Перевод: с английского на все языки

со всех языков на английский

практическое+использование

  • 21 directional neutral current relay

    1. направленная токовая защита нулевой последовательности

     

    направленная токовая защита нулевой последовательности

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Нулевая последовательность фаз.
    Согласно теории симметричных составляющих любую несимметричную систему трех токов или напряжений - обозначим их А, В, С - можно представить в виде трех систем прямой, обратной и нулевой последовательностей фаз (рис. 7.9, а-в). Первые две системы симметричны и уравновешены, последняя симметрична, но не уравновешена.
    Система прямой последовательности (рис. 7.9, а) состоит из трех вращающихся векторов A 1, B 1, C 1, равных по значению и повернутых на 120° относительно друг друга, причем вектор B1 следует за вектором А 1.
    5300
    Рис. 7.8. Принципиальная схема максимальной токовой защиты с пуском от реле минимального напряжения:
    КА - реле тока (токовый пусковой орган); КV - реле минимального напряжения (пусковой орган по напряжению); КТ - реле времени
    Система обратной последовательности (рис. 7.9, б) состоит также из трех векторов A 2, B 2, C 2, равных по значению и повернутых на 120° относительно друг друга, но при вращении в ту же сторону, что и векторы прямой последовательности, вектор B 2 опережает вектор A 2 на 120°.
    Система нулевой последовательности (рис. 7.9, в) состоит из трех векторов A 0, B 0, C 0, совпадающих по фазе.
    Очевидно, что сложение одноименных векторов этих трех систем дает ту несимметричную систему, которая была разложена на, ее составляющие:

    В качестве примера сложение векторов фазы С выполнено на рис. 7.9, г.
    Существует и метод расчета симметричных составляющих, согласно которому составляющая нулевой последовательности

    5301
    Рис. 7.9. Симметричные составляющие:
    а, б, в - прямой, обратной и нулевой последовательности соответственно; г - сложение векторов трех последовательностей фазы С
    5302
    Рис. 7.10. Однофазное КЗ на землю на ненагруженной линии с односторонним питанием:
    а - схема линии; б - векторная диаграмма напряжения и тока для точки К ; в, г - векторные диаграммы напряжения и токов, построенные с помощью симметричных составляющих

    Таким образом, для нахождения A 0 надо геометрически сложить три составляющие вектора и взять одну треть от суммы.
    Целесообразность представления несимметричных систем тремя симметричными составляющими состоит в том, что анализ и расчеты напряжений и токов для системы нулевой последовательности могут выполняться независимо от систем прямой и обратной последовательностей, что во многих случаях упрощает расчеты.
    Включение же защит на составляющие нулевой последовательности дает ряд преимуществ по сравнению с включением их на полные токи и напряжения фаз для действия при КЗ на землю.
    Практическое использование составляющих нулевой последовательности. Рассмотрим металлическое замыкание фазы А на землю в сети с эффективно заземленной нейтралью (рис. 7.10, а). Этот вид повреждения относится к несимметричным КЗ и характеризуется тем, что в замкнутом контуре действует ЭДС E A, под действием которой в поврежденной фазе А проходит ток IA=Ik отстающий от E A на 90°; напряжение фазы А относительно земли в месте повреждения (точка К) UAк =0, так как эта точка непосредственно соединена с землей; токи в неповрежденных фазах IB и IC отсутствуют. С учетом сказанного на рис. 7.10, б построена векторная диаграмма для точки К.
    На рис. 7.10, в и г приведены векторные диаграммы напряжений и токов, построенные с помощью симметричных составляющих для того же случая однофазного КЗ.
    Сравнение диаграммы, представленной на рис. 7.10, б, с диаграммами рис. 7.10, в и г показывает, что вектор I к равен вектору 3I0, а ЕА =U B к + U C к = 3U0к. Значит, полный ток фазы в месте повреждения может быть представлен утроенным значением тока нулевой последовательности, а ЭДС - ЕА - утроенным значением напряжения нулевой последовательности.
    Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:

    Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0.
    Для получения напряжения нулевой последовательности вторичные обмотки трансформатора напряжения соединяют в разомкнутый треугольник (рис. 7.12) и обязательно заземляют нейтраль его первичной обмотки. В этом случае

    5303
    Рис. 7.11. Соединение трансформаторов тока в фильтр токов нулевой последовательности
    В нормальном режиме работы и КЗ между фазами (без земли) геометрическая сумма напряжений вторичных обмоток, соединенных в разомкнутый треугольник, равна нулю, и поэтому Up также равно нулю (рис. 7.12, б). И только при однофазных (или двухфазных) КЗ на землю на зажимах разомкнутого треугольника появляется напряжение Up=3U0 (рис. 7.12, в).
    Фазные напряжения систем прямой и обратной последовательностей образуют симметричные звезды, и поэтому суммы их векторов в схеме разомкнутого треугольника всегда равны нулю.

    5304
    Рис. 7.12. Соединение однофазных трансформаторов напряжении в фильтр напряжения нулевой последовательности:
    а - общая схема трансформатора напряжения; б - векторные диаграммы в нормальном режиме работы; с - то же при замыкании фазы А на землю в сети с заземленной нейтралью; PV - вольтметр контроля исправности цепей вторичной обмотки

    В сетях с эффективным заземлением нейтрали около 80% повреждений связано с замыканиями на землю. Для защиты оборудования применяют устройства, реагирующие на составляющие нулевой последовательности.
    Схема и некоторые вопросы эксплуатации токовой направленной защиты нулевой последовательности. Принципиальная схема защиты показана на рис. 7.13. Пусковое токовое реле КА, включенное на фильтр токов нулевой последовательности, реагирует на появление КЗ на землю, когда в нулевом проводе проходит ток 3I0.
    Реле мощности KW фиксирует направление мощности КЗ, обеспечивая селективность действия: защита работает при направлении мощности КЗ от шин подстанции в защищаемую линию. Напряжение 3U0 подводится к реле мощности от обмотки разомкнутого треугольника трансформатора напряжения (шинки EV, H, KV, K).
    Реле времени КТ создает выдержку времени, необходимую по условию селективности.
    На рис. 7.14 показано размещение токовых направленных защит нулевой последовательности в сети, работающей с заземленными нейтралями с обеих сторон рассматриваемого участка. График характеристик выдержек времени построен по встречно-ступенчатому принципу. Из графика видно, что каждая защита отстраивается от защиты смежного участка ступенью времени Δt =t1-t3.
    Значение тока срабатывания пускового токового реле выбирается по условию надежного действия реле при КЗ в конце следующего (второго) участка сети, а также по условию отстройки от тока небаланса.
    Появление тока небаланса в реле связано с погрешностью трансформаторов тока, неидентичностью трансформаторов тока, неидентичностью их характеристик намагничивания и имеет решающее значение. Чтобы не допустить действия пускового токового реле от тока небаланса, ток срабатывания реле принимают больше тока небаланса. Ток небаланса определяется для нормального рабочего режима или для режима трехфазного КЗ в зависимости от выдержки времени защиты.
    При наличии в защищаемой сети автотрансформаторов, электрически связывающих сети двух напряжений, однофазное или двухфазное замыкание на землю к сети среднего напряжения приводит к появлению тока I0 в линиях высшего напряжения. Чтобы избежать ложных срабатываний защит линий высшего напряжения, уставки их защит по току срабатывания и выдержкам времени согласуют с уставками защит в сети среднего напряжения. По указанной причине избегают, как правило, заземления нейтралей обмоток звезд высшего и среднего напряжений у одного трансформатора. Заметим также, что у трансформатора со схемой соединения звезда-треугольник замыкание на землю на стороне треугольника не вызывает появления тока I0 на стороне звезды.
    Ток I0 появляется в линиях при неполнофазных режимах работы участков сетей. Такие режимы могут быть кратковременными и длительными. От кратковременных неполнофазных режимов, возникающих, например, в цикле ОАПВ линии, а также АПВ при неодновременном включении трех фаз выключателя защиты отстраиваются по току срабатывания или выдержки времени защит принимаются больше, чем время t ОАПВ. При возможных неполнофазных режимах работы линий (например, при пофазном ремонте под напряжением) токовые направленные защиты нулевой последовательности ремонтируемой линии и смежных участков должны проверяться и отстраиваться от несимметрии или выводиться из работы, так как они мало приспособлены для работы в таких условиях.
    В процессе эксплуатации токовых защит нулевой последовательности должны строго учитываться все заземленные нейтрали автотрансформаторов и трансформаторов, являющиеся как бы источниками токов нулевой последовательности. Распределение тока I0 в сети определяется исключительно расположением заземленных нейтралей, а не генераторов электростанций.
    Контроль исправности цепей напряжения разомкнутого треугольника осуществляется с помощью вольтметра, периодически подключаемого с помощью кнопки SB (см. рис. 7.12). Вольтметр измеряет напряжение небаланса, имеющего значение 1-3 В. При нарушении цепей показание вольтметра пропадает.
    Наряду с рассмотренной токовой направленной защитой нулевой последовательности широкое распространение в сетях 110 кВ и выше получили направленные отсечки и ступенчатые защиты пулевой последовательности. Наиболее совершенными являются четырехступенчатые защиты, первая ступень которых обычно выполняется без выдержки времени. Первая и вторая ступени защиты предназначены для действий при замыканиях на землю в пределах защищаемой линии и на шинах противоположной подстанции. Последние ступени выполняют в основном роль резервирования.
    5305
    Рис. 7.13. Схема токовой направленной защиты нулевой последовательности
    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-3.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > directional neutral current relay

  • 22 longitudinal differential protection

    1. продольно-дифференциальная защита
    2. продольная дифференциальная защита

     

    продольная дифференциальная защита
    Защита, действие и селективность которой зависят от сравнения величин (или фаз и величин) токов по концам защищаемой линии.
    [ http://docs.cntd.ru/document/1200069370]

    продольная дифференциальная защита

    Защита, срабатывание и селективность которой зависят от сравнения амплитуд или амплитуд и фаз токов на концах защищаемого участка.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    продольная дифференциальная защита линий
    -
    [Интент]

    EN

    longitudinal differential protection
    line differential protection (US)

    protection the operation and selectivity of which depend on the comparison of magnitude or the phase and magnitude of the currents at the ends of the protected section
    [ IEV ref 448-14-16]

    FR

    protection différentielle longitudinale
    protection dont le fonctionnement et la sélectivité dépendent de la comparaison des courants en amplitude, ou en phase et en amplitude, entre les extrémités de la section protégée
    [ IEV ref 448-14-16]


    Продольная дифференциальная защита линий

    Защита основана на принципе сравнения значений и фаз токов в начале и конце линии. Для сравнения вторичные обмотки трансформаторов тока с обеих сторон линии соединяются между собой проводами, как показано на рис. 7.17. По этим проводам постоянно циркулируют вторичные токи I 1 и I 2. Для выполнения дифференциальной защиты параллельно трансформаторам тока (дифференциально) включают измерительный орган тока ОТ.
    Ток в обмотке этого органа всегда будет равен геометрической сумме токов, приходящих от обоих трансформаторов тока: I Р = I 1 + I 2 Если коэффициенты трансформации трансформаторов тока ТА1 и ТА2 одинаковы, то при нормальной работе, а также внешнем КЗ (точка K1 на рис. 7.17, а) вторичные токи равны по значению I 1 =I2 и направлены в ОТ встречно. Ток в обмотке ОТ I Р = I 1 + I 2 =0, и ОТ не приходит в действие. При КЗ в защищаемой зоне (точка К2 на рис. 7.17, б) вторичные токи в обмотке ОТ совпадут по фазе и, следовательно, будут суммироваться: I Р = I 1 + I 2. Если I Р >I сз, орган тока сработает и через выходной орган ВО подействует на отключение выключателей линии.
    Таким образом, дифференциальная продольная защита с постоянно циркулирующими токами в обмотке органа тока реагирует на полный ток КЗ в защищаемой зоне (участок линии, заключенный между трансформаторами тока ТА1 и ТА2), обеспечивая при этом мгновенное отключение поврежденной линии.
    Практическое использование схем дифференциальных защит потребовало внесения ряда конструктивных элементов, обусловленных особенностями работы этих защит на линиях энергосистем.
    Во-первых, для отключения протяженных линий с двух сторон оказалось необходимым подключение по дифференциальной схеме двух органов тока: одного на подстанции 1, другого на подстанции 2 (рис. 7.18). Подключение двух органов тока привело к неравномерному распределению вторичных токов между ними (токи распределялись обратно пропорционально сопротивлениям цепей), появлению тока небаланса и понижению чувствительности защиты. Заметим также, что этот ток небаланса суммируется в ТО с током небаланса, вызванным несовпадением характеристик намагничивания и некоторой разницей в коэффициентах трансформации трансформаторов тока. Для отстройки от токов небаланса в защите были применены не простые дифференциальные реле, а дифференциальные реле тока с торможением KAW, обладающие большей чувствительностью.
    Во-вторых, соединительные провода при их значительной длине обладают сопротивлением, во много раз превышающим допустимое для трансформаторов тока сопротивление нагрузки. Для понижения нагрузки были применены специальные трансформаторы тока с коэффициентом трансформации n, с помощью которых был уменьшен в п раз ток, циркулирующий по проводам, и тем самым снижена в n2 раз нагрузка от соединительных проводов (значение нагрузки пропорционально квадрату тока). В защите эту функцию выполняют промежуточные трансформаторы тока TALT и изолирующие TAL. В схеме защиты изолирующие трансформаторы TAL служат еще и для отделения соединительных проводов от цепей реле и защиты цепей реле от высокого напряжения, наводимого в соединительных проводах во время прохождения по линии тока КЗ.

    5313
    Рис. 7.17. Принцип выполнения продольной дифференциальной защиты линии и прохождение тока в органе тока при внешнем КЗ (а) и при КЗ в защищаемой зоне (б)

     

    5314
    Рис. 7.18. Принципиальная схема продольной дифференциальной защиты линии:
    ZA - фильтр токов прямой и обратной последовательностей; TALT - промежуточный трансформатор тока; TAL - изолирующий трансформатор; KAW - дифференциальное реле с торможением; Р - рабочая и T - тормозная обмотки реле

    Распространенные в электрических сетях продольные дифференциальные защиты типа ДЗЛ построены на изложенных выше принципах и содержат элементы, указанные на рис. 7.18. Высокая стоимость соединительных проводов во вторичных цепях ДЗЛ ограничивает область се применения линиями малой протяженности (10-15 км).
    Контроль исправности соединительных проводов. В эксплуатации возможны повреждения соединительных проводов: обрывы, КЗ между ними, замыкания одного провода на землю.
    При обрыве соединительного провода (рис. 7.19, а) ток в рабочей Р и тормозной Т обмотках становится одинаковым и защита может неправильно сработать при сквозном КЗ и даже при токе нагрузки (в зависимости от значения Ic з .
    Замыкание между соединительными проводами (рис. 7.19, б) шунтирует собой рабочие обмотки реле, и тогда защита может отказать в работе при КЗ в защищаемой зоне.
    Для своевременного выявления повреждений исправность соединительных проводов контролируется специальным устройством (рис. 7.20). Контроль основан на том, что на рабочий переменный ток, циркулирующий в соединительных проводах при их исправном состоянии, накладывается выпрямленный постоянный ток, не оказывающий влияния на работу защиты. Две секции вторичной обмотки TAL соединены разделительным конденсатором С1, представляющим собой большое сопротивление для постоянного тока и малое для переменного. Благодаря конденсаторам С1 в обоих комплектах защит создается последовательная цепь циркуляции выпрямленного тока по соединительным проводам и обмоткам минимальных быстродействующих реле тока контроля КА. Выпрямленное напряжение подводится к соединительным проводам только на одной подстанции, где устройство контроля имеет выпрямитель VS, получающий в свою очередь питание от трансформатора напряжения TV рабочей системы шин. Подключение устройства контроля к той или другой системе шин осуществляется вспомогательными контактами шинных разъединителей или. реле-повторителями шинных разъединителей защищаемой линии.
    Замыкающие контакты КЛ контролируют цепи выходных органов защиты.
    При обрыве соединительных проводов постоянный ток исчезает, и реле контроля КА снимает оперативный ток с защит на обеих подстанциях, и подастся сигнал о повреждении. При замыкании соединительных проводов между собой подается сигнал о выводе защиты из действия, но только с одной стороны - со стороны подстанции, где нет выпрямителя.
    5315
    Рис. 7.19. Прохождение тока в обмотках реле KAW при обрыве (а) и замыкании между собой соединительных проводов (б):
    К1 - точка сквозного КЗ; К2 - точка КЗ в защищаемой зоне
    В устройстве контроля имеется приспособление для периодических измерений сопротивления изоляции соединительных проводов относительно земли. Оно подаст сигнал при снижении сопротивления изоляции любого из соединительных проводов ниже 15-20 кОм.
    Если соединительные провода исправны, ток контроля, проходящий по ним, не превышает 5-6 мА при напряжении 80 В. Эти значения должны периодически проверяться оперативным персоналом в соответствии с инструкцией по эксплуатации защиты.
    Оперативному персоналу следует помнить, что перед допуском к любого рода работам на соединительных проводах необходимо отключать с обеих сторон продольную дифференциальную защиту, устройство контроля соединительных проводов и пуск от защиты устройства резервирования при отказе выключателей УРОВ.
    После окончания работ на соединительных проводах следует проверить их исправность. Для этого включается устройство контроля на подстанции, где оно не имеет выпрямителя, при этом должен появиться сигнал неисправности. Затем устройство контроля включают на другой подстанции (на соединительные провода подают выпрямленное напряжение) и проверяют, нет ли сигнала о повреждении. Защиту и цепь пуска УРОВ от защиты вводят в работу при исправных соединительных проводах.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-5.html]

    Тематики

    Синонимы

    EN

    DE

    • Längsdifferentialschutz, m

    FR

     

    продольно-дифференциальная защита
    -
    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > longitudinal differential protection

  • 23 application

    сущ.
    1) обращение, заявление, просьба; требование, заявка
    а) общ. (в самом общем смысле: заявление с указанием на потребность в чем-л., требование на получение чего-л. и т. п.)

    1to file [make, put in, send in, submit\] an application — подавать заявление [прошение\]

    to reject [turn down\] an application — отказать в прошении

    to withdraw an application — забирать заявление [прошение\]

    membership application, application for membership — заявление о приеме в члены какой-л. организации

    written application — письменное заявление [прошение\]

    application for a job, job application — заявление о приеме на работу

    See:
    See:
    в) банк., юр., амер. (согласно закону "О равноправии при получении кредитов": устное или письменное обращение за продлением кредита, сделанное в соответствии с установленными кредитором процедурами в отношении конкретного вида кредита)
    See:
    2) общ. применение, использование, употребление, приложение (напр., теоретических идей, концепций, методов)

    a practical application of the method [theory\] — практическое применение метода [модели\]

    managerial application of simulation — применение моделирования в управленческой практике; применение в управлении моделирования

    3) общ. прилежание, рвение, внимание

    to give application to work [to study\] — усердно работать [заниматься\]

    The job takes a great deal of patience and application. — Данная работа требует огромного терпения и усердия.

    4) комп. приложение, прикладная программа (компьютерная программа, предназначенная для конкретной цели, напр., бухгалтерская программа, игровая программа, обучающая программа и т. п.)

    * * *
    заявление, заявка: 1) обращение за кредитом или открытием счета, признанием в качестве банка, брокера; 2) заявка на приобретение вновь выпускаемых ценных бумаг; 3) практическое (прикладное, коммерческое) применение научных концепций, теорий, методов; 4) письменное ходатайство суду.
    * * *
    применени; заявка
    . выражение намерений получить определенные услуги или товар; как правило, оформляется письменно и направляется заинтересованной стороной тому, кто обеспечивает выполнение З. По получении З. продавец направляет покупателю предложения для заключения договора на поставку. См. также запрос, заказ. . Словарь экономических терминов .
    * * *
    Ценные бумаги/Биржевая деятельность
    -----
    Банки/Банковские операции

    Англо-русский экономический словарь > application

  • 24 working

    ˈwə:kɪŋ
    1. сущ.
    1) работа;
    деятельность
    2) использование, употребление, эксплуатация;
    разработка
    3) обработка, переработка
    4) мн.;
    горн. выработки
    2. прил.
    1) работающий, рабочий (тж. о времени, часах)
    2) действующий, пригодный для работы working efficiency working conditions работа, действие, функционирование - the *s of the mind работа ума - the *s of conscience голос совести эксплуатация обработка часто pl (горное) выработки;
    разработка ведение плавки режим работы - shift * многосменный режим работы( военное) результат операций движение (воды) брожение( пива и т. п.) подергивание мускулов лица и т. п. позволяющий осуществлять работу - * langauges рабочие языки - * knowledge of a foreign langauge практическое знание иностранного языка - * visit рабочий визит способствующий работе - * draft рабочий проект - * group рабочая группа( конференции и т. п.) отведенный для работы - * space производственное помещение пригодный для работы - * age трудоспособный возраст - * season рабочий сезон связанный с работой - * career трудовая деятельность работающий - * bee рабочая пчела( специальное) действующий;
    рабочий - * collection действующий фонд( библиотеки) - * load (техническое) рабочая нагрузка эксплуатационный - * costs /expenses/ эксплуатационные расходы бушующийморе) дергающийся (о щеке и т. п.) concurrent ~ одновременная работа continuous three-shift ~ непрерывная трехсменная работа short-time ~ временная работа short-time ~ кратковременная работа three-shift ~ работа в три смены three-shift ~ трехсменная работа two-shift ~ двухсменная работа working pres. p. от work ~ действие ~ действующий, эксплуатационный;
    пригодный для работы ~ действующий ~ обработка ~ обработка ~ отведенный для работы ~ отведенный для работы;
    working hours рабочее время, рабочие часы ~ пригодный для работы ~ работа, действие;
    деятельность;
    практика ~ работа ~ работающий, рабочий;
    working woman работница ~ работающий ~ рабочий ~ разработка ~ трудовой ~ эксплуатационный ~ эксплуатация;
    разработка ~ эксплуатация ~ горн. выработки ~ conditions тех. эксплуатационный режим;
    working efficiency производительность труда ~ in shifts сменная работа ~ of an invention внедрение изобретения ~ of an invention использование изобретения ~ of an invention реализация изобретения ~ to rule работа строго по правилам ~ работающий, рабочий;
    working woman работница

    Большой англо-русский и русско-английский словарь > working

  • 25 use

    Англо-русский строительный словарь > use

  • 26 use

    use
    n
    применение, использование


    - uses of cement
    - architectural use
    - constructional uses
    - consumptive water use
    - intended use
    - land use
    - new uses
    - practical use
    - recirculating water use
    - repair use
    - safe use
    - specific land use
    - structural use
    - water use

    Англо-русский строительный словарь. — М.: Русский Язык. . 1995.

    Англо-русский словарь строительных терминов > use

  • 27 due diligence

    1) Общая лексика: комплексная юридическая оценка, проверка соблюдения (любых норм и/или стандартов: правовых, хозяйственных, экологических и т. п.), экспертиза соответствия (любым нормам и/или стандартам: правовым, хозяйственным, экологическим и т. п.), юридическая экспертиза, аудит (компании), комплексная проверка, проверка надлежащего правового статуса, комплексное обследование, проверка юридической чистоты, правовой аудит, юридическое заключение (АД)
    4) Финансы: предынвестиционный анализ (http://www.dis.ru/gif/fm/arhiv/2007/finance_market.pdf), предынвестиционный аудит, полная юридическая проверка, комплексная экспертиза
    5) Горное дело: Комплексный анализ
    7) Официальное выражение: тщательная проверка
    8) Налоги: должная проверка (набор действий, призванных обеспечить минимальную защиту от неожиданностей - поездка на место, изучение обстановки на месте, социальных и прочих рисков)
    9) Патенты: разумное прилежание, разумное прилежание (непрерывная деятельность после возникновения замысла изобретения, нацеленная на его практическое осуществление)
    12) Аудит: (финансовая) благонадёжность [состоятельность] (партнера/подрядчика), Сбор информации с целью проверки определенного проекта, физического или юридического лица (http://www.rfcmd.ru/glossword/1.8/index.php?a=term&d=24&t=797)

    Универсальный англо-русский словарь > due diligence

  • 28 application

    1) использование, применение, практическое применение
    3) нажатие; наложение (напр. ключа)
    7) прикладной уровень (в иерархической системе автоматического управления, в многоуровневой сети)
    8) приведение в действие; включение
    - application of the force
    - chucking applications
    - clustering application
    - cutoff applications
    - dry cutter application
    - heavy-loaded application
    - high-speed application
    - industrial application
    - load application
    - medium run application
    - multitask application
    - non-NC application
    - off-the-shelf software applications
    - robot-based application
    - robotic application
    - sealant application
    - short run application
    - spring application
    - thin foil application of laser
    - time critical applications
    - washdown applications
    - wet cutter applications

    English-Russian dictionary of mechanical engineering and automation > application

  • 29 application

    1) использование, (практическое) применение
    3) нажатие; наложение
    8) прикладной уровень (напр. в иерархической системе)
    9) приведение в действие; включение
    10) мероприятие; работа

    Англо-русский словарь по машиностроению > application

  • 30 Be

    1. превышение размера пакета
    2. основное оборудование
    3. наилучший расчёт
    4. коммутация шин
    5. бериллий
    6. балл по шкале Бофорта

     

    балл по шкале Бофорта
    (оценки силы ветра)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    бериллий
    Be

    Элемент II группы Периодич. системы, ат. н. 4, ат. м. 9,0122; легкий светло-серый металл. Имеет один стабильный изотоп 9Ве. Металлич. Be впервые получили в 1828 г. немец. химик Ф. Велер и франц. химикА. Бюсси независимо друг от друга.
    Be — редкий элемент, среднее содержание его в земной коре 6 • 10 %. Be находится в рудах гл. образом в форме собственных минералов, а также (обычно не более 5—10 %) в виде изоморфной примеси в породообразующих материалах. Известно около 40 минералов Be. Из них наибольшее практическое значение имеет берилл (содержащий 10—12 % ВеО), перспективны и частично используются фенакит (42-45 %), гельвин (10-12 %), хризоберилл (18-20 %), бертрандит (40-42 %).
    Кристаллическая решетка Be - ГПУ: а = = 0,2855 нм и с = 0,3584 нм. Be легче Аl, у= 1847,7 кг/м3, tm= 1284 °С, /кнп= 2450 °С. Be обладает наиб. высокой из всех металлов теплоемкостью - 1,8 кг/м3, высокой теплопроводностью - 178 Вт/м •К (при 50 °С), а = = 10,3-13,1 • 10"' (25-100 oС), Е= 3-Ю5 МПа, ств = 200-550 МПа, удлинение 0,2-2 %. Be -хрупкий металл; его ударная вязкость - 1,0— 5,0 Дж/см2; темп-pa перехода из хрупкого состояния в пластич. 200—400 °С. В хим. соединениях Be двухвалентен; обладает высокой хим. активностью, но компактный Be устойчив на воздухе благодаря образованию тонкой и прочной окисной пленки ВеО. При нагревании > 800 °С быстро окисляется. С водой до 100 °С практич. не взаимодействует. Be легко растворяется в HF, HCl, разбавл. H2SO4, слабо реагирует с концентриров. H2SO4 и разбавл. HNO3. Р-ряется в водных р-рах щелочей, образуя бериллиаты, напр. Na2BeO2. При комн. темп-ре реагирует с фтором, а при повышенных - с др. галогенами и с H2S. Взаимодействует с N2 при t > 650 °С с образованием Be3N2 и при t > 1200 °С с углеродом, образуя Ве2С. С водородом практически не реагирует во всем диапазоне темп-р. При высоких темп-pax Be взаимодействует с большинством металлов, образуя бериллиды; с Аl и Si образует эвтектич. сплавы.
    Металлич. Be и его соединения получают переработкой берилла в Ве(ОН)2 или BeSO4, из к-рых разными способами - BeF2 или ВеСl2, а затем восстановлением, в частности ВеСl2 в смеси с NaCl при 350 °С — металлич. Be. Получ. металл переплавляют в вакууме. Металл высокой чистоты получают дистилляцией в вакууме, а в неб. кол-вах — зонной плавкой; применяют также электролитич. рафинирование. Вследствие низких технологич. св. изделия из Be обычно получают методами порошковой металлургии. Be измельчают в порошок и подвергают горячему прессованию в вакууме при 1140-1180 °С. Прутки, трубы и другие профили получают выдавливанием при 800—1050 °С (горячее выдавливание) или при 400—500 °С (теплое выдавливание). Листы из Be изготовляют прокаткой горячепрессованных заготовок или полос при 760-840 °С. Применяют также ковку, штамповку, волочение. Переработка Be осложняется высокой токсичностью летучих соединений и пыли, содержащих Be, поэтому при работе с Be и его соединениями нужны специальные меры защиты.
    В Be выгодно сочетаются малая плотность, высокие модуль упругости, прочность и теплопроводность. По уд. прочности Be превосходит все металлы. Благодаря этому Be применяют в авиац., ракетной и космич. технике, гидроприборостроении.
    Однако высокая хрупкость Be при комн. темп-ре — главный фактор, сдерживающий его широкое использование как конструкц. материала. Поэтому Be в большем кол-ве используют в кач-ве легир. добавки сплавов на основе Al, Mg, Си и др. цв. металлов. Be - один из лучших материалов для заменителей и отражателей нейтронов в атомных реакторах.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    коммутация шин

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    наилучший расчёт

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    основное оборудование
    Оборудование, выполняющее основные функции и находящиеся непосредственно под управлением процессора.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    превышение размера пакета
    Количество необязательных данных, которое сеть должна попытаться доставить дополнительно к обязательному размеру пакета (Вс) по конкретному виртуальному каналу в течение интервала времени Тс. Значения, используемые для этого параметра, устанавливаются на основе двустороннего соглашения между двумя взаимодействующими сетями на определенный промежуток времени. Значения этого параметра могут быть различными для разных направлений передачи. (МСЭ-Т Х.76, МСЭ-Т Х.84, МСЭ-Т Х.144, МСЭ-Т Х.145).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > Be

  • 31 beryllium

    1. бериллий

     

    бериллий
    Be

    Элемент II группы Периодич. системы, ат. н. 4, ат. м. 9,0122; легкий светло-серый металл. Имеет один стабильный изотоп 9Ве. Металлич. Be впервые получили в 1828 г. немец. химик Ф. Велер и франц. химикА. Бюсси независимо друг от друга.
    Be — редкий элемент, среднее содержание его в земной коре 6 • 10 %. Be находится в рудах гл. образом в форме собственных минералов, а также (обычно не более 5—10 %) в виде изоморфной примеси в породообразующих материалах. Известно около 40 минералов Be. Из них наибольшее практическое значение имеет берилл (содержащий 10—12 % ВеО), перспективны и частично используются фенакит (42-45 %), гельвин (10-12 %), хризоберилл (18-20 %), бертрандит (40-42 %).
    Кристаллическая решетка Be - ГПУ: а = = 0,2855 нм и с = 0,3584 нм. Be легче Аl, у= 1847,7 кг/м3, tm= 1284 °С, /кнп= 2450 °С. Be обладает наиб. высокой из всех металлов теплоемкостью - 1,8 кг/м3, высокой теплопроводностью - 178 Вт/м •К (при 50 °С), а = = 10,3-13,1 • 10"' (25-100 oС), Е= 3-Ю5 МПа, ств = 200-550 МПа, удлинение 0,2-2 %. Be -хрупкий металл; его ударная вязкость - 1,0— 5,0 Дж/см2; темп-pa перехода из хрупкого состояния в пластич. 200—400 °С. В хим. соединениях Be двухвалентен; обладает высокой хим. активностью, но компактный Be устойчив на воздухе благодаря образованию тонкой и прочной окисной пленки ВеО. При нагревании > 800 °С быстро окисляется. С водой до 100 °С практич. не взаимодействует. Be легко растворяется в HF, HCl, разбавл. H2SO4, слабо реагирует с концентриров. H2SO4 и разбавл. HNO3. Р-ряется в водных р-рах щелочей, образуя бериллиаты, напр. Na2BeO2. При комн. темп-ре реагирует с фтором, а при повышенных - с др. галогенами и с H2S. Взаимодействует с N2 при t > 650 °С с образованием Be3N2 и при t > 1200 °С с углеродом, образуя Ве2С. С водородом практически не реагирует во всем диапазоне темп-р. При высоких темп-pax Be взаимодействует с большинством металлов, образуя бериллиды; с Аl и Si образует эвтектич. сплавы.
    Металлич. Be и его соединения получают переработкой берилла в Ве(ОН)2 или BeSO4, из к-рых разными способами - BeF2 или ВеСl2, а затем восстановлением, в частности ВеСl2 в смеси с NaCl при 350 °С — металлич. Be. Получ. металл переплавляют в вакууме. Металл высокой чистоты получают дистилляцией в вакууме, а в неб. кол-вах — зонной плавкой; применяют также электролитич. рафинирование. Вследствие низких технологич. св. изделия из Be обычно получают методами порошковой металлургии. Be измельчают в порошок и подвергают горячему прессованию в вакууме при 1140-1180 °С. Прутки, трубы и другие профили получают выдавливанием при 800—1050 °С (горячее выдавливание) или при 400—500 °С (теплое выдавливание). Листы из Be изготовляют прокаткой горячепрессованных заготовок или полос при 760-840 °С. Применяют также ковку, штамповку, волочение. Переработка Be осложняется высокой токсичностью летучих соединений и пыли, содержащих Be, поэтому при работе с Be и его соединениями нужны специальные меры защиты.
    В Be выгодно сочетаются малая плотность, высокие модуль упругости, прочность и теплопроводность. По уд. прочности Be превосходит все металлы. Благодаря этому Be применяют в авиац., ракетной и космич. технике, гидроприборостроении.
    Однако высокая хрупкость Be при комн. темп-ре — главный фактор, сдерживающий его широкое использование как конструкц. материала. Поэтому Be в большем кол-ве используют в кач-ве легир. добавки сплавов на основе Al, Mg, Си и др. цв. металлов. Be - один из лучших материалов для заменителей и отражателей нейтронов в атомных реакторах.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > beryllium

  • 32 ecologico-economic modelling

    1. эколого-экономическое моделирование

     

    эколого-экономическое моделирование
    Описание экономических и экологических процессов в их взаимосвязи в виде эколого-экономических моделей, основной исследовательский метод новой экономической дисциплины, которую можно было бы назвать экологической экономикой, но чаще (особенно в вузовских программах) определяют как экономику природопользования. Непосредственной причиной возникновения данной области исследований явились тревожащие человечество процессы изменений в окружающей среде, связанные с происходящей в мире научно-технической революцией, и соответственно потребность в целенаправленных действиях по сдерживанию этих процессов как в глобальном масштабе, так и в локальных рамках отдельных экономических объектов. Разработка показателей, характеризующих качество окружающей среды, прогнозирование возможных изменений среды в результате принятия тех или иных (главным образом хозяйственных) решений, прогнозирование обратного влияния экологических факторов на производство и экономические процессы в целом, планирование мероприятий по охране окружающей среды (например, строительство очистных сооружений, создание безотходных технологий) — таковы основные сферы применения Э.-э.м. Причем следует отметить, что главным принципом здесь должен быть принцип оптимизации: во всех случаях использование ресурсов природы, улучшение тех или иных объектов окружающей среды (например, устранение загрязнений воды или воздуха) должны приносить максимум (общественной) полезности при минимуме затрат на соответствующую деятельность. В частном случае критерием оптимальности может выступать сопоставление затрат на улучшение природы, уничтожение загрязнителей и т.п. с полученным экономическим эффектом. Степень «участия» экологических и экономических факторов в эколого-экономической модели может быть различной. В одних случаях в «чисто» экономической модели, например, наряду с выпуском продукции учитывается и выпуск «побочной» продукции — отходов как загрязнителей среды. В других случаях моделируются взаимосвязи экологических факторов, однако результаты расчетов используются в тех или иных прогнозных или плановых производственных задачах. Такова, например, модель природной экосистемы, содержащая уравнения баланса живого органического вещества (биомассы). Рядом исследователей делаются попытки построения комплексов и систем эколого-экономических моделей в целях планирования и управления состоянием окружающей среды. Практическое применение (для прогнозирования воздействий структуры экономики на окружающую среду) в ряде стран приобретают расширенные модели межотраслевого баланса, включающие наряду с производственными отраслями также «отрасли», уничтожающие вредные отходы. Решающую роль в развитии этого направления сыграли работы В.В.Леонтьева, который утверждал, что «…загрязнение и другие нежелательные (или желательные) внешние эффекты производственной деятельности с чисто практической точки зрения следует рассматривать как часть экономической системы»[1].На­конец, существует еще более широкий подход к эколого-экономическому балансу, исходящий из законов термодинамики: количество вещества, взятого из природы для производства благ, сравнивается с ко­личеством отходов жизнедеятельности человека в целом (materials balance principle). См. Вэйст-индекс, Дифференциальные экологические затраты, Глобальные модели.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > ecologico-economic modelling

См. также в других словарях:

  • Практическое использование водорослей —         Повсеместное распространение водорослей в природе и обильное, а подчас и массовое развитие их в водоемах разного типа, на наземных субстратах и в почве определяют огромное значение этих растений как в повседневной жизни человека, так и в… …   Биологическая энциклопедия

  • ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ЛИШАЙНИКОВ —         Экономическое значение лишайников в жизни человека велико. Во первых, это важнейшие кормовые растения. Лишайники служат основным кормом для северных оленей животных, играющих большую роль в жизни народов Крайнего Севера.         Основу… …   Биологическая энциклопедия

  • Практическое использование фагов —         Первыми были выделены фаги, активные против патогенных микроорганизмов (дизентерийной палочки).         Вполне естественно, что у исследователей многих стран возник вопрос об использовании фагов для лечения и профилактики инфекционных… …   Биологическая энциклопедия

  • Использование —         Начало орхидологии восходит к древней Греции, когда Теофраст (IV III вв. до н. э.) в своем «Исследовании о растениях» впервые употребил греческое слово orchis для обозначения одного из этих растений, а затем в I в. н. э. это же название… …   Биологическая энциклопедия

  • Практическое пособие по эксплуатации основных фондов объектов капитального строительства производственного назначения — Терминология Практическое пособие по эксплуатации основных фондов объектов капитального строительства производственного назначения: 4.2. Контроль за техническим состоянием объектов капитального строительства осуществляется путем проведения… …   Словарь-справочник терминов нормативно-технической документации

  • Практическое применение раскраски графов — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Раскраска графов практически применяется (постановку задачи различиных раскрасок здесь обсуждаться не будет) дл …   Википедия

  • КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ — экспериментальное исследование и практическое использование пространства за пределами земной атмосферы при помощи пилотируемых космических кораблей (КК), искусственных спутников Земли (ИСЗ) и автоматических межпланетных станций (АМС). В понятие… …   Энциклопедия Кольера

  • Добросовестное использование — (англ. fair use)  правовая доктрина в США, которая описывает исключения и ограничения исключительного права, предоставляемого автору творческого произведения законом. В рамках данной доктрины допускается свободное использование… …   Википедия

  • Культивирование энтомофторовых грибов и практическое значение их —         Долгое время энтомофторовые грибы считали строгими паразитами, неспособными расти вне тела хозяина. Однако в дальнейшем исследо вателям удалось выделить из насекомых несколько видов грибов этого семейства и вырастить их более чем на 40… …   Биологическая энциклопедия

  • СССР. Ресурсы внутренних вод и их использование —         Распределение и динамика водных ресурсов          Основное практическое значение имеют ежегодно восстанавливающиеся ресурсы речного стока, величина которых колеблется от года к году и в течение года; важным резервом водоснабжения являются …   Большая советская энциклопедия

  • Роль в природе и практическое значение харофитов —         Место, занимаемое харовыми водорослями в природе, сравнительно невелико, что определяется их обитанием в основном в водоемах озерного и прудового характера, да и то далеко не во всех. Однако там, где они поселяются, влияние их на… …   Биологическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»