Перевод: со всех языков на все языки

со всех языков на все языки

в+системе+измерения+времени

  • 41 dimension

    1. устанавливать размеры
    2. размерность физической величины
    3. размерность (величины)
    4. размерность (векторного пространства)
    5. размерность
    6. размер
    7. протяжённость (во времени)
    8. мн. габариты
    9. габариты (мн.)

     

    габариты (мн.)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    мн. габариты

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    протяжённость (во времени)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    размер
    Значение линейной, угловой или какой-либо другой величины в принятых единицах измерения
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    DE

    FR

     

    размерность

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    размерность (векторного пространства)

    [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]

    Тематики

    EN

     

    размерность (величины)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    размерность физической величины
    размерность величины

    Выражение в форме степенного одночлена, составленного из произведений символов основных физических величин в различных степенях и отражающее связь данной физической величины с физическими величинами, принятыми в данной системе величин за основные с коэффициентом пропорциональности, равным 1.
    Примечания
    1. Степени символов основных величин, входящих в одночлен, в зависимости от связи рассматриваемой физической величины с основными, могут быть целыми, дробными, положительными и отрицательными. Понятие размерность распространяется и на основные величины. Размерность основной величины в отношении самой себя равна единице, т.е. формула размерности основной величины совпадает с ее символом.
    2. В соответствии с международным стандартом ИСО 31/0, размерность величин следует обозначать знаком dim [2]. В системе величин LMT размерность величины.x будет: dim х = LlMmTt, где L, М, Т - символы, величин, принятых за основные (соответственно длины, массы, времени).
    [РМГ 29-99]

    EN

    dimension of a quantity
    quantity dimension
    dimension

    expression of the dependence of a quantity on the base quantities of a system of quantities as a product of powers of factors corresponding to the base quantities, omitting any numerical factor
    NOTE 1 – A power of a factor is the factor raised to an exponent. Each factor is the dimension of a base quantity.
    NOTE 2 – The conventional symbolic representation of the dimension of a base quantity is a single upper case letter in roman (upright) sans-serif type. The conventional symbolic representation of the dimension of a derived quantity is the product of powers of the dimensions of the base quantities according to the definition of the derived quantity. The dimension of a quantity Q is denoted by dim Q.
    NOTE 3 – In deriving the dimension of a quantity, no account is taken of its scalar, vector or tensor character.
    NOTE 4 – In a given system of quantities, – quantities of the same kind have the same dimension, – quantities of different dimensions are always of different kinds, and – quantities having the same dimension are not necessarily of the same kind. For example, in the ISQ, pressure and energy density (volumic energy) have the same dimension L–1MT–2. See also note 5.
    NOTE 5 – In the International System of Quantities (ISQ), the symbols representing the dimensions of the base quantities are:
    0543
    [IEV number 112-01-11]

    FR

    dimension, f
    dimension d'une grandeur, f

    expression de la dépendance d’une grandeur par rapport aux grandeurs de base d'un système de grandeurs sous la forme d'un produit de puissances de facteurs correspondant aux grandeurs de base, en omettant tout facteur numérique
    NOTE 1 – Une puissance d'un facteur est le facteur muni d'un exposant. Chaque facteur exprime la dimension d'une grandeur de base.
    NOTE 2 – Par convention, la représentation symbolique de la dimension d'une grandeur de base est une lettre majuscule unique en caractère romain (droit) sans empattement. Par convention, la représentation symbolique de la dimension d'une grandeur dérivée est le produit de puissances des dimensions des grandeurs de base conformément à la définition de la grandeur dérivée. La dimension de la grandeur Q est notée dim Q.
    NOTE 3 – Pour établir la dimension d'une grandeur, on ne tient pas compte du caractère scalaire, vectoriel ou tensoriel.
    NOTE 4 – Dans un système de grandeurs donné, – les grandeurs de même nature ont la même dimension, – des grandeurs de dimensions différentes sont toujours de nature différente, – des grandeurs ayant la même dimension ne sont pas nécessairement de même nature. Par exemple, dans l'ISQ, la pression et l'énergie volumique ont la même dimension L–1MT–2. Voir aussi la note 5.
    NOTE 5 – Dans le Système international de grandeurs (ISQ), les symboles représentant les dimensions des grandeurs de base sont:
    0544
    [IEV number 112-01-11]

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    • dimension d'une grandeur, f
    • dimension, f

     

    устанавливать размеры
    задавать размеры


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > dimension

  • 42 system

    2. установка, устройство
    3. геол. формация
    4. план, расположение

    acoustic back-up communications system — вспомогательная акустическая система связи (в системе управления подводным устьевым оборудованием)

    adaptive data recording system — самонастраивающаяся система регистрации данных (измерения параметров ветра, течений, волн и т. п.) на плавучей буровой платформе для определения её реакции на внешние воздействия

    BOP moonpool guidance system — направляющее устройство блока превенторов в буровой шахте бурового судна (служащее для спуска блока через буровую шахту без раскачивания)

    bulk products weighting system — система измерения массы порошкообразных материалов (системы пневмотранспорта барита, бентонита, цемента)

    drilling information monitoring system — система сбора информации о бурении, система контроля параметров процесса бурения

    dual BOP stack system — двухблочная система, состоящая из двух блоков превенторов и двух водоотделяющих колонн

    emergency acoustic closing system — аварийная акустическая система закрытия (подводных противовыбросовых превенторов)

    flexible bottom coring system — система бурения с отбором донного керна с использованием шлангокабеля (при геологоразведочных работах на море)

    hydraulic fluid make-up system — система приготовления рабочей жидкости гидросистемы (для управления подводным оборудованием)

    hydroacoustic position reference system — гидроакустическая система определения местоположения, гидроакустическая система ориентации

    integral ( marine) riser system — система составной водоотделяющей колонны (секции которой изготовлены как одно целое с линиями глушения скважины и штуцерной)

    multiwire electrohydraulic control system — электрогидравлическая система управления (подводным устьевым оборудованием)

    PCT offshore test system — морская система опробования испытателем пласта, который управляется давлением (бурового раствора в затрубном пространстве)

    rack and pinion type jacking system — подъёмное устройство реечно-шестерённого типа (на самоподнимающейся платформе)

    remote data acquisition and control system — система дистанционного сбора данных, контроля и управления

    single stack and single riser drilling system — система для бурения с одним блоком превенторов и одной водоотделяющей колонной

    submudline type completion system — система заканчивания морских скважин на твёрдом дне (с донной плитой, заглублённой в илистый грунт)

    underwater guide line system — система подводных направляющих канатов (связывающих подводное устье скважины с буровым судном или плавучим полупогружным буровым основанием и предназначенных для ориентированного спуска по ним оборудования и инструментов к подводному устью)


    * * *
    2. агрегат; устройство; устройство
    3. совокупность; семейство Ф

    acoustic back-up communication system — вспомогательная акустическая система связи (в системе управления подводным устьевым оборудованием)

    blowout preventer cart system — тележка для перемещения блока противовыбросовых превенторов на буровом судне или плавучей буровой платформе (с целью подачи его к центру буровой шахты)

    blowout preventer moonpool guidance system — направляющее устройство блока противовыбросовых превенторов в буровой шахте бурового судна (для спуска блока через буровую шахту без раскачивания)

    cavity-filling water spray system — система орошения с насадками, установленными на трубках, смонтированных на корпусе шнекового исполнительного органа

    drilling information monitoring system — система сбора информации о бурении, система контроля параметров процесса бурения

    dual blowout preventer stack system — двухблочная система, состоящая из двух блоков противовыбросовых превенторов и двух водоотделяющих колонн

    electrohydraulic control system with different frequencies of pilot signals — электрогидравлическая система управления с разночастотными управляющими сигналами

    electronic multiplex control system — электронная многофункциональная система управления (противовыбросовым оборудованием)

    emergency acoustic closing system — аварийная акустическая система закрытия (подводных противовыбросовых превенторов)

    flexible bottom coring system — система бурения с отбором донного керна с использованием шлангокабеля (при геологоразведок них работах на море)

    hydraulic drill-pipe pick-up system — устройство с гидроприводом для подачи бурильных труб с козлов к устью скважины

    hydraulic fluid make-up system — система приготовления рабочей жидкости гидросистемы (для управления подводным оборудованием)

    hydraulic rotary head slide-out system — устройство с гидроприводом для отвода подвижного шпинделя в сторону от устья скважины

    integral marine riser system — система составной водоотделяющей колонны (секции которой изготовлены как одно целое с линией глушения скважины и штуцерной линией)

    integrated pile alignment system — устройство для центровки свай, размещаемое на свае

    plain-type liner hanger system — простая подвеска колонны эксплуатационных труб (когда не требуется герметизация между подвеской и обсадными трубами)

    rack and pinion type jacking system — подъёмное устройство реечношестерённого типа (на самоподнимающейся платформе)

    single stack and single riser drilling system — система для бурения с одним блоком противовыбросовых превенторов и одной водоотделяющей колонной

    system with component replacement — система с возможностью замены элементов;

    underwater guide line system — система подводных направляющих канатов (связывающих подводное устье скважины с буровым судном или плавучим полупогружным буровым основанием и предназначенных для ориентированного спуска по ним оборудования и инструментов к подводному устью)


    * * *
    система; план, расположение

    * * *
    - Dynamic Well Control System
    - National Standard Reference Data System
    * * *

    Англо-русский словарь нефтегазовой промышленности > system

  • 43 автомат


    automatic control unit
    отдельное автоматическое устройство)
    - (узел автоматического устройства)automatic control
    -, антиюзовый (система) — anti-skid control
    - времени пуска (авп)timer
    - выработки топлива (из групп баков)fuel flow proportioner
    - выравнивания топлива (в группах баков)fuel equalizer
    - давленияpressure control (unit)
    - давления гермокабины (регулятор) — cabin pressure controller /regulator/
    - давления (противоперегрузочного костюма)anti-g valve
    - демпфирования колебаний рыскания по курсуyaw damper (system)
    - дозировки топлива (адт) — fuel-flow regulator (ffr), fuel control unit (fcu)
    -, загрузочный пружинный — (load) feel spring (mechanism), artificial feel bungee
    - заправки (аз системы суит)automatic fueling control
    управление клапанами заправки и магистральными клапанами.
    - запуска двигателяautostart control (unit)
    - запуска, топливный — starting fuel control
    - запуска, топливный (таз) — idling speed governor
    для дозирования топлива при автоматическом запуске двигателя с выходом на режим малого газа. — fuel for ground starting (and idling) is regulated by an idling speed governor.
    - захода на посадку (азп)auto approach system
    - защиты сети (азс)circuit breaker (cb)
    устройство, служащее для автоматического размыкания электроцепи при наличии в ней тока, превышающего заданную величину. — an automatic device which, under abnormal conditions, will open a current-carrying circuit without damaging itself (unlike a fuse).
    - защиты сети без свободного расцепления (азс)circuit breaker
    - защиты сети двойного действия, кнопочный — push-pull type circuit breaker
    - защиты сети, кнопочный — push-type circuit breaker
    - защиты сети от перенапряжения (азп) — overvoltage relay unit, overvoltage protection unit
    - защиты сети от повышенной частотыoverfrequency relay
    - защиты сети от пониженной частотыunderfrequency relay
    - защиты сети, рычажный — switch-type circuit breaker
    - защиты сети свободного расцепления (азр)trip-free type circuit breaker
    - защиты сети выбит (выключился)circuit breaker tripped off
    - контроля (ак)automatic monitor
    для оценки работы системы по принципу"выше-годенниже"
    - критических режимов (ауасп) — angle-of-attack, slip and acceleration indicating/warning system
    - курса (ак, автопилота) свободный з-х степенной гироскоп с горизонтальной осью гиромотора и потенциометром курса. — directional gyro (dg) dg is a free two-degree-offreedom gyro with a horizontal gyromotor spin axis, and azimuth potentiometer.
    -, легочный (кислородный) — demand-type oxygen regulator
    - обогрева стекол (аос)automatic windshield heat control unit
    регулятор электрообогрева лобовых стекол кабины экипажа для предотвращения их обледенения и запотевания. — that portion of the system which is used to eliminate or prevent the formation of ice, frost or rain on windows and windshields.
    - опережения зажигания (магнето)automatic breaker advance mechanism
    - перезарядки (оружия)(automatic) gun recharger
    - переключения потребитепей (aпп)load monitor relay (lmr)
    - перекпючения преобразователей (апп)inverter monitor relay (imr)
    - переключения шин (апш)bus tie relay (btr)
    - перекосаswash plate assembly
    механизм несущего винта вертолета, предназначенный для циклического изменения угла установки лопастей несущего винта (рис.42). — the mechanism in the main rotor head designed for cyclic change of the main rotor blades setting in azimuth.
    - перекоса кольцевого типаswash plate assembly
    - перекоса типа "паук" — hub spider
    - перестановки стабилизатора (апс) — horizontal stabilizer automatic longitudinal trimming control unit, horizontal stabilizer automatic trim control unit
    - подогрева топлива(automatic) fuel temperature control
    - подсоса воздуха (кислородного прибора)oxygen (regulator) diluter
    - поиска записи программы (магнитофона)automatic program locate device (apld)
    - приемистостиacceleration control unit (acu)
    устройство, автоматически регулирующее подачу топлива в гтд в процессе его разгона для обеспечения, независимо от темпа перемещения руд, хорошей приемистости двигателя. — the unit preventing excessive overfueling with possible subsequent surging when the throttle is advanced rapidly.
    -, противоюзовый (датчик) — skid detector
    - разгона (насоса-регулятора)acceleration control
    - разгрузки (гидронасоса) — automatic by-pass /relief/ valve
    автоматическое устройство (клапан) перепуска рабочей жидкости с выхода насоса в зону низкого давления при достижении в линии нагнетания заданного давления. — the automatic relief valve will offload hydraulic pump when system pressure reaches predetermined maximum, and direct pump output to the system when the system pressure falls to predetermined value.
    - раскрытия парашюта (временной) — parachute timer, time release mechanism, parachute actuator
    - раскрытия парашюта, барометрический — barometric release (mechanism)
    для раскрытия парашюта на заданной высоте. — designed to release the parachute at the predetermined altitude.
    - раскрытия привязных ремнейharness time release mechanism
    - расхода (автоматическая система управления перекачкой топлива)fuel management system (fuel mngm)
    - расхода (ap часть системы суит)automatic fuel management control
    - расхода топлива (из групп баков)fuel flow proportioner
    - регулирования загрузки (арз, в системе управления) — feel unit, load feel unit
    - регулирования загрузки ручки управленияcontrol stick load feel unit
    - регулирования температуры масла (маслорадиатора)auto oil temperature control (unit)
    - регулирования усилий (ару, загрузочный механизм) — feel unit, load feel unit
    - регулирования усилий (ару, по передаточным числам) — (automatic) gain control (agс)
    - регулирования усилий по скоростному напору, пружинный — q-spring feel unit
    - согласования (ас, курсовой системы) — synchronizer, slaving mechanism
    - степени повышения давления двигателем (в насосерегуляторе) — engine pressure ratio control unit, epr control unit
    - температуры топлива(automatic) fuel temperature control
    - торможенияanti-skid control
    - тряски штурвала (при сигнализации режима сваливания)stick shaker
    - тягиautothrottle
    - углов атаки и перегрузок (система ауасп) для измерения, индикации и сигнализации, местных текущих и критических углов атаки, вертикальных перегрузок (nу) и выдачи соответствующих сигналов. — angle of attack and acceleration indicating/warning system used for output and display of present angle of attack, vertical acceleration (load factor) signals.
    - усилий (в системе управления ла) — (artificial) feel unit, load feel unit
    - усилий по числу м и скоростному напору — mach/q-feel unit
    - форсажной тяги регулятор форсажного топлива — afterburner fuel control unit the unit determines the total fuel delivery to the afterburner burner assembly.
    - центровки топлива (ацт) (в группах баков)fuel equalizer
    - центровки топлива (суит, система управления и измерения топлива) — fuel management and indicating system
    включать азсclose the circuit breaker
    включать азс после отключенияreset the circuit breaker
    выбивать азсtrip circuit breaker off
    выключать азсopen the circuit breaker
    защищать цепь с помощью азс — protect the circuit by the circuit breaker

    Русско-английский сборник авиационно-технических терминов > автомат

  • 44 датчик


    transmitter, sensor, pickup,

    pick-off, transducer
    первичный механизм, воспринимающий измеряемую величину в той или иной форме, чаще всего механичеекой, и передающий эту величину указателю в виде электрических импульсов. — а device used for generation of signals of any type and form which are to be transmitted.
    - (преобразователь)transducer
    устройство, служащее для преобразования сигнала или физической величины одного вида в соответствующую физическую величину др. вида, — а device used for converting а signal or physical quantity of one kind into a corresponding physical quantity of another kind.
    - (общий термин для датчиков сельсинов и скт)control transmitter
    - автомата торможения (рис. 32) — skid detector
    - автоматики (топливомера)level switch
    - акселерометра (акселерометер)accelerometer
    -, аналоговый — analog sensor
    -, антиюзовый — skid detector
    - аэродинамических углов (дау) — airflow-angle sensor, airflowdirection sensor
    -, барометрический (типа kb-11) — pressure altitude sensor
    - барометрической высоты (системы мсрп)(pressure) altitude sensor
    -, безконтактный — contactless sensor
    - ветраwind unit
    - вибрацииvibration pickup
    - вибрации (вибрационный), вертикальный — vertical vibration pickup
    - вибрации (вибрационный), горизонтальный — horizontal vibration pickup
    - вибрации двигателяengine vibration pickup
    - вибрации, магнитный — magnetic vibration pickup
    -, вибрационный — vibration pickup
    - водности (системы сигнализации обледенения)water-content sensor
    - воздушной скорости (двс)airspeed transmitter (sensor)
    двс предназначен для измерения воздушной скорости и выдачи соответствующего сигнала в систему автоматического управления полетом, — the purpose of the airspeed transmitter is to sense airspeed and provide a signal representing the sensed airspeed to an automatic flight control system for continuous gain changing.
    - воздушных параметров (систем мсрп)air data sensor (ads)
    - воздушных сигналовair data sensor
    двс преобразует величины полного и статического давлений в электрические сигналы для работы системы в режимах высота, ивс и верт. скорость — ads converts pitot and static pressure to electrical signals for alt, ias, and vs modes
    - воздушной коррекцииaltitude transmitter
    двк служит для измерения статического давления и выдачи соответствующих эл. сигналов с потенциометра — the altitude transmitter senses static pressure (altitude) and provides appropriate potentiometer output signals.
    - высоты (дискретный, пороговый) — altitude switch
    прибор, в котором происходит замыкание или размыкадатчик — an instrument in which electrical contacts are made or
    ние контактов при достижении заданной высоты — broken at а predetermined height.
    - высоты (пропорциональный)altitude transmitter
    - давленияpressure transmitter
    датчик, выдающий электрический сигнал пропорциональный измеряемому давлению, — а transducer for providing an electrical signal proportional to the pressure to be measured.
    - давления, индуктивный — induction pressure transmitter
    - давления, манометрический — pressure transmitter,
    - давления маслаoil pressure transmitter
    - давления, приемный (сигнализатора обледенения) — pressure sensing probe
    - давления, пьезоэлектрический — piezoelectric pressure transmitter
    - давления топливаfuel pressure transmitter
    - давления топлива перед насосом-регуляторомfcu inlet fuel pressure transmitter
    - давления, эталонный (сигнализатора обледения) — reference pressure probe
    -, дифференциальный — differential transmitter
    - замыкающего скачка уплотненияterminal shock sensor
    - заправки (топливных) кессоновfuel quantity transmitter
    - изменения высоты (высотный корректор автопилота)altitude controller
    - измерителя крутящего момента (икм)torque pressure transmitter
    -, индуктивный (манометра) — induction pressure transmitter
    - индукционного манометраinduction pressure transmitter
    -, индукционный (ид, из комплекта гидроиндукционного компаса) ид выдает эл. сигнал пропорциональный вепичине магнитного поля земли, действующего вдоль оси датчика. — flux-gate (detector) /valve/ flux-gate detector gives the electrical signal proportional to the intensity of the external magnetic field acting along its axis.
    -, индукционный (сельсин-датчик) — linear synchro transmitter
    -, инерциальный (противоюзовый) — (inertial) skid detector
    срабатывает при определенной угловой скорости вращения тормозного колеса.
    - интенсивности обледенения (до)icing rate detector
    - истинной воздушной скоростиtrue airspeed transmitter (ias xmtr)
    - компенсирующего момента (датчика линейных ускорений) — acceleration sensor/accelerometer/torquer
    -, контактный — contact pick-off
    датчик, в котором относительное перемещение (подвижного элемента) замыкает или разрывает электрическую цепь. — а pick-off in which relative displacement makes and/or breaks an electric circuit.
    - крена (сельсин)roll (signal) transmitting synchro
    - крена, кренов (дк, автопилота для выдачи сигналов крена и тангажа) — vertical gyro (vg)
    - крена, гироскопический — roll gyro
    - крена гировертикали — vertical gyro roll pick-up, roll pick-up of remote vertical gyro
    - крена и тангажа (гироплатформы)pitch and roll gyro
    - крена и тангажа (курсовертикали)vertical gyro (vg)
    - критических углов атакиstall sensor
    - курса (гироплатформы)azimuth gyro
    - курса (курсовертикали)directional gyro
    - курсового угла гироплатфомыstable platform azimuth gyro
    - курсовых углов (дку, астрокомпаса) — star tracker unit
    - линейных ускорений (дпу) — linear acceleration sensor, linear accelerometer
    - магнитного курса (индукционный, ид) — flux gate detector
    -, магнитный (в системе дгмк) " — magnetic detector
    - мановакууметра (пд)manifold pressure transmitter
    - манометраpressure(gage)transmitter
    - манометра маслаoil pressure transmitter
    - манометра топливаfuel pressure transmitter
    - масломера (в баке) — oil quantity/level/transmitter
    - мгновенного расходомера — rate-of-flow transmitter/metering unit/
    - (сигнализатор) минимального давления маслаminimum oil pressure switch
    - момента акселерометраaccelerometer torquer
    (дмаx, дмау, дмаz - относительно соответствующих осей) — the torquer coils restore the pendulum to null.
    - момента (моментов) гироскопаgyro torquer
    (дмwх, дмwу относительно соответствующих осей) — electromagnetic torquer is provided so that а calibrated torque can be applied to the gyro wheel at the known rate.
    -, моментный (гироскопа) — qyro torquer
    -, моментный (датчик компенсирующего момента датчика линейных ускорений) — acceleration sensor/accelerometer/torquer
    - моментов, момента, моментный (в сельсинной передаче) — torque transmitter. control transmitters are often made identical to torque transmitters.
    - обледенения (до)ice detector
    - обнаружения пожараfire detector
    - оборотов (регулятор)speed governor
    - оборотов (тахометра)tachometer generator
    - оборотов (чувствительный элемент регулятора)speed sensor
    - оборотов колесаwheel speed transducer
    - обратной связи (дос)feedback (position) transducer
    - (поворота) оси крена (гироплатформы)roll-axis pickout
    - (поворота) оси курса (гироплатформы)azimuth-axis pickoff
    - (поворота) оси тангажа (гироплатформы)pitch-axis pickoff
    - отклонения от заданной скорости (в указателе скорости)speed deviation transmitter (in airspeed indicator)
    - отклонение руля (поверхно сти управления) (дор)control surface position transmitter
    - отклонения руля, сельсинный — control surface position synchro
    - относительного направления воздушного потокаairflow-direction sensor
    - отношения давленийpressure ratio transmitter
    - отрицательного крутящего моментаnegative torque pickup
    - отрицательной тяги (твд)propeller-drag pickup
    - перегрева (двигателя) (дп). срабатывает при повышении температуры во внутренней полости двигателя до 550ё150 ос. — engine overheat detector (ovht det)
    - перегрева (сигнализатор пожара)fire detector
    - перегрева (термосигнализатор)thermal switch
    - перегрева, термопарный (дп) — thermocouple-type overheat detector
    - перегрузок — acceleration sensor, accelerometer
    - перегрузок (системы мсрп)acceleration sensor
    - переменной индуктивности, безконтактный — contactless variable inductance (type) sensor
    - перемещений (дп)position transmitter
    - поворотаrate-of-trun sensor
    гироскопический датчик сигналов на указатель поворота командного прибора директорного управления. — а gyro-operated device that puts out electrical signals to operate the rate-of-turn indicator of the fd indicator.
    - поворота оси крена (курса, тангажа) (гироплатформы) — roll (azimuth, pitch) - axis pickoff
    - пожарной сигнализации (дпс)fire detector
    -, потенциометрической (потенциометр) — potentiometer
    -, потенциометрический — potentiometer transmitter/pickoff/
    датчик, в котором перемещение его двух элементов изменяет расстояние между ползунком и неподвижным выводом потенциометра, находящегося под током. — а pick-off in which relative displacement of its two components varies the distance between а sliding contact and fixed tapping point on a potentiometer energized by an applied voltage.
    - предельных оборотовtop speed transmitter
    - (-) преобразовательtransducer
    - приборной скорости (системы мсрп)ias sensor
    - приведенных оборотовengine speed sensing unit
    - противопожарный (дп)fire detector
    -, пьезоэлектрический — piezoelectric/ceramic, crystal/ transducer
    - рамы: рамки (гироскопа) — gimbal pickoff
    - рассогласования (в следящей системе стабилизации гироплатформы) — error sensor. angle-measuring gyres are used as error sensors stabilization servo loops.
    - расходомера воздуха (урвк) — venturi/venturi/tube
    - расходомера топлива — fuel flow transmitter/metering unit/
    - режимов (др)throttle (valve) position transmitter
    датчик положения рычага насоса-регулятора.
    - рыскания (флюгерный)yaw vane
    -, сельсинный — synchro control transmitter (сх)
    сельсин, ротор которого поворачивается механически для выдачи эл. сигналов, соответствующих угловому попожению ротора. — а synchro, the rotor of which is mechanically positioned, for transmitting electrical information corresponding to angular positions of the rotor.
    -, сельсинный, дифференциальный — synchro control differential transmitter (cdx)
    обычно используется для выдачи сигналов на сельсины приемника (ckt). — normally used to supply control transformers or other control differential transmitters.
    - (-) сигнализатор времениtime switch
    -(-) сигнализатор с магнитоуправляемым, контактом (дмск, топливомера) — fuel quantity transmitter with magnet-operated level switch
    - (-) сигнализатор углов атаки (дсу) — contacting angle-of-attack transmitter /sensor/
    - (-) сигнализатор уровня (топпива)(fuel) level switch
    - сигнализатора льда (длс)ice detector
    - сигнализации положения (опоры) шассиlanding gear position transmitter
    - (синусно-косинусный трансформатор)resolver control transmitter (rx)

    resolver-type component (fourwire synehro) may be modified for service as fourwire transmitter (rx).
    системы сигнализации пожаpafire detector
    - скорости вращения турбиныturbine tachometer generator
    - скорости, доплеровской — doppler velocity sensor
    для выдачи сигналов путевой скорости и угла сноса — ground speed and drift angle are supplied from a doppler velocity sensor.
    - скорости и плотности (воздуха) (дсп)airspeed and density transmitter
    - ckt (синусно-косинусный трансформатор)resolver (type) control transmitter (rx)
    - суммирующего расходомера — total flow transmitter /metering unit/
    - t4 (температуры газов за турбиной) — egt/tgt/probe
    - тангажа (сельсин)pitch (signal) transmitting synchro
    - тангажа гировертикали — vertical gyro pitch pick-up, pitch pick-up of remote verti
    - тангажа, гироскопический — pitch gyro
    - тангажа и рыскания, флюгерный (на штанге в носовой части фюзеляжа) — probe with pitch and yaw vanes
    - тахометраtachometer generator
    - тахометрической аппаратуры, индукционный (дта) — (induction) speed transducer
    - температуры — temperature sensor /probe/
    - температуры (выходящих) газов за турбиной (термопарный) — turbine gas temperature (thermocouple-type) probe, tgt probe
    - температуры заторможенноro потока (температуры полного торможения)total temperature sensor
    - температуры наружного воздуха (типа п-5) — outside air temperature probe, oat probe
    - температуры полного торможения (возд. потока) — total temperature sensor /probe/
    - температуры торможения возд. потока (на входе в гтд) — (engine inlet) total /stagnation, ram/ temperature probe
    - термометра выходящих газов (термопарный)exhaust gas thermocouple (probe)
    - термометра сопротивленияtemperature bulb
    - топливомера — fuel quantity transmitter, tank unit
    - топливомера, емкостный — capacitance-type fuel quantity transmitter
    работает на принципе изменения своей электрической емкости в зависимости от уровня топлива в баке. — the capacitance-type fuel quantity transmitter is a tank unit which serves as a probe whose capacitance depends upon the fuel quantity.
    - топливомера, поплавковый — float-type fuel quantuty transmitter
    - топливомера e сигнализатором кровняfuel quantity transmitter with level switch
    - углаangle transducer
    служит для выдачи угловой информации в систему воздушных сигналов. — angle transducer transmits angle information to the airdata computer.
    - угла (синусно-косинусный трансформатор) — resolver (control transmitter), resolver's control transmitter
    - угла (w, v, y) — (w, v, y) angle pickoff, (azimuth pitch, roll) angle pickoff
    - угла акселерометра (дуаx, дуау, дуаz, относительно соответствующих осей) — accelerometer (pendulum) angle /rotation/ pickoff.
    - угла (углов) атаки (дуа) — angle of attack sensor /transmitter/, alpha sensor, airflow angle sensor
    датчик для замера угла набегающего потока относительно произвольной линии отсчета (местный угол атаки или скольжения) — the angle of attack trnasmitter is designed to measure angles of airflow with respect to an arbitrary reference line (local angle of attack or slideslip).
    - угла атаки (однофлюгерный) — angle of attack sensor, alpha sensor
    - угла атаки (флюгерный)angle-of-attack vane
    - угла атаки и приемник пвд, комбинированный — combined pitot-static-flow angle sensor
    - угла атаки и скольжения — angle of attack and slideslip sensor /transmitter/
    - угла атаки флюгерного типа — vane-driven angle of attack sensor /transmitter/
    - угла гироскопа (дуx, дуу, дуz по соответствующим — gyro (gimbal) angle pickoff /transducer/
    осям) — if the gyro case rotates the gimbal angles change and the pick off detects the rotation.

    the gimbal angles are measured by transducers.
    - yrлa гироскопа (типа скт)gyro (gimbal) angle resolver

    the gimbal angles are measured by transducers usually resolvers.
    - угла, гироскопический (крена, направления (курса), тангажа. общий термин) — displacement gyro
    - угла (поворота) инерционной массы (маятника) акселерометра — accelerometer pendulum angle/rotation/ pickoff the pickoff coils detect rotation (angle) of the pendulum from the null position.
    - угла карданной рамы гироскопа — gyro gimbal angle pickoff /transducer/
    - угла крена (гироскопа)roll gyro
    - угла крена (сельсин-датчик на оси крена агд-1)roll (signal) transmitting synchro
    - угла крена и тангажа (агд)vertical gyro
    - угла кренов (крена и танvertical gyro
    - угла курса (гироскопический)directional gyro
    в качестве д.у.к. применяется гироагрегат курсовертикали
    - угла маневра (сельсин-датчик системы курсовертикалиattitude change angle (signal) transmitting synchro
    - угла маневра (cкт-датчик инерциальной системы)attitude change angle resolver (control transmitter)
    - угла направления (курса) — directional gyro (dg), azimuth gyro
    - угла отклонения поверхности управления — control surface position /angle/ transmitter
    - угла (курса, крена, тангажа) поворота оси гироплатформы (синусно-косинусные трансформаторы скт) — (azimuth, roll, pitch) resolver (control transmitter)
    - угла рамы (рамки) гироскопа)gyro gimbal angle pickoff
    - угла тангажа (гироскопа)pitch gyro
    - угла тангажа (сельсин-датчик на оси тангажа агд-1)pitch (signal) transmitting synchro
    - угловой скорости (гироскопический, дус) — rate gyro/sensor/
    дус - двухстепенный гироскоп с ограниченной пружиной степенью свободы рамки таким образом, что отклонение оси вращения является величиной угловой скорости корпуса прибора. — rate gyro has one degree of freedom other than spinning one and so constrained that deflection of the spin axis relative to the case is the measure of angular velocity of the case.
    - угловой скорости крена — roll rate gyro /sensor/
    - угловой скорости крена и тангажа — pitch and roll rate gyro /sensor/
    - угловой скорости рыскания — yaw rate gyro /sensor/
    - угловой скорости тангажа — pitch rate gyro /sensor/
    - угловых перемещений — angular displacement transmitter, position transmitter
    - угловых положений поверхностей управления (рулей) — control surface position /angle/ transmitter
    - указателя оборотов (тахометра) — tachometer generator, rpm indicator generator
    - указателя положения закрылковflap position transmitter
    - указателя положения заслойки (клапана)valve position transmitter
    - указателя положения шассиlanding gear position transmitter
    - указателя положения элементов самолета (узп)position transmitter
    - уровня (жидкости в баке)fluid quantity transmitter
    - уровня масла в маслобакеoil quantity transmitter
    - уровня масла (в маслобаке для включения сигнальной лампы или табло)oil level switch
    - усилий (ду, в проводке управления) — control force sensor
    - усилий по крену (ду-к)roll control force sensor
    - усилий по тангажу (ду-т)pitch control force sensor
    - ускорений — acceleration sensor, accelerometer
    - усталостных трещинfatigue crack probe
    - флюгирования (возд. винта) по крутящему моменту — torque-actuated autofeather pickup /sensor/
    - флюгирования (возд. винта) по отрицательной тяге — drag-actuated /activated/ autofeather pickup /sensor/
    -, центробежный (противоюзовый, тормозного колеса) — (centrifugal) skid detector
    срабатывает при определенной угловой скорости вращения колеса.
    -, центробежный (датчика приведенных оборотов) — centrifugal flyweights assembly
    - часового расходомера — rate-of-flow transmitter /metering unit/
    - частоты вращения (дчв)tachometer generator
    - частоты вращения (числа оборотов) второго (ii) или первого (i) каскада компрессора — hp (or lp) rotor tachometer generator
    -, четырехобмоточный (типа скт) — four-wire transmitter (of resolver-type (rx))
    - числа оборотовtachometer generator
    -, электроемкостный (топливомера) — capacitance-type fuel quantity transmitter, capacitance-type fuel tank unit
    - юза (инерциальный) (рис. 32) — skid detector
    - a руд (датчик режимов) — throttle position transmitter

    Русско-английский сборник авиационно-технических терминов > датчик

  • 45 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 46 APS

    1. формирование диаграммы направленности антенны (F.BWA-REQ)
    2. система дуговой защиты
    3. развитое объемное и календарное планирование
    4. после первичного осаждения взвешенных частиц
    5. питание собственных нужд электростанции
    6. питание собственных нужд (электростанции)
    7. гарантированная платежная система
    8. вспомогательная система энергопитания
    9. времяпролётное устройство для измерения размера частиц и их концентраций до и после электрофильтра
    10. аналоговая система защиты
    11. Американское физическое общество
    12. аксиальный профиль энерговыделения
    13. автоматическое переключение на резерв
    14. автоматическое защитное переключение
    15. автоматическая система защиты
    16. аварийно-опасная ситуация

     

    Американское физическое общество

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    аварийно-опасная ситуация

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    автоматическая система защиты

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    автоматическое защитное переключение

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    автоматическое переключение на резерв
    (МСЭ-Т I.326, МСЭ-T G.709/ Y.1331, МСЭ-T G.803).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    аксиальный профиль энерговыделения
    (в активной зоне ядерного реактора)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    аналоговая система защиты
    (МСЭ-Т J.197).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    времяпролётное устройство для измерения размера частиц и их концентраций до и после электрофильтра
    (напр. в диапазоне 0,504-3,05 микрон)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    вспомогательная система энергопитания

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    гарантированная платежная система
    ГПС

    Соглашение в системе на условиях обмена на стоимость, в соответствии с которым завершение своевременного расчета по платежной инструкции обеспечивается безотзывным и безусловным обязательством третьей стороны (как правило, банка, синдиката банков или клиринговой палаты). См. также расчетная система на условиях обмена на стоимость.
    [Глоссарий терминов, используемых в платежных и расчетных системах. Комитет по платежным и расчетным системам Банка международных расчетов. Базель, Швейцария, март 2003 г.]

    Тематики

    Синонимы

    EN

     

    питание собственных нужд (электростанции)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    питание собственных нужд электростанции

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    после первичного осаждения взвешенных частиц
    (очистка сточных вод)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    развитое объемное и календарное планирование
    развитая система планирования
    Техники, которые работают с анализом и планированием логистики и производства в кратко-, средне- и долгосрочных периодах времени. Aps описывает любую компьютерную программу, которая применяет развитые математические алгоритмы или логику для выполнения оптимизации или моделирования календарного планирования ограниченных мощностей, снабжения, планирования капитальных вложений, планирования ресурсов, прогнозирования, управления спросом, и прочее. Эти техники одновременно рассматривают ряд ограничений и бизнес-правил, с тем чтобы обеспечить объемное и календарное планирование, поддержку принятия решений, возможности доступного для обещания количества и возможной для обещания мощности в режиме реального времени. Aps часто формирует и оценивает несколько сценариев. Руководство затем выбирает один из сценариев для его применения как «официальный план». Пятью основными компонентами систем aps являются планирование спроса, объемное планирование производства, календарное планирование производства, планирование распределения и планирование транспортировки.
    [ http://www.abc.org.ru/gloss.html]

    Тематики

    Синонимы

    EN

     

    система дуговой защиты
    (напр. ячеек комплектного распредустройства)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    формирование диаграммы направленности антенны (F.BWA-REQ)

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > APS

  • 47 CRP

    1. регулирование мощности ядерного реактора
    2. протоколы сети «Кембриджское кольцо»
    3. Проекты совместных исследований
    4. положение регулирующего стержня
    5. планирование потребности в производственных мощностях
    6. планирование потребности в мощностях

     

    Проекты совместных исследований
    (МАГАТЭ)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    планирование потребности в мощностях
    Функция определения, измерения и регулирования лимитов или уровней мощности. Термин планирование потребности в мощностях в данном контексте относится к процессу определения, в подробностях, количества трудовых и машинных ресурсов, требуемых для выполнения задач производства. Входными данными для crp являются открытые производственные заказы и плановые заказы в mrp-системе, которые, посредством использования технологических маршрутов деталей и норм времени транслируют эти заказы в часы работы рабочих центров по плановым периодам. Даже если укрупненное планирование потребности в мощностях может показывать наличие достаточной мощности для исполнения главного календарного плана производства, crp может показать, что мощность в определенные плановые периоды недостаточна.
    [ http://www.abc.org.ru/gloss.html]

    Тематики

    EN

     

    планирование потребности в производственных мощностях
    Функция планирования, предназначенная для определения, измерения и коррекции необходимых ограничений мощности или уровней мощности. Данный термин в MRP II относится к процессу детального определения количества труда и производственных ресурсов, необходимых для выполнения производственных задач. Открытые цеховые производственные задания и запланированные заказы системы MRP I (являются входными данными процесса CRP, который при помощи информации о маршрутизации деталей и данных о нормах времени (машин или рабочей силы) переводит эти заказы в необходимое рабочее время для каждого рабочего центра на каждый период планирования). И несмотря на то, что «черновое» планирование производственных мощностей (Rough-cut Capacity Planning - RCCP) уже могло показать, что существуют достаточные производственные мощности для выполнения объемно-календарного плана (Master Production Schedule - MPS), детальный анализ в рамках CRP может выявить их нехватку для некоторых периодов планирования, что может привести к необходимости изменения MPS.
    [ http://www.lexikon.ru/dict/uprav/index.html]

    Тематики

    EN

     

    положение регулирующего стержня
    (в активной зоне ядерного реактора)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    протоколы сети «Кембриджское кольцо»
    Усовершенствованные протоколы верхних уровней, поддерживающие станциями несколько диалогов, сквозной контроль ошибок по всем сегментам. Включающие протоколы базисных блоков ВВР (basic block protocol), потока байтов BSP (byte stream protocol), одиночных символов SCP (single character protocol).
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    регулирование мощности ядерного реактора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > CRP

  • 48 capacity requirements planning

    1. планирование потребности в производственных мощностях
    2. планирование потребности в мощностях

     

    планирование потребности в мощностях
    Функция определения, измерения и регулирования лимитов или уровней мощности. Термин планирование потребности в мощностях в данном контексте относится к процессу определения, в подробностях, количества трудовых и машинных ресурсов, требуемых для выполнения задач производства. Входными данными для crp являются открытые производственные заказы и плановые заказы в mrp-системе, которые, посредством использования технологических маршрутов деталей и норм времени транслируют эти заказы в часы работы рабочих центров по плановым периодам. Даже если укрупненное планирование потребности в мощностях может показывать наличие достаточной мощности для исполнения главного календарного плана производства, crp может показать, что мощность в определенные плановые периоды недостаточна.
    [ http://www.abc.org.ru/gloss.html]

    Тематики

    EN

     

    планирование потребности в производственных мощностях
    Функция планирования, предназначенная для определения, измерения и коррекции необходимых ограничений мощности или уровней мощности. Данный термин в MRP II относится к процессу детального определения количества труда и производственных ресурсов, необходимых для выполнения производственных задач. Открытые цеховые производственные задания и запланированные заказы системы MRP I (являются входными данными процесса CRP, который при помощи информации о маршрутизации деталей и данных о нормах времени (машин или рабочей силы) переводит эти заказы в необходимое рабочее время для каждого рабочего центра на каждый период планирования). И несмотря на то, что «черновое» планирование производственных мощностей (Rough-cut Capacity Planning - RCCP) уже могло показать, что существуют достаточные производственные мощности для выполнения объемно-календарного плана (Master Production Schedule - MPS), детальный анализ в рамках CRP может выявить их нехватку для некоторых периодов планирования, что может привести к необходимости изменения MPS.
    [ http://www.lexikon.ru/dict/uprav/index.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > capacity requirements planning

  • 49 natural frequency

    1. частота свободных колебаний в системе
    2. собственная частота колебаний (вибрации) линейной системы
    3. собственная частота

     

    собственная частота
    Частота свободных колебаний системы.
    Единица измерения
    Гц
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

     

    собственная частота колебаний (вибрации) линейной системы
    собственная частота

    Любая из частот свободных колебаний (вибрации) линейной системы.
    Примечание
    Если возможны различные толкования, необходимо дать соответствующее уточнение: «собственная частота консервативной системы» или «собственная частота системы с линейным демпфированием».
    Пояснения
    Термины и определения для близких понятий, различающиеся лишь отдельными словами, совмещены, причем слова, которые отличают второе понятие, заключены в скобки. Для получения первого термина и его определения опускаются слова, записанные в скобках. Для получения второго термина и его определения проводится замена соответствующих слов словами, записанными в скобках. Например, термин периодические колебания (вибрация) содержит два термина с определениями:
    периодические колебания - колебания, при которых каждое значение колеблющейся величины повторяется через равные интервалы времени;
    периодическая вибрация - вибрация, при которой каждое значение колеблющейся величины, характеризующей вибрацию, повторяется через равные интервалы времени.
    [ ГОСТ 24346-80]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    частота свободных колебаний в системе
    Для систем со многими степенями свободы собственными частотами являются частоты нормальной формы колебаний.
    [Англо-русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011]

    Тематики

    EN

    3.12 собственная частота (natural frequency): Частота свободных колебаний конструкции (периодических или затухающих), зависящая только от физических характеристик этой конструкции (массы, жесткости и коэффициента демпфирования).

    Источник: ГОСТ 31418-2010: Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на удар с воспроизведением ударного спектра оригинал документа

    3.12 собственная частота (natural frequency): Частота свободных колебаний конструкции (периодических или затухающих), зависящая только от физических характеристик этой конструкции (массы, жесткости и коэффициента демпфирования).

    Источник: ГОСТ Р 53190-2008: Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на удар с воспроизведением ударного спектра оригинал документа

    Англо-русский словарь нормативно-технической терминологии > natural frequency

  • 50 SPD

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > SPD

  • 51 surge offering

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > surge offering

  • 52 surge protective device

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Англо-русский словарь нормативно-технической терминологии > surge protective device

  • 53 surge protector

    1. устройство защиты от перенапряжения
    2. устройство защиты от перенапряжений
    3. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

     

    устройство защиты от перенапряжений

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    устройство защиты от перенапряжения
    Устройство, которое позволяет защитить оборудование от выбросов напряжения сети, возникающих при переключении нагрузки или внешних воздействиях (грозовые разряды и т.п.).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > surge protector

  • 54 voltage surge protector

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > voltage surge protector

  • 55 единица

    единица ж. Einer m; Einheit f; мат. Eins f
    единица ж., не входящая в данную систему единиц systemfremde Einheit f
    единица ж. активности Aktivitätseinheit f; Einheit f der Radioaktivität
    единица ж. Амага ж. Amagat n; физ. Amagat-Einheit f; Amagatsche Einheit f
    единица ж. атомного веса Atomgewichtseinheit f; Einheit f der relativen Atommasse
    единица ж. бинарной информации Bit n; binäre Informationseinheit f
    единица ж. величины Einheit f; Einheit f einer Größe
    единица ж. информации Elementarinformation f; Informationseinheit f; IE; Nachrichteneinheit f; Nachrichtenelement n
    единица ж. использования (напр., бумаги) полигр. Nutzen m
    единица ж. карты выч. Kartenkapazität f; Lochkartenkapazität f
    единица ж. массы Masseeinheit f; Masseneinheit f
    единица ж. Махе (единица жидкости или газа, равная 3,64·10-10) физ. Mache-Einheit f
    единица ж. объёма Raumeinheit f; Volumeinheit f; Volumeneinheit f
    единица ж. организации файлов выч. Einheit f der Dateiorganisation
    единица ж. отсчёта периодичности технического обслуживания двигателя по счётчику оборотов в тахометре авто. Wartungseinheit f im Motorwartungszähler des Drehzahlmessers; WE
    единица ж. тепла Wärmeeinheit f; Wärmemengeneinheit f

    Большой русско-немецкий полетехнический словарь > единица

  • 56 system

    system n
    система
    abbreviated visual indicator system
    упрощенная система визуальной индикации
    (глиссады) acceleration warning system
    система сигнализации перегрузок
    accessory power system
    система энергопитания оборудования
    acoustical measurement system
    акустическая измерительная система
    actuating system
    исполнительная система
    (механическая) aerial spraying system
    система распыления с воздуха
    (например, удобрений) aerodrome alert system
    система объявления тревоги на аэродроме
    aerodrome approach control system
    система управления подходом к аэродрому
    aerodrome drainage system
    дренажная система аэродрома
    aerodrome marking system
    система маркировки аэродрома
    aerodynamic roll system
    аэродинамическая система управления креном
    aileron control system
    система управления элеронами
    aileron trim system
    система балансировки элеронов
    aileron trim tab control system
    система управления триммером элерона
    air bleed system
    система отбора воздуха
    (от компрессора) air borne system
    бортовая система
    air brake system
    система воздушных тормозов
    air conditioning system
    система кондиционирования воздуха
    (в кабине воздушного судна) air cooling system
    система воздушного охлаждения
    aircraft control system
    система управления воздушным судном
    aircraft electric system
    электросистема воздушного судна
    aircraft heating system
    система обогрева воздушного судна
    aircraft identification system
    система опознавания воздушного судна
    aircraft integrated data system
    бортовая комплексная система регистрации данных
    aircraft landing measurement system
    система измерения посадочных параметров воздушного судна
    aircraft pneumatic system
    пневматическая система воздушного судна
    aircraft system
    бортовая система
    aircraft warning system
    система предупредительной сигнализации воздушного судна
    air data computer system
    система сбора воздушных сигналов
    airfield lighting system
    система светосигнального оборудования летного поля
    air humidifying system
    система увлажнения воздуха
    air induction system
    система забора воздуха
    air-interpreted system
    бортовая система обработки данных
    airport communication system
    система связи аэропорта
    air pressurization system
    система наддува
    (кабины) air starting system
    воздушная система запуска двигателей
    air surveillance system
    система воздушного наблюдения
    air traffic audio simulation system
    аудиовизуальная система имитации воздушного движения
    (для тренажеров) air traffic control system
    система управления воздушным движением
    airway system
    сеть авиалиний
    airworthiness control system
    система контроля за летной годностью
    alerting system
    система аварийного оповещения
    altitude alert system
    система сигнализации опасной высоты
    angle guidance system
    система наведения по углу
    angle-of-attack, slip and acceleration warning system
    система автоматической сигнализации углов атаки, скольжения и перегрузок
    angle-of-attack warning system
    система сигнализации предельных углов атаки
    anticollision lights system
    система бортовых огней для предупреждения столкновения
    anti-icing system
    противообледенительная система
    (постоянного действия) antiskid system
    система противоюзовой автоматики
    antisurge system
    противопомпажная система
    (двигателя) approach guidance nose-in to stand system
    система управления воздушным судном при установке на стоянку
    approach lighting system
    система огней подхода
    (к ВПП) approach radar system
    радиолокационная система захода на посадку
    approach system
    система захода на посадку
    area forecast system
    система зональных прогнозов
    (погоды) area navigation system
    система зональной навигации
    artificial feel system
    система искусственной загрузки органов управления
    associated aircraft system
    вспомогательная бортовая система воздушного судна
    astronavigation system
    астронавигационная система
    attitude control system
    система ориентации
    (в полете) audio system
    переговорное устройство
    augmented lift system noise
    шум от системы увеличения подъемной силы
    augmented system
    система создания дополнительной вертикальной тяги
    autoalarm system
    автоматическая система объявления тревоги
    autoland system
    система автоматической посадки
    automated data interchange system
    система автоматизированного обмена данными
    automated navigation system
    автоматизированная навигационная система
    automated radar terminal system
    автоматическая аэродромная радиолокационная система
    automatic approach system
    система автоматического захода на посадку
    automatic feathering system
    система автофлюгера
    automatic flight control system
    автоматическая бортовая система управления
    automatic landing system
    система автоматической посадки
    automatic monitor system
    система автоматического контроля
    automatic stabilization system
    система автоматической стабилизации
    (воздушного судна) automatic test system
    система автоматического контроля
    autopilot system
    автопилот
    autothrottle system
    автомат тяги
    (двигателя) autotrim system
    автотриммер
    auxiliary hydraulic system
    вспомогательная гидросистема
    aviation safety reporting system
    система информации о состоянии безопасности полетов
    avionic system
    радиоэлектронная система
    baggage-clearance system
    система досмотра багажа
    baggage-dispensing system
    система сортировки багажа
    baggage-handling system
    система обработки багажа
    baggage-tracing system
    система розыска багажа
    bank counteract system
    система автоматического парирования крена
    (при отказе одного из двигателей) beam approach beacon system
    система посадки по лучу маяка
    beam-rider system
    система наведения по лучу
    blind landing system
    система слепой посадки
    blowaway jet system
    система гашения завихрения
    braking system
    тормозная система
    breather system
    система суфлирования
    (двигателя) build-in test system
    система встроенного контроля
    cabin heating system
    система обогрева кабины
    cabin temperature control system
    система регулирования температуры воздуха в кабине
    cable control system
    система тросового управления
    calibrate the system
    тарировать систему
    calibration system
    система калибровки
    (напр. сигналов) caution system
    система предупредительной сигнализации
    circulating oil system
    циркуляционная система смазки
    (двигателя) closed cooling system
    замкнутая система охлаждения
    code letter system
    система буквенного кодирования
    collective pitch control system
    система управления общим шагом
    (несущего винта) collision avoidance system
    система предупреждения столкновений
    collision prevention system
    система предотвращения столкновений
    color coded system
    цветовая система таможенного контроля
    Commission for basic Systems
    Комиссия по основным системам
    compass system
    курсовая система
    compass system coupling unit
    блок связи с курсовой системой
    conditioning-pressurization system
    система кондиционирования и наддува
    (гермокабины) conflict alert system
    система предупреждения конфликтных ситуаций в полете
    constant speed drive system
    система привода с постоянной скоростью
    containment system
    система герметизации
    (фюзеляжа) control system
    система управления
    control system load
    усилие на систему управления
    cooling system
    система охлаждения
    crew oxygen system
    кислородная система кабины экипажа
    crossbar approach lighting system
    система световых горизонтов огней подхода
    (к ВПП) customs accelerated passenger inspection system
    система ускоренного таможенного досмотра пассажиров
    cyclic pitch control system
    система управления циклическим шагом
    (несущего винта) data communication system
    система передачи данных
    data handling system
    система обработки данных
    data interchange system
    система обмена данными
    data link system
    система передачи данных
    data processing system
    система обработки данных
    data-record system
    система регистрации данных
    data switching system
    коммутационная система передачи данных
    data system
    информационная система
    day marking system
    система дневной маркировки
    (объектов в районе аэродрома) defueling system
    система слива топлива
    dehydrating system
    система осушения
    (межстекольного пространства) deicing system
    противообледенительная система
    (переменного действия) determine air in a system
    устанавливать наличие воздушной пробки в системе
    deviation warning system
    система сигнализации отклонения от курса
    digital flight guidance system
    цифровая система наведения в полете
    dimmer system
    система регулировки яркости
    (напр. экрана локатора) direct-address transponder system
    система приемоответчика прямого адресования
    direct lift control system
    система управления подъемной силой
    discrete address beacon system
    система маяков дискретного адресования
    discrete communication system
    дискретная система связи
    distance measuring system
    дальномерная система
    docking system
    система стыковки
    (воздушного судна с трапом) Doppler computer system
    система доплеровского измерителя
    (путевой скорости и угла сноса) drainage system
    дренажная система
    drain system
    дренажная система
    dual autoland system
    дублированная система автоматического управления посадкой
    dual-channel system
    двухпоточная система
    (оформления пассажиров) dual ignition system
    система двойного зажигания
    (топлива в двигателе) early warning system
    система дальнего обнаружения
    electrical generating system
    система электроснабжения
    electronic engine control system
    электронная система управления двигателем
    electronic landing aids system
    радиоэлектронная система посадочных средств
    emergency brake system
    система аварийного торможения
    emergency hydraulic system
    аварийная гидравлическая система
    emergency lighting system
    система аварийного освещения
    emergency power system
    система аварийного энергопитания
    emergency shutdown system
    система аварийного останова
    (двигателя) emergency system
    аварийная система
    (для применения в случае отказа основной) emergency uplock release system
    система аварийного открытия замков убранного положения
    (шасси) emergency warning system
    система аварийной сигнализации
    empennage anti-icing system
    противообледенительная система хвостового оперения
    (постоянного действия) engine anti-icing system
    противообледенительная система двигателей
    (постоянного действия) engine breather system
    система суфлирования двигателя
    engine control system
    система управления двигателем
    engine deicing system
    противообледенительная система двигателей
    (переменного действия) engine fuel system
    топливная система двигателя
    engine starting system
    система запуска двигателей
    engine start system
    система запуска двигателей
    engine throttle interlock system
    система блокировки управления двигателем
    engine vent system
    дренажная система двигателей
    engine vibration indicating system
    система индикации виброперегрузок двигателя
    environmental control system equipment
    оборудование системы контроля окружающей среды
    environment control system
    система жизнеобеспечения
    (воздушного судна) environment control system noise
    шум от системы кондиционирования
    exhaust system
    выхлопная система
    (двигателя) exhaust system manifold
    коллектор выхлопной системы
    exhaust system muffler
    глушитель выхлопной системы
    exterior lighting system
    система наружное освещения
    (посадочные фары, габаритные огни) external electrical power system
    система аэродромного электропитания
    external load sling system
    внешняя подвеска груза
    (на вертолете) fail-operative system
    дублированная система
    (сохраняющая работоспособность при единичном отказе) feedback control system
    система управления с обратной связью
    feed system
    система питания
    (напр. топливом) feel system
    система автомата усилий
    fin hydraulic system
    гидросистема хвостового оперения
    fire detection system
    система обнаружения и сигнализации пожара
    fire extinguisher system
    система пожаротушения
    fire-protection system
    противопожарная система
    fire warning system
    система пожарной сигнализации
    fixed-time dissemination system
    система распространения информации в определенные интервалы времени
    flaps asymmetry warning system
    система сигнализации рассогласования закрылков
    flaps drive system
    система привода закрылков
    flaps interconnection system
    система синхронизации закрылков
    flight control boost system
    бустерная система управления полетом
    flight control gust-lock system
    система стопорения поверхностей управления
    (при стоянке воздушного судна) flight control system
    система управления полетом
    flight crew oxygen system
    кислородная система кабины экипажа
    flight director system
    система командных пилотажных приборов
    flight director system control panel
    пульт управления системой директорного управления
    flight environment data system
    система сбора воздушных параметров
    (условий полета) flight inspection system
    система инспектирования полетов
    flight management computer system
    электронная система управления полетом
    flight management system
    система управления полетом
    flight operations system
    система обеспечения полетов
    flight recorder system
    система бортовых регистраторов
    flight simulation system
    система имитации полета
    fog dispersal system
    система рассеивания тумана
    (в районе ВПП) follow-up cable system
    следящая тросовая система
    follow-up system
    следящая система
    foot-pound system
    футо-фунтовая система
    fuel cross-feed system
    система кольцевания топливных баков
    fuel dip system
    система снижения подачи топлива
    fuel dump system
    система аварийного слива топлива
    fuel enrichment system
    система обогащения топливной смеси
    fuel feed system
    система подачи топлива
    fuel flowmeter system
    система измерения расхода топлива
    fuel gravity system
    система подачи топлива самотеком
    fuel indicating system
    система контроля количества и расхода топлива
    fuel injection system
    система впрыска топлива
    fuel jettisoning system
    система аварийного слива топлива
    (fuel jettisonning system) fuel management system
    система управления подачей топлива
    fuel manifold drain system
    система дренажа топливных коллекторов
    fuel preheat system
    система подогрева топлива
    (на входе в двигатель) fuel storage system
    система размещения топливных баков
    fuel supply system
    система подачи топлива
    fuel system
    топливная система
    fuel usage system
    система выработки топлива
    (из баков) gas-cooled system
    система охлаждения газов
    general alarm system
    система общей аварийной сигнализации
    generation system
    энергоузел
    generator autoparalleling system
    система автоматического управления параллельной работой генераторов
    glide-path landing system
    глиссадная система посадки
    gravity lubricating system
    гравитационная система смазки
    (двигателя) ground control system
    наземная система управления
    (полетом) ground guidance system
    наземная система наведения
    ground proximity warning system
    система предупреждения опасного сближения с землей
    ground-referenced navigation system
    система навигации по наземным ориентирам
    ground shift system
    система блокировки при обжатии опор шасси
    guidance system
    система наведения
    guide beam system
    система наведения по лучу
    gyro-magnetic compass system
    гиромагнитная курсовая система
    gyro system
    гироскопическая система
    hazard information system
    система информации об опасности
    heating system
    система обогрева
    heat system
    система обогрева
    helicopter control system
    система управления вертолетом
    high-intensity lighting system
    система огней высокой интенсивности
    (на аэродроме) high-pressure fuel system
    топливная система высокого давления
    hijack alarm system
    система сигнализации опасности захвата
    (воздушного судна) hydraulic control boost system
    гидравлическая бустерная система управления
    hydraulic starting system
    гидравлическая пусковая система
    (двигателя) hydraulic system
    гидросистема
    ice protection system
    противообледенительная система
    ignition system
    система зажигания
    illuminating system
    система подсветки
    (приборов в кабине экипажа) independent starting system
    система автономного запуска
    (двигателя) indicating system
    система индикации
    individual ventilation system
    система индивидуальной вентиляции
    inertial control system
    инерциальная система управления
    inertial navigation system
    инерциальная навигационная система
    inertial sensor system
    инерциальная сенсорная система
    instrument failure warning system
    система сигнализации отказа приборов
    instrument guidance system
    система наведения по приборам
    instrument landing system
    система посадки по приборам
    integrated automatic system
    комплексная автоматическая система
    integrated control system
    встроенная система контроля
    integrated system of airspace control
    комплексная система контроля воздушного пространства
    integrated world-wide system
    всемирная комплексная система
    (управления полетами) intercommunication system
    переговорное устройство
    intercooler system
    система внутреннего охлаждения
    interlocking system
    система блокировки
    interlock system
    система блокировки
    international meteorological system
    международная метеорологическая система
    interphone system
    система внутренней связи
    jamming system
    система глушения
    (радиосигналов) jet deviation control system
    система управления отклонением реактивной струи
    landing gear indication system
    система индикации положения шасси
    landing guidance system
    система управления посадкой
    landing system
    система посадки
    landline system
    система наземных линий связи
    lateral control system
    система поперечного управления
    (воздушным судном) leading edge flap system
    система привода предкрылков
    lead-in lighting system
    система ведущих огней
    (при заруливании на стоянку) life support system
    система жизнеобеспечения
    (воздушного судна) load feel system
    система имитации усилий
    (на органах управления) load grip system
    система захвата груза
    localizer antenna system
    система антенны курсового посадочного радиомаяка
    longitudinal control system
    система продольного управления
    (воздушным судном) long-range air navigation system
    система дальней радионавигации
    loop circuit system
    кольцевая электрическая система
    low level wind-shear alert system
    система предупреждения о сдвиге ветра на малых высотах
    lubrication system
    система смазки
    Mach-feel system
    автомат имитации усилий по числу М
    Mach trim system
    система балансировки по числу М
    malfunction detection system
    система обнаружения неисправностей
    mandatory reporting system
    система передачи обязательной информации
    (на борт воздушного судна) mapping radar system
    система радиолокационного обзора местности
    maximum speed limiting system
    система ограничения максимальных оборотов
    mechanical cooling system
    механическая система охлаждения
    mechanized baggage dispensing system
    автоматизированная система выдачи багажа
    mileage system
    мильная система
    (построения тарифов) multichannel circuit system
    многоканальная электрическая система
    nacelle cooling system
    система вентиляции подкапотного пространства
    (двигателя) national airspace system
    государственная система организации воздушного пространства
    navigation system
    навигационная система
    navigation system selector
    задатчик навигационной системы
    noise annoyance rating system
    система оценки раздражающего воздействия шума
    nosewheel steering follow-up system
    система обратной связи управления разворотом колес передней опоры шасси
    nozzle control system
    система управления реактивным соплом
    oil dilution system
    система разжижения масла
    oiling system
    маслосистема
    oil scavenge system
    система откачки масла
    omnibearing distance system
    система всенаправленного дальномера
    onboard weight and balance system
    бортовая система определения массы и центровки
    one-step inspection system
    система одноступенчатого досмотра
    (пассажиров путем совмещения паспортного и таможенного контроля) open cooling system
    незамкнутая система охлаждения
    organized track system
    система организованных маршрутов
    passenger address system
    система оповещения пассажиров
    passenger bypass inspection system
    упрощенная система проверки пассажиров
    (перед вылетом) passenger oxygen system
    система кислородного обеспечения пассажиров
    phone system
    система телефонной связи
    pictorial navigation system
    навигационная система с графическим отображением
    (информации) pilot-controller system
    система пилот - диспетчер
    pilot-interpreted navigation system
    навигационная система со считыванием показаний пилотом
    pitch control system
    система управления тангажом
    pitch limit system
    система ограничения шага
    (воздушного винта) pitot-static system
    система приемника воздушного давления
    platform stabilization system
    система стабилизации платформы
    power-boost control system
    бустерная обратимая система управления
    power-operated control system
    необратимая система управления
    precision approach lighting system
    система огней точного захода на посадку
    precision approach radar system
    радиолокационная система точного захода на посадку
    preprocessed data system
    система предварительной обработки данных
    pressure control system
    система регулирования давления
    pressure fueling system
    система заправки топливом под давлением
    pressure fuel system
    система подачи топлива под давлением
    pressurization system
    система герметизации
    priming system
    система подачи
    (топлива в двигатель) propeller feathering system
    система флюгирования воздушного винта
    propeller pitch control system
    л управления шагом воздушного винта
    prove the system
    испытывать систему
    proximity warning system
    система сигнализации сближения
    (воздушных судов) public address system
    система оповещения пассажиров
    push-pull control system
    жесткая система управления
    (при помощи тяг) Q-feel system
    автомат загрузки по скоростному напору
    radar airborne weather system
    бортовая метеорологическая радиолокационная система
    radar backup system
    резервная радиолокационная система
    radar guidance system
    радиолокационная система наведения
    radar homing system
    приводная радиолокационная система
    radar navigation system
    радиолокационная система навигации
    radar scanning beam system
    радиолокационная система со сканирующим лучом
    radar side looking system
    радиолокационная система бокового обзора
    radar system
    радиолокационная система
    radio-beacon landing system
    радиомаячная система посадки
    radio-beacon system
    система радиомаяков
    radio navigation system
    радионавигационная система
    radio system
    радиосистема
    radiotelephony network system
    система сети радиотелефонной связи
    (воздушных судов) recording system
    система регистрации
    reference system
    система координат
    remote control system
    система дистанционного управления
    reproducing system
    воспроизводящая система
    reservations system
    система бронирования
    (мест) restore the system
    восстанавливать работу системы
    return line system
    система линий слива
    (рабочей жидкости в бак) reversible control system
    обратимая система управления
    rho-theta navigation system
    угломерно-дальномерная радионавигационная система
    robot-control system
    система автоматического управления
    (полетом) rotor drive system
    трансмиссия привода несущего винта
    rotor governing system
    система регулирования оборотов несущего винта
    rudder control system
    система управления рулем направления
    rudder limiting system
    система ограничения отклонения руля направления
    rudder trim tab control system
    система управления триммером руля направления
    run fluid through the system
    прогонять систему
    runway classification system
    система классификации ВПП
    runway lead-in lighting system
    система огней подхода к ВПП
    runway lighting system
    светосигнальная система ВПП
    satellite-aided tracking system
    спутниковая система слежения
    (за воздушным движением) scanning beam guidance system
    система наведения по сканирующему лучу
    sealing system
    система уплотнений
    (напр. люков) search and rescue system
    система поиска и спасания
    selective calling system
    система избирательного вызова
    (на связь) self-contained navigation system
    автономная навигационная система
    self-contained oil system
    автономная маслосистема
    self-contained starting system
    автономная система запуска
    self-test system
    система самоконтроля
    shock absorption system
    система амортизации
    short range radio navigation system
    радиосистема ближней навигации
    simple approach lighting system
    упрощенная система огней подхода
    (к ВПП) slip warning system
    система сигнализации опасного скольжения
    slope indicator system
    система индикации глиссады
    smoke detection system
    система обнаружения дыма
    (в кабине воздушного судна) speed brake system
    система аэродинамических тормозов
    speed control system
    система управления скоростью
    (полета) spraying system
    система распыления
    (удобрений) stall barrier system
    система ограничения углов атаки
    stall prevention system
    система предотвращения сваливания
    (на крыло) stall warning system
    система сигнализации о приближении к сваливанию
    (на крыло) standard approach system
    стандартная система захода на посадку
    standard beam approach system
    стандартная система управления заходом на посадку по лучу
    standby system
    резервная система
    starting system
    система запуска
    static discharging system
    система статических разрядников
    static system
    статика
    (система статического давления) steering system
    система управления рулением
    stick shaker system
    система автомата тряски штурвала
    (при достижении критического угла атаки) suppressor exhaust system
    система глушения реактивной струи
    switching system
    система коммутации
    system leakage device
    прибор для проверки систем на герметичность
    system of monitoring visual aids
    система контроля за работой визуальных средств
    (на аэродроме) system of units
    система единиц
    (измерения) system preservation filler
    штуцер консервации системы
    systems compartment
    отсек размещения систем
    systems operator pilot
    пилот - оператор
    Systems Study section
    Секция изучения авиационных систем
    (ИКАО) tab control system
    система управления триммером
    tactical air navigation system
    система ближней аэронавигации
    takeoff monitoring system
    система контроля взлета
    tank pressurizating system
    система наддува бака
    taxiing guidance system
    система управления рулением
    teletype broadcast system
    система телетайпной связи
    test the system
    испытывать систему
    three-axis autostabilization system
    система автостабилизации относительно трех осей
    thrust augmentor system
    форсажная система
    (двигателя) thrust reverser interlock system
    система блокировки управления по положению реверса
    thrust reverser system
    система реверсирования тяги
    thrust system
    силовая установка
    tracking system
    система слежения
    (за полетом) traffic alert system
    система оповещения о воздушном движении
    transmission rotor drive system
    трансмиссия привода несущего винта
    trim system
    система балансировки
    (воздушного судна) triplex system
    система с тройным резервированием
    turn off the system
    выключать систему
    turn on the system
    включать систему
    two-frequency glide path system
    двухчастотная глиссадная система
    two-frequency localizer system
    двухчастотная система курсового маяка
    two-shot fire extinguishing system
    система пожаротушения с двумя очередями срабатывания
    unarm the system
    отключать состояние готовности системы
    unassisted control system
    безбустерная система управления
    utility hydraulic system
    гидросистема для обслуживания вспомогательных устройств
    ventilation system
    система вентиляции
    (кабины) vent system
    дренажная система
    visual approach slope indicator system
    система визуальной индикации глиссады
    visual docking guidance system
    система визуального управления стыковкой с телескопическим трапом
    voice communication system
    система речевой связи
    voice recorder system
    система записи переговоров
    (экипажа) warning flag movement system
    флажковая система предупреждения об отказе
    warning system
    система предупредительной сигнализации
    warning system control unit
    блок управления аварийной сигнализации
    water injection system
    система впрыска воды
    (на входе в двигатель) water supply system
    система водоснабжения
    weight system
    система сборов по фактической массе
    (багажа или груза) wind flaps control system
    система управления закрылками
    window demisting system
    система осушения
    (межстекольного пространства) windshear warning system
    система предупреждения о сдвиге ветра
    windshield anti-icing system
    противообледенительная система
    wing anti-icing system
    противообледенительная система крыла
    wing flap control system
    система управления закрылками
    wing-flap system
    механизация крыла
    wing spoiler system
    система крыльевых интерцептор
    wire collision avoidance system
    система предупреждения столкновения с проводами ЛЭП
    wireless system
    система радиосвязи
    wire system
    система проводной связи
    World Geographic Reference system
    Всемирная система географических координат

    English-Russian aviation dictionary > system

  • 57 управление

    управление ж. Amt n; Ansteuern n; Ansteuerung f; рег. Aussteuerung f; Bedienung f; Betriebsführung f; Betätigung f; авто. Fahren n; Führung f; Handhabung f; англ. Handling n; Kontrolle f; Leitung f; Lenkung f; ракет. Steuerung f; Verwaltung f; Vorwärtsregelung f
    управление ж. (напр., машиной) Manipulation f
    управление ж. горным давлением горн. Beeinflussung f des Gebirgsdrucks; Beherrschung f des Gebirgsdruckes; Beherrschung f des Gebirgsdrucks; Gebirgsbeherrschung f
    управление ж. движением ж.-д. Fahrsteuerung f; Verkehrskontrolle f; Verkehrsleitung f
    управление ж. кареткой выч. Schreibwagensteuerung f; Vorschubeinrichtung f; Wagensteuerung f
    управление ж. кровлей горн. Beeinflussung f des Hangenden; горн. Behandlung f des Hangenden; Beherrschung f des Hangenden; горн. Dachbehandlung f; горн. Hangendbeherrschung f
    управление ж. по оси X (напр., для станков с ЧПУ) X-Steuerung f
    управление ж. по оси Y (напр., для станков с ЧПУ) Y-Steuerung f
    управление ж. по радио с. Funkfernsteuerung f; ракет. Funklenkung f; Funksteuerung f; Radiolenkung f; drahtlose Steuerung f
    управление ж. положением Lageregelung f; Lagesteuerung f; Positionieren n
    управление ж. процессом Ablaufsteuerung f; Prozeßsteuerung f; Verfahrensregelung f
    управление ж. форматом выч. Formatsteuerung f; Papierformatsteuerung f

    Большой русско-немецкий полетехнический словарь > управление

  • 58 данные

    1. data

     

    данные
    Интерпретируемое формализованным способом представление информации, пригодное для коммуникации, интерпретации или обработки.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    данные
    Информация, представленная в виде, пригодном для обработки автоматическими средствами при возможном участии человека
    [ ГОСТ 15971-90]
    [ ГОСТ Р 50304-92]
    [ОСТ 45.127-99]

    [Руководящий документ "Основные положения развития Взаимоувязанной сети связи Российской Федерации на перспективу до 2005 года"]

    данные
    Представление информации в формализованном виде, пригодном для передачи, интерпретации или обработки.
    [ ГОСТ Р ИСО/МЭК 12119-2000]
    [ ГОСТ Р 52653-2006]

    данные
    Информация, представленная в формализованном виде, пригодном для передачи, интерпретации или обработки с участием человека или автоматическими средствами
    [ ГОСТ 34.320-96]

    данные
    Сведения, являющиеся объектом обработки в информационных человеко-машинных системах.
    [ ГОСТ 17657-79]

    данные
    Информация, обработанная и представленная в формализованном виде для дальнейшей обработки
    [ГОСТ 7.0-99]

    данные
    Сведения о состоянии любого объекта — экономического или не экономического, большой системы или ее элементарной части (элемента), о человеке и машине и т. д., представленные в формализованном виде и предназначенные для обработки (или уже обработанные). Д. не обязательно должны быть числовыми: например, статистические показатели работы предприятий и анкетные сведения о человеке — все это Д.) В процессах сбора, обработки и использования они расчленяются на отдельные элементарные составляющие — элементы данных или элементарные данные (иногда их называют просто данными). Элементарные Д. могут быть выражены целыми и вещественными числами, словами, а также булевыми величинами, способными принимать лишь два значения — «истина» (1), «ложь» (0). Слово «Д.» не вполне соответствует слову «информация«, хотя они часто употребляются как синонимы. Д. — величина, число или отношение, вводимые в процесс обработки или выводимые из него. Информация же определяется как знание, полученное из этих данных. Следовательно, обработка данных есть приведение их к такому виду, который наиболее удобен для получения из них информации, знания. Для того, чтобы из минимального количества Д. извлечь максимум информации, используются различные способы записи массивов данных, методы агрегирования и др. Для того, чтобы быть воспринятыми и стать информацией, Д. проходят как бы тройной фильтр: физический (ограничения по пропускной способности канала), семантический (см. Тезаурус) и прагматический, где оценивается полезность Д. (см. Информация). Экономические Д. можно подразделить на два особенно важных класса: условно-постоянные и переменные. Различие между ними поясним простым примером: нормативы запасов — условно-постоянные Д., размеры запасов отдельных материалов на конкретные даты — переменные. Следовательно, первые — это всякого рода расценки, нормативы, нормы, сведения о производительности оборудования и т.д. Обычно в автоматизированных системах управления они либо хранятся в массивах картотек (устаревшая и выходящая из употребления система), либо вводятся в память машины один раз и при необходимости включаются в расчет самой машиной. Условно-постоянными они называются потому, что все же время от времени обновляются. Переменные Д. (сведения о выработке рабочих, о сдаче деталей и продукции, о тех же запасах на складе и многие другие) после расчета, как правило, выводятся из памяти компьютера. См. также Автоматизированная система обработки данных (АСОД), База данных, Носитель данных, Обработка данных, Показатель, Сбор данных, Скорость передачи данных, Экономическая информация.
    [ http://slovar-lopatnikov.ru/]


    Тематики

    EN

    FR

    3.4 данные (data): Совокупность значений, присвоенных для основных мер измерений, производных мер измерений и (или) показателей.

    [ИСО/МЭК 15939:2007]

    Источник: ГОСТ Р ИСО/МЭК 27004-2011: Информационная технология. Методы и средства обеспечения безопасности. Менеджмент информационной безопасности. Измерения оригинал документа

    1. Данные

    Data

    Информация, представленная в виде, пригодном для обработки автоматическими средствами при возможном участии человека

    Источник: ГОСТ 15971-90: Системы обработки информации. Термины и определения оригинал документа

    3.2.14 данные (data): Представление информации в формальном виде, пригодном для передачи, интерпретации или обработки людьми или компьютерами;

    Источник: ГОСТ Р ИСО 10303-1-99: Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1. Общие представления и основополагающие принципы оригинал документа

    2.6 данные (Data): Дискретные объективные факты (номера, символы, цифры) без контекста и пояснений.

    Источник: ГОСТ Р 53894-2010: Менеджмент знаний. Термины и определения оригинал документа

    3.12 данные (data): Представление информации или команд в виде, пригодном для передачи, интерпретации или обработки с помощью компьютера.

    [IEEE 610, модифицировано]

    Примечание - Данные, необходимые для определения параметров и реализации прикладных и служебных функций в системе, называются «прикладными данными».

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.13 данные (data): Представление информации или сообщений в виде, подходящем для передачи, интерпретации или обработки с помощью компьютеров (см. рисунок 2).

    [IEEE 610, модифицировано] [1]

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.1.3 данные (data): Любой элемент информации, принимаемый регистратором для записи, включая численные значения, текст, а также звуковые и радиолокационные сигналы, за исключением особо оговоренных случаев или ситуаций, когда по контексту понятно иное.

    Источник: ГОСТ Р МЭК 61996-1-2009: Морское навигационное оборудование и средства радиосвязи. Судовой регистратор данных рейса (РДР). Часть 1. Регистратор данных рейса (РДР). Технико-эксплуатационные требования, методы и требуемые результаты испытаний оригинал документа

    3.17 данные (data): представление информации формальным способом, подходящим для коммуникации, интерпретации или для информационной обработки человеком или компьютерами.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > данные

  • 59 data

    1. факты
    2. технические характеристики
    3. Термины, определенные в ИСО 10303-1
    4. показатели
    5. новости (амер.)
    6. данные

     

    данные
    Интерпретируемое формализованным способом представление информации, пригодное для коммуникации, интерпретации или обработки.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    данные
    Информация, представленная в виде, пригодном для обработки автоматическими средствами при возможном участии человека
    [ ГОСТ 15971-90]
    [ ГОСТ Р 50304-92]
    [ОСТ 45.127-99]

    [Руководящий документ "Основные положения развития Взаимоувязанной сети связи Российской Федерации на перспективу до 2005 года"]

    данные
    Представление информации в формализованном виде, пригодном для передачи, интерпретации или обработки.
    [ ГОСТ Р ИСО/МЭК 12119-2000]
    [ ГОСТ Р 52653-2006]

    данные
    Информация, представленная в формализованном виде, пригодном для передачи, интерпретации или обработки с участием человека или автоматическими средствами
    [ ГОСТ 34.320-96]

    данные
    Сведения, являющиеся объектом обработки в информационных человеко-машинных системах.
    [ ГОСТ 17657-79]

    данные
    Информация, обработанная и представленная в формализованном виде для дальнейшей обработки
    [ГОСТ 7.0-99]

    данные
    Сведения о состоянии любого объекта — экономического или не экономического, большой системы или ее элементарной части (элемента), о человеке и машине и т. д., представленные в формализованном виде и предназначенные для обработки (или уже обработанные). Д. не обязательно должны быть числовыми: например, статистические показатели работы предприятий и анкетные сведения о человеке — все это Д.) В процессах сбора, обработки и использования они расчленяются на отдельные элементарные составляющие — элементы данных или элементарные данные (иногда их называют просто данными). Элементарные Д. могут быть выражены целыми и вещественными числами, словами, а также булевыми величинами, способными принимать лишь два значения — «истина» (1), «ложь» (0). Слово «Д.» не вполне соответствует слову «информация«, хотя они часто употребляются как синонимы. Д. — величина, число или отношение, вводимые в процесс обработки или выводимые из него. Информация же определяется как знание, полученное из этих данных. Следовательно, обработка данных есть приведение их к такому виду, который наиболее удобен для получения из них информации, знания. Для того, чтобы из минимального количества Д. извлечь максимум информации, используются различные способы записи массивов данных, методы агрегирования и др. Для того, чтобы быть воспринятыми и стать информацией, Д. проходят как бы тройной фильтр: физический (ограничения по пропускной способности канала), семантический (см. Тезаурус) и прагматический, где оценивается полезность Д. (см. Информация). Экономические Д. можно подразделить на два особенно важных класса: условно-постоянные и переменные. Различие между ними поясним простым примером: нормативы запасов — условно-постоянные Д., размеры запасов отдельных материалов на конкретные даты — переменные. Следовательно, первые — это всякого рода расценки, нормативы, нормы, сведения о производительности оборудования и т.д. Обычно в автоматизированных системах управления они либо хранятся в массивах картотек (устаревшая и выходящая из употребления система), либо вводятся в память машины один раз и при необходимости включаются в расчет самой машиной. Условно-постоянными они называются потому, что все же время от времени обновляются. Переменные Д. (сведения о выработке рабочих, о сдаче деталей и продукции, о тех же запасах на складе и многие другие) после расчета, как правило, выводятся из памяти компьютера. См. также Автоматизированная система обработки данных (АСОД), База данных, Носитель данных, Обработка данных, Показатель, Сбор данных, Скорость передачи данных, Экономическая информация.
    [ http://slovar-lopatnikov.ru/]


    Тематики

    EN

    FR

     

    новости (амер.)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    показатели

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    технические характеристики
    Ряд номинальных параметров или условий эксплуатации.
    [ ГОСТ Р МЭК 60050-426-2006]

    технические характеристики
    -
    [Интент]


    Тематики

    EN

    FR

     

    факты

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    3.4 данные (data): Совокупность значений, присвоенных для основных мер измерений, производных мер измерений и (или) показателей.

    [ИСО/МЭК 15939:2007]

    Источник: ГОСТ Р ИСО/МЭК 27004-2011: Информационная технология. Методы и средства обеспечения безопасности. Менеджмент информационной безопасности. Измерения оригинал документа

    3.1 Термины, определенные в ИСО 10303-1

    В настоящем стандарте применены следующие термины:

    - приложение (application);

    - прикладной объект (application object);

    - прикладной протокол (application protocol);

    - прикладная эталонная модель; ПЭМ (application reference model; ARM);

    - данные (data);

    - информация (information);

    - интегрированный ресурс (integrated resource);

    - изделие (product);

    - данные об изделии (product data).

    Источник: ГОСТ Р ИСО/ТС 10303-1287-2008: Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1287. Прикладные модули. Регистрация действий по прикладному протоколу ПП239

    1. Данные

    Data

    Информация, представленная в виде, пригодном для обработки автоматическими средствами при возможном участии человека

    Источник: ГОСТ 15971-90: Системы обработки информации. Термины и определения оригинал документа

    3.2.14 данные (data): Представление информации в формальном виде, пригодном для передачи, интерпретации или обработки людьми или компьютерами;

    Источник: ГОСТ Р ИСО 10303-1-99: Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1. Общие представления и основополагающие принципы оригинал документа

    2.6 данные (Data): Дискретные объективные факты (номера, символы, цифры) без контекста и пояснений.

    Источник: ГОСТ Р 53894-2010: Менеджмент знаний. Термины и определения оригинал документа

    3.12 данные (data): Представление информации или команд в виде, пригодном для передачи, интерпретации или обработки с помощью компьютера.

    [IEEE 610, модифицировано]

    Примечание - Данные, необходимые для определения параметров и реализации прикладных и служебных функций в системе, называются «прикладными данными».

    Источник: ГОСТ Р МЭК 60880-2010: Атомные электростанции. Системы контроля и управления, важные для безопасности. Программное обеспечение компьютерных систем, выполняющих функции категории А оригинал документа

    3.13 данные (data): Представление информации или сообщений в виде, подходящем для передачи, интерпретации или обработки с помощью компьютеров (см. рисунок 2).

    [IEEE 610, модифицировано] [1]

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.1.3 данные (data): Любой элемент информации, принимаемый регистратором для записи, включая численные значения, текст, а также звуковые и радиолокационные сигналы, за исключением особо оговоренных случаев или ситуаций, когда по контексту понятно иное.

    Источник: ГОСТ Р МЭК 61996-1-2009: Морское навигационное оборудование и средства радиосвязи. Судовой регистратор данных рейса (РДР). Часть 1. Регистратор данных рейса (РДР). Технико-эксплуатационные требования, методы и требуемые результаты испытаний оригинал документа

    3.17 данные (data): представление информации формальным способом, подходящим для коммуникации, интерпретации или для информационной обработки человеком или компьютерами.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Англо-русский словарь нормативно-технической терминологии > data

  • 60 запись

    запись ж. Anmeldung f; Aufnahme f; Aufschreiben n; Aufschreibung f; ак. Aufzeichnung f; Aufzeichnungen f pl; выч. Datensatz m; Eintrag m; Eintragung f; Notizen f pl; Registrierung f; Satz m; Schreibung f; мат. Schreibweise f; Schrift f; Speicherung f; Verzeichnung f
    запись ж. (напр., результатов вычисления) Anschreibung f
    запись ж. (напр., изображения) Niederschrift f
    запись ж. видеосигнала Bildsignalaufzeichnung f; Videoaufzeichnung f; Videosignalaufzeichnung f
    запись ж. данных Datenaufzeichnung f; Datenerfassung f; Datenregistrierung f; выч. Datensatz m
    запись ж. звука Schallaufnahme f; Schallaufzeichnung f; Schallschrift f; Schallspeicherung f; кфт. Tonaufnahme f; Tonaufzeichnung f
    запись ж. информации выч. Informationsaufzeichnung f; Registrierung f der Information
    запись ж. на ленте м. самописца Diagramm n auf dem Band des Registrierschreibers
    запись ж. на МЛ ж. Magnetbandaufzeichnung f; Magnetbandregistrierung f; Magnetbandverfahren n
    запись ж. неопределённой длины выч. Satz m Undefinierter Länge
    запись ж. низких частот (напр., магнитофонная) Niederfrequenzaufzeichnung f
    запись ж. переменной длины выч. Satz m variabler Länge
    запись ж. результатов измерения Meßprotokoll n; Protokollierung f der Meßergebnisse
    запись ж. сигналов изображения Bildaufzeichnug f; Bildschreibung f; Bildsignalaufzeichnung f; Videoaufzeichnung f

    Большой русско-немецкий полетехнический словарь > запись

См. также в других словарях:

  • Единицы измерения времени — Современные единицы измерения времени основаны на периодах обращения Земли вокруг своей оси и вокруг Солнца, а также обращения Луны вокруг Земли. Такой выбор единиц обусловлен как историческими, так и практическими соображениями: необходимостью… …   Википедия

  • ГОСТ 15855-77: Измерения времени и частоты. Термины и определения — Терминология ГОСТ 15855 77: Измерения времени и частоты. Термины и определения оригинал документа: 18. Декретное время Е. Decretal time номеру пояса Поясное время, измененное на целое число часов правительственным распоряже Определения термина из …   Словарь-справочник терминов нормативно-технической документации

  • Часы прибор для измерения времени — Содержание: 1) Исторический очерк развития часовых механизмов: а) солнечные Ч., b) водяные Ч., с) песочные Ч., d) колесные Ч. 2) Общие сведения. 3) Описание астрономических Ч. 4.) Маятник, его компенсация. 5) Конструкции спусков Ч. 6) Хронометры …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При статических И. а. определяются постоянные или… …   Энциклопедия техники

  • измерения аэродинамические — Рис. 1. измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При… …   Энциклопедия «Авиация»

  • измерения аэродинамические — Рис. 1. измерения аэродинамические — процесс нахождения опытным путём значений физических величин в аэродинамическом эксперименте с помощью соответствующих технических средств. Различают 2 типа И. а.: статические и динамические. При… …   Энциклопедия «Авиация»

  • ИЗМЕРЕНИЯ — (в инженерной психологии) способы получения количественных характеристик человека оператора, группы операторов, параметров окружающей среды в различных условиях и режимах деятельности. При определении параметров деятельности человекаоператора в… …   Энциклопедический словарь по психологии и педагогике

  • синхронизация времени — [ГОСТ Р МЭК 60870 5 103 2005] Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п. [Новости… …   Справочник технического переводчика

  • Момент времени — точка на временной оси. О событиях, соответствующих одному моменту времени, говорят как об одновременных. В научных моделях моменту времени соответствует состояние системы (мгновенное состояние). В быту момент времени может пониматься как столько …   Википедия

  • ПАРАДОКС ВРЕМЕНИ — (парадокс близнецов …   Физическая энциклопедия

  • Ось времени — Ось времени, временная ось (именуемая также в контексте термодинамики стрелою времени)  концепция, описывающая время как прямую (то есть математически одномерный объект), протянутую из прошлого в будущее. Из любых двух несовпадающих точек… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»