-
1 process context
контекст процесса
Совокупность факторов, задокументированных на выходе оценки процесса, которая влияет на суждение о рейтингах атрибутов оценки процесса, их понимание и сравнение.
[ ГОСТ Р ИСО/МЭК 15504-1-2009]Тематики
EN
3.38 контекст процесса (process context): Совокупность факторов, задокументированных на выходе оценки процесса, которая влияет на суждение о рейтингах атрибутов оценки процесса, их понимание и сравнение.
Источник: ГОСТ Р ИСО/МЭК 15504-1-2009: Информационные технологии. Оценка процессов. Часть 1. Концепция и словарь оригинал документа
Англо-русский словарь нормативно-технической терминологии > process context
-
2 process context
совокупность данных, необходимых ОС для отслеживания исполнения процесса и переключения контекстовАнгло-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > process context
-
3 process context
Программирование: контекст процесса (см. ГОСТ Р ИСО/МЭК 15504-1-2009) -
4 context
1) (от лат. contextus - соединение) текущий статус, режим работы или состояние системы; текущее содержимое регистров и флагов процессора; окружение, среда исполнения программы; текущая ситуация и т. п. Контекст ЦП должен быть сохранён при возникновении прерывания и переключении на другую задачу или процесс (см. context switching)см. тж. context awareness, context diagram, context help, context-sensitive, execution context, help context, process context, security context2) фрагмент текста, имеющий определённый смысл3) прил. контекстный, контекстуальныйсм. тж. contextualАнгло-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > context
-
5 process
1) процессв системном программировании существует множество разных определений этого термина. В современных ОС процесс - это набор из одного и более тредов (потоков) и ассоциированных с ними системных ресурсов. Важное свойство процесса - он исполняется в своём собственном изолированном адресном пространстве и состоит как минимум из одного треда.Processes describe computational entities that do not share an address space; there can be separate processes running on one processor, processes running on independent processors in the same computer, or processes running on entirely separate computers. — Процессы - это вычислительные сущности, не разделяющие общее адресное пространство; бывают отдельные процессы, работающие на одном процессоре, процессы, работающие на независимых процессорах одного и того же компьютера, или процессы на совершенно разных компьютерах. Термин впервые был введён разработчиками ОС Multics см. тж. child process, client process, daemon, detached process, event process, light-weighted process, parent process, PID, privileged process, process class, process container, process context, process control, process descriptor, process diagram, process identification, process memory, process migration, process owner, process priority, process space, process state, process switching, server process, spawned process, thread, user-mode process
2) обработка; технологический процесс, технология (способ) обработкисм. тж. compilation process, computational process, development process, event process, process line, test process3) процесс, ход развитиясм. тж. stochastic process4) обрабатыватьАнгло-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > process
-
6 context
"An ordered sequence of properties that define an environment for the objects resident inside it. Contexts are created during the activation process for objects that are configured to require certain automatic services such as synchronization, transactions, just-in-time activation, security, and so on. Multiple objects can live inside a context." -
7 process switching
в глобальных сетях - операция, предусматривающая оценку полного маршрута и попакетное балансирование нагрузки при передаче данных по параллельным каналам; это самая ресурсоёмкая операция коммутации для ЦП маршрутизаторав ЦП - переход с выполнения одного процесса на другойАнгло-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > process switching
-
8 generic planning process
процесс общего планирования
Высокоуровневый процесс развития планирования Игр в период деятельности ОКОИ с момента основания и до роспуска. Этапы планирования с указанием точных сроков каждого определяются в соответствии со спецификой конкретного ОКОИ.
[Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]EN
generic planning process
High-level process that describes the evolution in the Games planning during the lifecycle of the OCOG from foundation through to dissolution. The exact planning phases and timing of each phase are adapted to fit the context of the specific OCOG.
[Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]Тематики
EN
Англо-русский словарь нормативно-технической терминологии > generic planning process
-
9 A thread is an independent context of execution within an operating system process
Общая лексика: Поток — это независимый контекст исполнения в рамках процесса операционной системы (см. A Practical Guide to Testing Object-Oriented Software by John D. McGregor, Davi)Универсальный англо-русский словарь > A thread is an independent context of execution within an operating system process
-
10 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
-
11 Language
Philosophy is written in that great book, the universe, which is always open, right before our eyes. But one cannot understand this book without first learning to understand the language and to know the characters in which it is written. It is written in the language of mathematics, and the characters are triangles, circles, and other figures. Without these, one cannot understand a single word of it, and just wanders in a dark labyrinth. (Galileo, 1990, p. 232)It never happens that it [a nonhuman animal] arranges its speech in various ways in order to reply appropriately to everything that may be said in its presence, as even the lowest type of man can do. (Descartes, 1970a, p. 116)It is a very remarkable fact that there are none so depraved and stupid, without even excepting idiots, that they cannot arrange different words together, forming of them a statement by which they make known their thoughts; while, on the other hand, there is no other animal, however perfect and fortunately circumstanced it may be, which can do the same. (Descartes, 1967, p. 116)Human beings do not live in the object world alone, nor alone in the world of social activity as ordinarily understood, but are very much at the mercy of the particular language which has become the medium of expression for their society. It is quite an illusion to imagine that one adjusts to reality essentially without the use of language and that language is merely an incidental means of solving specific problems of communication or reflection. The fact of the matter is that the "real world" is to a large extent unconsciously built on the language habits of the group.... We see and hear and otherwise experience very largely as we do because the language habits of our community predispose certain choices of interpretation. (Sapir, 1921, p. 75)It powerfully conditions all our thinking about social problems and processes.... No two languages are ever sufficiently similar to be considered as representing the same social reality. The worlds in which different societies live are distinct worlds, not merely the same worlds with different labels attached. (Sapir, 1985, p. 162)[A list of language games, not meant to be exhaustive:]Giving orders, and obeying them- Describing the appearance of an object, or giving its measurements- Constructing an object from a description (a drawing)Reporting an eventSpeculating about an eventForming and testing a hypothesisPresenting the results of an experiment in tables and diagramsMaking up a story; and reading itPlay actingSinging catchesGuessing riddlesMaking a joke; and telling itSolving a problem in practical arithmeticTranslating from one language into anotherLANGUAGE Asking, thanking, cursing, greeting, and praying-. (Wittgenstein, 1953, Pt. I, No. 23, pp. 11 e-12 e)We dissect nature along lines laid down by our native languages.... The world is presented in a kaleidoscopic flux of impressions which has to be organized by our minds-and this means largely by the linguistic systems in our minds.... No individual is free to describe nature with absolute impartiality but is constrained to certain modes of interpretation even while he thinks himself most free. (Whorf, 1956, pp. 153, 213-214)We dissect nature along the lines laid down by our native languages.The categories and types that we isolate from the world of phenomena we do not find there because they stare every observer in the face; on the contrary, the world is presented in a kaleidoscopic flux of impressions which has to be organized by our minds-and this means largely by the linguistic systems in our minds.... We are thus introduced to a new principle of relativity, which holds that all observers are not led by the same physical evidence to the same picture of the universe, unless their linguistic backgrounds are similar or can in some way be calibrated. (Whorf, 1956, pp. 213-214)9) The Forms of a Person's Thoughts Are Controlled by Unperceived Patterns of His Own LanguageThe forms of a person's thoughts are controlled by inexorable laws of pattern of which he is unconscious. These patterns are the unperceived intricate systematizations of his own language-shown readily enough by a candid comparison and contrast with other languages, especially those of a different linguistic family. (Whorf, 1956, p. 252)It has come to be commonly held that many utterances which look like statements are either not intended at all, or only intended in part, to record or impart straightforward information about the facts.... Many traditional philosophical perplexities have arisen through a mistake-the mistake of taking as straightforward statements of fact utterances which are either (in interesting non-grammatical ways) nonsensical or else intended as something quite different. (Austin, 1962, pp. 2-3)In general, one might define a complex of semantic components connected by logical constants as a concept. The dictionary of a language is then a system of concepts in which a phonological form and certain syntactic and morphological characteristics are assigned to each concept. This system of concepts is structured by several types of relations. It is supplemented, furthermore, by redundancy or implicational rules..., representing general properties of the whole system of concepts.... At least a relevant part of these general rules is not bound to particular languages, but represents presumably universal structures of natural languages. They are not learned, but are rather a part of the human ability to acquire an arbitrary natural language. (Bierwisch, 1970, pp. 171-172)In studying the evolution of mind, we cannot guess to what extent there are physically possible alternatives to, say, transformational generative grammar, for an organism meeting certain other physical conditions characteristic of humans. Conceivably, there are none-or very few-in which case talk about evolution of the language capacity is beside the point. (Chomsky, 1972, p. 98)[It is] truth value rather than syntactic well-formedness that chiefly governs explicit verbal reinforcement by parents-which renders mildly paradoxical the fact that the usual product of such a training schedule is an adult whose speech is highly grammatical but not notably truthful. (R. O. Brown, 1973, p. 330)he conceptual base is responsible for formally representing the concepts underlying an utterance.... A given word in a language may or may not have one or more concepts underlying it.... On the sentential level, the utterances of a given language are encoded within a syntactic structure of that language. The basic construction of the sentential level is the sentence.The next highest level... is the conceptual level. We call the basic construction of this level the conceptualization. A conceptualization consists of concepts and certain relations among those concepts. We can consider that both levels exist at the same point in time and that for any unit on one level, some corresponding realizate exists on the other level. This realizate may be null or extremely complex.... Conceptualizations may relate to other conceptualizations by nesting or other specified relationships. (Schank, 1973, pp. 191-192)The mathematics of multi-dimensional interactive spaces and lattices, the projection of "computer behavior" on to possible models of cerebral functions, the theoretical and mechanical investigation of artificial intelligence, are producing a stream of sophisticated, often suggestive ideas.But it is, I believe, fair to say that nothing put forward until now in either theoretic design or mechanical mimicry comes even remotely in reach of the most rudimentary linguistic realities. (Steiner, 1975, p. 284)The step from the simple tool to the master tool, a tool to make tools (what we would now call a machine tool), seems to me indeed to parallel the final step to human language, which I call reconstitution. It expresses in a practical and social context the same understanding of hierarchy, and shows the same analysis by function as a basis for synthesis. (Bronowski, 1977, pp. 127-128)t is the language donn eґ in which we conduct our lives.... We have no other. And the danger is that formal linguistic models, in their loosely argued analogy with the axiomatic structure of the mathematical sciences, may block perception.... It is quite conceivable that, in language, continuous induction from simple, elemental units to more complex, realistic forms is not justified. The extent and formal "undecidability" of context-and every linguistic particle above the level of the phoneme is context-bound-may make it impossible, except in the most abstract, meta-linguistic sense, to pass from "pro-verbs," "kernals," or "deep deep structures" to actual speech. (Steiner, 1975, pp. 111-113)A higher-level formal language is an abstract machine. (Weizenbaum, 1976, p. 113)Jakobson sees metaphor and metonymy as the characteristic modes of binarily opposed polarities which between them underpin the two-fold process of selection and combination by which linguistic signs are formed.... Thus messages are constructed, as Saussure said, by a combination of a "horizontal" movement, which combines words together, and a "vertical" movement, which selects the particular words from the available inventory or "inner storehouse" of the language. The combinative (or syntagmatic) process manifests itself in contiguity (one word being placed next to another) and its mode is metonymic. The selective (or associative) process manifests itself in similarity (one word or concept being "like" another) and its mode is metaphoric. The "opposition" of metaphor and metonymy therefore may be said to represent in effect the essence of the total opposition between the synchronic mode of language (its immediate, coexistent, "vertical" relationships) and its diachronic mode (its sequential, successive, lineal progressive relationships). (Hawkes, 1977, pp. 77-78)It is striking that the layered structure that man has given to language constantly reappears in his analyses of nature. (Bronowski, 1977, p. 121)First, [an ideal intertheoretic reduction] provides us with a set of rules"correspondence rules" or "bridge laws," as the standard vernacular has it-which effect a mapping of the terms of the old theory (T o) onto a subset of the expressions of the new or reducing theory (T n). These rules guide the application of those selected expressions of T n in the following way: we are free to make singular applications of their correspondencerule doppelgangers in T o....Second, and equally important, a successful reduction ideally has the outcome that, under the term mapping effected by the correspondence rules, the central principles of T o (those of semantic and systematic importance) are mapped onto general sentences of T n that are theorems of Tn. (P. Churchland, 1979, p. 81)If non-linguistic factors must be included in grammar: beliefs, attitudes, etc. [this would] amount to a rejection of the initial idealization of language as an object of study. A priori such a move cannot be ruled out, but it must be empirically motivated. If it proves to be correct, I would conclude that language is a chaos that is not worth studying.... Note that the question is not whether beliefs or attitudes, and so on, play a role in linguistic behavior and linguistic judgments... [but rather] whether distinct cognitive structures can be identified, which interact in the real use of language and linguistic judgments, the grammatical system being one of these. (Chomsky, 1979, pp. 140, 152-153)23) Language Is Inevitably Influenced by Specific Contexts of Human InteractionLanguage cannot be studied in isolation from the investigation of "rationality." It cannot afford to neglect our everyday assumptions concerning the total behavior of a reasonable person.... An integrational linguistics must recognize that human beings inhabit a communicational space which is not neatly compartmentalized into language and nonlanguage.... It renounces in advance the possibility of setting up systems of forms and meanings which will "account for" a central core of linguistic behavior irrespective of the situation and communicational purposes involved. (Harris, 1981, p. 165)By innate [linguistic knowledge], Chomsky simply means "genetically programmed." He does not literally think that children are born with language in their heads ready to be spoken. He merely claims that a "blueprint is there, which is brought into use when the child reaches a certain point in her general development. With the help of this blueprint, she analyzes the language she hears around her more readily than she would if she were totally unprepared for the strange gabbling sounds which emerge from human mouths. (Aitchison, 1987, p. 31)Looking at ourselves from the computer viewpoint, we cannot avoid seeing that natural language is our most important "programming language." This means that a vast portion of our knowledge and activity is, for us, best communicated and understood in our natural language.... One could say that natural language was our first great original artifact and, since, as we increasingly realize, languages are machines, so natural language, with our brains to run it, was our primal invention of the universal computer. One could say this except for the sneaking suspicion that language isn't something we invented but something we became, not something we constructed but something in which we created, and recreated, ourselves. (Leiber, 1991, p. 8)Historical dictionary of quotations in cognitive science > Language
-
12 Creativity
Put in this bald way, these aims sound utopian. How utopian they areor rather, how imminent their realization-depends on how broadly or narrowly we interpret the term "creative." If we are willing to regard all human complex problem solving as creative, then-as we will point out-successful programs for problem solving mechanisms that simulate human problem solvers already exist, and a number of their general characteristics are known. If we reserve the term "creative" for activities like discovery of the special theory of relativity or the composition of Beethoven's Seventh Symphony, then no example of a creative mechanism exists at the present time. (Simon, 1979, pp. 144-145)Among the questions that can now be given preliminary answers in computational terms are the following: how can ideas from very different sources be spontaneously thought of together? how can two ideas be merged to produce a new structure, which shows the influence of both ancestor ideas without being a mere "cut-and-paste" combination? how can the mind be "primed," so that one will more easily notice serendipitous ideas? why may someone notice-and remember-something fairly uninteresting, if it occurs in an interesting context? how can a brief phrase conjure up an entire melody from memory? and how can we accept two ideas as similar ("love" and "prove" as rhyming, for instance) in respect of a feature not identical in both? The features of connectionist AI models that suggest answers to these questions are their powers of pattern completion, graceful degradation, sensitization, multiple constraint satisfaction, and "best-fit" equilibration.... Here, the important point is that the unconscious, "insightful," associative aspects of creativity can be explained-in outline, at least-by AI methods. (Boden, 1996, p. 273)There thus appears to be an underlying similarity in the process involved in creative innovation and social independence, with common traits and postures required for expression of both behaviors. The difference is one of product-literary, musical, artistic, theoretical products on the one hand, opinions on the other-rather than one of process. In both instances the individual must believe that his perceptions are meaningful and valid and be willing to rely upon his own interpretations. He must trust himself sufficiently that even when persons express opinions counter to his own he can proceed on the basis of his own perceptions and convictions. (Coopersmith, 1967, p. 58)he average level of ego strength and emotional stability is noticeably higher among creative geniuses than among the general population, though it is possibly lower than among men of comparable intelligence and education who go into administrative and similar positions. High anxiety and excitability appear common (e.g. Priestley, Darwin, Kepler) but full-blown neurosis is quite rare. (Cattell & Butcher, 1970, p. 315)he insight that is supposed to be required for such work as discovery turns out to be synonymous with the familiar process of recognition; and other terms commonly used in the discussion of creative work-such terms as "judgment," "creativity," or even "genius"-appear to be wholly dispensable or to be definable, as insight is, in terms of mundane and well-understood concepts. (Simon, 1989, p. 376)From the sketch material still in existence, from the condition of the fragments, and from the autographs themselves we can draw definite conclusions about Mozart's creative process. To invent musical ideas he did not need any stimulation; they came to his mind "ready-made" and in polished form. In contrast to Beethoven, who made numerous attempts at shaping his musical ideas until he found the definitive formulation of a theme, Mozart's first inspiration has the stamp of finality. Any Mozart theme has completeness and unity; as a phenomenon it is a Gestalt. (Herzmann, 1964, p. 28)Great artists enlarge the limits of one's perception. Looking at the world through the eyes of Rembrandt or Tolstoy makes one able to perceive aspects of truth about the world which one could not have achieved without their aid. Freud believed that science was adaptive because it facilitated mastery of the external world; but was it not the case that many scientific theories, like works of art, also originated in phantasy? Certainly, reading accounts of scientific discovery by men of the calibre of Einstein compelled me to conclude that phantasy was not merely escapist, but a way of reaching new insights concerning the nature of reality. Scientific hypotheses require proof; works of art do not. Both are concerned with creating order, with making sense out of the world and our experience of it. (Storr, 1993, p. xii)The importance of self-esteem for creative expression appears to be almost beyond disproof. Without a high regard for himself the individual who is working in the frontiers of his field cannot trust himself to discriminate between the trivial and the significant. Without trust in his own powers the person seeking improved solutions or alternative theories has no basis for distinguishing the significant and profound innovation from the one that is merely different.... An essential component of the creative process, whether it be analysis, synthesis, or the development of a new perspective or more comprehensive theory, is the conviction that one's judgment in interpreting the events is to be trusted. (Coopersmith, 1967, p. 59)In the daily stream of thought these four different stages [preparation; incubation; illumination or inspiration; and verification] constantly overlap each other as we explore different problems. An economist reading a Blue Book, a physiologist watching an experiment, or a business man going through his morning's letters, may at the same time be "incubating" on a problem which he proposed to himself a few days ago, be accumulating knowledge in "preparation" for a second problem, and be "verifying" his conclusions to a third problem. Even in exploring the same problem, the mind may be unconsciously incubating on one aspect of it, while it is consciously employed in preparing for or verifying another aspect. (Wallas, 1926, p. 81)he basic, bisociative pattern of the creative synthesis [is] the sudden interlocking of two previously unrelated skills, or matrices of thought. (Koestler, 1964, p. 121)11) The Earliest Stages in the Creative Process Involve a Commerce with DisorderEven to the creator himself, the earliest effort may seem to involve a commerce with disorder. For the creative order, which is an extension of life, is not an elaboration of the established, but a movement beyond the established, or at least a reorganization of it and often of elements not included in it. The first need is therefore to transcend the old order. Before any new order can be defined, the absolute power of the established, the hold upon us of what we know and are, must be broken. New life comes always from outside our world, as we commonly conceive that world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." (Ghiselin, 1985, p. 4)New life comes always from outside our world, as we commonly conceive our world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." Chaos and disorder are perhaps the wrong terms for that indeterminate fullness and activity of the inner life. For it is organic, dynamic, full of tension and tendency. What is absent from it, except in the decisive act of creation, is determination, fixity, and commitment to one resolution or another of the whole complex of its tensions. (Ghiselin, 1952, p. 13)[P]sychoanalysts have principally been concerned with the content of creative products, and with explaining content in terms of the artist's infantile past. They have paid less attention to examining why the artist chooses his particular activity to express, abreact or sublimate his emotions. In short, they have not made much distinction between art and neurosis; and, since the former is one of the blessings of mankind, whereas the latter is one of the curses, it seems a pity that they should not be better differentiated....Psychoanalysis, being fundamentally concerned with drive and motive, might have been expected to throw more light upon what impels the creative person that in fact it has. (Storr, 1993, pp. xvii, 3)A number of theoretical approaches were considered. Associative theory, as developed by Mednick (1962), gained some empirical support from the apparent validity of the Remote Associates Test, which was constructed on the basis of the theory.... Koestler's (1964) bisociative theory allows more complexity to mental organization than Mednick's associative theory, and postulates "associative contexts" or "frames of reference." He proposed that normal, non-creative, thought proceeds within particular contexts or frames and that the creative act involves linking together previously unconnected frames.... Simonton (1988) has developed associative notions further and explored the mathematical consequences of chance permutation of ideas....Like Koestler, Gruber (1980; Gruber and Davis, 1988) has based his analysis on case studies. He has focused especially on Darwin's development of the theory of evolution. Using piagetian notions, such as assimilation and accommodation, Gruber shows how Darwin's system of ideas changed very slowly over a period of many years. "Moments of insight," in Gruber's analysis, were the culminations of slow long-term processes.... Finally, the information-processing approach, as represented by Simon (1966) and Langley et al. (1987), was considered.... [Simon] points out the importance of good problem representations, both to ensure search is in an appropriate problem space and to aid in developing heuristic evaluations of possible research directions.... The work of Langley et al. (1987) demonstrates how such search processes, realized in computer programs, can indeed discover many basic laws of science from tables of raw data.... Boden (1990a, 1994) has stressed the importance of restructuring the problem space in creative work to develop new genres and paradigms in the arts and sciences. (Gilhooly, 1996, pp. 243-244; emphasis in original)Historical dictionary of quotations in cognitive science > Creativity
-
13 Bibliography
■ Aitchison, J. (1987). Noam Chomsky: Consensus and controversy. New York: Falmer Press.■ Anderson, J. R. (1980). Cognitive psychology and its implications. San Francisco: W. H. Freeman.■ Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.■ Anderson, J. R. (1995). Cognitive psychology and its implications (4th ed.). New York: W. H. Freeman.■ Archilochus (1971). In M. L. West (Ed.), Iambi et elegi graeci (Vol. 1). Oxford: Oxford University Press.■ Armstrong, D. M. (1990). The causal theory of the mind. In W. G. Lycan (Ed.), Mind and cognition: A reader (pp. 37-47). Cambridge, MA: Basil Blackwell. (Originally published in 1981 in The nature of mind and other essays, Ithaca, NY: University Press).■ Atkins, P. W. (1992). Creation revisited. Oxford: W. H. Freeman & Company.■ Austin, J. L. (1962). How to do things with words. Cambridge, MA: Harvard University Press.■ Bacon, F. (1878). Of the proficience and advancement of learning divine and human. In The works of Francis Bacon (Vol. 1). Cambridge, MA: Hurd & Houghton.■ Bacon, R. (1928). Opus majus (Vol. 2). R. B. Burke (Trans.). Philadelphia, PA: University of Pennsylvania Press.■ Bar-Hillel, Y. (1960). The present status of automatic translation of languages. In F. L. Alt (Ed.), Advances in computers (Vol. 1). New York: Academic Press.■ Barr, A., & E. A. Feigenbaum (Eds.) (1981). The handbook of artificial intelligence (Vol. 1). Reading, MA: Addison-Wesley.■ Barr, A., & E. A. Feigenbaum (Eds.) (1982). The handbook of artificial intelligence (Vol. 2). Los Altos, CA: William Kaufman.■ Barron, F. X. (1963). The needs for order and for disorder as motives in creative activity. In C. W. Taylor & F. X. Barron (Eds.), Scientific creativity: Its rec ognition and development (pp. 153-160). New York: Wiley.■ Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge: Cambridge University Press.■ Bartley, S. H. (1969). Principles of perception. London: Harper & Row.■ Barzun, J. (1959). The house of intellect. New York: Harper & Row.■ Beach, F. A., D. O. Hebb, C. T. Morgan & H. W. Nissen (Eds.) (1960). The neu ropsychology of Lashley. New York: McGraw-Hill.■ Berkeley, G. (1996). Principles of human knowledge: Three Dialogues. Oxford: Oxford University Press. (Originally published in 1710.)■ Berlin, I. (1953). The hedgehog and the fox: An essay on Tolstoy's view of history. NY: Simon & Schuster.■ Bierwisch, J. (1970). Semantics. In J. Lyons (Ed.), New horizons in linguistics. Baltimore: Penguin Books.■ Black, H. C. (1951). Black's law dictionary. St. Paul, MN: West Publishing.■ Bloom, A. (1981). The linguistic shaping of thought: A study in the impact of language on thinking in China and the West. Hillsdale, NJ: Erlbaum.■ Bobrow, D. G., & D. A. Norman (1975). Some principles of memory schemata. In D. G. Bobrow & A. Collins (Eds.), Representation and understanding: Stud ies in Cognitive Science (pp. 131-149). New York: Academic Press.■ Boden, M. A. (1977). Artificial intelligence and natural man. New York: Basic Books.■ Boden, M. A. (1981). Minds and mechanisms. Ithaca, NY: Cornell University Press.■ Boden, M. A. (1990a). The creative mind: Myths and mechanisms. London: Cardinal.■ Boden, M. A. (1990b). The philosophy of artificial intelligence. Oxford: Oxford University Press.■ Boden, M. A. (1994). Precis of The creative mind: Myths and mechanisms. Behavioral and brain sciences 17, 519-570.■ Boden, M. (1996). Creativity. In M. Boden (Ed.), Artificial Intelligence (2nd ed.). San Diego: Academic Press.■ Bolter, J. D. (1984). Turing's man: Western culture in the computer age. Chapel Hill, NC: University of North Carolina Press.■ Bolton, N. (1972). The psychology of thinking. London: Methuen.■ Bourne, L. E. (1973). Some forms of cognition: A critical analysis of several papers. In R. Solso (Ed.), Contemporary issues in cognitive psychology (pp. 313324). Loyola Symposium on Cognitive Psychology (Chicago 1972). Washington, DC: Winston.■ Bransford, J. D., N. S. McCarrell, J. J. Franks & K. E. Nitsch (1977). Toward unexplaining memory. In R. Shaw & J. D. Bransford (Eds.), Perceiving, acting, and knowing (pp. 431-466). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Breger, L. (1981). Freud's unfinished journey. London: Routledge & Kegan Paul.■ Brehmer, B. (1986). In one word: Not from experience. In H. R. Arkes & K. Hammond (Eds.), Judgment and decision making: An interdisciplinary reader (pp. 705-719). Cambridge: Cambridge University Press.■ Bresnan, J. (1978). A realistic transformational grammar. In M. Halle, J. Bresnan & G. A. Miller (Eds.), Linguistic theory and psychological reality (pp. 1-59). Cambridge, MA: MIT Press.■ Brislin, R. W., W. J. Lonner & R. M. Thorndike (Eds.) (1973). Cross- cultural research methods. New York: Wiley.■ Bronowski, J. (1977). A sense of the future: Essays in natural philosophy. P. E. Ariotti with R. Bronowski (Eds.). Cambridge, MA: MIT Press.■ Bronowski, J. (1978). The origins of knowledge and imagination. New Haven, CT: Yale University Press.■ Brown, R. O. (1973). A first language: The early stages. Cambridge, MA: Harvard University Press.■ Brown, T. (1970). Lectures on the philosophy of the human mind. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 330-387). New York: Random House/Modern Library.■ Bruner, J. S., J. Goodnow & G. Austin (1956). A study of thinking. New York: Wiley.■ Calvin, W. H. (1990). The cerebral symphony: Seashore reflections on the structure of consciousness. New York: Bantam.■ Campbell, J. (1982). Grammatical man: Information, entropy, language, and life. New York: Simon & Schuster.■ Campbell, J. (1989). The improbable machine. New York: Simon & Schuster.■ Carlyle, T. (1966). On heroes, hero- worship and the heroic in history. Lincoln: University of Nebraska Press. (Originally published in 1841.)■ Carnap, R. (1959). The elimination of metaphysics through logical analysis of language [Ueberwindung der Metaphysik durch logische Analyse der Sprache]. In A. J. Ayer (Ed.), Logical positivism (pp. 60-81) A. Pap (Trans). New York: Free Press. (Originally published in 1932.)■ Cassirer, E. (1946). Language and myth. New York: Harper and Brothers. Reprinted. New York: Dover Publications, 1953.■ Cattell, R. B., & H. J. Butcher (1970). Creativity and personality. In P. E. Vernon (Ed.), Creativity. Harmondsworth, England: Penguin Books.■ Caudill, M., & C. Butler (1990). Naturally intelligent systems. Cambridge, MA: MIT Press/Bradford Books.■ Chandrasekaran, B. (1990). What kind of information processing is intelligence? A perspective on AI paradigms and a proposal. In D. Partridge & R. Wilks (Eds.), The foundations of artificial intelligence: A sourcebook (pp. 14-46). Cambridge: Cambridge University Press.■ Charniak, E., & McDermott, D. (1985). Introduction to artificial intelligence. Reading, MA: Addison-Wesley.■ Chase, W. G., & H. A. Simon (1988). The mind's eye in chess. In A. Collins & E. E. Smith (Eds.), Readings in cognitive science: A perspective from psychology and artificial intelligence (pp. 461-493). San Mateo, CA: Kaufmann.■ Cheney, D. L., & R. M. Seyfarth (1990). How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press.■ Chi, M.T.H., R. Glaser & E. Rees (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7-73). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Chomsky, N. (1957). Syntactic structures. The Hague: Mouton. Janua Linguarum.■ Chomsky, N. (1964). A transformational approach to syntax. In J. A. Fodor & J. J. Katz (Eds.), The structure of language: Readings in the philosophy of lan guage (pp. 211-245). Englewood Cliffs, NJ: Prentice-Hall.■ Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.■ Chomsky, N. (1972). Language and mind (enlarged ed.). New York: Harcourt Brace Jovanovich.■ Chomsky, N. (1979). Language and responsibility. New York: Pantheon.■ Chomsky, N. (1986). Knowledge of language: Its nature, origin and use. New York: Praeger Special Studies.■ Churchland, P. (1979). Scientific realism and the plasticity of mind. New York: Cambridge University Press.■ Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.■ Churchland, P. S. (1986). Neurophilosophy. Cambridge, MA: MIT Press/Bradford Books.■ Clark, A. (1996). Philosophical Foundations. In M. A. Boden (Ed.), Artificial in telligence (2nd ed.). San Diego: Academic Press.■ Clark, H. H., & T. B. Carlson (1981). Context for comprehension. In J. Long & A. Baddeley (Eds.), Attention and performance (Vol. 9, pp. 313-330). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Clarke, A. C. (1984). Profiles of the future: An inquiry into the limits of the possible. New York: Holt, Rinehart & Winston.■ Claxton, G. (1980). Cognitive psychology: A suitable case for what sort of treatment? In G. Claxton (Ed.), Cognitive psychology: New directions (pp. 1-25). London: Routledge & Kegan Paul.■ Code, M. (1985). Order and organism. Albany, NY: State University of New York Press.■ Collingwood, R. G. (1972). The idea of history. New York: Oxford University Press.■ Coopersmith, S. (1967). The antecedents of self- esteem. San Francisco: W. H. Freeman.■ Copland, A. (1952). Music and imagination. London: Oxford University Press.■ Coren, S. (1994). The intelligence of dogs. New York: Bantam Books.■ Cottingham, J. (Ed.) (1996). Western philosophy: An anthology. Oxford: Blackwell Publishers.■ Cox, C. (1926). The early mental traits of three hundred geniuses. Stanford, CA: Stanford University Press.■ Craik, K.J.W. (1943). The nature of explanation. Cambridge: Cambridge University Press.■ Cronbach, L. J. (1990). Essentials of psychological testing (5th ed.). New York: HarperCollins.■ Cronbach, L. J., & R. E. Snow (1977). Aptitudes and instructional methods. New York: Irvington. Paperback edition, 1981.■ Csikszentmihalyi, M. (1993). The evolving self. New York: Harper Perennial.■ Culler, J. (1976). Ferdinand de Saussure. New York: Penguin Books.■ Curtius, E. R. (1973). European literature and the Latin Middle Ages. W. R. Trask (Trans.). Princeton, NJ: Princeton University Press.■ D'Alembert, J.L.R. (1963). Preliminary discourse to the encyclopedia of Diderot. R. N. Schwab (Trans.). Indianapolis: Bobbs-Merrill.■ Dampier, W. C. (1966). A history of modern science. Cambridge: Cambridge University Press.■ Darwin, C. (1911). The life and letters of Charles Darwin (Vol. 1). Francis Darwin (Ed.). New York: Appleton.■ Davidson, D. (1970) Mental events. In L. Foster & J. W. Swanson (Eds.), Experience and theory (pp. 79-101). Amherst: University of Massachussetts Press.■ Davies, P. (1995). About time: Einstein's unfinished revolution. New York: Simon & Schuster/Touchstone.■ Davis, R., & J. J. King (1977). An overview of production systems. In E. Elcock & D. Michie (Eds.), Machine intelligence 8. Chichester, England: Ellis Horwood.■ Davis, R., & D. B. Lenat (1982). Knowledge- based systems in artificial intelligence. New York: McGraw-Hill.■ Dawkins, R. (1982). The extended phenotype: The gene as the unit of selection. Oxford: W. H. Freeman.■ deKleer, J., & J. S. Brown (1983). Assumptions and ambiguities in mechanistic mental models (1983). In D. Gentner & A. L. Stevens (Eds.), Mental modes (pp. 155-190). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Dennett, D. C. (1978a). Brainstorms: Philosophical essays on mind and psychology. Montgomery, VT: Bradford Books.■ Dennett, D. C. (1978b). Toward a cognitive theory of consciousness. In D. C. Dennett, Brainstorms: Philosophical Essays on Mind and Psychology. Montgomery, VT: Bradford Books.■ Dennett, D. C. (1995). Darwin's dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster/Touchstone.■ Descartes, R. (1897-1910). Traite de l'homme. In Oeuvres de Descartes (Vol. 11, pp. 119-215). Paris: Charles Adam & Paul Tannery. (Originally published in 1634.)■ Descartes, R. (1950). Discourse on method. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1637.)■ Descartes, R. (1951). Meditation on first philosophy. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1641.)■ Descartes, R. (1955). The philosophical works of Descartes. E. S. Haldane and G.R.T. Ross (Trans.). New York: Dover. (Originally published in 1911 by Cambridge University Press.)■ Descartes, R. (1967). Discourse on method (Pt. V). In E. S. Haldane and G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 106-118). Cambridge: Cambridge University Press. (Originally published in 1637.)■ Descartes, R. (1970a). Discourse on method. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 181-200). Cambridge: Cambridge University Press. (Originally published in 1637.)■ Descartes, R. (1970b). Principles of philosophy. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 178-291). Cambridge: Cambridge University Press. (Originally published in 1644.)■ Descartes, R. (1984). Meditations on first philosophy. In J. Cottingham, R. Stoothoff & D. Murduch (Trans.), The philosophical works of Descartes (Vol. 2). Cambridge: Cambridge University Press. (Originally published in 1641.)■ Descartes, R. (1986). Meditations on first philosophy. J. Cottingham (Trans.). Cambridge: Cambridge University Press. (Originally published in 1641 as Med itationes de prima philosophia.)■ deWulf, M. (1956). An introduction to scholastic philosophy. Mineola, NY: Dover Books.■ Dixon, N. F. (1981). Preconscious processing. London: Wiley.■ Doyle, A. C. (1986). The Boscombe Valley mystery. In Sherlock Holmes: The com plete novels and stories (Vol. 1). New York: Bantam.■ Dreyfus, H., & S. Dreyfus (1986). Mind over machine. New York: Free Press.■ Dreyfus, H. L. (1972). What computers can't do: The limits of artificial intelligence (revised ed.). New York: Harper & Row.■ Dreyfus, H. L., & S. E. Dreyfus (1986). Mind over machine: The power of human intuition and expertise in the era of the computer. New York: Free Press.■ Edelman, G. M. (1992). Bright air, brilliant fire: On the matter of the mind. New York: Basic Books.■ Ehrenzweig, A. (1967). The hidden order of art. London: Weidenfeld & Nicolson.■ Einstein, A., & L. Infeld (1938). The evolution of physics. New York: Simon & Schuster.■ Eisenstein, S. (1947). Film sense. New York: Harcourt, Brace & World.■ Everdell, W. R. (1997). The first moderns. Chicago: University of Chicago Press.■ Eysenck, M. W. (1977). Human memory: Theory, research and individual difference. Oxford: Pergamon.■ Eysenck, M. W. (1982). Attention and arousal: Cognition and performance. Berlin: Springer.■ Eysenck, M. W. (1984). A handbook of cognitive psychology. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Fancher, R. E. (1979). Pioneers of psychology. New York: W. W. Norton.■ Farrell, B. A. (1981). The standing of psychoanalysis. New York: Oxford University Press.■ Feldman, D. H. (1980). Beyond universals in cognitive development. Norwood, NJ: Ablex.■ Fetzer, J. H. (1996). Philosophy and cognitive science (2nd ed.). New York: Paragon House.■ Finke, R. A. (1990). Creative imagery: Discoveries and inventions in visualization. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Flanagan, O. (1991). The science of the mind. Cambridge MA: MIT Press/Bradford Books.■ Fodor, J. (1983). The modularity of mind. Cambridge, MA: MIT Press/Bradford Books.■ Frege, G. (1972). Conceptual notation. T. W. Bynum (Trans.). Oxford: Clarendon Press. (Originally published in 1879.)■ Frege, G. (1979). Logic. In H. Hermes, F. Kambartel & F. Kaulbach (Eds.), Gottlob Frege: Posthumous writings. Chicago: University of Chicago Press. (Originally published in 1879-1891.)■ Freud, S. (1959). Creative writers and day-dreaming. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 9, pp. 143-153). London: Hogarth Press.■ Freud, S. (1966). Project for a scientific psychology. In J. Strachey (Ed.), The stan dard edition of the complete psychological works of Sigmund Freud (Vol. 1, pp. 295-398). London: Hogarth Press. (Originally published in 1950 as Aus den AnfaЁngen der Psychoanalyse, in London by Imago Publishing.)■ Freud, S. (1976). Lecture 18-Fixation to traumas-the unconscious. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 16, p. 285). London: Hogarth Press.■ Galileo, G. (1990). Il saggiatore [The assayer]. In S. Drake (Ed.), Discoveries and opinions of Galileo. New York: Anchor Books. (Originally published in 1623.)■ Gassendi, P. (1970). Letter to Descartes. In "Objections and replies." In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 2, pp. 179-240). Cambridge: Cambridge University Press. (Originally published in 1641.)■ Gazzaniga, M. S. (1988). Mind matters: How mind and brain interact to create our conscious lives. Boston: Houghton Mifflin in association with MIT Press/Bradford Books.■ Genesereth, M. R., & N. J. Nilsson (1987). Logical foundations of artificial intelligence. Palo Alto, CA: Morgan Kaufmann.■ Ghiselin, B. (1952). The creative process. New York: Mentor.■ Ghiselin, B. (1985). The creative process. Berkeley, CA: University of California Press. (Originally published in 1952.)■ Gilhooly, K. J. (1996). Thinking: Directed, undirected and creative (3rd ed.). London: Academic Press.■ Glass, A. L., K. J. Holyoak & J. L. Santa (1979). Cognition. Reading, MA: AddisonWesley.■ Goody, J. (1977). The domestication of the savage mind. Cambridge: Cambridge University Press.■ Gruber, H. E. (1980). Darwin on man: A psychological study of scientific creativity (2nd ed.). Chicago: University of Chicago Press.■ Gruber, H. E., & S. Davis (1988). Inching our way up Mount Olympus: The evolving systems approach to creative thinking. In R. J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives. Cambridge: Cambridge University Press.■ Guthrie, E. R. (1972). The psychology of learning. New York: Harper. (Originally published in 1935.)■ Habermas, J. (1972). Knowledge and human interests. Boston: Beacon Press.■ Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.■ Hand, D. J. (1985). Artificial intelligence and psychiatry. Cambridge: Cambridge University Press.■ Harris, M. (1981). The language myth. London: Duckworth.■ Haugeland, J. (Ed.) (1981). Mind design: Philosophy, psychology, artificial intelligence. Cambridge, MA: MIT Press/Bradford Books.■ Haugeland, J. (1981a). The nature and plausibility of cognitivism. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 243-281). Cambridge, MA: MIT Press.■ Haugeland, J. (1981b). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 1-34). Cambridge, MA: MIT Press/Bradford Books.■ Haugeland, J. (1985). Artificial intelligence: The very idea. Cambridge, MA: MIT Press.■ Hawkes, T. (1977). Structuralism and semiotics. Berkeley: University of California Press.■ Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley.■ Hebb, D. O. (1958). A textbook of psychology. Philadelphia: Saunders.■ Hegel, G.W.F. (1910). The phenomenology of mind. J. B. Baille (Trans.). London: Sonnenschein. (Originally published as Phaenomenologie des Geistes, 1807.)■ Heisenberg, W. (1958). Physics and philosophy. New York: Harper & Row.■ Hempel, C. G. (1966). Philosophy of natural science. Englewood Cliffs, NJ: PrenticeHall.■ Herman, A. (1997). The idea of decline in Western history. New York: Free Press.■ Herrnstein, R. J., & E. G. Boring (Eds.) (1965). A source book in the history of psy chology. Cambridge, MA: Harvard University Press.■ Herzmann, E. (1964). Mozart's creative process. In P. H. Lang (Ed.), The creative world of Mozart (pp. 17-30). London: Oldbourne Press.■ Hilgard, E. R. (1957). Introduction to psychology. London: Methuen.■ Hobbes, T. (1651). Leviathan. London: Crooke.■ Holliday, S. G., & M. J. Chandler (1986). Wisdom: Explorations in adult competence. Basel, Switzerland: Karger.■ Horn, J. L. (1986). In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 3). Hillsdale, NJ: Erlbaum.■ Hull, C. (1943). Principles of behavior. New York: Appleton-Century-Crofts.■ Hume, D. (1955). An inquiry concerning human understanding. New York: Liberal Arts Press. (Originally published in 1748.)■ Hume, D. (1975). An enquiry concerning human understanding. In L. A. SelbyBigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (Spelling and punctuation revised.) (Originally published in 1748.)■ Hume, D. (1978). A treatise of human nature. L. A. Selby-Bigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (With some modifications of spelling and punctuation.) (Originally published in 1690.)■ Hunt, E. (1973). The memory we must have. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language. (pp. 343-371) San Francisco: W. H. Freeman.■ Husserl, E. (1960). Cartesian meditations. The Hague: Martinus Nijhoff.■ Inhelder, B., & J. Piaget (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books. (Originally published in 1955 as De la logique de l'enfant a` la logique de l'adolescent. [Paris: Presses Universitaire de France])■ James, W. (1890a). The principles of psychology (Vol. 1). New York: Dover Books.■ James, W. (1890b). The principles of psychology. New York: Henry Holt.■ Jevons, W. S. (1900). The principles of science (2nd ed.). London: Macmillan.■ Johnson, G. (1986). Machinery of the mind: Inside the new science of artificial intelli gence. New York: Random House.■ Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.■ Johnson-Laird, P. N. (1988). The computer and the mind: An introduction to cognitive science. Cambridge, MA: Harvard University Press.■ Jones, E. (1961). The life and work of Sigmund Freud. L. Trilling & S. Marcus (Eds.). London: Hogarth.■ Jones, R. V. (1985). Complementarity as a way of life. In A. P. French & P. J. Kennedy (Eds.), Niels Bohr: A centenary volume. Cambridge, MA: Harvard University Press.■ Kant, I. (1933). Critique of Pure Reason (2nd ed.). N. K. Smith (Trans.). London: Macmillan. (Originally published in 1781 as Kritik der reinen Vernunft.)■ Kant, I. (1891). Solution of the general problems of the Prolegomena. In E. Belfort (Trans.), Kant's Prolegomena. London: Bell. (With minor modifications.) (Originally published in 1783.)■ Katona, G. (1940). Organizing and memorizing: Studies in the psychology of learning and teaching. New York: Columbia University Press.■ Kaufman, A. S. (1979). Intelligent testing with the WISC-R. New York: Wiley.■ Koestler, A. (1964). The act of creation. New York: Arkana (Penguin).■ Kohlberg, L. (1971). From is to ought. In T. Mischel (Ed.), Cognitive development and epistemology. (pp. 151-235) New York: Academic Press.■ KoЁhler, W. (1925). The mentality of apes. New York: Liveright.■ KoЁhler, W. (1927). The mentality of apes (2nd ed.). Ella Winter (Trans.). London: Routledge & Kegan Paul.■ KoЁhler, W. (1930). Gestalt psychology. London: G. Bell.■ KoЁhler, W. (1947). Gestalt psychology. New York: Liveright.■ KoЁhler, W. (1969). The task of Gestalt psychology. Princeton, NJ: Princeton University Press.■ Kuhn, T. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.■ Langer, E. J. (1989). Mindfulness. Reading, MA: Addison-Wesley.■ Langer, S. (1962). Philosophical sketches. Baltimore: Johns Hopkins University Press.■ Langley, P., H. A. Simon, G. L. Bradshaw & J. M. Zytkow (1987). Scientific dis covery: Computational explorations of the creative process. Cambridge, MA: MIT Press.■ Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior, the Hixon Symposium (pp. 112-146) New York: Wiley.■ LeDoux, J. E., & W. Hirst (1986). Mind and brain: Dialogues in cognitive neuroscience. Cambridge: Cambridge University Press.■ Lehnert, W. (1978). The process of question answering. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Leiber, J. (1991). Invitation to cognitive science. Oxford: Blackwell.■ Lenat, D. B., & G. Harris (1978). Designing a rule system that searches for scientific discoveries. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern directed inference systems (pp. 25-52) New York: Academic Press.■ Levenson, T. (1995). Measure for measure: A musical history of science. New York: Touchstone. (Originally published in 1994.)■ Leґvi-Strauss, C. (1963). Structural anthropology. C. Jacobson & B. Grundfest Schoepf (Trans.). New York: Basic Books. (Originally published in 1958.)■ Levine, M. W., & J. M. Schefner (1981). Fundamentals of sensation and perception. London: Addison-Wesley.■ Lewis, C. I. (1946). An analysis of knowledge and valuation. LaSalle, IL: Open Court.■ Lighthill, J. (1972). A report on artificial intelligence. Unpublished manuscript, Science Research Council.■ Lipman, M., A. M. Sharp & F. S. Oscanyan (1980). Philosophy in the classroom. Philadelphia: Temple University Press.■ Lippmann, W. (1965). Public opinion. New York: Free Press. (Originally published in 1922.)■ Locke, J. (1956). An essay concerning human understanding. Chicago: Henry Regnery Co. (Originally published in 1690.)■ Locke, J. (1975). An essay concerning human understanding. P. H. Nidditch (Ed.). Oxford: Clarendon. (Originally published in 1690.) (With spelling and punctuation modernized and some minor modifications of phrasing.)■ Lopate, P. (1994). The art of the personal essay. New York: Doubleday/Anchor Books.■ Lorimer, F. (1929). The growth of reason. London: Kegan Paul. Machlup, F., & U. Mansfield (Eds.) (1983). The study of information. New York: Wiley.■ Manguel, A. (1996). A history of reading. New York: Viking.■ Markey, J. F. (1928). The symbolic process. London: Kegan Paul.■ Martin, R. M. (1969). On Ziff's "Natural and formal languages." In S. Hook (Ed.), Language and philosophy: A symposium (pp. 249-263). New York: New York University Press.■ Mazlish, B. (1993). The fourth discontinuity: the co- evolution of humans and machines. New Haven, CT: Yale University Press.■ McCarthy, J., & P. J. Hayes (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine intelligence 4. Edinburgh: Edinburgh University Press.■ McClelland, J. L., D. E. Rumelhart & G. E. Hinton (1986). The appeal of parallel distributed processing. In D. E. Rumelhart, J. L. McClelland & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the mi crostructure of cognition (Vol. 1, pp. 3-40). Cambridge, MA: MIT Press/ Bradford Books.■ McCorduck, P. (1979). Machines who think. San Francisco: W. H. Freeman.■ McLaughlin, T. (1970). Music and communication. London: Faber & Faber.■ Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review 69, 431-436.■ Meehl, P. E., & C. J. Golden (1982). Taxometric methods. In Kendall, P. C., & Butcher, J. N. (Eds.), Handbook of research methods in clinical psychology (pp. 127-182). New York: Wiley.■ Mehler, J., E.C.T. Walker & M. Garrett (Eds.) (1982). Perspectives on mental rep resentation: Experimental and theoretical studies of cognitive processes and ca pacities. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Mill, J. S. (1900). A system of logic, ratiocinative and inductive: Being a connected view of the principles of evidence and the methods of scientific investigation. London: Longmans, Green.■ Miller, G. A. (1979, June). A very personal history. Talk to the Cognitive Science Workshop, Cambridge, MA.■ Miller, J. (1983). States of mind. New York: Pantheon Books.■ Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The psychology of computer vision (pp. 211-277). New York: McGrawHill.■ Minsky, M., & S. Papert (1973). Artificial intelligence. Condon Lectures, Oregon State System of Higher Education, Eugene, Oregon.■ Minsky, M. L. (1986). The society of mind. New York: Simon & Schuster.■ Mischel, T. (1976). Psychological explanations and their vicissitudes. In J. K. Cole & W. J. Arnold (Eds.), Nebraska Symposium on motivation (Vol. 23). Lincoln, NB: University of Nebraska Press.■ Morford, M.P.O., & R. J. Lenardon (1995). Classical mythology (5th ed.). New York: Longman.■ Murdoch, I. (1954). Under the net. New York: Penguin.■ Nagel, E. (1959). Methodological issues in psychoanalytic theory. In S. Hook (Ed.), Psychoanalysis, scientific method, and philosophy: A symposium. New York: New York University Press.■ Nagel, T. (1979). Mortal questions. London: Cambridge University Press.■ Nagel, T. (1986). The view from nowhere. Oxford: Oxford University Press.■ Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.■ Neisser, U. (1972). Changing conceptions of imagery. In P. W. Sheehan (Ed.), The function and nature of imagery (pp. 233-251). London: Academic Press.■ Neisser, U. (1976). Cognition and reality. San Francisco: W. H. Freeman.■ Neisser, U. (1978). Memory: What are the important questions? In M. M. Gruneberg, P. E. Morris & R. N. Sykes (Eds.), Practical aspects of memory (pp. 3-24). London: Academic Press.■ Neisser, U. (1979). The concept of intelligence. In R. J. Sternberg & D. K. Detterman (Eds.), Human intelligence: Perspectives on its theory and measurement (pp. 179-190). Norwood, NJ: Ablex.■ Nersessian, N. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3-44). Minneapolis: University of Minnesota Press.■ Newell, A. (1973a). Artificial intelligence and the concept of mind. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 1-60). San Francisco: W. H. Freeman.■ Newell, A. (1973b). You can't play 20 questions with nature and win. In W. G. Chase (Ed.), Visual information processing (pp. 283-310). New York: Academic Press.■ Newell, A., & H. A. Simon (1963). GPS: A program that simulates human thought. In E. A. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 279-293). New York & McGraw-Hill.■ Newell, A., & H. A. Simon (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.■ Nietzsche, F. (1966). Beyond good and evil. W. Kaufmann (Trans.). New York: Vintage. (Originally published in 1885.)■ Nilsson, N. J. (1971). Problem- solving methods in artificial intelligence. New York: McGraw-Hill.■ Nussbaum, M. C. (1978). Aristotle's Princeton University Press. De Motu Anamalium. Princeton, NJ:■ Oersted, H. C. (1920). Thermo-electricity. In Kirstine Meyer (Ed.), H. C. Oersted, Natuurvidenskabelige Skrifter (Vol. 2). Copenhagen: n.p. (Originally published in 1830 in The Edinburgh encyclopaedia.)■ Ong, W. J. (1982). Orality and literacy: The technologizing of the word. London: Methuen.■ Onians, R. B. (1954). The origins of European thought. Cambridge, MA: Cambridge University Press.■ Osgood, C. E. (1960). Method and theory in experimental psychology. New York: Oxford University Press. (Originally published in 1953.)■ Osgood, C. E. (1966). Language universals and psycholinguistics. In J. H. Greenberg (Ed.), Universals of language (2nd ed., pp. 299-322). Cambridge, MA: MIT Press.■ Palmer, R. E. (1969). Hermeneutics. Evanston, IL: Northwestern University Press.■ Peirce, C. S. (1934). Some consequences of four incapacities-Man, a sign. In C. Hartsborne & P. Weiss (Eds.), Collected papers of Charles Saunders Peirce (Vol. 5, pp. 185-189). Cambridge, MA: Harvard University Press.■ Penfield, W. (1959). In W. Penfield & L. Roberts, Speech and brain mechanisms. Princeton, NJ: Princeton University Press.■ Penrose, R. (1994). Shadows of the mind: A search for the missing science of conscious ness. Oxford: Oxford University Press.■ Perkins, D. N. (1981). The mind's best work. Cambridge, MA: Harvard University Press.■ Peterfreund, E. (1986). The heuristic approach to psychoanalytic therapy. In■ J. Reppen (Ed.), Analysts at work, (pp. 127-144). Hillsdale, NJ: Analytic Press.■ Piaget, J. (1952). The origin of intelligence in children. New York: International Universities Press. (Originally published in 1936.)■ Piaget, J. (1954). Le langage et les opeґrations intellectuelles. Proble` mes de psycho linguistique. Symposium de l'Association de Psychologie Scientifique de Langue Francёaise. Paris: Presses Universitaires de France.■ Piaget, J. (1977). Problems of equilibration. In H. E. Gruber & J. J. Voneche (Eds.), The essential Piaget (pp. 838-841). London: Routlege & Kegan Paul. (Originally published in 1975 as L'eґquilibration des structures cognitives [Paris: Presses Universitaires de France].)■ Piaget, J., & B. Inhelder. (1973). Memory and intelligence. New York: Basic Books.■ Pinker, S. (1994). The language instinct. New York: Morrow.■ Pinker, S. (1996). Facts about human language relevant to its evolution. In J.-P. Changeux & J. Chavaillon (Eds.), Origins of the human brain. A symposium of the Fyssen foundation (pp. 262-283). Oxford: Clarendon Press. Planck, M. (1949). Scientific autobiography and other papers. F. Gaynor (Trans.). New York: Philosophical Library.■ Planck, M. (1990). Wissenschaftliche Selbstbiographie. W. Berg (Ed.). Halle, Germany: Deutsche Akademie der Naturforscher Leopoldina.■ Plato (1892). Meno. In The Dialogues of Plato (B. Jowett, Trans.; Vol. 2). New York: Clarendon. (Originally published circa 380 B.C.)■ Poincareґ, H. (1913). Mathematical creation. In The foundations of science. G. B. Halsted (Trans.). New York: Science Press.■ Poincareґ, H. (1921). The foundations of science: Science and hypothesis, the value of science, science and method. G. B. Halstead (Trans.). New York: Science Press.■ Poincareґ, H. (1929). The foundations of science: Science and hypothesis, the value of science, science and method. New York: Science Press.■ Poincareґ, H. (1952). Science and method. F. Maitland (Trans.) New York: Dover.■ Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.■ Polanyi, M. (1958). Personal knowledge. London: Routledge & Kegan Paul.■ Popper, K. (1968). Conjectures and refutations: The growth of scientific knowledge. New York: Harper & Row/Basic Books.■ Popper, K., & J. Eccles (1977). The self and its brain. New York: Springer-Verlag.■ Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.■ Putnam, H. (1975). Mind, language and reality: Philosophical papers (Vol. 2). Cambridge: Cambridge University Press.■ Putnam, H. (1987). The faces of realism. LaSalle, IL: Open Court.■ Pylyshyn, Z. W. (1981). The imagery debate: Analog media versus tacit knowledge. In N. Block (Ed.), Imagery (pp. 151-206). Cambridge, MA: MIT Press.■ Pylyshyn, Z. W. (1984). Computation and cognition: Towards a foundation for cog nitive science. Cambridge, MA: MIT Press/Bradford Books.■ Quillian, M. R. (1968). Semantic memory. In M. Minsky (Ed.), Semantic information processing (pp. 216-260). Cambridge, MA: MIT Press.■ Quine, W.V.O. (1960). Word and object. Cambridge, MA: Harvard University Press.■ Rabbitt, P.M.A., & S. Dornic (Eds.). Attention and performance (Vol. 5). London: Academic Press.■ Rawlins, G.J.E. (1997). Slaves of the Machine: The quickening of computer technology. Cambridge, MA: MIT Press/Bradford Books.■ Reid, T. (1970). An inquiry into the human mind on the principles of common sense. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 151-178). New York: Random House/Modern Library.■ Reitman, W. (1970). What does it take to remember? In D. A. Norman (Ed.), Models of human memory (pp. 470-510). London: Academic Press.■ Ricoeur, P. (1974). Structure and hermeneutics. In D. I. Ihde (Ed.), The conflict of interpretations: Essays in hermeneutics (pp. 27-61). Evanston, IL: Northwestern University Press.■ Robinson, D. N. (1986). An intellectual history of psychology. Madison: University of Wisconsin Press.■ Rorty, R. (1979). Philosophy and the mirror of nature. Princeton, NJ: Princeton University Press.■ Rosch, E. (1977). Human categorization. In N. Warren (Ed.), Studies in cross cultural psychology (Vol. 1, pp. 1-49) London: Academic Press.■ Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27-48). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rosch, E., & B. B. Lloyd (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rose, S. (1970). The chemistry of life. Baltimore: Penguin Books.■ Rose, S. (1976). The conscious brain (updated ed.). New York: Random House.■ Rose, S. (1993). The making of memory: From molecules to mind. New York: Anchor Books. (Originally published in 1992)■ Roszak, T. (1994). The cult of information: A neo- Luddite treatise on high- tech, artificial intelligence, and the true art of thinking (2nd ed.). Berkeley: University of California Press.■ Royce, J. R., & W. W. Rozeboom (Eds.) (1972). The psychology of knowing. New York: Gordon & Breach.■ Rumelhart, D. E. (1977). Introduction to human information processing. New York: Wiley.■ Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J. Spiro, B. Bruce & W. F. Brewer (Eds.), Theoretical issues in reading comprehension. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rumelhart, D. E., & J. L. McClelland (1986). On learning the past tenses of English verbs. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 2). Cambridge, MA: MIT Press.■ Rumelhart, D. E., P. Smolensky, J. L. McClelland & G. E. Hinton (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland, D. E. Rumelhart & the PDP Research Group (Eds.), Parallel Distributed Processing (Vol. 2, pp. 7-57). Cambridge, MA: MIT Press.■ Russell, B. (1927). An outline of philosophy. London: G. Allen & Unwin.■ Russell, B. (1961). History of Western philosophy. London: George Allen & Unwin.■ Russell, B. (1965). How I write. In Portraits from memory and other essays. London: Allen & Unwin.■ Russell, B. (1992). In N. Griffin (Ed.), The selected letters of Bertrand Russell (Vol. 1), The private years, 1884- 1914. Boston: Houghton Mifflin. Ryecroft, C. (1966). Psychoanalysis observed. London: Constable.■ Sagan, C. (1978). The dragons of Eden: Speculations on the evolution of human intel ligence. New York: Ballantine Books.■ Salthouse, T. A. (1992). Expertise as the circumvention of human processing limitations. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.■ Sanford, A. J. (1987). The mind of man: Models of human understanding. New Haven, CT: Yale University Press.■ Sapir, E. (1921). Language. New York: Harcourt, Brace, and World.■ Sapir, E. (1964). Culture, language, and personality. Berkeley: University of California Press. (Originally published in 1941.)■ Sapir, E. (1985). The status of linguistics as a science. In D. G. Mandelbaum (Ed.), Selected writings of Edward Sapir in language, culture and personality (pp. 160166). Berkeley: University of California Press. (Originally published in 1929).■ Scardmalia, M., & C. Bereiter (1992). Literate expertise. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.■ Schafer, R. (1954). Psychoanalytic interpretation in Rorschach testing. New York: Grune & Stratten.■ Schank, R. C. (1973). Identification of conceptualizations underlying natural language. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 187-248). San Francisco: W. H. Freeman.■ Schank, R. C. (1976). The role of memory in language processing. In C. N. Cofer (Ed.), The structure of human memory. (pp. 162-189) San Francisco: W. H. Freeman.■ Schank, R. C. (1986). Explanation patterns: Understanding mechanically and creatively. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Schank, R. C., & R. P. Abelson (1977). Scripts, plans, goals, and understanding. Hillsdale, NJ: Lawrence Erlbaum Associates.■ SchroЁdinger, E. (1951). Science and humanism. Cambridge: Cambridge University Press.■ Searle, J. R. (1981a). Minds, brains, and programs. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 282-306). Cambridge, MA: MIT Press.■ Searle, J. R. (1981b). Minds, brains and programs. In D. Hofstadter & D. Dennett (Eds.), The mind's I (pp. 353-373). New York: Basic Books.■ Searle, J. R. (1983). Intentionality. New York: Cambridge University Press.■ Serres, M. (1982). The origin of language: Biology, information theory, and thermodynamics. M. Anderson (Trans.). In J. V. Harari & D. F. Bell (Eds.), Hermes: Literature, science, philosophy (pp. 71-83). Baltimore: Johns Hopkins University Press.■ Simon, H. A. (1966). Scientific discovery and the psychology of problem solving. In R. G. Colodny (Ed.), Mind and cosmos: Essays in contemporary science and philosophy (pp. 22-40). Pittsburgh: University of Pittsburgh Press.■ Simon, H. A. (1979). Models of thought. New Haven, CT: Yale University Press.■ Simon, H. A. (1989). The scientist as a problem solver. In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert Simon. Hillsdale, N.J.: Lawrence Erlbaum Associates.■ Simon, H. A., & C. Kaplan (1989). Foundations of cognitive science. In M. Posner (Ed.), Foundations of cognitive science (pp. 1-47). Cambridge, MA: MIT Press.■ Simonton, D. K. (1988). Creativity, leadership and chance. In R. J. Sternberg (Ed.), The nature of creativity. Cambridge: Cambridge University Press.■ Skinner, B. F. (1974). About behaviorism. New York: Knopf.■ Smith, E. E. (1988). Concepts and thought. In J. Sternberg & E. E. Smith (Eds.), The psychology of human thought (pp. 19-49). Cambridge: Cambridge University Press.■ Smith, E. E. (1990). Thinking: Introduction. In D. N. Osherson & E. E. Smith (Eds.), Thinking. An invitation to cognitive science. (Vol. 3, pp. 1-2). Cambridge, MA: MIT Press.■ Socrates. (1958). Meno. In E. H. Warmington & P. O. Rouse (Eds.), Great dialogues of Plato W.H.D. Rouse (Trans.). New York: New American Library. (Original publication date unknown.)■ Solso, R. L. (1974). Theories of retrieval. In R. L. Solso (Ed.), Theories in cognitive psychology. Potomac, MD: Lawrence Erlbaum Associates.■ Spencer, H. (1896). The principles of psychology. New York: Appleton-CenturyCrofts.■ Steiner, G. (1975). After Babel: Aspects of language and translation. New York: Oxford University Press.■ Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Sternberg, R. J. (1994). Intelligence. In R. J. Sternberg, Thinking and problem solving. San Diego: Academic Press.■ Sternberg, R. J., & J. E. Davidson (1985). Cognitive development in gifted and talented. In F. D. Horowitz & M. O'Brien (Eds.), The gifted and talented (pp. 103-135). Washington, DC: American Psychological Association.■ Storr, A. (1993). The dynamics of creation. New York: Ballantine Books. (Originally published in 1972.)■ Stumpf, S. E. (1994). Philosophy: History and problems (5th ed.). New York: McGraw-Hill.■ Sulloway, F. J. (1996). Born to rebel: Birth order, family dynamics, and creative lives. New York: Random House/Vintage Books.■ Thorndike, E. L. (1906). Principles of teaching. New York: A. G. Seiler.■ Thorndike, E. L. (1970). Animal intelligence: Experimental studies. Darien, CT: Hafner Publishing Co. (Originally published in 1911.)■ Titchener, E. B. (1910). A textbook of psychology. New York: Macmillan.■ Titchener, E. B. (1914). A primer of psychology. New York: Macmillan.■ Toulmin, S. (1957). The philosophy of science. London: Hutchinson.■ Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organisation of memory. London: Academic Press.■ Turing, A. (1946). In B. E. Carpenter & R. W. Doran (Eds.), ACE reports of 1946 and other papers. Cambridge, MA: MIT Press.■ Turkle, S. (1984). Computers and the second self: Computers and the human spirit. New York: Simon & Schuster.■ Tyler, S. A. (1978). The said and the unsaid: Mind, meaning, and culture. New York: Academic Press.■ van Heijenoort (Ed.) (1967). From Frege to Goedel. Cambridge: Harvard University Press.■ Varela, F. J. (1984). The creative circle: Sketches on the natural history of circularity. In P. Watzlawick (Ed.), The invented reality (pp. 309-324). New York: W. W. Norton.■ Voltaire (1961). On the Penseґs of M. Pascal. In Philosophical letters (pp. 119-146). E. Dilworth (Trans.). Indianapolis: Bobbs-Merrill.■ Wagman, M. (1991a). Artificial intelligence and human cognition: A theoretical inter comparison of two realms of intellect. Westport, CT: Praeger.■ Wagman, M. (1991b). Cognitive science and concepts of mind: Toward a general theory of human and artificial intelligence. Westport, CT: Praeger.■ Wagman, M. (1993). Cognitive psychology and artificial intelligence: Theory and re search in cognitive science. Westport, CT: Praeger.■ Wagman, M. (1995). The sciences of cognition: Theory and research in psychology and artificial intelligence. Westport, CT: Praeger.■ Wagman, M. (1996). Human intellect and cognitive science: Toward a general unified theory of intelligence. Westport, CT: Praeger.■ Wagman, M. (1997a). Cognitive science and the symbolic operations of human and artificial intelligence: Theory and research into the intellective processes. Westport, CT: Praeger.■ Wagman, M. (1997b). The general unified theory of intelligence: Central conceptions and specific application to domains of cognitive science. Westport, CT: Praeger.■ Wagman, M. (1998a). Cognitive science and the mind- body problem: From philosophy to psychology to artificial intelligence to imaging of the brain. Westport, CT: Praeger.■ Wagman, M. (1998b). Language and thought in humans and computers: Theory and research in psychology, artificial intelligence, and neural science. Westport, CT: Praeger.■ Wagman, M. (1998c). The ultimate objectives of artificial intelligence: Theoretical and research foundations, philosophical and psychological implications. Westport, CT: Praeger.■ Wagman, M. (1999). The human mind according to artificial intelligence: Theory, re search, and implications. Westport, CT: Praeger.■ Wagman, M. (2000). Scientific discovery processes in humans and computers: Theory and research in psychology and artificial intelligence. Westport, CT: Praeger.■ Wall, R. (1972). Introduction to mathematical linguistics. Englewood Cliffs, NJ: Prentice-Hall.■ Wallas, G. (1926). The Art of Thought. New York: Harcourt, Brace & Co.■ Wason, P. (1977). Self contradictions. In P. Johnson-Laird & P. Wason (Eds.), Thinking: Readings in cognitive science. Cambridge: Cambridge University Press.■ Wason, P. C., & P. N. Johnson-Laird. (1972). Psychology of reasoning: Structure and content. Cambridge, MA: Harvard University Press.■ Watson, J. (1930). Behaviorism. New York: W. W. Norton.■ Watzlawick, P. (1984). Epilogue. In P. Watzlawick (Ed.), The invented reality. New York: W. W. Norton, 1984.■ Weinberg, S. (1977). The first three minutes: A modern view of the origin of the uni verse. New York: Basic Books.■ Weisberg, R. W. (1986). Creativity: Genius and other myths. New York: W. H. Freeman.■ Weizenbaum, J. (1976). Computer power and human reason: From judgment to cal culation. San Francisco: W. H. Freeman.■ Wertheimer, M. (1945). Productive thinking. New York: Harper & Bros.■ Whitehead, A. N. (1925). Science and the modern world. New York: Macmillan.■ Whorf, B. L. (1956). In J. B. Carroll (Ed.), Language, thought and reality: Selected writings of Benjamin Lee Whorf. Cambridge, MA: MIT Press.■ Whyte, L. L. (1962). The unconscious before Freud. New York: Anchor Books.■ Wiener, N. (1954). The human use of human beings. Boston: Houghton Mifflin.■ Wiener, N. (1964). God & Golem, Inc.: A comment on certain points where cybernetics impinges on religion. Cambridge, MA: MIT Press.■ Winograd, T. (1972). Understanding natural language. New York: Academic Press.■ Winston, P. H. (1987). Artificial intelligence: A perspective. In E. L. Grimson & R. S. Patil (Eds.), AI in the 1980s and beyond (pp. 1-12). Cambridge, MA: MIT Press.■ Winston, P. H. (Ed.) (1975). The psychology of computer vision. New York: McGrawHill.■ Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.■ Wittgenstein, L. (1958). The blue and brown books. New York: Harper Colophon.■ Woods, W. A. (1975). What's in a link: Foundations for semantic networks. In D. G. Bobrow & A. Collins (Eds.), Representations and understanding: Studies in cognitive science (pp. 35-84). New York: Academic Press.■ Woodworth, R. S. (1938). Experimental psychology. New York: Holt; London: Methuen (1939).■ Wundt, W. (1904). Principles of physiological psychology (Vol. 1). E. B. Titchener (Trans.). New York: Macmillan.■ Wundt, W. (1907). Lectures on human and animal psychology. J. E. Creighton & E. B. Titchener (Trans.). New York: Macmillan.■ Young, J. Z. (1978). Programs of the brain. New York: Oxford University Press.■ Ziman, J. (1978). Reliable knowledge: An exploration of the grounds for belief in science. Cambridge: Cambridge University Press.Historical dictionary of quotations in cognitive science > Bibliography
-
14 scenario planning
Gen Mgta technique that requires the use of a scenario in the process of strategic planning to aid the development of corporate strategy in the face of uncertainty about the future. Scenario planning was developed in a military context during the 1940s. Its use in a business context was pioneered at Royal Dutch Shell during the 1960s and increased after the 1972 oil crisis. The process of identifying alternative scenarios of the future, based on a variety of differing assumptions, can help managers anticipate changes in the business environment and raise awareness of the frame of reference within which they are operating. The scenarios are then used to assist in both the development of strategies for dealing with unexpected events and the choice between alternative strategic options. -
15 function
- шина магистрали, несущая Информацию, определяющую действие во время интерфейсной операции
- часть команды, определяющая действия адресуемого абонента (во время интерфейсной операции)
- функция (сети и системы связи)
- функция
- функционирование
- направления деятельности системы управления
- мн. должностные обязанности
- зависимости
зависимости
—
[ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]Тематики
EN
мн. должностные обязанности
—
[А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]Тематики
EN
направления деятельности системы управления
Пять основных направлений в командной системе по устранению последствий инцидента, то есть командование, действия, планирование, логистика и финансово-административное управление.
Примечание
Термин "функционирование" также используют при описании сопутствующей активности, например планирования.
[ ГОСТ Р 53389-2009]Тематики
Обобщающие термины
EN
функционирование
Корректное выполнение предназначения – «компьютер функционирует».
[Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]EN
function
To perform the intended purpose correctly, as in «The computer is functioning».
[Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]Тематики
EN
функция
Команда или группа людей, а также инструментарий или другие ресурсы, которые они используют для выполнения одного или нескольких процессов или деятельности. Например, служба поддержки пользователей. Этот термин также имеет другое значение: предназначение конфигурационной единицы, человека, команды, процесса или ИТ-услуги. Например, одна из функций услуги электронной почты может заключаться в сохранении и пересылке исходящей почты, тогда как функция бизнес-процесса может заключаться в отправке товаров заказчикам.
[Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]
функция
Синоним термина функциональное направление деятельности.
[Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]
функция
1. Зависимая переменная величина; 2. Соответствие y=f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение другой величины y (зависимой переменной или Ф. в значении 1.). Ф. задана, если известен закон, определяющий такое соответствие. На практике она задается формулой, таблицей или графиком (есть и другие способы, например, алгоритмический — см. Алгоритм). При построении графика функции анализируются такие ее свойства, как четность или нечетность, нулевые значения, периодичность (см. Периодическая функция), монотонность (см. Монотонная функция), наличие асимптоты и другие. Важны еще два часто употребляемых понятия: функция, заданная в виде уравнения f(x,y) =0, неразрешенного относительно y, называется неявной; функция, заданная в виде y= f(g(x), то есть функция функции, называется сложной Ф. или, иначе, суперпозицией функций g и f. (См. также Функционал). Сложную функцию часто записывают в виде y=f(u), где u=g(x), при этом u называют промежуточным аргументом. Множество значений аргументов функции X (x ? X) называется областью определения функции, а, соответственно, множество Y — областью значений функции или областью изменения функции. См. также Отображение. В различных экономических приложениях применяются (и рассматриваются в словаре), следующие функции: Взвешивающие, Дифференцируемые, Гладкие, Кусочно-линейные, Кусочно-непрерывные, Линейные, Нелинейные, Непрерывные, Сепарабельные, Экспоненты и др. См. также: Вектор-функция, Гессиан, Мультипликативная форма представления функции, Производная, Рекурсия, Частная производная, Эластичность функции, Якобиан, Интеграл.
[ http://slovar-lopatnikov.ru/]EN
function
A team or group of people and the tools or other resources they use to carry out one or more processes or activities – for example, the service desk. The term also has two other meanings: • An intended purpose of a configuration item, person, team, process or IT service. For example, one function of an email service may be to store and forward outgoing mails, while the function of a business process may be to despatch goods to customers.
[Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]
function
Another term for functional area.
[Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]Тематики
EN
функция (сети и системы связи)
Задача, выполняемая системой автоматизации подстанции, то есть прикладными функциями.
Примечание 1. Обычно функции обмениваются данными с другими функциями. Функции выполняются интеллектуальными электронными устройствами (физическими устройствами).
Примечание 2. Функция может быть разделена на части, которые резидентно находятся в интеллектуальных электронных устройствах, но сообщаются друг с другом и с частями других функций. Эти сообщающиеся части называются логическими узлами.
Примечание 3. В контексте стандартов серии "Сети и системы связи на подстанциях" декомпозиция функций или степень их детализации определяется только характером связи. Это означает, что все функции состоят из логических узлов, которые обмениваются данными.
[ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]EN
function(s)
task(s) performed by the substation automation system i.e. by application functions. Generally, functions exchange data with other functions. Details are dependant on the functions involved. Functions are performed by IEDs (physical devices). A function may be split into parts residing in different IEDs but communicating with each other (distributed function) and with parts of other functions. These communicating parts are called logical nodes.
In the context of this standard, the decomposition of functions or their granularity is ruled by the communication behaviour only. Therefore, all functions considered consist of logical nodes that exchange data. Functions without an explicit reference to logical nodes mean only that in the actual context, the logical node modelling of these functions is of no importance to the standard
[IEC 61850-2, ed. 1.0 (2003-08)]Тематики
EN
часть команды, определяющая действия адресуемого абонента (во время интерфейсной операции)
—
[Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]Тематики
EN
шина магистрали, несущая Информацию, определяющую действие во время интерфейсной операции
—
[Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]Тематики
EN
2.1 функция (function): Реализация в программе алгоритма, по которому пользователь или программа могут частично или полностью выполнять решаемую задачу.
Примечания
1 Пользователю нет необходимости вызывать функцию (например, автоматическое резервирование или сохранение данных).
2 Определение функции в настоящем стандарте уже, чем в ИСО/МЭК 2382-14 [9] (в части определений отказа, сбоя, эксплуатации и надежности), но шире аналогичных определений в ИСО 2382-2 [10] и ИСО 2382-15 [11].
Источник: ГОСТ Р ИСО/МЭК 12119-2000: Информационная технология. Пакеты программ. Требования к качеству и тестирование оригинал документа
3.7 функция (function): Конкретная цель или предназначенная для выполнения задача, которая может быть установлена или описана без ссылок на физические средства ее достижения.
Источник: ГОСТ Р МЭК 61226-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Классификация функций контроля и управления оригинал документа
Англо-русский словарь нормативно-технической терминологии > function
-
16 in
in accordance with 1. в соответствии сin accordance with good practice в соответствии с принятой / установившейся практикой 2. руководствуясь чем-л.in addition to that вместе с темin advance 1. заранее; заблаговременноSupplier shall notify the Contractor sufficiently in advance of any fabricating operations Обо всех производственных операциях Поставщик заблаговременно извещает Подрядчика 2. авансом (т.е. "вперед", в отличие от in arrears- см.)in all ways 1. во всех отношениях 2. с любой точки зренияin analysis based on limit load при расчете по предельным нагрузкамin anticipation 1. исподволь 2. заблаговременноin arrears по факту (т.е. по истечении какого-то времени, «потом», в отличие от in advance - см)in attendance Those in attendance included Присутствовали:...in basic terms вообще говоря; в общем и целом; как правилоin block letters печатными буквамиin the blueprint stage в стадии проектирования (перен. в стадии планирования, "на бумаге"; в отличие от in the hardware stage - см.)in bulk quantities в товарных количествахin case a (the)seal is disturbed при нарушении пломбыin case of eye contact при попадании в глаза (опасного / вредного вещества /материала)in case of ingestion при попадании внутрь (опасного / вредного вещества /материала)in case of inhalation при вдыхании (опасного / вредного вещества / материала)in case of respiratory standstill при остановке дыханияin case of skin contact при попадании на кожу (опасного /вредного вещества /материала)in case of swallowing при проглатывании (опасного /вредного вещества /материала)in the clear: be sure all personnel are in the clear убедиться в том, что весь персонал находится в безопасности (т.е. вне опасности, на безопасном расстоянии и т.д.)in codex form в форме книгиin compliance with по (напр., нормам, ТУ и т.д.);in compliance with your request по Вашей просьбеin conclusion, В заключение...in a condensed form в сжатой формеin conflict with: In conflict with this is... ( в начале предлож.) В то же время...; Вместе с тем...in conformance to по (напр., нормам, ТУ и т.д.)in conjunction with 1. параллельно сIn conjunction with an increase in rate, the tube position corresponding to... is located farther upstream Параллельно с увеличением скорости [ осадкообразования] сечение на трубке, соответствующее..., смещается все выше по потоку 2. одновременно с 3. в сочетании сin connection with 1. в свете... 2. в контексте чего-л. 3. in connection with Fig. 13... Если обратиться к рис. 13...in consideration of 1. принимая во внимание 2. учитываяin a conspicuous location на видном местеin a conspicuous place на видном местеin a conspicuous position на видном местеin consultation with по согласованию с; по договоренности сin contemplation of в преддверии чего-л.;in contemplation of our upcoming meeting в преддверии нашей предстоящей встречиin the context of 1. в связи с; в свете; в плане 2. применительно к 3. если иметь в виду; с учетом 4. на примере 5. с точки зрения 6. в случае 7. в отношении 8. в области 9. в рамкахin continuation of в развитие чего-л.in contradiction with противоречащий чему-л.if this is not in contradiction with если это не противоречит...in contrast (npomueum.) 1. жеIn contrast, the algorithm presented here... Предлагаемый же здесь метод... 2. что же касается...These studies have concentrated in the upper water layers... In contrast, rather little detailed work seems to have been undertaken in the very deepest parts of the[ Caspian] Sea Эти исследования проводились в основном в верхних слоях воды... Что же касается самых глубоких участков [ Каспийского] моря, то там, похоже, практически не проводилось сколько-нибудь детальных исследовательских работin contrast to в отличие от; в то время как; что же касаетсяin control не выходящий за установленные предельные значения (напр., о размерах, механических свойствах, технологических параметрах и т.д.)in a controlled manner организованноthe practice of burning off waste gas in a controlled manner установившаяся / принятая практика организованного сжигания сбросного газа [ в факеле]in a criss-cross pattern по перекрестной схеме ( затяжка болтов - для обеспечения равномерной затяжки)in a customary manner обычным способом; по обычной схеме; тривиальноA shall be determined in a customary manner А определяется обычным путем / по обычной схеме / тривиальноin a design situation при проектированииin diction словами; на обычном языке; открытым текстом (т.е. не кодом)in a direction parallel to по ходу (напр., трубопровода)in document format отдельным изданиемin domestic experience в отечественной практикеin due time в установленные сроки; своевременноin effect по существуin either direction в любом направленииin either direction parallel to the piping run в любом направлении по ходу трубопроводаwell in excess заведомо больше; с избыткомin excess of 1. не укладывающийся в 2. сверх чего-л.weld material in excess of the specified weld size избыток материала сварного шва сверх установленного размераin an expedient manner оперативноin fact более того,...in force действующий (напр., законодательство, договор и т.д.)in the field на монтаже ( а не па заводе или на производстве)in the first place вообщеin foreseeable future в обозримом будущемin formative stage в стадии становленияin free format в произвольном видеin full detail исчерпывающе; исчерпывающим образом; исчерпывающе подробно; с исчерпывающей полнотойin full standing полноправныйin full view в пределах прямой видимости (зд. «прямо» означает не впереди, перед, а незаслоненный, незагороженный)in furtherance of в продолжение чего-л.;in furtherance of our talks в продолжение нашего разговораin furtherance to в развитие чего-л.;in furtherance to your letter dated01.15.2004 в развитие Вашего письма от 15.01.2004 г.in general: A does not in general correspond to В А не всегда соответствует Вin general terms вообще говоряin the generic sense собирательноin good order в полной исправности; в исправном рабочем состоянии;in good working order в исправном рабочем состоянииin good standing полноправныйin a gradual manner плавно;pre-heat shall be applied in a gradual and uniform manner подогрев производится плавно и равномерноin greater detail намного / гораздо полнееquantity in hand наличные запасы;work in hand намеченная к выполнению работа; запланированная работа; заданная работаin hidden form (матем.) в неявном виде; в неявной формеin the initial stages на первых порахin isolation автономноin the judgment of по мнениюin line with 1. в увязке сin line with overall project requirements в увязке с потребностями проекта в целом 2. (перен.) в русле чего-л. 3. вдоль чего-л. 4. соосно с чем-л. 5. параллельно чему-л.in the long run в перспективеin a... manner: in a gradual and uniform manner плавно и равномерноin a masterful way мастерскиThe problem has been dealt with in a masterful way Поставленная задача решена мастерскиin the mean в обычном смыслеin the melting-pot: be in the melting-pot находиться в стадии решения / принятия решенияin a modification в другом исполненииin multiples of в количествеin the near term в краткосрочной перспективеin need of нуждающийся в чем-л.;those found to be in need of assistance те, кто определенно нуждаются в помощиin no case ни при каких обстоятельствахin a non-discriminative manner непредвзятоin no time в сжатые срокиin no way никоим образом неThe signing of this document by a Company agent shall in no way relieve the Manufacturer of any responsibility for Визирование / Факт подписания настоящего документа представителем Компании никоим образом не освобождает Поставщика от ответственности за;Inspection by the Contractor in no way relieves the Supplier of his responsibility to meet the requirements of... Проведение / Факт проведения контроля Подрядчиком никоим образом не освобождает Поставщика от ответственности за выполнение требований...in operation задействованный;which may fluctuate due to the number of fire water hydrants in operation который может колебаться в зависимости от числа задействованных пожарных гидрантовin an orderly manner организованно; в организованном порядкеin outline в общих чертахin one's own element в своей сфереin one's own milieu в своей сфереin particular в первую очередь; прежде всегоin passing заметим в скобках; заметим попутно; между прочимin person личноin place:1) be in place 1. иметь наготове; представлять (документы, согласования и т.д.) 2. (описат.) используемый (реально, фактически)2) have in place располагать (чем-л.)3) put in place 1. внедрять; вводить в действие; внедрять в практику 2. реализовывать 3. выполнять ( фактически); осуществлять 4. задействовать; (перен..) запускать (напр., процесс перехода на новый материал)in point:1) case in point характерный пример; образчик; эпизод2) tool in point подходящее / нужное / соответствующее средствоin the present circumstances 1. в данном случае 2. в этих условияхin print;Books in print (КВП) "Книги, имеющиеся в продаже" (а не в печати!)Since work is still in progress to define А Поскольку работа по определению А еще не завершена,...in pursuance of: 1. следуя (напр., нашему плану) 2. in pursuance of your letter dated01.15.2004 в связи с Вашим письмом от 15.01.2004 г.; в контексте Вашего письма от 15.01.2004 г. 3. in pursuance of your orders во исполнение Ваших указанийin pursuance to в ответ на;in pursuance to your letter в ответ на Ваше письмоin question рассматриваемыйin receipt of: We are in receipt of your letter dated Мы получили Ваше письмо от...in recent years в последние годыin recognition of 1. отдавая должное 2. принимая во внимание 3. с учетомin reference: in reference to your inquiry dated На Ваш запрос от...in this regard (синон. in this context) в этой связиin response of в соответствии с;in response of A comments against В в соответствии с замечаниями А по Вin response to в соответствии с;in response to crew comments against B1 unit в соответствии с замечаниями экипажа по блоку В1;in retaliation в отместку за что-л.in retrospect задним числомin routine use in: be in routine use in обычно используется вin running order годный к пуску (напр., блок электростанции)in a sense в известном смыслеin a short time в недалеком будущемin situ на своем местеin so far as коль скороin some instances... and in others в одних случаях..., а в других случаяхin some locations..., in other (locations) в одних местах..., в других...in spurts скачкообразный (напр., о росте трещины)in step with по мере (увеличения, уменьшения, роста, снижения, и т.д.];in step with the growth in GDP по мере роста / увеличения валового внутреннего продуктаin substitution to взамен чего-л. (напр., выдавать доработанный чертеж: проекта вместо другого, предыдущего)in summary в общем (и целом)in terms of (ЛДП) 1. в плане чего-л.; в части чего-л. 2. если говорить о 3. (матем.) относительноA can be written in terms of stress, displacement... А можно записать относительно напряжений, перемещений... 4. с точки зренияThe processes that... have been evaluated in terms of the reduction of total reactive nitrogen Процессы, которые..., оценивали с точки зрения снижения концентрации общего реакцион-носпособного азота 5. по...These zones were examined separately in terms of how they influenced the exhaust level of NOx Параметры каждой из этих зон исследовали раздельно по их влиянию на интенсивность образованияNOx 6. в вопросах... 7. в пересчете на 8. в соответствииin this context 1. здесь; в этом / данном случае; в этом смысле 2. в данной ситуации; в такой ситуации 3. в этой связи; в связи с этим 4. при этом условии 5. при такой постановке 6. в рамках; в светеin this instance А если это так, то; А раз это так, тоin a timely manner оперативноBureau of Land Management will make every effort to process applications for rights-of-way in a timely manner Управление земплепользования США примет все меры к оперативному рассмотрению заявлений на получение полосы отчуждения / отводаin a tough spot: be in a tough spot находиться / оказаться в затруднительном положенииin a uniform manner равномерноin unique cases в исключительных случаяхin unison параллельно; совместно; в связкеif a load is lifted by two or more trucks working in unison если перевалка груза осуществляется двумя или более самосвалами, работающими в связкеin use 1. принятый (в знач. находящийся в употреблении)standard operating procedure in use within the US обычная методика / обычный порядок работы, принятая / принятый в США 2. находящийся в обороте 3. at the locations where the equipment is in use в тех местах, где эта техника эксплуатируется / используется / задействуетсяin the vicinity of в зоне чего-л.;in the vicinity of fire в зоне огня ( пожара)in view of 1. в связи с; коль скоро; в свете чего-л.; на основании чего-л. in view of the foregoing в связи с вышеизложенным; в свете вышеизложенного; на основании вышеизложенного 2. in view of the fact that в связи с тем, чтоin which case и тогда...in witness whereof в удостоверение чего...in a workmanlike manner квалифицированно; мастерски; "классно"in writing в письменном видеin a wrong place 1. в неположенном месте 2. (разг.) не тамEnglish-Russian dictionary of scientific and technical difficulties vocabulary > in
-
17 switching
1) переключение;
коммутация переключательный;
переключающий
2) магн. перемагничивание ∙ bank switching battery switching bumpless switching channel switching circuit switching coherent switching cold switching constant-current switching constant-voltage switching context switching domain wall switching false switching hot switching input/output switching irreversible switching line switching message switching multiple level switching noncoherent switching packet switching process switching program switching push-button switching relay switching remote switching reversible switching space switching space-division switching steady-state switching store-and-forward switching time-division switching virtual switching (электротехника) коммутирование, переключение (американизм) (железнодорожное) маневровая работа порка - you deserve a good * тебя надо как следует выдрать bank ~ вчт. коммутация банков channel ~ коммутация каналов circuit ~ коммутация каналов context ~ вчт. переключение контекста line ~ коммутация каналов message ~ вчт. коммутация сообщений store-and-forward ~ comp. коммутация сообщений switching переключение ~ вчт. переключение ~ переход task ~ вчт. переключение задач time-division ~ вчт. временная коммутация virtual ~ вчт. виртуальная коммутацияБольшой англо-русский и русско-английский словарь > switching
-
18 language
1) язык || языковой2) машинный язык; набор символов ( машины)•- application-oriented language
- applicative language
- APT programming language
- APT-based language
- artificial language
- assembler language
- assembly language
- block diagram language
- calculus language
- classificatory indexing language
- command language
- communication-information language
- computer language
- context-free language
- context-sensitive language
- control language
- controlled language
- conversational programming language
- data definition language
- data description language
- data general language
- data general programming language
- data manipulation language
- data retrieval language
- data storage description language
- database control language
- database language
- database programming language
- definition language
- description indexing language
- description language
- descriptor indexing language
- DGL interpretative programming language
- documentary language
- domain-dependent language
- domain-independent language
- extended language
- extensible language
- formal language
- formalized language
- general-purpose language
- generic language
- geometry technology language
- global programming language
- graphics picture drawing language
- high-level language
- highly coded language
- hybrid language
- implementation language
- index retrieval language
- indexing language
- information language
- information processing language
- information retrieval language
- informational language
- information-algorithmic language
- interactive language
- interactive reader language
- intermediary language
- intermediate language
- interpretive language
- interrogation language
- ISO language
- job command language
- job control language
- language of science
- logical-information language
- machine control language
- machine language
- machinist's language
- manipulator-oriented language
- manufacturing application language
- meaning-representation language
- meta language
- native language
- natural language
- NC programming language
- numerical command language
- object description language
- object-oriented language
- operational performance analysis language
- plain language
- powerful programming language
- predicate calculus language
- predicate language
- predicate logic language
- problem-oriented language
- procedural language
- processing language
- process-oriented language
- production language
- production-rule language
- program language
- programming language
- query input language
- query language
- representation language
- retrieval language
- robotics language
- robot-programming language
- robot-specialized language
- rule-based programming language
- shop-oriented language
- Siman simulation language
- simulation language
- source language
- special interface programming language
- specification language
- state language
- structured query language
- switching language
- task description language
- task level language
- task-oriented language
- uncontrolled language
- very high level languageEnglish-Russian dictionary of mechanical engineering and automation > language
-
19 Bakewell, Robert
SUBJECT AREA: Agricultural and food technology[br]b. 23 May 1725 Loughborough, Englandd. 1 October 1795 Loughborough, England[br]English livestock breeder who pioneered the practice of progeny testing for selecting breeding stock; he is particularly associated with the development of the Improved Leicester breed of sheep.[br]Robert Bakewell was the son of the tenant farming the 500-acre (200 hectare) Dishley Grange Farm, near Loughborough, where he was born. The family was sufficiently wealthy to allow Robert to travel, which he began to do at an early age, exploring the farming methods of the West Country, Norfolk, Ireland and Holland. On taking over the farm he continued the development of the irrigation scheme begun by his father. Arthur Young visited the farm during his tour of east England in 1771. At that time it consisted of 440 acres (178 hectares), 110 acres (45 hectares) of which were arable, and carried a stock of 60 horses, 400 sheep and 150 other assorted beasts. Of the arable land, 30 acres (12 hectares) were under root crops, mainly turnips.Bakewell was not the first to pioneer selective breeding, but he was the first successfully to apply selection to both the efficiency with which an animal utilized its food, and its physical appearance. He always had a clear idea of the animal he wanted, travelled extensively to collect a range of animals possessing the characteristics he sought, and then bred from these towards his goal. He was aware of the dangers of inbreeding, but would often use it to gain the qualities he wanted. His early experiments were with Longhorn cattle, which he developed as a meat rather than a draught animal, but his most famous achievement was the development of the Improved Leicester breed of sheep. He set out to produce an animal that would put on the most meat in the least time and with the least feeding. As his base he chose the Old Leicester, but there is still doubt as to which other breeds he may have introduced to produce the desired results. The Improved Leicester was smaller than its ancestor, with poorer wool quality but with greatly improved meat-production capacity.Bakewell let out his sires to other farms and was therefore able to study their development under differing conditions. However, he made stringent rules for those who hired these animals, requiring the exclusive use of his rams on the farms concerned and requiring particular dietary conditions to be met. To achieve this control he established the Dishley Society in 1783. Although his policies led to accusations of closed access to his stock, they enabled him to keep a close control of all offspring. He thereby pioneered the process now recognized as "progeny testing".Bakewell's fame and that of his farm spread throughout the country and overseas. He engaged in an extensive correspondence and acted as host to all of influence in British and overseas agriculture, but it would appear that he was an over-generous host, since he is known to have been in financial difficulties in about 1789. He was saved from bankruptcy by a public subscription raised to allow him to continue with his breeding experiments; this experience may well have been the reason why he was such a staunch advocate of State funding of agricultural research.[br]Further ReadingWilliam Houseman, 1894, biography, Journal of the Royal Agricultural Society. 1–31. H.C.Parsons, 1957, Robert Bakewell (contains a more detailed account).R.Trow Smith, 1957, A History of British Livestock Husbandry to 1700, London: Routledge \& Kegan Paul.—A History of British Livestock Husbandry 1700 to 1900 (places Bakewell within the context of overall developments).M.L.Ryder, 1983, Sheep and Man, Duckworth (a scientifically detailed account which deals with Bakewell within the context of its particular subject).AP -
20 Intelligence
There is no mystery about it: the child who is familiar with books, ideas, conversation-the ways and means of the intellectual life-before he begins school, indeed, before he begins consciously to think, has a marked advantage. He is at home in the House of intellect just as the stableboy is at home among horses, or the child of actors on the stage. (Barzun, 1959, p. 142)It is... no exaggeration to say that sensory-motor intelligence is limited to desiring success or practical adaptation, whereas the function of verbal or conceptual thought is to know and state truth. (Piaget, 1954, p. 359)ntelligence has two parts, which we shall call the epistemological and the heuristic. The epistemological part is the representation of the world in such a form that the solution of problems follows from the facts expressed in the representation. The heuristic part is the mechanism that on the basis of the information solves the problem and decides what to do. (McCarthy & Hayes, 1969, p. 466)Many scientists implicitly assume that, among all animals, the behavior and intelligence of nonhuman primates are most like our own. Nonhuman primates have relatively larger brains and proportionally more neocortex than other species... and it now seems likely that humans, chimpanzees, and gorillas shared a common ancestor as recently as 5 to 7 million years ago.... This assumption about the unique status of primate intelligence is, however, just that: an assumption. The relations between intelligence and measures of brain size is poorly understood, and evolutionary affinity does not always ensure behavioral similarity. Moreover, the view that nonhuman primates are the animals most like ourselves coexists uneasily in our minds with the equally pervasive view that primates differ fundamentally from us because they lack language; lacking language, they also lack many of the capacities necessary for reasoning and abstract thought. (Cheney & Seyfarth, 1990, p. 4)Few constructs are asked to serve as many functions in psychology as is the construct of human intelligence.... Consider four of the main functions addressed in theory and research on intelligence, and how they differ from one another.1. Biological. This type of account looks at biological processes. To qualify as a useful biological construct, intelligence should be a biochemical or biophysical process or at least somehow a resultant of biochemical or biophysical processes.2. Cognitive approaches. This type of account looks at molar cognitive representations and processes. To qualify as a useful mental construct, intelligence should be specifiable as a set of mental representations and processes that are identifiable through experimental, mathematical, or computational means.3. Contextual approaches. To qualify as a useful contextual construct, intelligence should be a source of individual differences in accomplishments in "real-world" performances. It is not enough just to account for performance in the laboratory. On [sic] the contextual view, what a person does in the lab may not even remotely resemble what the person would do outside it. Moreover, different cultures may have different conceptions of intelligence, which affect what would count as intelligent in one cultural context versus another.4. Systems approaches. Systems approaches attempt to understand intelligence through the interaction of cognition with context. They attempt to establish a link between the two levels of analysis, and to analyze what forms this link takes. (Sternberg, 1994, pp. 263-264)High but not the highest intelligence, combined with the greatest degrees of persistence, will achieve greater eminence than the highest degree of intelligence with somewhat less persistence. (Cox, 1926, p. 187)There are no definitive criteria of intelligence, just as there are none for chairness; it is a fuzzy-edged concept to which many features are relevant. Two people may both be quite intelligent and yet have very few traits in common-they resemble the prototype along different dimensions.... [Intelligence] is a resemblance between two individuals, one real and the other prototypical. (Neisser, 1979, p. 185)Given the complementary strengths and weaknesses of the differential and information-processing approaches, it should be possible, at least in theory, to synthesise an approach that would capitalise upon the strength of each approach, and thereby share the weakness of neither. (Sternberg, 1977, p. 65)Historical dictionary of quotations in cognitive science > Intelligence
См. также в других словарях:
Context switch — For other uses, see Switch (disambiguation). A context switch is the computing process of storing and restoring the state (context) of a CPU so that execution can be resumed from the same point at a later time. This enables multiple processes to… … Wikipedia
Process switching latency — The process switching latency is the time needed by the operating system to perform the process context switch to continue executing another process. See also * Latency (engineering) * Thread switching latency … Wikipedia
Context Sensitive Solutions — (CSS) is a theoretical and practical approach to transportation decision making and design that takes into consideration the communities and lands which streets, roads, and highways pass through ( the context ). The term is closely related to but … Wikipedia
Context-sensitive solutions (transport) — Context sensitive solutions (CSS) is a theoretical and practical approach to transportation decision making and design that takes into consideration the communities and lands which streets, roads, and highways pass through ( the context ). The… … Wikipedia
Context awareness — is defined complementary to location awareness. Whereas location may serve as a determinant for resident processes, context may be applied more flexibly with mobile computing with any moving entities, especially with bearers of smart… … Wikipedia
Process architecture — is the structural design of general process systems and applies to fields such as computers (software, hardware, networks, etc.), business processes (enterprise architecture, policy and procedures, logistics, project management, etc.), and any… … Wikipedia
Context-dependent memory — refers to improved recall of specific episodes or information when the context present at encoding and retrieval are the same. One particularly common example of context dependence at work occurs when an individual has lost an item (e.g. lost car … Wikipedia
Context management — is a dynamic computer process that uses subjects of data in one application, to point to data resident in a separate application also containing the same subject. Context Management allows users to choose a subject once in one application, and… … Wikipedia
Context analysis — is a method to analyze the environment in which a business operates. Environmental scanning mainly focuses on the macro environment of a business. But context analysis considers the entire environment of a business, its internal and external… … Wikipedia
Process Oriented Psychology — (POP) refers to a body of theory and practice that encompasses a broad range of psychotherapeutic, personal growth, and group process applications. It is more commonly called Process Work in the United States, the longer name being used in Europe … Wikipedia
Process mining — techniques allow for the analysis of business processes based on event logs. They are often used when no formal description of the process can be obtained by other means, or when the quality of an existing documentation is questionable. For… … Wikipedia