Перевод: с английского на все языки

со всех языков на английский

now-design+control

  • 1 now-design control

    Англо-русский словарь по экономике и финансам > now-design control

  • 2 control

    1) управление; регулирование; проверка, контроль || управлять, регулировать; проверять, контролировать
    2) орган управления
    3) pl регулирующие устройства
    4) борьба (напр. с сельскохозяйственными вредителями)

    Англо-русский словарь по экономике и финансам > control

  • 3 modular data center

    1. модульный центр обработки данных (ЦОД)

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > modular data center

  • 4 ASD

    4) Американизм: (NII) Assistant Secretary of Defense (National Information Infrastructure)
    5) Военный термин: AWIS Software Development, Advanced Scenario Design, Advanced Systems Department, Air South Europe Directive, Air-worthiness Substantiation Document, Ammunition Storage Depot, Armament Supply Department, Armament Systems Division, Army shipping document, Army supply deport, Assigned Software Developer, Assigned Systems Developer, Assistant Secretary of Defense, Assistant Secretary of Defense, Administration, Assistant Secretary of Defense, Atomic Energy, Assistant Secretary of Defense, Civil ASTSECAF, Assistant Secretary of Air Force, Assistant Secretary of Defense, Civil Defense, Assistant Secretary of Defense, Command, Control, Communications and Intelligence, Assistant Secretary of Defense, Comptroller, Assistant Secretary of Defense, Health Affairs, Assistant Secretary of Defense, Health and Environment, Assistant Secretary of Defense, Installations and Logistics, Assistant Secretary of Defense, Intelligence, Assistant Secretary of Defense, Intelligence, Telecommunications, Command and Control, Assistant Secretary of Defense, International Security Affairs, Assistant Secretary of Defense, International Security Policy, Assistant Secretary of Defense, Legislative Affairs, Assistant Secretary of Defense, Management and Finance, Assistant Secretary of Defense, Manpower, Assistant Secretary of Defense, Properties and Installations, Assistant Secretary of Defense, Public Affairs, Assistant Secretary of Defense, Research and Advanced Technology, Assistant Secretary of Defense, Research and Development, Assistant Secretary of Defense, Research and Engineering, Assistant Secretary of Defense, Supply and Logistics, Assistant Secretary of Defense, Systems Analysis, Assistant Secretary of Defense, Telecommunications, Assistant secretary of Defense, Manpower and Reserve Affairs, Assistant secretary of Defense, Manpower, Personnel, and Reserves, Assistant secretary of Defense, Manpower, Reserve Affairs and Logistics, Automatic Shut Down, administrative survey detachment, advanced submarine detection, advanced supply depot, advanced surveillance drone, aerospace defense, air support director, air surveillance drone, aircraft statistical data, ammunition subdepot, ammunition supply depot, antisatellite defense, area support detachment, arm/safe device, artillery spotting division, assignment selection date, audio simulation device, aviation service date, aviation supply depot, ПМО, помощник министра обороны, (C4I) Assistant Secretary of Defense (Command, Control, Communications, Computers and Intelligence), (ISA) Assistant Secretary of Defense for International Security Affairs, (S&R) Assistant Secretary of Defense for Strategy and Requirements, (SO/LIC) Assistant Secretary of Defense for Special Operations and Low Intensity Conflict, (HA) Assistant Secretary of Defense for Health Affairs, (MRA&L) Assistant Secretary of Defense for Manpower, Reserve Affairs, and Logistics, (NII) Assistant Secretary of Defense, Networks & Information Integration, (PA&E) Assistant Secretary of Defense for Program Analysis and Evaluation
    7) Шутливое выражение: Agonizingly Slow and Determined
    8) Метеорология: Another Sunny Day
    9) Автомобильный термин: automatic shutdown relay
    10) Ветеринария: Action for Singapore Dogs
    11) Телекоммуникации: Alternative Service Delivery
    12) Сокращение: Advanced System Development, Aeronautical Systems Division (Now known as Aeronautical Systems Center (USAF)), Air Space Devices, Alternative Service Delivery (Canadian Air Command), Assistant Secretary of Defense, Health Affairs (USA; HA), Average Sortie Duration, Assistant Secretary of Defense (USA; C; Comptroller), Assistant Secretary of Defense (USA; PA; Public Affairs), структурная база данных приложения (Application Structure Database (Microsoft)), Нарушения аутистичного спектра (Autistic Spectrum Disorder)
    13) Физика: Active Surface Definition
    15) Вычислительная техника: Architecture Summary Design
    17) Воздухоплавание: Aeronautical Systems Division
    19) Деловая лексика: Authorized Solutions Developer
    20) Образование: After School Detention
    22) Программирование: application-specific discretes
    24) Химическое оружие: Assistant Secretary of Defense (for International Security Policy), (C3I) Assistant Secretary of Defense for Command, Control, Communications, and Intelligence, (ES) Assistant Secretary of Defense for Economic Security, Office of the Under Secretary of Defense for Acquisition and Technology, (PA&E) Assistant Secretary of Defense for Program Analysis and Evaluation, (S&TR) Assistant Secretary of Defense for Strategy and Threat Reduction
    26) Имена и фамилии: Albert S Davis
    28) NYSE. American Standard Companies, Inc., of Delaware
    30) Базы данных: Action Semantic Description

    Универсальный англо-русский словарь > ASD

  • 5 asd

    4) Американизм: (NII) Assistant Secretary of Defense (National Information Infrastructure)
    5) Военный термин: AWIS Software Development, Advanced Scenario Design, Advanced Systems Department, Air South Europe Directive, Air-worthiness Substantiation Document, Ammunition Storage Depot, Armament Supply Department, Armament Systems Division, Army shipping document, Army supply deport, Assigned Software Developer, Assigned Systems Developer, Assistant Secretary of Defense, Assistant Secretary of Defense, Administration, Assistant Secretary of Defense, Atomic Energy, Assistant Secretary of Defense, Civil ASTSECAF, Assistant Secretary of Air Force, Assistant Secretary of Defense, Civil Defense, Assistant Secretary of Defense, Command, Control, Communications and Intelligence, Assistant Secretary of Defense, Comptroller, Assistant Secretary of Defense, Health Affairs, Assistant Secretary of Defense, Health and Environment, Assistant Secretary of Defense, Installations and Logistics, Assistant Secretary of Defense, Intelligence, Assistant Secretary of Defense, Intelligence, Telecommunications, Command and Control, Assistant Secretary of Defense, International Security Affairs, Assistant Secretary of Defense, International Security Policy, Assistant Secretary of Defense, Legislative Affairs, Assistant Secretary of Defense, Management and Finance, Assistant Secretary of Defense, Manpower, Assistant Secretary of Defense, Properties and Installations, Assistant Secretary of Defense, Public Affairs, Assistant Secretary of Defense, Research and Advanced Technology, Assistant Secretary of Defense, Research and Development, Assistant Secretary of Defense, Research and Engineering, Assistant Secretary of Defense, Supply and Logistics, Assistant Secretary of Defense, Systems Analysis, Assistant Secretary of Defense, Telecommunications, Assistant secretary of Defense, Manpower and Reserve Affairs, Assistant secretary of Defense, Manpower, Personnel, and Reserves, Assistant secretary of Defense, Manpower, Reserve Affairs and Logistics, Automatic Shut Down, administrative survey detachment, advanced submarine detection, advanced supply depot, advanced surveillance drone, aerospace defense, air support director, air surveillance drone, aircraft statistical data, ammunition subdepot, ammunition supply depot, antisatellite defense, area support detachment, arm/safe device, artillery spotting division, assignment selection date, audio simulation device, aviation service date, aviation supply depot, ПМО, помощник министра обороны, (C4I) Assistant Secretary of Defense (Command, Control, Communications, Computers and Intelligence), (ISA) Assistant Secretary of Defense for International Security Affairs, (S&R) Assistant Secretary of Defense for Strategy and Requirements, (SO/LIC) Assistant Secretary of Defense for Special Operations and Low Intensity Conflict, (HA) Assistant Secretary of Defense for Health Affairs, (MRA&L) Assistant Secretary of Defense for Manpower, Reserve Affairs, and Logistics, (NII) Assistant Secretary of Defense, Networks & Information Integration, (PA&E) Assistant Secretary of Defense for Program Analysis and Evaluation
    7) Шутливое выражение: Agonizingly Slow and Determined
    8) Метеорология: Another Sunny Day
    9) Автомобильный термин: automatic shutdown relay
    10) Ветеринария: Action for Singapore Dogs
    11) Телекоммуникации: Alternative Service Delivery
    12) Сокращение: Advanced System Development, Aeronautical Systems Division (Now known as Aeronautical Systems Center (USAF)), Air Space Devices, Alternative Service Delivery (Canadian Air Command), Assistant Secretary of Defense, Health Affairs (USA; HA), Average Sortie Duration, Assistant Secretary of Defense (USA; C; Comptroller), Assistant Secretary of Defense (USA; PA; Public Affairs), структурная база данных приложения (Application Structure Database (Microsoft)), Нарушения аутистичного спектра (Autistic Spectrum Disorder)
    13) Физика: Active Surface Definition
    15) Вычислительная техника: Architecture Summary Design
    17) Воздухоплавание: Aeronautical Systems Division
    19) Деловая лексика: Authorized Solutions Developer
    20) Образование: After School Detention
    22) Программирование: application-specific discretes
    24) Химическое оружие: Assistant Secretary of Defense (for International Security Policy), (C3I) Assistant Secretary of Defense for Command, Control, Communications, and Intelligence, (ES) Assistant Secretary of Defense for Economic Security, Office of the Under Secretary of Defense for Acquisition and Technology, (PA&E) Assistant Secretary of Defense for Program Analysis and Evaluation, (S&TR) Assistant Secretary of Defense for Strategy and Threat Reduction
    26) Имена и фамилии: Albert S Davis
    28) NYSE. American Standard Companies, Inc., of Delaware
    30) Базы данных: Action Semantic Description

    Универсальный англо-русский словарь > asd

  • 6 RPC

    1) Биология: reversed phase chromatography
    2) Американизм: Regional Protection Code
    6) Сельское хозяйство: Rice Polishing Concentrate
    8) Юридический термин: Rules of Professional Conduct (Court Rules)
    10) Автомобильный термин: remote parameter test
    11) Сокращение: Regional Processing Center (new naming convention, 2005), Remote Procedure Call (Internet), Royal Pioneer Corps (Now RLC (British Army)), РПЦ (республиканский перинатальный центр - republican perinatal centre)
    12) Физиология: Reports Of Patents Cases
    13) Вычислительная техника: Region Playback Control (DVD), Remote Procedure Call (Sun, Xerox, OSF, ECMA, RFC 1831)
    14) Нефть: каталог запасных частей (repair parts catalog), комитет по технической политике в области надёжности (reliability policy committee)
    16) Биотехнология: retinal progenitor cell
    17) Транспорт: Regional Preparedness Committee (US)
    18) Фирменный знак: Root Person And Company
    20) SAP. route and process chart
    23) Полимеры: remote position control
    24) Программирование: (Remote Procedure Call) сервис вызова удаленных процедур (см. Remote Procedure Call)
    25) Химическое оружие: Project correspondence to client from Pasadena on RWCDC
    26) Безопасность: Region Protection Control
    27) Расширение файла: Remote Procedure Call
    29) Должность: Registered Professional Counselor

    Универсальный англо-русский словарь > RPC

  • 7 rpc

    1) Биология: reversed phase chromatography
    2) Американизм: Regional Protection Code
    6) Сельское хозяйство: Rice Polishing Concentrate
    8) Юридический термин: Rules of Professional Conduct (Court Rules)
    10) Автомобильный термин: remote parameter test
    11) Сокращение: Regional Processing Center (new naming convention, 2005), Remote Procedure Call (Internet), Royal Pioneer Corps (Now RLC (British Army)), РПЦ (республиканский перинатальный центр - republican perinatal centre)
    12) Физиология: Reports Of Patents Cases
    13) Вычислительная техника: Region Playback Control (DVD), Remote Procedure Call (Sun, Xerox, OSF, ECMA, RFC 1831)
    14) Нефть: каталог запасных частей (repair parts catalog), комитет по технической политике в области надёжности (reliability policy committee)
    16) Биотехнология: retinal progenitor cell
    17) Транспорт: Regional Preparedness Committee (US)
    18) Фирменный знак: Root Person And Company
    20) SAP. route and process chart
    23) Полимеры: remote position control
    24) Программирование: (Remote Procedure Call) сервис вызова удаленных процедур (см. Remote Procedure Call)
    25) Химическое оружие: Project correspondence to client from Pasadena on RWCDC
    26) Безопасность: Region Protection Control
    27) Расширение файла: Remote Procedure Call
    29) Должность: Registered Professional Counselor

    Универсальный англо-русский словарь > rpc

  • 8 Artificial Intelligence

       In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)
       Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)
       Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....
       When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)
       4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, Eventually
       Just as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)
       Many problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)
       What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)
       [AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)
       The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)
       9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract Form
       The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)
       There are many different kinds of reasoning one might imagine:
        Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."
        Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)
       Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)
       Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)
       The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)
        14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory Formation
       It is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)
       We might distinguish among four kinds of AI.
       Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.
       Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.
    ... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)
       Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)
        16) Determination of Relevance of Rules in Particular Contexts
       Even if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)
       Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)
        18) The Assumption That the Mind Is a Formal System
       Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)
        19) A Statement of the Primary and Secondary Purposes of Artificial Intelligence
       The primary goal of Artificial Intelligence is to make machines smarter.
       The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)
       The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....
       AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)
        21) Perceptual Structures Can Be Represented as Lists of Elementary Propositions
       In artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)
       Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)
       Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)
       The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)

    Historical dictionary of quotations in cognitive science > Artificial Intelligence

  • 9 Ricardo, Sir Harry Ralph

    [br]
    b. 26 January 1885 London, England
    d. 18 May 1974 Graffham, Sussex, England
    [br]
    English mechanical engineer; researcher, designer and developer of internal combustion engines.
    [br]
    Harry Ricardo was the eldest child and only son of Halsey Ricardo (architect) and Catherine Rendel (daughter of Alexander Rendel, senior partner in the firm of consulting civil engineers that later became Rendel, Palmer and Tritton). He was educated at Rugby School and at Cambridge. While still at school, he designed and made a steam engine to drive his bicycle, and by the time he went up to Cambridge in 1903 he was a skilled craftsman. At Cambridge, he made a motor cycle powered by a petrol engine of his own design, and with this he won a fuel-consumption competition by covering almost 40 miles (64 km) on a quart (1.14 1) of petrol. This brought him to the attention of Professor Bertram Hopkinson, who invited him to help with research on turbulence and pre-ignition in internal combustion engines. After leaving Cambridge in 1907, he joined his grandfather's firm and became head of the design department for mechanical equipment used in civil engineering. In 1916 he was asked to help with the problem of loading tanks on to railway trucks. He was then given the task of designing and organizing the manufacture of engines for tanks, and the success of this enterprise encouraged him to set up his own establishment at Shoreham, devoted to research on, and design and development of, internal combustion engines.
    Leading on from the work with Hopkinson were his discoveries on the suppression of detonation in spark-ignition engines. He noted that the current paraffinic fuels were more prone to detonation than the aromatics, which were being discarded as they did not comply with the existing specifications because of their high specific gravity. He introduced the concepts of "highest useful compression ratio" (HUCR) and "toluene number" for fuel samples burned in a special variable compression-ratio engine. The toluene number was the proportion of toluene in heptane that gave the same HUCR as the fuel sample. Later, toluene was superseded by iso-octane to give the now familiar octane rating. He went on to improve the combustion in side-valve engines by increasing turbulence, shortening the flame path and minimizing the clearance between piston and head by concentrating the combustion space over the valves. By these means, the compression ratio could be increased to that used by overhead-valve engines before detonation intervened. The very hot poppet valve restricted the advancement of all internal combustion engines, so he turned his attention to eliminating it by use of the single sleeve-valve, this being developed with support from the Air Ministry. By the end of the Second World War some 130,000 such aero-engines had been built by Bristol, Napier and Rolls-Royce before the piston aero-engine was superseded by the gas turbine of Whittle. He even contributed to the success of the latter by developing a fuel control system for it.
    Concurrent with this was work on the diesel engine. He designed and developed the engine that halved the fuel consumption of London buses. He invented and perfected the "Comet" series of combustion chambers for diesel engines, and the Company was consulted by the vast majority of international internal combustion engine manufacturers. He published and lectured widely and fully deserved his many honours; he was elected FRS in 1929, was President of the Institution of Mechanical Engineers in 1944–5 and was knighted in 1948. This shy and modest, though very determined man was highly regarded by all who came into contact with him. It was said that research into internal combustion engines, his family and boats constituted all that he would wish from life.
    [br]
    Principal Honours and Distinctions
    Knighted 1948. FRS 1929. President, Institution of Mechanical Engineers 1944–5.
    Bibliography
    1968, Memo \& Machines. The Pattern of My Life, London: Constable.
    Further Reading
    Sir William Hawthorne, 1976, "Harry Ralph Ricardo", Biographical Memoirs of Fellows of the Royal Society 22.
    JB

    Biographical history of technology > Ricardo, Sir Harry Ralph

  • 10 job

    1. сущ.
    1)
    а) общ. работа, дело, труд; задание, урок; (рабочая) операция

    high-paid [high-salaried, high-salary\] job — высокооплачиваемая работа

    low-paid [low-salaried, low-salary\] job — низкооплачиваемая работа

    farm job — сельскохозяйственная работа, работа на ферме

    office job — офисная работа, работа в офисе

    selling job — работа, связанная с продажами

    one-man job — работа, выполняемая одним человеком; работа, для выполнения которой требуется один человек

    two-man job — работа, выполняемая двумя людьми; работа, для выполнения которой требуется два человека

    painstaking job — трудоемкая [кропотливая\] работа

    arduous job — тяжелая [трудная\] работа

    risky job — рискованная [опасная\] работа

    rush [time-critical\] job — спешная работа; срочная работа

    See:
    б) эк. заказ

    Right now I’m working on six jobs for US and UK clients. — Непосредственно сейчас я работаю над шестью заказами американских и британских клиентов.

    See:
    в) общ., разг. трудное дело

    They'll have a bit of a job getting here in this fog anyway. — В любом случае пробраться сюда в таком тумане будет непростой задачей.

    2) общ., разг. место работы [службы\], работа; должность; рабочее место

    to take smb. off the job — отстранять кого-л. от работы

    to be out of a job — не иметь места (работы), быть без работы

    to change jobs — менять работу, переходить на другое место работы

    job applicant, applicant for a job — претендент на работу [рабочее место, должность\]

    job application, application for a job — заявление о приеме на работу

    job growth — рост числа рабочих мест, увеличение численности работающих

    job shortage — недостаток [нехватка\] рабочих мест

    See:
    3) торг. неликвид, залежалый товар ( продается по сниженной цене)
    See:
    4) общ. протекция, блат

    His appointment was a job. — Он получил назначение по протекции.

    2. гл.
    1) общ., редк. заниматься нерегулярной [случайной\] работой

    He jobs as a gardener from time to time. — Время от времени он работает садовником.

    2) бирж., редк. быть посредником [перекупщиком, джоббером\] ( перепродавать мелкие партии товаров или ценных бумаг)
    See:
    3. прил.
    1) эк. тр. сдельный, наемный (о какой-л. недолгосрочной работе); выполняемый по заказам, связанный с работой по заказам
    See:
    2) общ. относящийся к работающим [занятости\]

    * * *
    1) работа; дело; труд; 2) задание; конкретный проект; 3) функции работника.

    Англо-русский экономический словарь > job

  • 11 Eastman, George

    [br]
    b. 12 July 1854 Waterville, New York, USA
    d. 14 March 1932 Rochester, New York, USA
    [br]
    American industrialist and pioneer of popular photography.
    [br]
    The young Eastman was a clerk-bookkeeper in the Rochester Savings Bank when in 1877 he took up photography. Taking lessons in the wet-plate process, he became an enthusiastic amateur photographer. However, the cumbersome equipment and noxious chemicals used in the process proved an obstacle, as he said, "It seemed to be that one ought to be able to carry less than a pack-horse load." Then he came across an account of the new gelatine dry-plate process in the British Journal of Photography of March 1878. He experimented in coating glass plates with the new emulsions, and was soon so successful that he decided to go into commercial manufacture. He devised a machine to simplify the coating of the plates, and travelled to England in July 1879 to patent it. In April 1880 he prepared to begin manufacture in a rented building in Rochester, and contacted the leading American photographic supply house, E. \& H.T.Anthony, offering them an option as agents. A local whip manufacturer, Henry A.Strong, invested $1,000 in the enterprise and the Eastman Dry Plate Company was formed on 1 January 1881. Still working at the Savings Bank, he ran the business in his spare time, and demand grew for the quality product he was producing. The fledgling company survived a near disaster in 1882 when the quality of the emulsions dropped alarmingly. Eastman later discovered this was due to impurities in the gelatine used, and this led him to test all raw materials rigorously for quality. In 1884 the company became a corporation, the Eastman Dry Plate \& Film Company, and a new product was announced. Mindful of his desire to simplify photography, Eastman, with a camera maker, William H.Walker, designed a roll-holder in which the heavy glass plates were replaced by a roll of emulsion-coated paper. The holders were made in sizes suitable for most plate cameras. Eastman designed and patented a coating machine for the large-scale production of the paper film, bringing costs down dramatically, the roll-holders were acclaimed by photographers worldwide, and prizes and medals were awarded, but Eastman was still not satisfied. The next step was to incorporate the roll-holder in a smaller, hand-held camera. His first successful design was launched in June 1888: the Kodak camera. A small box camera, it held enough paper film for 100 circular exposures, and was bought ready-loaded. After the film had been exposed, the camera was returned to Eastman's factory, where the film was removed, processed and printed, and the camera reloaded. This developing and printing service was the most revolutionary part of his invention, since at that time photographers were expected to process their own photographs, which required access to a darkroom and appropriate chemicals. The Kodak camera put photography into the hands of the countless thousands who wanted photographs without complications. Eastman's marketing slogan neatly summed up the advantage: "You Press the Button, We Do the Rest." The Kodak camera was the last product in the design of which Eastman was personally involved. His company was growing rapidly, and he recruited the most talented scientists and technicians available. New products emerged regularly—notably the first commercially produced celluloid roll film for the Kodak cameras in July 1889; this material made possible the introduction of cinematography a few years later. Eastman's philosophy of simplifying photography and reducing its costs continued to influence products: for example, the introduction of the one dollar, or five shilling, Brownie camera in 1900, which put photography in the hands of almost everyone. Over the years the Eastman Kodak Company, as it now was, grew into a giant multinational corporation with manufacturing and marketing organizations throughout the world. Eastman continued to guide the company; he pursued an enlightened policy of employee welfare and profit sharing decades before this was common in industry. He made massive donations to many concerns, notably the Massachusetts Institute of Technology, and supported schemes for the education of black people, dental welfare, calendar reform, music and many other causes, he withdrew from the day-to-day control of the company in 1925, and at last had time for recreation. On 14 March 1932, suffering from a painful terminal cancer and after tidying up his affairs, he shot himself through the heart, leaving a note: "To my friends: My work is done. Why wait?" Although Eastman's technical innovations were made mostly at the beginning of his career, the organization which he founded and guided in its formative years was responsible for many of the major advances in photography over the years.
    [br]
    Further Reading
    C.Ackerman, 1929, George Eastman, Cambridge, Mass.
    BC

    Biographical history of technology > Eastman, George

  • 12 Steinheil, Carl August von

    [br]
    b. 1801 Roppoltsweiler, Alsace
    d. 1870 Munich, Germany
    [br]
    German physicist, founder of electromagnetic telegraphy in Austria, and photographic innovator and lens designer.
    [br]
    Steinheil studied under Gauss at Göttingen and Bessel at Königsberg before jointing his parents at Munich. There he concentrated on optics before being appointed Professor of Physics and Mathematics at the University of Munich in 1832. Immediately after the announcement of the first practicable photographic processes in 1839, he began experiments on photography in association with another professor at the University, Franz von Kobell. Steinheil is reputed to have made the first daguerreotypes in Germany; he certainly constructed several cameras of original design and suggested minor improvements to the daguerreotype process. In 1849 he was employed by the Austrian Government as Head of the Department of Telegraphy in the Ministry of Commerce. Electromagnetic telegraphy was an area in which Steinheil had worked for several years previously, and he was now appointed to supervise the installation of a working telegraphic system for the Austrian monarchy. He is considered to be the founder of electromagnetic telegraphy in Austria and went on to perform a similar role in Switzerland.
    Steinheil's son, Hugo Adolph, was educated in Munich and Augsburg but moved to Austria to be with his parents in 1850. Adolph completed his studies in Vienna and was appointed to the Telegraph Department, headed by his father, in 1851. Adolph returned to Munich in 1852, however, to concentrate on the study of optics. In 1855 the father and son established the optical workshop which was later to become the distinguished lens-manufacturing company C.A. Steinheil Söhne. At first the business confined itself almost entirely to astronomical optics, but in 1865 the two men took out a joint patent for a wide-angle photographic lens claimed to be free of distortion. The lens, called the "periscopic", was not in fact free from flare and not achromatic, although it enjoyed some reputation at the time. Much more important was the achromatic development of this lens that was introduced in 1866 and called the "Aplanet"; almost simultaneously a similar lens, the "Rapid Rentilinear", was introduced by Dallmeyer in England, and for many years lenses of this type were fitted as the standard objective on most photographic cameras. During 1866 the elder Steinheil relinquished his interest in lens manufacturing, and control of the business passed to Adolph, with administrative and financial affairs being looked after by another son, Edward. After Carl Steinheil's death Adolph continued to design and market a series of high-quality photographic lenses until his own death.
    [br]
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York (a general account of the Steinheils's work).
    Most accounts of photographic lens history will give details of the Steinheils's more important work. See, for example, Chapman Jones, 1904, Science and Practice of Photography, 4th edn, London: and Rudolf Kingslake, 1989, A History of the Photographic Lens, Boston.
    JW

    Biographical history of technology > Steinheil, Carl August von

  • 13 work

    1. noun
    1) no pl., no indef. art. Arbeit, die

    at work(engaged in working) bei der Arbeit; (fig.): (operating) am Werk (see also academic.ru/23063/e">e)

    be at work on somethingan etwas (Dat.) arbeiten; (fig.) auf etwas (Akk.) wirken

    set to work[Person:] sich an die Arbeit machen

    set somebody to workjemanden an die Arbeit schicken

    have one's work cut outviel zu tun haben; sich ranhalten müssen (ugs.)

    2) (thing made or achieved) Werk, das

    is that all your own work?hast du das alles selbst gemacht?

    work of art — Kunstwerk, das

    3) (book, piece of music) Werk, das

    a work of reference/literature/art — ein Nachschlagewerk/literarisches Werk/Kunstwerk

    4) in pl. (of author or composer) Werke
    5) (employment) Arbeit, die

    out of work — arbeitslos; ohne Arbeit

    at work(place of employment) auf der Arbeit (see also a)

    6) in pl., usu. constr. as sing. (factory) Werk, das
    7) in pl. (Mil.) Werke; Befestigungen
    8) in pl. (operations of building etc.) Arbeiten
    9) in pl. (machine's operative parts) Werk, das
    10) in pl. (coll.): (all that can be included)

    the [whole/full] works — der ganze Kram (ugs.)

    give somebody the works(fig.) (give somebody the best possible treatment) jemandem richtig verwöhnen (ugs.); (give somebody the worst possible treatment) jemanden fertig machen (salopp)

    2. intransitive verb,
    worked or (arch./literary) wrought

    work for a causeetc. für eine Sache usw. arbeiten

    work against something(impede) einer Sache (Dat.) entgegenstehen

    2) (function effectively) funktionieren; [Charme:] wirken (on auf + Akk.)

    make the washing machine/television work — die Waschmaschine/den Fernsehapparat in Ordnung bringen

    3) [Rad, Getriebe, Kette:] laufen
    4) (be craftsman)

    work in a materialmit od. (fachspr.) in einem Material arbeiten

    5) [Faktoren, Einflüsse:] wirken (on auf + Akk.)

    work against — arbeiten gegen; see also work on

    6) (make its/one's way) sich schieben

    work round to a question(fig.) sich zu einer Frage vorarbeiten

    3. transitive verb,
    worked or (arch./literary) wrought
    1) (operate) bedienen [Maschine]; fahren [Schiff]; betätigen [Bremse]
    2) (get labour from) arbeiten lassen
    3) (get material from) ausbeuten [Steinbruch, Grube]
    4) (operate in or on) [Vertreter:] bereisen
    5) (control) steuern
    6) (effect) bewirken [Änderung]; wirken [Wunder]

    work it or things so that... — (coll.) es deichseln, dass... (ugs.)

    7) (cause to go gradually) führen

    work one's way up/into something — sich hocharbeiten/in etwas (Akk.) hineinarbeiten

    8) (get gradually) bringen
    9) (knead, stir)

    work something into something — etwas zu etwas verarbeiten; (mix in) etwas unter etwas (Akk.) rühren

    work oneself into a state/a rage — sich aufregen/in einen Wutanfall hineinsteigern

    11) (make by needlework etc.) arbeiten; aufsticken [Muster] (on auf + Akk.)
    12) (purchase, obtain with labour) abarbeiten; (fig.)

    she worked her way through collegesie hat sich (Dat.) ihr Studium selbst verdient; see also passage 6)

    Phrasal Verbs:
    * * *
    [wə:k] 1. noun
    1) (effort made in order to achieve or make something: He has done a lot of work on this project) die Arbeit
    2) (employment: I cannot find work in this town.) die Arbeit
    3) (a task or tasks; the thing that one is working on: Please clear your work off the table.) die Arbeit
    4) (a painting, book, piece of music etc: the works of Van Gogh / Shakespeare/Mozart; This work was composed in 1816.) das Werk
    5) (the product or result of a person's labours: His work has shown a great improvement lately.) die Arbeit
    6) (one's place of employment: He left (his) work at 5.30 p.m.; I don't think I'll go to work tomorrow.) die Arbeit
    2. verb
    1) (to (cause to) make efforts in order to achieve or make something: She works at the factory three days a week; He works his employees very hard; I've been working on/at a new project.) arbeiten
    2) (to be employed: Are you working just now?) arbeiten
    3) (to (cause to) operate (in the correct way): He has no idea how that machine works / how to work that machine; That machine doesn't/won't work, but this one's working.) funktionieren
    4) (to be practicable and/or successful: If my scheme works, we'll be rich!) klappen
    5) (to make (one's way) slowly and carefully with effort or difficulty: She worked her way up the rock face.) sich arbeiten
    6) (to get into, or put into, a stated condition or position, slowly and gradually: The wheel worked loose.) sich arbeiten
    7) (to make by craftsmanship: The ornaments had been worked in gold.) arbeiten
    - -work
    - workable
    - worker
    - works
    3. noun plural
    1) (the mechanism (of a watch, clock etc): The works are all rusted.) das Werk
    2) (deeds, actions etc: She's devoted her life to good works.) das Werk
    - work-basket
    - work-box
    - workbook
    - workforce
    - working class
    - working day
    - work-day
    - working hours
    - working-party
    - work-party
    - working week
    - workman
    - workmanlike
    - workmanship
    - workmate
    - workout
    - workshop
    - at work
    - get/set to work
    - go to work on
    - have one's work cut out
    - in working order
    - out of work
    - work of art
    - work off
    - work out
    - work up
    - work up to
    - work wonders
    * * *
    [wɜ:k, AM wɜ:rk]
    I. NOUN
    1. no pl (useful activity) Arbeit f; ( fig)
    to be at \work am Werk sein
    forces of destruction are at \work here hier sind zerstörerische Kräfte am Werk
    various factors are at \work in this situation in dieser Situation spielen verschiedene Faktoren eine Rolle
    good \work! gute Arbeit!
    there's a lot of \work to be done yet es gibt noch viel zu tun
    the garden needs a lot of \work im Garten muss [so] einiges gemacht werden
    \work on the tunnel has been suspended die Arbeiten am Tunnel wurden vorübergehend eingestellt
    did you manage to get a bit of \work done? konntest du ein bisschen arbeiten?
    construction/repair \work Bau-/Reparaturarbeiten pl
    research \work Forschungsarbeit f
    it's hard \work doing sth (strenuous) es ist anstrengend, etw zu tun; (difficult) es ist schwierig, etw zu tun
    to be at \work doing sth [gerade] damit beschäftigt sein, etw zu tun
    to get [or go] [or set] to \work sich akk an die Arbeit machen
    to get [or go] [or set] to \work on sth sich akk an etw akk machen
    to make \work for sb jdm Arbeit machen
    to make \work for oneself sich dat unnötige Arbeit machen
    to put [or set] sb to \work doing sth jdn [damit] beauftragen, etw zu tun
    2. no pl (employment) Arbeit f
    what sort of \work do you have experience in? über welche Berufserfahrung verfügen Sie?
    she's got \work as a translator sie hat Arbeit [o eine Stelle] als Übersetzerin gefunden
    to look for \work auf Arbeitssuche sein
    he's looking for \work as a system analyst er sucht Arbeit [o eine Stelle] als Systemanalytiker
    to be in \work Arbeit [o eine Stelle] haben
    to be out of \work arbeitslos sein
    3. no pl (place of employment) Arbeit f, Arbeitsplatz m
    to be late for \work zu spät zur Arbeit kommen
    to have to stay late at \work lange arbeiten müssen
    to be at \work bei der Arbeit sein
    to be off \work frei haben; (without permission) fehlen
    to be off \work sick sich akk krankgemeldet haben
    to commute to \work pendeln
    to get to \work by car/on the train mit dem Auto/mit dem Zug zur Arbeit fahren
    to go/travel to \work zur Arbeit gehen/fahren
    to be injured at \work einen Arbeitsunfall haben
    to ring sb from \work jdn von der Arbeit [aus] anrufen
    \works pl Arbeiten pl
    building/road \works Bau-/Straßenarbeiten pl
    5. no pl (result, product) Arbeit f; (act) Werk nt
    this is the \work of professional thieves das ist das Werk professioneller Diebe
    good \works REL gute Werke
    6. ART, LIT, MUS Werk nt
    ‘The Complete W\works of William Shakespeare’ ‚Shakespeares gesammelte Werke‘
    \works of art Kunstwerke pl
    \work in bronze Bronzearbeiten pl
    \work in leather aus Leder gefertigte Arbeiten
    sb's early/later \work jds Früh-/Spätwerk nt
    to show one's \work in a gallery seine Arbeiten in einer Galerie ausstellen
    \works + sing/pl vb Werk nt, Fabrik f
    steel \works Stahlwerk nt
    \works pl of a clock Uhrwerk nt; of a machine Getriebe nt
    the \works pl das ganze Drum und Dran kein pl fam
    two large pizzas with the \works, please! esp AM zwei große Pizzen mit allem bitte!
    10. no pl PHYS Arbeit f
    11. MIL
    \works pl Befestigungen pl
    12.
    to be a [real] piece of \work ( fam) ganz schön nervig sein fam
    to have one's \work cut out ( fam) sich akk mächtig reinknien müssen fam
    to get [or go] [or set] to \work on sb ( fam) jdn bearbeiten fam
    to give sb the \works ( dated sl) jdn [ordentlich] in die Mangel nehmen fam
    1. (climate, report, week) Arbeits-
    \work clothes Arbeitskleidung f
    \work speed Arbeitstempo nt
    2.
    \works (canteen, inspection) Werks-
    \works premises Werksgelände nt
    1. (do a job) arbeiten
    where do you \work? wo arbeiten Sie?
    to \work as an accountant als Buchhalter arbeiten
    to \work a twelve-hour day/a forty-hour week zwölf Stunden am Tag/vierzig Stunden in der Woche arbeiten
    to \work from home zu Hause [o von zu Hause aus] arbeiten
    to \work at the hospital/abroad im Krankenhaus/im Ausland arbeiten
    to \work like a slave [or AM, AUS dog] ( fam) wie ein Tier schuften fam
    to \work like a Trojan BRIT wie ein Pferd arbeiten fam
    to \work hard hart arbeiten
    to \work together zusammenarbeiten
    to \work with sb mit jdm zusammenarbeiten
    2. (be busy, active) arbeiten
    we're \working to prevent it happening again wir bemühen uns [o arbeiten daran], so etwas in Zukunft zu verhindern
    to \work towards a degree in biology einen Hochschulabschluss in Biologie anstreben
    to \work at/on sth an etw dat arbeiten
    we're \working on it wir arbeiten daran
    to \work at a problem an einem Problem arbeiten
    to \work hard at doing sth hart daran arbeiten, etw zu tun
    to \work for/towards sth auf etw akk hinwirken [o hinarbeiten
    3. (have an effect) sich auswirken
    to \work both ways sich sowohl positiv als auch negativ auswirken
    to \work in sb's favour sich zu jds Gunsten auswirken
    to \work against sb/sth sich negativ für jdn/auf etw akk auswirken
    4. (function) funktionieren; generator, motor laufen
    my cell phone doesn't \work mein Handy geht nicht
    the boiler seems to be \working okay der Boiler scheint in Ordnung zu sein
    I can't get this washing machine to \work ich kriege die Waschmaschine irgendwie nicht zum Laufen
    to \work off batteries batteriebetrieben sein
    to \work off the mains BRIT mit Netzstrom arbeiten
    to \work off wind power mit Windenergie arbeiten
    5. (be successful) funktionieren, klappen fam; plan, tactics aufgehen
    to \work in practice [auch] in der Praxis funktionieren
    6. MED medicine, pill wirken
    7. (be based)
    to \work on the assumption/idea that... von der Annahme/Vorstellung ausgehen, dass...
    8. (move)
    to \work free/loose sich lösen/lockern
    to \work down clothes runterrutschen fam
    to \work windward NAUT gegen den Wind segeln
    9. ( liter: change expression) arbeiten; (contort) sich verzerren
    10. NAUT
    to \work windward [hart] am Wind segeln
    11.
    to \work like a charm [or like magic] Wunder bewirken
    to \work till you drop ( fam) bis zum Umfallen arbeiten
    to \work on sb jdn bearbeiten fam
    to \work oneself to death ( fam) sich akk zu Tode arbeiten [o fam schinden]
    to \work sb/oneself hard jdm/sich viel abverlangen
    to \work sth machine etw bedienen; piece of equipment etw betätigen
    to be \worked by electricity/steam elektrisch/dampfgetrieben sein
    to be \worked by wind power durch Windenergie angetrieben werden
    to \work sth out of sth etw aus etw dat herausbekommen
    to \work one's way through an article/a book sich akk durch einen Artikel/ein Buch durcharbeiten
    to \work one's way through a crowd/out of a crowded room sich dat einen Weg durch die Menge/aus einem überfüllten Zimmer bahnen
    to \work one's way down a list eine Liste durchgehen
    to \work one's way up sich akk hocharbeiten
    he's \worked his way up through the firm er hat sich in der Firma hochgearbeitet
    to \work sth free/loose etw losbekommen/lockern
    sth \works itself free/loose etw löst/lockert sich akk
    to \work sth [backwards and forwards] etw [hin- und her]bewegen
    sth \works itself out of sth etw löst sich aus etw dat
    to \work sth etw bewirken
    I don't know how she \worked it! ich weiß nicht, wie sie das geschafft hat!
    to \work oneself into a more positive frame of mind sich dat eine positivere Lebenseinstellung erarbeiten
    to \work a cure eine Heilung herbeiführen
    to \work a miracle ein Wunder vollbringen
    to \work miracles [or wonders] [wahre] Wunder vollbringen
    to \work oneself into a frenzy [or rage] in Rage geraten fam
    to \work sb into a frenzy [or rage] jdn in Rage bringen fam
    to \work oneself into a state sich akk aufregen
    to \work sb into a state of jealousy jdn eifersüchtig machen
    6. (shape)
    to \work sth etw bearbeiten
    to \work clay Ton formen
    7. (mix, rub)
    to \work sth into sth etw in etw akk einarbeiten; food etw mit etw dat vermengen; (incorporate) etw in etw akk einbauen [o einfügen]
    to \work the ingredients together die Zutaten [miteinander] vermengen
    to \work sth into the skin (rub) die Haut mit etw dat einreiben; (massage) etw in die Haut einmassieren
    to \work sth etw [auf]sticken
    to \work a monogram on sth etw mit einem Monogramm besticken, ein Monogramm auf etw akk sticken
    to \work the land das Land bewirtschaften; (exploit)
    to \work a mine/quarry eine Mine/einen Steinbruch ausbeuten
    10. (cover)
    to \work the inner city [area]/the East Side für die Innenstadt/die East Side zuständig sein
    11. (pay for by working)
    to \work one's passage sich dat seine Überfahrt durch Arbeit auf dem Schiff verdienen
    to \work one's way through university sich dat sein Studium finanzieren
    12.
    to \work one's fingers to the bone [for sb] ( fam) sich dat [für jdn] den Rücken krumm arbeiten fam
    to \work a treat BRIT ( fam) prima funktionieren fam
    * * *
    [wɜːk]
    1. n
    1) (= toil, labour, task) Arbeit f

    there are forces at work which... — es sind Kräfte am Werk, die...

    nice or good work!gut or super (inf) gemacht!

    we've a lot of work to do before this choir can give a concert — wir haben noch viel zu tun, ehe dieser Chor ein Konzert geben kann

    you need to do some more work on your accent/your technique — Sie müssen noch an Ihrem Akzent/an Ihrer Technik arbeiten

    to make short or quick work of sb/sth — mit jdm/etw kurzen Prozess machen

    time/the medicine had done its work — die Zeit/Arznei hatte ihr Werk vollbracht/ihre Wirkung getan

    2) (= employment, job) Arbeit f

    how long does it take you to get to work? — wie lange brauchst du, um zu deiner Arbeitsstelle zu kommen?

    at work — an der Arbeitsstelle, am Arbeitsplatz

    3) (= product) Arbeit f; (ART, LITER) Werk nt

    a chance for artists to show their work — eine Gelegenheit für Künstler, ihre Arbeiten or Werke zu zeigen

    4) pl (MIL) Befestigungen pl
    5) pl (MECH) Getriebe, Innere(s) nt; (of watch, clock) Uhrwerk nt
    6) sing or pl (Brit: factory) Betrieb m, Fabrik f

    gas/steel works — Gas-/Stahlwerk nt

    we had fantastic food, wine, brandy, the works — es gab tolles Essen, Wein, Kognak, alle Schikanen (inf)

    2. vi
    1) person arbeiten (at an +dat)

    to work toward(s)/for sth — auf etw (acc) hin/für etw arbeiten

    or favor (US) — diese Faktoren, die gegen uns/zu unseren Gunsten arbeiten

    2) (= function, operate) funktionieren; (plan) funktionieren, klappen (inf); (medicine, spell) wirken; (= be successful) klappen (inf)

    "not working" (lift etc) — "außer Betrieb"

    3) (yeast) arbeiten, treiben
    4) (mouth, face) zucken; (jaws) mahlen
    5)

    (= move gradually) to work loose — sich lockern

    he worked (a)round to asking her — er hat sich aufgerafft, sie zu fragen

    OK, I'm working (a)round to it — okay, das mache ich schon noch

    3. vt
    1) (= make work) staff, employees, students arbeiten lassen, herannehmen (inf), schinden (pej)

    to work oneself/sb hard — sich/jdn nicht schonen

    2) (= operate) machine bedienen; lever, brake betätigen

    to work sth by electricity/hand — etw elektrisch/mit Hand betreiben

    3) (= bring about) change, cure bewirken, herbeiführen

    to work it ( so that...) (inf)es so deichseln(, dass...) (inf)

    See:
    4) (SEW) arbeiten; design etc sticken
    5) (= shape) wood, metal bearbeiten; dough, clay also kneten, bearbeiten

    work the flour in gradually/the ingredients together — mischen Sie das Mehl allmählich unter/die Zutaten (zusammen)

    6) (= exploit) mine ausbeuten, abbauen; land bearbeiten; smallholding bewirtschaften; (salesman) area bereisen
    7) muscles trainieren
    8)

    (= move gradually) to work one's hands free — seine Hände freibekommen

    he worked his way across the rock face/through the tunnel — er überquerte die Felswand/kroch durch den Tunnel

    * * *
    work [wɜːk; US wɜrk]
    A s
    1. allg Arbeit f:
    a) Beschäftigung f, Tätigkeit f
    b) Aufgabe f
    c) Hand-, Nadelarbeit f, Stickerei f, Näherei f
    d) Leistung f
    e) Erzeugnis n:
    work done geleistete Arbeit;
    a beautiful piece of work eine schöne Arbeit;
    work in hand WIRTSCH Auftragsbestand m;
    work in process ( oder progress) WIRTSCH US Halbfabrikate pl;
    a) bei der Arbeit,
    b) am Arbeitsplatz,
    c) in Tätigkeit, in Betrieb (Maschine etc);
    be at work on arbeiten an (dat);
    do work arbeiten;
    I’ve got some work to do ich muss arbeiten;
    do the work of three (men) für drei arbeiten;
    be in (out of) work (keine) Arbeit haben;
    (put) out of work arbeitslos (machen);
    set to work an die Arbeit gehen, sich an die Arbeit machen;
    take some work home Arbeit mit nach Hause nehmen;
    have one’s work cut out (for one) zu tun haben, schwer zu schaffen haben;
    make work Arbeit verursachen;
    make light work of spielend fertig werden mit;
    make sad work of arg wirtschaften oder hausen mit;
    make short work of kurzen Prozess oder nicht viel Federlesen(s) machen mit umg
    2. PHYS Arbeit f:
    3. auch koll (künstlerisches etc) Werk:
    work of art Kunstwerk; fiction 2, reference A 8
    4. Werk n (Tat und Resultat):
    this is your work!;
    5. pl
    a) ARCH Anlagen pl, (besonders öffentliche) Bauten pl
    b) Baustelle f (an einer Autobahn etc)
    c) MIL (Festungs)Werk n, Befestigungen pl
    6. pl (oft als sg konstruiert) Werk n, Fabrik (-anlage) f, Betrieb m:
    works climate (council, outing, etc) Betriebsklima n (-rat m, -ausflug m etc);
    works manager Werksdirektor m, Betriebsleiter m
    7. pl TECH (Räder-, Trieb)Werk n, Getriebe n:
    works of a watch Uhrwerk; spanner 1
    8. Werk-, Arbeitsstück n, ( besonders Nadel)Arbeit f
    9. REL (gutes) Werk
    10. the works pl umg alles, der ganze Krempel:
    give sb the works umg jemanden fertigmachen;
    shoot the works (Kartenspiel) aufs Ganze gehen (a. fig); gum2 B 4
    B v/i prät und pperf worked, besonders obs oder poet wrought [rɔːt]
    1. (at, on) arbeiten (an dat), sich beschäftigen (mit):
    work at a social reform an einer Sozialreform arbeiten;
    worked ( oder wrought) in leather in Leder gearbeitet;
    work to rule WIRTSCH Br Dienst nach Vorschrift tun;
    make one’s money work sein Geld arbeiten lassen
    2. arbeiten, Arbeit haben, beschäftigt sein
    3. fig arbeiten, kämpfen ( beide:
    against gegen;
    for für eine Sache):
    work toward(s) hinarbeiten auf (akk)
    4. TECH
    a) funktionieren, gehen (beide auch fig)
    b) in Betrieb oder Gang sein:
    our stove works well unser Ofen funktioniert gut;
    your method won’t work mit Ihrer Methode werden Sie es nicht schaffen;
    get sth to work etwas reparieren
    5. fig klappen, gehen, gelingen, sich machen lassen
    6. (prät oft wrought) wirken, sich auswirken (on, with auf akk, bei):
    the poison began to work das Gift begann zu wirken
    7. work on jemanden bearbeiten, sich jemanden vornehmen (beide umg)
    8. sich gut etc bearbeiten lassen
    9. sich (hindurch-, hoch- etc) arbeiten:
    work into eindringen in (akk);
    work loose sich losarbeiten, sich lockern;
    her tights worked down die Strumpfhose rutschte ihr herunter
    10. in (heftiger) Bewegung sein, arbeiten, zucken ( alle:
    with vor dat; Gesichtszüge etc), mahlen ( with vor Erregung etc; Kiefer)
    11. SCHIFF (besonders gegen den Wind) segeln, fahren
    12. gären, arbeiten (beide auch fig: Gedanke etc)
    13. (hand)arbeiten, stricken, nähen
    C v/t
    1. arbeiten an (dat)
    2. verarbeiten:
    a) TECH bearbeiten
    b) einen Teig kneten
    c) (ver)formen, gestalten ( beide:
    into zu):
    work cotton into cloth Baumwolle zu Tuch verarbeiten
    3. eine Maschine etc bedienen, ein Fahrzeug führen, lenken
    4. (an-, be)treiben:
    worked by electricity elektrisch betrieben
    5. AGR den Boden bearbeiten, bestellen
    6. einen Betrieb leiten, eine Fabrik etc betreiben, ein Gut bewirtschaften
    7. Bergbau: eine Grube abbauen, ausbeuten
    8. WIRTSCH (geschäftlich) bereisen oder bearbeiten:
    9. jemanden, Tiere (tüchtig) arbeiten lassen, (zur Arbeit) antreiben
    10. fig jemanden bearbeiten umg, jemandem zusetzen ( beide:
    for wegen):
    11. a) work one’s way sich (hindurch- etc) arbeiten
    b) erarbeiten, verdienen: passage1 5
    12. MATH lösen, ausarbeiten, errechnen
    13. erregen, reizen, (in einen Zustand) versetzen oder bringen:
    work o.s. into a rage sich in eine Wut hineinsteigern
    14. bewegen, arbeiten mit:
    he worked his jaws seine Kiefer mahlten
    15. fig (prät oft wrought) hervorbringen, -rufen, zeitigen, Veränderungen etc bewirken, Wunder wirken oder tun, führen zu, verursachen:
    work hardship on sb für jemanden eine Härte bedeuten
    16. (prät oft wrought) fertigbringen, zustande bringen
    a) eine Arbeit etc einschieben in (akk),
    b) Passagen etc einarbeiten oder -flechten oder -fügen in (akk)
    18. sl etwas herausschlagen
    19. US sl jemanden bescheißen
    20. herstellen, machen, besonders stricken, nähen
    21. zur Gärung bringen
    22. work over 2
    w. abk
    2. wide
    4. wife
    5. with
    6. PHYS work
    wk abk
    1. week Wo.
    2. work
    * * *
    1. noun
    1) no pl., no indef. art. Arbeit, die

    at work (engaged in working) bei der Arbeit; (fig.): (operating) am Werk (see also e)

    be at work on somethingan etwas (Dat.) arbeiten; (fig.) auf etwas (Akk.) wirken

    set to work[Person:] sich an die Arbeit machen

    have one's work cut out — viel zu tun haben; sich ranhalten müssen (ugs.)

    work of art — Kunstwerk, das

    3) (book, piece of music) Werk, das

    a work of reference/literature/art — ein Nachschlagewerk/literarisches Werk/Kunstwerk

    5) (employment) Arbeit, die

    out of work — arbeitslos; ohne Arbeit

    at work (place of employment) auf der Arbeit (see also a)

    6) in pl., usu. constr. as sing. (factory) Werk, das
    7) in pl. (Mil.) Werke; Befestigungen
    8) in pl. (operations of building etc.) Arbeiten
    10) in pl. (coll.): (all that can be included)

    the [whole/full] works — der ganze Kram (ugs.)

    give somebody the works(fig.) (give somebody the best possible treatment) jemandem richtig verwöhnen (ugs.); (give somebody the worst possible treatment) jemanden fertig machen (salopp)

    2. intransitive verb,
    worked or (arch./literary) wrought

    work for a causeetc. für eine Sache usw. arbeiten

    work against something (impede) einer Sache (Dat.) entgegenstehen

    2) (function effectively) funktionieren; [Charme:] wirken (on auf + Akk.)

    make the washing machine/television work — die Waschmaschine/den Fernsehapparat in Ordnung bringen

    3) [Rad, Getriebe, Kette:] laufen

    work in a materialmit od. (fachspr.) in einem Material arbeiten

    5) [Faktoren, Einflüsse:] wirken (on auf + Akk.)

    work against — arbeiten gegen; see also work on

    6) (make its/one's way) sich schieben

    work round to a question(fig.) sich zu einer Frage vorarbeiten

    3. transitive verb,
    worked or (arch./literary) wrought
    1) (operate) bedienen [Maschine]; fahren [Schiff]; betätigen [Bremse]
    2) (get labour from) arbeiten lassen
    3) (get material from) ausbeuten [Steinbruch, Grube]
    4) (operate in or on) [Vertreter:] bereisen
    5) (control) steuern
    6) (effect) bewirken [Änderung]; wirken [Wunder]

    work it or things so that... — (coll.) es deichseln, dass... (ugs.)

    work one's way up/into something — sich hocharbeiten/in etwas (Akk.) hineinarbeiten

    8) (get gradually) bringen
    9) (knead, stir)

    work something into something — etwas zu etwas verarbeiten; (mix in) etwas unter etwas (Akk.) rühren

    work oneself into a state/a rage — sich aufregen/in einen Wutanfall hineinsteigern

    11) (make by needlework etc.) arbeiten; aufsticken [Muster] (on auf + Akk.)
    12) (purchase, obtain with labour) abarbeiten; (fig.)

    she worked her way through collegesie hat sich (Dat.) ihr Studium selbst verdient; see also passage 6)

    Phrasal Verbs:
    * * *
    (hard) for expr.
    erarbeiten v.
    sich etwas erarbeiten ausdr. v.
    arbeiten v.
    funktionieren v. n.
    Arbeit -en f.
    Werk -e n.

    English-german dictionary > work

  • 14 Taylor, David Watson

    SUBJECT AREA: Ports and shipping
    [br]
    b. 4 March 1864 Louisa County, Virginia, USA
    d. 29 July 1940 Washington, DC, USA
    [br]
    American hydrodynamicist and Rear Admiral in the United States Navy Construction Corps.
    [br]
    Taylor's first years were spent on a farm in Virginia, but at the age of 13 he went to RandolphMacon College, graduating in 1881, and from there to the US Naval Academy, Annapolis. He graduated at the head of his class, had some sea time, and then went to the Royal Naval College in Greenwich, England, where in 1888 he again came top of the class with the highest-ever marks of any student, British or overseas.
    On his return to the United States he held various posts as a constructor, ending this period at the Mare Island Navy Yard in California. In 1894 he was transferred to Washington, where he joined the Bureau of Construction and started to interest the Navy in ship model testing. Under his direction, the first ship model tank in the United States was built at Washington and for fourteen years operated under his control. The work of this establishment gave him the necessary information to write the highly acclaimed text The Speed and Power of Ships, which with revisions is still in use. By the outbreak of the First World War he was one of the world's most respected naval architects, and had been retained as a consultant by the British Government in the celebrated case of the collision between the White Star Liner Olympic and HMS Hawke.
    In December 1914 Taylor became a Rear-Admiral and was appointed Chief Constructor of the US Navy. His term of office was extremely stressful, with over 1,000 ships constructed for the war effort and with the work of the fledgling Bureau for Aeronautics also under his control. The problems were not over in 1918 as the Washington Treaty required drastic pruning of the Navy and a careful reshaping of the defence force.
    Admiral Taylor retired from active service at the beginning of 1923 but retained several consultancies in aeronautics, shipping and naval architecture. For many years he served as consultant to the ship-design company now known as Gibbs and Cox. Many honours came his way, but the most singular must be the perpetuation of his name in the David Taylor Medal, the highest award of the Society of Naval Architects and Marine Engineers in the United States. Similarly, the Navy named its ship test tank facility, which was opened in Maryland in 1937, the David W. Taylor Model Basin.
    [br]
    Principal Honours and Distinctions
    President, Society of Naval Architects and Marine Engineers 1925–7. United States Distinguished Service Medal. American Society of Civil Engineers John Fritz Medal. Institution of Naval Architects Gold Medal 1894 (the first American citizen to receive it). Society of Naval Architects and Marine Engineers David W.Taylor Medal 1936 (the first occasion of this award).
    Bibliography
    Resistance of Ships and Screw Propulsion. 1911, The Speed and Power of Ships, New York: Wiley.
    Taylor gave many papers to the Maritime Institutions of both the United States and the United Kingdom.
    FMW

    Biographical history of technology > Taylor, David Watson

  • 15 Williamson, David Theodore Nelson

    [br]
    b. 15 February 1923 Edinburgh, Scotland
    d. 1992 Italy
    [br]
    Scottish engineer, inventor of the Williamson Amplifier and computer-controlled machine tools.
    [br]
    D.T.N.Williamson was educated at George Heriot's School, Edinburgh, and studied mechanical engineering at the University of Edinburgh and electrical engineering at Heriot-Watt College (now Heriot-Watt University), Edinburgh. He joined the MO Valve Company in London in 1943 and worked in his spare time on improving the sound reproduction for gramophones, and in 1946 invented the "Williamson Amplifier".
    That same year Williamson returned to Edinburgh as a development engineer with Ferranti Ltd, where he was employed in developing computer-controlled machining systems. In 1961 he was appointed Director of Research and Development at Molins Ltd, where he continued work on computer-controlled machine tools. He invented the Molins System 24, which employed a number of machine tools, all under computer control, and is generally acknowledged as a significant step in the development of manufacturing systems. In 1974 he joined Rank Xerox and became Director of Research before taking early retirement to live in Italy. Between 1954 and 1979 he served on numerous committees relating to computer-aided design, manufacturing technology and mechanical engineering in general.
    [br]
    Principal Honours and Distinctions
    FRS 1968.
    Bibliography
    Williamson was author of several papers and articles, and contributed to the Electronic
    Engineers' Reference Book (1959), Progress in Automation (1960) and the Numerical Control Handbook (1968).
    RTS

    Biographical history of technology > Williamson, David Theodore Nelson

  • 16 automation technologies

    1. технологии для автоматизации

     

    технологии для автоматизации
    -
    [Интент]

    Параллельные тексты EN-RU

    Automation technologies: a strong focal point for our R&D

    Технологии для автоматизации - одна из главных тем наших научно исследовательских разработок

    Automation is an area of ABB’s business with an extremely high level of technological innovation.

    Автоматика относится к одной из областей деятельности компании АББ, для которой характерен исключительно высокий уровень технических инноваций.

    In fact, it may be seen as a showcase for exhibiting the frontiers of development in several of today’s emerging technologies, like short-range wireless communication and microelectromechanical systems (MEMS).

    В определенном смысле ее можно уподобить витрине, в которой выставлены передовые разработки из области только еще зарождающихся технологий, примерами которых являются ближняя беспроводная связь и микроэлектромеханические системы (micro electromechanical systems MEMS).

    Mechatronics – the synthesis of mechanics and electronics – is another very exciting and rapidly developing area, and the foundation on which ABB has built its highly successful, fast-growing robotics business.

    Еще одной исключительно интересной быстро развивающейся областью и в то же время фундаментом, на котором АББ в последнее время строит свой исключительно успешный и быстро расширяющийся бизнес в области робототехники, является мехатроника - синтез механики с электроникой.

    Robotic precision has now reached the levels we have come to expect of the watch-making industry, while robots’ mechanical capabilities continue to improve significantly.

    Точность работы робототехнических устройств достигла сегодня уровней, которые мы привыкли ожидать только на предприятиях часовой промышленности. Большими темпами продолжают расти и механические возможности роботов.

    Behind the scenes, highly sophisticated electronics and software control every move these robots make.

    А за кулисами всеми перемещениями робота управляют сложные электронные устройства и компьютерные программы.

    Throughout industry today we see a major shift of ‘intelligence’ to lower levels in the automation system hierarchy, leading to a demand for more communication within the system.

    Во всех отраслях промышленности сегодня наблюдается интенсивный перенос "интеллекта" на нижние уровни иерархии автоматизированных систем, что требует дальнейшего развития внутрисистемных средств обмена.

    ‘Smart’ transmitters, with powerful microprocessors, memory chips and special software, carry out vital operations close to the processes they are monitoring.

    "Интеллектуальные" датчики, снабженные высокопроизводительными микропроцессорами, мощными чипами памяти и специальным программно-математическим обеспечением, выполняют особо ответственные операции в непосредственной близости от контролируемых процессов.

    And they capture and store data crucial for remote diagnostics and maintenance.

    Они же обеспечивают возможность измерения и регистрации информации, крайне необходимой для дистанционной диагностики и дистанционного обслуживания техники.

    The communication highway linking such systems is provided by fieldbuses.

    В качестве коммуникационных магистралей, связывающих такого рода системы, служат промышленные шины fieldbus.

    In an ideal world there would be no more than a few, preferably just one, fieldbus standard.

    В идеале на промышленные шины должно было бы существовать небольшое количество, а лучше всего вообще только один стандарт.

    However, there are still too many of them, so ABB has developed ‘fieldbus plugs’ that, with the help of translation, enable devices to communicate across different standards.

    К сожалению, на деле количество их типов продолжает оставаться слишком разнообразным. Ввиду этой особенности рынка промышленных шин компанией АББ разработаны "штепсельные разъемы", которые с помощью средств преобразования обеспечивают общение различных устройств вопреки границам, возникшим из-за различий в стандартах.

    This makes life easier as well as less costly for our customers. Every automation system is dependent on an electrical network for distributing – and interrupting, when necessary – the power needed to carry out its various functions.

    Это, безусловно, не только облегчает, но и удешевляет жизнь нашим заказчикам. Ни одна система автоматики не может работать без сети, обеспечивающей подачу, а при необходимости и отключение напряжения, необходимого для выполнения автоматикой своих задач.

    Here, too, we see a clear trend toward more intelligence and communication, for example in traditional electromechanical devices such as contactors and switches.

    И здесь наблюдаются отчетливо выраженные тенденции к повышению уровня интеллектуальности и расширению возможностей связи, например, в таких традиционных электромеханических устройствах, как контакторы и выключатели.

    We are pleased to see that our R&D efforts in these areas over the past few years are bearing fruit.

    Мы с удовлетворением отмечаем, что научно-исследовательские разработки, выполненные нами за последние годы в названных областях, начинают приносить свои плоды.

    Recently, we have seen a strong increase in the use of wireless technology in industry.

    В последнее время на промышленных предприятиях наблюдается резкое расширение применения техники беспроводной связи.

    This is a key R&D area at ABB, and several prototype applications have already been developed.

    В компании АББ эта область также относится к числу одной из ключевых тем научно-исследовательских разработок, результатом которых стало создание ряда опытных образцов изделий практического направления.

    At the international Bluetooth Conference in Amsterdam in June 2002, we presented a truly ‘wire-less’ proximity sensor – with even a wireless power supply.

    На международной конференции по системам Bluetooth, состоявшейся в Амстердаме в июне 2002 г., наши специалисты выступили с докладом о поистине "беспроводном" датчике ближней локации, снабженном опять-таки "беспроводным" источником питания.

    This was its second major showing after the launch at the Hanover Fair.

    На столь крупном мероприятии это устройство демонстрировалось во второй раз после своего первого показа на Ганноверской торгово-промышленной ярмарке.

    Advances in microelectronic device technology are also having a profound impact on the power electronics systems around which modern drive systems are built.

    Достижения в области микроэлектроники оказывают также глубокое влияние на системы силовой электроники, лежащие в основе современных приводных устройств.

    The ABB drive family ACS 800 is visible proof of this.

    Наглядным тому доказательством может служить линейка блоков регулирования частоты вращения электродвигателей ACS-800, производство которой начато компанией АББ.

    Combining advanced trench gate IGBT technology with efficient cooling and innovative design, this drive – for motors rated from 1.1 to 500 kW – has a footprint for some power ranges which is six times smaller than competing systems.

    Предназначены они для двигателей мощностью от 1,1 до 500 кВт. В блоках применена новейшая разновидность приборов - биполярные транзисторы с изолированным желобковым затвором (trench gate IGBT) в сочетании с новыми конструктивными решениями, благодаря чему в отдельных диапазонах мощностей габариты блоков удалось снизить по сравнению с конкурирующими изделиями в шесть раз.

    To get the maximum benefit out of this innovative drive solution we have also developed a new permanent magnet motor.

    Стремясь с максимальной пользой использовать новые блоки регулирования, мы параллельно с ними разработали новый двигатель с постоянными магнитами.

    It uses neodymium iron boron, a magnetic material which is more powerful at room temperature than any other known today.

    В нем применен новый магнитный материал на основе неодима, железа и бора, характеристики которого при комнатной температуре на сегодняшний день не имеют себе равных.

    The combination of new drive and new motor reduces losses by as much as 30%, lowering energy costs and improving sustainability – both urgently necessary – at the same time.

    Совместное использование нового блока регулирования частоты вращения с новым двигателем снижает потери мощности до 30 %, что позволяет решить сразу две исключительно актуальные задачи:
    сократить затраты на электроэнергию и повысить уровень безотказности.

    These innovations are utilized most fully, and yield the maximum benefit, when integrated by means of our Industrial IT architecture.

    Потенциал перечисленных выше новых разработок используется в наиболее полной степени, а сами они приносят максимальную выгоду, если их интеграция осуществлена на основе нашей архитектуры IndustrialIT.

    Industrial IT is a unique platform for exploiting the full potential of information technology in industrial applications.

    IndustrialIT представляет собой уникальную платформу, позволяющую в максимальной степени использовать возможности информационных технологий применительно к задачам промышленности.

    Consequently, our new products and technologies are Industrial IT Enabled, meaning that they can be integrated in the Industrial IT architecture in a ‘plug and produce’ manner.

    Именно поэтому все наши новые изделия и технологии выпускаются в варианте, совместимом с архитектурой IndustrialIT, что означает их способность к интеграции с этой архитектурой по принципу "подключи и производи".

    We are excited to present in this issue of ABB Review some of our R&D work and a selection of achievements in such a vital area of our business as Automation.

    Мы рады представить в настоящем номере "АББ ревю" некоторые из наших научно-исследовательских разработок и достижений в такой жизненно важной для нашего бизнеса области, как автоматика.

    R&D investment in our corporate technology programs is the foundation on which our product and system innovation is built.

    Вклад наших разработок в общекорпоративные технологические программы группы АББ служит основой для реализации новых технических решений в создаваемых нами устройствах и системах.

    Examples abound in the areas of control engineering, MEMS, wireless communication, materials – and, last but not least, software technologies. Enjoy reading about them.
    [ABB Review]

    Это подтверждается многочисленными примерами из области техники управления, микроэлектромеханических систем, ближней радиосвязи, материаловедения и не в последнюю очередь программотехники. Хотелось бы пожелать читателю получить удовольствие от чтения этих материалов.
    [Перевод Интент]


    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > automation technologies

  • 17 time

    1) время; период времени
    2) момент времени || отмечать время
    3) хронометрировать; рассчитывать по времени
    4) синхронизировать; согласовывать во времени
    - access time
    - accumulated operating time
    - action time
    - activity slack time
    - actual activity completion time
    - actual time
    - actuation time
    - addition time
    - add time
    - add-subtract time
    - arrival time
    - assembly time
    - attended time
    - available machine time
    - average operation time
    - awaiting-repair time
    - binding time
    - bit time
    - build-up time
    - calculating time
    - carry-over time
    - carry time
    - chip-access delay time
    - circuit time
    - clear-write time
    - coding time
    - compile time
    - computation time
    - computer dead time
    - computer time
    - computer useful time
    - computing time
    - connect time
    - control time
    - crash time
    - crisis time
    - cycle time
    - data time
    - data-retention time
    - dead time
    - debatable time
    - debugging time
    - debug time
    - decay time
    - deceleration time
    - delay time
    - design time
    - destination time
    - development time
    - digit time
    - discrete time
    - divide time
    - down time
    - earliest expected time
    - effective time
    - engineering time
    - entry time
    - error-free running time
    - estimated time
    - event scheduled completion time
    - event slack time
    - event time
    - execution cycle time
    - execution time
    - expected activity time
    - fall time
    - fault correction time
    - fault location time
    - fault time
    - fetch time
    - float time
    - form movement time
    - forward-current rise time
    - gate time
    - good time
    - guard time
    - handshaking time
    - holding time
    - hold time
    - idle time
    - improvement time
    - incidental time
    - ineffective time
    - inoperable time
    - installation time
    - instruction time
    - integrator time
    - interaction time
    - interarrival time
    - interrogation time
    - latency time
    - latest allowable event time
    - load time
    - lock-grant time
    - lock-holding time
    - logarithmic time
    - machine available time
    - machine spoiled work time
    - machine spoiled time
    - machine time
    - maintenance time
    - makeup time
    - manual time
    - mean error-free time
    - mean repair time
    - mean time between errors
    - mean time between failures
    - mean time to repair
    - memory cycle time
    - miscellaneous time
    - mission time
    - most likely time
    - multiply time
    - no-charge machine fault time
    - no-charge non-machine-fault time
    - no-charge time
    - nonfailure operating time
    - nonreal time
    - nonscheduled down time
    - nonscheduled maintenance time
    - object time
    - occurrence time
    - off time
    - on time
    - one-pulse time
    - operating time
    - operation time
    - operation-use time
    - optimistic time
    - out-of-service time
    - peaking time
    - peak time
    - pessimistic time
    - polynomial time
    - pool time
    - positioning time
    - power up time
    - pre-assembly time
    - precedence waiting time
    - preset time
    - preventive maintenance time
    - print interlock time
    - problem time
    - processing time
    - process time
    - processor cycle time
    - production time
    - productive time
    - program execution time
    - program fetch time
    - program testing time
    - progration time
    - propagation delay time
    - proving time
    - pulse time
    - punch start time
    - read time
    - reading access time
    - readout time
    - read-restore time
    - real time
    - record check time
    - recovery time
    - reference time
    - refresh time
    - reimbursed time
    - repair delay time
    - repair time
    - representative computing time
    - request-response time
    - resetting time
    - resolution time
    - resolving time
    - response time
    - restoration time
    - restoring time
    - retrieval time
    - reversal time
    - reverse-current fall time
    - rewind time
    - rise time
    - round-trip time
    - routine maintenance time
    - sampling time
    - scaled real time
    - scheduled time
    - schedule time
    - scheduled down time
    - scheduled operating time
    - scramble time
    - screen storage time
    - search time
    - seek time
    - send-receive-forward time
    - sensitive time
    - service time
    - serviceable time
    - setting time
    - settling time
    - setup time
    - simulated time
    - s-n transition time
    - standby time
    - starting time
    - start time
    - start-up time
    - stop time
    - storage cycle time
    - storage time
    - subtraction time
    - subtract time
    - superconducting-normal transition time
    - supplementary maintenance time
    - swap time
    - switch delay time
    - switch time
    - switching time
    - system time
    - takedown time
    - task time
    - testing time
    - throughput time
    - time between failures
    - time for motion to start
    - time now
    - total time
    - track-to-track move time
    - transfer time
    - transit time
    - transition time
    - translating time
    - true time
    - turnaround time
    - turnoff time
    - turnon time
    - turnover time
    - unacked time
    - unattended standby time
    - unattended time
    - unavailable time
    - unit time
    - unused time
    - up time
    - useful time
    - user time
    - variable dead time
    - waiting time
    - word time
    - word-addressing time
    - write time

    English-Russian dictionary of computer science and programming > time

  • 18 Oberth, Hermann Julius

    SUBJECT AREA: Aerospace
    [br]
    b. 25 June 1894 Nagyszeben, Transylvania (now Sibiu, Romania)
    d. 29 December 1989 Nuremberg, Germany
    [br]
    Austro-Hungarian lecturer who is usually regarded, with Robert Goddard, as one of the "fathers" of modern astronautics.
    [br]
    The son of a physician, Oberth originally studied medicine in Munich, but his education was interrupted by the First World War and service in the Austro-Hungarian Army. Wounded, he passed the time by studying astronautics. He apparently simulated weightlessness and worked out the design for a long-range liquid-propelled rocket, but his ideas were rejected by the War Office; after the war he submitted them as a dissertation for a PhD at Heidelberg University, but this was also rejected. Consequently, in 1923, whilst still an unknown mathematics teacher, he published his ideas at his own expense in the book The Rocket into Interplanetary Space. These included a description of how rockets could achieve a sufficient velocity to escape the gravitational field of the earth. As a result he gained international prestige almost overnight and learned of the work of Robert Goddard and Konstantin Tsiolkovsky. After correspondence with the Goddard and Tsiolkovsky, Oberth published a further work in 1929, The Road to Space Travel, in which he acknowledged the priority of Goddard's and Tsiolkovski's calculations relating to space travel; he went on to anticipate by more than thirty years the development of electric and ionic propulsion and to propose the use of giant mirrors to control the weather. For this he was awarded the annual Hirsch Prize of 10,000 francs. From 1925 to 1938 he taught at a college in Mediasch, Transylvania, where he carried out experiments with petroleum and liquid-air rockets. He then obtained a lecturing post at Vienna Technical University, moving two years later to Dresden University and becoming a German citizen. In 1941 he became assistant to the German rocket engineer Werner von Braun at the rocket development centre at Peenemünde, and in 1943 he began work on solid propellants. After the Second World War he spent a year in Switzerland as a consultant, then in 1950 he moved to Italy to develop solid-propellant anti-aircraft rockets for the Italian Navy. Five years later he moved to the USA to carry out advanced rocket research for the US Army at Huntsville, Alabama, and in 1958 he retired to Feucht, near Nuremberg, Germany, where he wrote his autobiography.
    [br]
    Principal Honours and Distinctions
    French Astronautical Society REP-Hirsch Prize 1929. German Society for Space Research Medal 1950. Diesel German Inventors Medal 1954. American Astronautical Society Award 1955. German Federal Republic Award 1961. Institute of Aviation and Astronautics Medal 1969.
    Bibliography
    1923, Die Rakete zu den Planetenraumen; repub. 1934 as The Rocket into Interplanetary Space (autobiography).
    1929, Wege zur Raumschiffahrt [Road to Space Travel].
    1959, Stoff und Leben [Material and Life].
    Further Reading
    R.Spangenburg and D.Moser, 1990, Space People from A to Z, New York: Facts on File. H.Wulforst, 1991, The Rocketmakers: The Dreamers who made Spaceflight a Reality, New York: Crown Publishers.
    KF / IMcN

    Biographical history of technology > Oberth, Hermann Julius

См. также в других словарях:

  • Design management — is the business side of design. Design managers need to speak the language of the business and the language of design …   Wikipedia

  • Design of a Decade 1986/1996 — Greatest hits album by Janet Jackson Released October 10, 1995 …   Wikipedia

  • Control (Janet Jackson album) — Control …   Wikipedia

  • Design 1047 battlecruiser — A plan and profile of Nevesbu s Project 1047; it is not specified if this depicts the final design.[1] Class overview Name …   Wikipedia

  • Control engineering — Control systems play a critical role in space flight Control engineering or Control systems engineering is the engineering discipline that applies control theory to design systems with predictable behaviors. The practice uses sensors to measure… …   Wikipedia

  • Control (Janet Jackson song) — Control Single by Janet Jackson from the album Control …   Wikipedia

  • Control (альбом) — Control …   Википедия

  • Design for Assembly — is a process by which products are designed with ease of assembly in mind. If a product contains fewer parts it will take less time to assemble, thereby reducing assembly costs. In addition, if the parts are provided with features which make it… …   Wikipedia

  • Design for assembly — (DFA) is a process by which products are designed with ease of assembly in mind. If a product contains fewer parts it will take less time to assemble, thereby reducing assembly costs. In addition, if the parts are provided with features which… …   Wikipedia

  • Control valves — are valves used to control conditions such as flow, pressure, temperature, and liquid level by fully or partially opening or closing in response to signals received from controllers that compare a setpoint to a process variable whose value is… …   Wikipedia

  • Design for Death — Directed by Richard Fleischer Produced by Sid Rogell Theron Warth Written by Theodor S. Geisel (Dr. Seuss) Helen Palmer …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»