gage
-
mechanical strain gage
-
mechanical temperature gage
-
mercurial gage
-
metal-film strain gage
-
metric gage
-
micrometer gage
-
micropressure gage
-
milk gage
-
modulator ionization gage
-
moire strain gage
-
molecular gage
-
mortise gage
-
multichecking indicator gage
-
must gage
-
narrow gage
-
needle gage
-
no-go gage
-
noncontact gage
-
normal gage
-
nude gage
-
nude-ion gage
-
oil circulation gage
-
oil gage
-
oil pressure gage
-
oil temperature gage
-
oil-depth gage
-
optical flat gage
-
optical rain gage
-
optical strain gage
-
packing gage
-
paper gage
-
paper sheet gage
-
paper-backed strain gage
-
parallel slip gage
-
partial pressure gage
-
partial-pressure vacuum gage
-
Penning pressure gage
-
perforation gage
-
petrol gage
-
Philips gage
-
photoelastic strain gage
-
piezoelectric strain gage
-
piezoresistive strain gage
-
pin gage
-
pipe gage
-
Pirani gage
-
piston gage
-
pit rain gage
-
Pitot tube gage
-
Pitot gage
-
plug gage
-
pneumatic gage
-
pneumatic strain gage
-
point gage
-
pointer gage
-
position gage
-
postprocess gage
-
postyield strain gage
-
precipitation gage
-
precision gage
-
pressure gage
-
pressure tide gage
-
pressure-recording gage
-
pressure-vacuum compound recording gage
-
pressure-vacuum gage
-
primary gage
-
production gage
-
profile gage
-
quartz gage
-
radioactive gage
-
radioactive ionization gage
-
radioisotope snow gage
-
radiometer pressure gage
-
radiometer vacuum gage
-
radius gage
-
rail gage
-
rain gage
-
recording rain gage
-
Redhead gage
-
reed gage
-
reference gage
-
reference water gage
-
regular pressure gage
-
remote rain gage
-
resistance strain gage
-
resistivity gage
-
resonance gage
-
retracted track position gage
-
reuse gage
-
ring gage
-
ring seal gage
-
river gage
-
rod gage
-
rosette-type strain gage
-
roundness gage
-
rubber gage
-
sagitta gage
-
sampling gage
-
saw gage
-
screw pitch gage
-
sea gage
-
section gage
-
sectional staff gage
-
seepage gage
-
self-balancing strain gage
-
self-temperature-compensating gage
-
semiconductor strain gage
-
setting gage
-
setup gage
-
sheet metal gage
-
sheet gage
-
shifting gage
-
siding gage
-
sight gage
-
sight level gage
-
silphon gage
-
single-end gage
-
single-head gage
-
size gage
-
slanting hole rain gage
-
slant-tube gage
-
slide gage
-
slip gage
-
sloping gage
-
slur gage
-
smoke gage
-
snap gage
-
snow gage
-
snow-depth gage
-
snow-drift gage
-
soil rain gage
-
sonic gage
-
spherical-ended gage
-
spherical-piston gage
-
spindle-mounted strain gage
-
spindle strain gage
-
staff gage
-
stage gage
-
standard gage
-
standard test gage
-
standard wire gage
-
stepped plug gage
-
strain gage
-
stream gage
-
stress gage
-
strip gage
-
subsurface water gage
-
suction gage
-
suppressor ionization gage
-
surface finish gage
-
surface gage
-
Swedish gage
-
tank-level gage
-
tank gage
-
taper gage
-
temperature gage
-
template gage
-
test gage
-
thermal conductivity gage
-
thermal gage
-
thermistor gage
-
thermistor vacuum gage
-
thermocouple vacuum gage
-
thickness dial gage
-
thickness gage
-
thread gage
-
tide gage
-
tilt and runout gage
-
tipping-bucket rain gage
-
tire depth gage
-
toe-in gage
-
tong torque gage
-
tool-setting gage
-
totalizer precipitation gage
-
totalizer rain gage
-
track gage
-
track pitch gage
-
track sag gage
-
transducer gage
-
tread depth gage
-
tubing gage
-
type-high gage
-
unbonded strain gage
-
unpacked-piston gage
-
U-tube gage
-
vacuum gage
-
vacuum ionization gage
-
vacuum pressure gage
-
vacuum-backed piston gage
-
valve lash gage
-
velocity gage
-
vernier depth gage
-
vernier height gage
-
vernier-caliper gage
-
viscosity gage
-
visual-indicating gage
-
volt gage
-
water level gage
-
wave gage
-
wear-and-tear gage
-
weather gage
-
weighing-type rain and snow gage
-
weir gage
-
weldable strain gage
-
wide gage
-
wind gage
-
wine-level gage
-
wire feeler gage
-
wire gage
-
wire strain gage
-
wire-weight gage
-
working gage
-
X-ray gage
-
X-ray thickness gage
См. также в других словарях:
Temperature — This article is about the thermodynamic property. For other uses, see Temperature (disambiguation). A map of global long term monthly average surface air temperatures i … Wikipedia
temperature–humidity index — ▪ meteorological measurement combination of temperature and humidity that is a measure of the degree of discomfort experienced by an individual in warm weather; it was originally called the discomfort index. The index is essentially an… … Universalium
Temperature-dependent sex determination — (TSD), also called environmental sex determination [http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature06519.html The adaptive significance of temperature dependent sex determination in a reptile] from Nature ] , is where the… … Wikipedia
Temperature gradient gel electrophoresis — (TGGE) and Denaturing Gradient Gel Electrophoresis (DGGE) are forms of electrophoresis which use either a temperature or chemical gradient to denature the sample as it moves across an acrylamide gel. TGGE and DGGE can be applied to nucleic acids… … Wikipedia
Temperature record of the past 1000 years — The temperature record of the past 1,000 years describes the reconstruction of temperature for the last 1000 years on the Northern Hemisphere. A reconstruction is needed because a reliable surface temperature record exists only since about 1850.… … Wikipedia
Temperature record — For extreme records instead of records as a set of data, see Temperature extremes For instrument derived temperature records, see Instrumental temperature record … Wikipedia
Temperature-responsive polymer — A temperature responsive polymer is a polymer which undergoes a physical change when external thermal stimuli are presented. The ability to undergo such changes under easily controlled conditions makes this class of polymers fall into the… … Wikipedia
Temperature dependence of liquid viscosity — The temperature dependence of liquid viscosity is the phenomenon by which liquid viscosity tends to fall (or, alternatively, its fluidity tends to increase) as its temperature increases. This can be observed, for example, by watching how cooking… … Wikipedia
temperature — /tem peuhr euh cheuhr, choor , preuh , peuhr cheuhr, choor /, n. 1. a measure of the warmth or coldness of an object or substance with reference to some standard value. The temperature of two systems is the same when the systems are in thermal… … Universalium
Temperature (meat) — Medium rare redirects here. For other uses, see Medium Rare. Meat thermometer Temperature is a description of how thoroughly cooked a cut of meat is based on the color, juiciness and internal temperature when cooked. The gradations of cooking are … Wikipedia
temperature vacuum switch — (TVS) controls vacuum to the EGR valve and/or canister purge valve based on coolant or intake air temperature. Canister purge and EGR do not typically operate when the engine is cold … Dictionary of automotive terms