Перевод: со всех языков на все языки

со всех языков на все языки

внедрение+оборудования

  • 21 дистанционное техническое обслуживание

    1. remote sevice
    2. remote maintenance

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > дистанционное техническое обслуживание

  • 22 remote maintenance

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote maintenance

  • 23 remote sevice

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote sevice

  • 24 Einsatz

    сущ.
    1) общ. задействование (напр., задействование персонала - Einsatz von Personal), залог, использование, применение, прошивка, вступление (в действие), прошивка (на платье, белье), ввод в действие, заклад, самолёто-вылет, ставка (в игре), вставка (на платье), (an D) участие (в чём-л.)
    3) авиа. (боевое) применение (боевое) использование, (лётная) эксплуатация, боевой вылет, насадок, введение в дело (в действие), пуск (напр. ракеты)
    4) спорт. вход в воду
    5) воен. (боевое) вставка, (боевое) использование, (боевое) применение, (боевое) эксплуатация, боевое использование, боевое применение, ввод в бой, ведение боя, ставка (в теории игр), введение в бой
    6) тех. вкладыш, вкладыш, засыпка, наконечник, насадка, начало, сменный блок, сменный модуль, эксплуатация, внедрение (в практику), запуск (напр. ракеты), завалка (печи), начальный момент (процесса)
    7) юр. выезд, операция, распределительный, реализация, использование (изобретения), расстановка (íàïð. von Arbeitskräften)
    8) экон. расстановка (напр. кадров), использование (напр. рабочей силы), вклад, введение в действие
    9) лингв. начальный приступ, приступ
    10) фин. вложение
    11) артил. (боевой) ввод в бой, (боевой) вкладыш, (боевая) облицовка (кумулятивной воронки)
    12) дор. порция
    13) метал. загрузка, загрузка, загрузка, шихта, садка
    14) муз. вступление (инструмента, голоса)
    15) радио. (сменный) блок, возникновение (напр., колебаний)
    17) электр. запирание, начальный момент процесса, отсечка
    19) нефт. исходное сырьё, расход (исходного сырья), вкладыш (ротора)
    23) бизн. расстановка (кадров), использование (рабочей силы), привлечение (персонала)
    24) микроэл. вставной элемент, втулка, вставной блок
    25) высок. работа
    26) внеш.торг. ввод в эксплуатацию, внедрение, внедрение
    27) дер. ввод в действие использование, вставная деталь
    28) гидравл. патрон (напр. фильтра)
    29) аэродин. пуск (ракеты), вылет (самолёта)
    30) ВМФ. одновременное начало гребли, участие в действиях, ввод в бой (в операцию)
    31) судостр. введение (в бой), панель, посадка, щиток

    Универсальный немецко-русский словарь > Einsatz

  • 25 ACS

    1. система контроля и управления доступом
    2. система дополнительного или вспомогательного охлаждения ядерного реактора
    3. система аварийного теплоносителя ядерного реактора
    4. сервер управления доступом
    5. сервер вызова доступа
    6. секция доступа к каналу
    7. периодический впрыск теплоносителя в активную зону ядерного реактора при аварии
    8. НКУ распределения и управления для строительных площадок (НКУ СП)
    9. конструкция, расположенная над активной зоной ядерного реактора
    10. доступ
    11. выбор ограничений
    12. Американское химическое общество
    13. автоматический диспетчер вызовов
    14. автоматизированная система управления
    15. Acs

     

    Американское химическое общество

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    автоматизированная система, управляющая
    АСУ

    Управляющая система, часть функций которой, главным образом функцию принятия решений, выполняет человек-оператор.
    Примечание
    В зависимости от объектов управления различают, например: АСУ П, когда объектом управления является предприятие; АСУ ТП, когда объектом управления является технологический процесс; ОАСУ, когда объектом управления является организационный объект или комплекс.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.  Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    автоматизированная система управления
    АСУ

    Совокупность математических методов, технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, обеспечивающих рациональное управление сложным объектом (процессом) в соответствии с заданной целью. АСУ принято делить на основу и функциональную часть. В основу входят информационное, техническое и математическое обеспечение. К функциональной части относят набор взаимосвязанных программ, автоматизирующих конкретные функции управления (планирование, финансово-бухгалтерскую деятельность и др.). Различают АСУ объектами (технологическими процессами - АСУТП, предприятием - АСУП, отраслью - ОАСУ) и функциональными автоматизированными системами, например, проектирования, расчетов, материально-технического и др. обеспечения.
    [ http://www.morepc.ru/dict/]

    автоматизированная система управления
    АСУ

    Система управления, в которой применяются современные автоматические средства обработки данных и экономико-математические методы для решения основных задач управления производственно-хозяйственной деятельностью. Это человеко-машинная система: в ней ряд операций и действий передается для исполнения машинам и другим устройствам (особенно это относится к так называемым рутинным, повторяющимся, стандартным операциям расчетов), но главное решение всегда остается за человеком. Этим АСУ отличаются от автоматических систем, т.е. таких технических устройств, которые действуют самостоятельно, по установленной для них программе, без вмешательства человека. АСУ подразделяются прежде всего на два класса: автоматизированные системы организационного управления и автоматизированные системы управления технологическими процессами (последние часто бывают автоматическими, первые ими принципиально быть не могут). Традиционно термин АСУ закрепился за первым из названных классов. Отличие АСУ от обычной, неавтоматизированной, но также использующей ЭВМ, системы управления показано на рис. А.1, а, б. Стрелками обозначены потоки информации. В первом случае компьютер используется для решения отдельных задач управления, например для производства плановых расчетов, результаты которых рассматриваются органом управления и либо принимаются, либо отвергаются. При этом необходимые данные собираются специально для решения каждой задачи и вводятся в компьютер, а потом за ненадобностью уничтожаются. Во втором случае существенная часть информации от объекта управления собирается непосредственно вычислительным центром, в том числе по каналам связи. При этом нет необходимости каждый раз вводить в компьютер все данные: часть из них (цены, нормативы и т. п.) хранится в ее запоминающем устройстве. Из вычислительного центра выработанные задания поступают, с одной стороны, в орган управления, а с другой (обычно через контрольное звено) — к объекту управления. В свою очередь информация, поступающая от объекта управления, влияет на принимаемые решения, т.е. здесь используется кибернетический принцип обратной связи. Это — АСУ. Принято рассматривать каждую АСУ одновременно в двух аспектах: с точки зрения ее функций — того, что и как она делает, и с точки зрения ее схемы, т.е. с помощью каких средств и методов эти функции реализуются. Соответственно АСУ подразделяют на две группы подсистем — функциональные и обеспечивающие. Создание АСУ на действующем экономическом объекте (в фирме, на предприятии, в банке и т.д.) — не разовое мероприятие, а длительный процесс. Отдельные подсистемы АСУ проектируются и вводятся в действие последовательными очередями, в состав функций включаются также все новые и новые задачи; при этом АСУ органически «вписывается» в систему управления. Обычно первые очереди АСУ ограничиваются решением чисто информационных задач. В дальнейшем их функции усложняются, включая использование оптимизационных расчетов, элементов оптимального управления. Степень участия АСУ в процессах управления может быть весьма различной, вплоть до самостоятельной выдачи компьютером, на основе получаемых им данных, оперативных управляющих «команд». Поскольку внедрение АСУ требует приспособления документации для машинной обработки, создаются унифицированные системы документации, а также классификаторы технико-экономической информации и т.д. Экономическая эффективность АСУ определяется прежде всего ростом эффективности самого производства в результате лучшей загрузки оборудования, повышения ритмичности, сокращения незавершенного производства и других материальных запасов, повышения качества продукции. РисА.1. Системы управления с использованием компьютеров а — неавтоматизированная, б — автоматизированная; I — управляющий центр; II — автоматизированная управляемая система (например, производство), III — контроль; тонкая черная стрелка — канал непосредственного управления компьютером некоторыми технологическими процессами (бывает не во всех АСУ); тонкая пунктирная стрелка показывает ту часть информации, которая поступает непосредственно в центр, минуя компьютер.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

     

    автоматический диспетчер вызовов
    Устройство автоматической обработки входящих вызовов в соответствии с заданной программой переадресации и приоритетами. Такое устройство может работать в составе УАТС или подключаться непосредственно к входящим линиям. В его задачи входит только переадресация, а такие функции, как запись вызова, его удержание на линии и другие в ACS не поддерживаются.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    выбор ограничений

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    доступ
    обращение

    -.
    [ http://www.morepc.ru/dict/]

    доступ
    Процедура обращения абонента, процесса, устройства к общесетевым ресурсам системы.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    Синонимы

    EN

     

    конструкция, расположенная над активной зоной ядерного реактора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    НКУ распределения и управления для строительных площадок (НКУ СП)
    Комбинация одного или нескольких трансформаторных устройств или коммутационных аппаратов с устройствами управления, измерения, сигнализации, защиты и регулирования со всеми внутренними электрическими и механическими соединениями и конструктивными элементами, разработанная и изготовленная для применения на любых строительных площадках — для наружной и внутренней установки.
    [ ГОСТ Р 51321. 4-2000 ( МЭК 60439-4-90)]

    EN

    low-voltage switchgear and controlgear assembly for construction sites (ACS)
    combination of one or several transforming or switching devices with associated control, measuring, signalling, protective and regulating equipment complete with all their internal electrical and mechanical connections and structural parts, designed and built for use on all construction sites, indoors and outdoors
    [IEC 60439-4, ed. 2.0 (2004-06)]

    FR

    ensemble d'appareillage à basse tension utilisé sur les chantiers (EC)
    combinaison d'un ou de plusieurs appareils de transformation ou de connexion avec équipements associés de commande, de mesure, de signalisation, de protection et de régulation complètement assemblés avec toutes leurs liaisons internes électriques et mécaniques et leurs éléments de construction (voir 2.4), conçue et construite pour être utilisée sur tous les chantiers, à l'intérieur et à l'extérieur.
    [IEC 60439-4, ed. 2.0 (2004-06)]

    0480
    Рис. ABB

    0481
    Рис. ABB

    0482
    Рис. ABB

    НКУ СП, устанавливаемое на ножках

    НКУ СП, закрепляемое на вертикальной поверхности

    НКУ СП розеточное

    Параллельные тексты EN-RU

     

    Assemblies for construction sites have different dimensions, ranging from the simple socket-outlet units to proper distribution boards in metal enclosure or insulating material.
    These assemblies are usually mobile.
    The Standard IEC 60439-4 establishes the particular requirements for this type of assemblies, making specific reference to mechanical strength and resistance to corrosion.

    [ABB]

    НКУ для строительных площадок имеют разные размеры и функции - от простых розеточных до распределительных панелей в металлической или пластмассовой оболочке.
    Данные НКУ обычно являются переносными.
    Стандарт МЭК 60439-4 устанавливает дополнительные требования для НКУ данного типа, особенно по механической прочности и коррозионной стойкости.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

    FR

     

    периодический впрыск теплоносителя в активную зону ядерного реактора при аварии

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    секция доступа к каналу
    Физический канал или набор каналов, соединяющий Оконечное оборудование передачи данных с (местной) Станцией коммутации. Сюда не входит никакая часть оборудования передачи данных или станции коммутации (МСЭ-Т Х.144, МСЭ-Т Х.145, МСЭ-Т Х.147).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    сервер вызова доступа
    (МСЭ-Т Y.2261).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    сервер управления доступом
    (МСЭ-Т M.3016).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    система аварийного теплоносителя ядерного реактора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    система дополнительного или вспомогательного охлаждения ядерного реактора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    система контроля и управления доступом
    Совокупность совместно действующих технических средств (контроля и управления), предназначенных для контроля и управления доступом и обладающих технической, информационной, программной и эксплуатационной совместимостью.
    [РД 25.03.001-2002] 

    система контроля доступа
    система управления доступом
    СКД

    Одна из важнейших составляющих интегрированного комплекса систем и средств физической защиты. Системой контроля доступа называется совокупность программно-аппаратных средств и организационных мероприятий, с помощью которых решается задача контроля и управления посещением отдельных помещений, а также оперативный контроль персонала и времени его нахождения на территории объекта.
    Интегрированная СКД реализуется, в общем случае, гармоничным взаимодействием интеллектуальных уровней управления:
    (1) уровень систем - графический пользовательский интерфейс и сервер базы данных;
    (2) уровень подсистем - главный контроллер (мультиплексор);
    (3) уровень локальных процессоров - локальные контроллеры, охранные панели.
    Базовыми компонентами системы контроля доступа, управляемы тремя уровнями управления, являются: считыватели и идентификаторы, исполнительные устройства контроля доступа (турникеты, барьеры, замки, шлюзовые кабины, шлагбаумы, и т.п.), специализированные обнаружители (обнаружители металлов, обнаружители ядерных материалов, обнаружители взрывчатых веществ).
    [ http://datasheet.do.am/forum/22-4-1]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > ACS

  • 26 EN

    1. эффективность
    2. цели в области качества
    3. характеристика качества
    4. характеристика
    5. управление качеством
    6. улучшение качества
    7. удовлетворенность потребителей
    8. требование
    9. соответствие
    10. снижение градации
    11. система управления измерениями
    12. система менеджмента качества
    13. система менеджмента
    14. система
    15. сигнал электрического интерфейса, уровень n
    16. руководство по качеству
    17. ремонт
    18. результативность
    19. разрешение на отступление
    20. разрешение на отклонение
    21. процесс квалификации
    22. процесс измерения
    23. процесс
    24. процедура
    25. прослеживаемость
    26. производственная среда
    27. проектирование и разработка
    28. проект
    29. продукция
    30. проверяемая организация
    31. предупреждающее действие
    32. потребитель
    33. постоянное улучшение
    34. поставщик
    35. политика в области качества
    36. планирование качества
    37. план качества
    38. переделка
    39. организация
    40. организационная структура
    41. объективное свидетельство
    42. обеспечение качества
    43. нормативная и техническая документация
    44. несоответствие
    45. надежность
    46. метрологическое подтверждение пригодности
    47. метрологическая характеристика
    48. метрологическая служба
    49. менеджмент качества
    50. менеджмент
    51. коррекция
    52. корректирующее действие
    53. контроль
    54. компетентность
    55. качество
    56. испытание
    57. инфраструктура
    58. информация
    59. измерительное оборудование
    60. запись
    61. заинтересованная сторона
    62. Европейский стандарт
    63. документ
    64. дефект
    65. градация
    66. высшее руководство
    67. выпуск
    68. возможности
    69. валидация
    70. анализ

     

    Европейский стандарт
    (МСЭ-Т Q.1741).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    сигнал электрического интерфейса, уровень n
    (МСЭ-Т Y.1453).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    • electrical interface signal, level n
    • En

    3.4.3 проект (en project; fr projet): Уникальный процесс (3.4.1), состоящий из совокупности скоординированной и управляемой деятельности с начальной и конечной датами, предпринятый для достижения цели, соответствующей конкретным требованиям (3.1.2), включающий ограничения сроков, стоимости и ресурсов.

    Примечания

    1 Отдельный проект может быть частью структуры более крупного проекта.

    2 В некоторых проектах цели совершенствуются, а характеристики (3.5.1) продукции определяются соответственно по мере развития проекта.

    3 Выходом проекта может быть одно изделие или несколько единиц продукции (3.4.2).

    4 Адаптировано из ИСО 10006.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.1.1 качество (en quality; fr qualité): Степень соответствия совокупности присущих характеристик (3.5.1) требованиям (3.1.2).

    Примечания*

    1 Термин «качество» может применяться с такими прилагательными, как плохое, хорошее или отличное.

    2 Термин «присущий» в отличие от термина «присвоенный» означает имеющийся в чем-то. Прежде всего это относится к постоянным характеристикам.

    __________

    * Примечания приведены в редакции, отличной от ИСО 9000.

    (Измененная редакция. Изм. № 1).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.1.2 требование (en requirement; fr exigence): Потребность или ожидание, которое установлено, обычно предполагается или является обязательным.

    Примечания

    1 «Обычно предполагается» означает, что это общепринятая практика организации (3.3.1), ее потребителей (3.3.5) и других заинтересованных сторон (3.3.7), когда предполагаются рассматриваемые потребности или ожидания.

    2 Для обозначения конкретного вида требования могут применяться определяющие слова, например требование к продукции, требование к менеджменту качества, требование потребителя.

    3 Установленным является такое требование, которое определено, например в документе (3.7.2).

    4 Требования могут выдвигаться различными заинтересованными сторонами.

    (Измененная редакция. Изм. № 1).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.1.3 градация (en grade; fr classe): Класс, сорт, категория или разряд, присвоенные различным требованиям (3.1.2) к качеству продукции (3.4.2), процессов (3.4.1) или систем (3.2.1), имеющих то же самое функциональное применение.

    Пример: класс авиабилета или категория гостиницы в справочнике гостиниц.

    Примечание - При определении требования к качеству градация обычно устанавливается.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.1.4 удовлетворенность потребителей (en customer satisfaction; fr satisfaction du client): Восприятие потребителями степени выполнения их требований (3.1.2).

    Примечания

    1 Жалобы потребителей являются показателем низкой удовлетворенности потребителей, однако их отсутствие не обязательно предполагает высокую удовлетворенность потребителей.

    2 Даже если требования потребителей были с ними согласованы и выполнены, это не обязательно обеспечивает высокую удовлетворенность потребителей.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.1.5 возможности (en capability; fr capacité): Способность организации (3.3.1), системы (3.2.1) или процесса (3.4.1) производить продукцию (3.4.2), которая будет соответствовать требованиям (3.1.2) к этой продукции.

    Примечание - Термины, относящиеся к возможностям процесса в области статистики, определены в ГОСТ Р 50779.11.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.1 система (en system; fr systéme): Совокупность взаимосвязанных или взаимодействующих элементов.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.2 система менеджмента (en management system; fr systéme de management): Система (3.2.1) для разработки политики и целей и достижения этих целей.

    Примечание - Система менеджмента организации (3.3.1) может включать различные системы менеджмента, такие как система менеджмента качества (3.2.3), система менеджмента финансовой деятельности или система менеджмента охраны окружающей среды.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.4 политика в области качества (en quality policy; fr politique qualité): Общие намерения и направление деятельности организации (3.3.1) в области качества (3.1.1), официально сформулированные высшим руководством (3.2.7).

    Примечания

    1 Как правило, политика в области качества согласуется с общей политикой организации и обеспечивает основу для постановки целей в области качества (3.2.5).

    2 Принципы менеджмента качества, изложенные в настоящем стандарте, могут служить основой для разработки политики в области качества.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.5 цели в области качества (en quality objective; fr objectif qualité): Цели, которых добиваются или к которым стремятся в области качества (3.1.1).

    Примечания

    1 Цели в области качества обычно базируются на политике организации в области качества (3.2.4).

    2 Цели в области качества обычно устанавливаются для соответствующих функций и уровней организации (3.3.1).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.6 менеджмент (en management; fr management): Скоординированная деятельность по руководству и управлению организацией (3.3.1).

    Примечание - В английском языке термин «management» иногда относится к людям, т.е. к лицу или группе работников, наделенных полномочиями и ответственностью для руководства и управления организацией. Когда «management» используется в этом смысле, его следует всегда применять с определяющими словами с целью избежания путаницы с понятием «management», определенным выше. Например не одобряется выражение «руководство должно...», в то время как «высшее руководство (3.2.7) должно...» - приемлемо.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.7 высшее руководство (en top management; fr direction): Лицо или группа работников, осуществляющих направление деятельности и управление организацией (3.3.1) на высшем уровне.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.8 менеджмент качества (en quality management; fr management de la qualité): Скоординированная деятельность по руководству и управлению организацией (3.3.1) применительно к качеству (3.1.1).

    Примечание - Руководство и управление применительно к качеству обычно включает разработку политики в области качества (3.2.4) и целей в области качества (3.2.5), планирование качества (3.2.9), управление качеством (3.2.10), обеспечение качества (3.2.11) и улучшение качества (3.2.12).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.9 планирование качества (en quality planning; fr planification de la qualité): Часть менеджмента качества (3.2.8), направленная на установление целей в области качества (3.2.5) и определяющая необходимые операционные процессы (3.4.1) жизненного цикла продукции и соответствующие ресурсы для достижения целей в области качества.

    Примечание - Разработка планов качества (3.7.5) может быть частью планирования качества.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.12 улучшение качества (en quality improvement; fr amélioration de la qualité): Часть менеджмента качества (3.2.8), направленная на увеличение способности выполнить требования (3.1.2) к качеству.

    Примечание - Требования могут относиться к любым аспектам, таким как результативность (3.2.14), эффективность (3.2.15) или прослеживаемость (3.5.4).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.13 постоянное улучшение (en continual improvement; fr amélioration continue): Повторяющаяся деятельность по увеличению способности выполнить требования (3.1.2).

    Примечание - Процесс (3.4.1) установления целей и поиска возможностей улучшения является постоянным процессом, использующим наблюдения аудита (проверки) (3.9.6) и заключения по результатам аудита (проверки) (3.9.7), анализ данных, анализ (3.8.7) со стороны руководства или другие средства и обычно ведущим к корректирующим действиям (3.6.5) или предупреждающим действиям (3.6.4).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.14 результативность (en effectiveness; fr efficacité): Степень реализации запланированной деятельности и достижения запланированных результатов.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.2.15 эффективность (en efficiency, fr efficience): Соотношение между достигнутым результатом и использованными ресурсами.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.1 организация (en organization; fr organisme): Группа работников и необходимых средств с распределением ответственности, полномочий и взаимоотношений.

    Примеры: компания, корпорация, фирма, предприятие, учреждение, благотворительная организация, предприятие розничной торговли, ассоциация, а также их подразделения или комбинация из них.

    Примечания

    1 Распределение обычно бывает упорядоченным.

    2 Организация может быть государственной или частной.

    3 Настоящее определение действительно применительно к стандартам на системы менеджмента качества (3.2.3). Термин «организация» определен иначе в руководстве ИСО/МЭК 2.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.2 организационная структура (en organizational structure; fr organisation): Распределение ответственности, полномочий и взаимоотношений между работниками.

    Примечания

    1 Распределение обычно бывает упорядоченным.

    2 Официально оформленная организационная структура часто содержится в руководстве по качеству (3.7.4) или в плане качества (3.7.5) проекта (3.4.3).

    3 Область применения организационной структуры может включать соответствующие взаимодействия с внешними организациями (3.3.1).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.3 инфраструктура (en infrastructure; fr infrastructure): < организация> Совокупность зданий, оборудования и служб обеспечения, необходимых для функционирования организации (3.3.1).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.4 производственная среда (en work environment; fr environnement de travail): Совокупность условий, в которых выполняется работа.

    Примечание - Условия включают физические, социальные, психологические и экологические факторы (такие как температура, системы признания и поощрения, эргономика и состав атмосферы).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.5 потребитель (en customer; fr client): Организация (3.3.1) или лицо, получающие продукцию (3.4.2).

    Примеры: клиент, заказчик, конечный пользователь, розничный торговец, бенефициар и покупатель.

    Примечание - Потребитель может быть внутренним или внешним по отношению к организации.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.6 поставщик (en supplier; fr fournisseur): Организация (3.3.1) или лицо, предоставляющие продукцию (3.4.2).

    Примеры: производитель, оптовик, предприятие розничной торговли или продавец продукции, исполнитель услуги, поставщик информации.

    Примечания

    1 Поставщик может быть внутренним или внешним по отношению к организации.

    2 В контрактной ситуации поставщика иногда называют «подрядчиком».

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.7 заинтересованная сторона (en interested party; fr partie intéressée): Лицо или группа, заинтересованные в деятельности или успехе организации (3.3.1).

    Примеры: потребители (3.3.5), владельцы, работники организации, поставщики (3.3.6), банкиры, ассоциации, партнеры или общество.

    Примечание - Группа может состоять из организации, ее части или из нескольких организаций.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.4.1 процесс (en process; fr processus): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечания

    1 Входами к процессу обычно являются выходы других процессов.

    2 Процессы в организации (3.3.1), как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности.

    3 Процесс, в котором подтверждение соответствия (3.6.1) конечной продукции (3.4.2) затруднено или экономически нецелесообразно, часто относят к «специальному процессу».

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.4.2 продукция (en product; fr produit): Результат процесса (3.4.1).

    Примечания

    1 Имеются четыре общие категории продукции:

    - услуги (например перевозки);

    - программные средства (например компьютерная программа, словарь);

    - технические средства (например узел двигателя);

    - перерабатываемые материалы (например смазка).

    Многие виды продукции содержат элементы, относящиеся к различным общим категориям продукции. Отнесение продукции к услугам, программным или техническим средствам или перерабатываемым материалам зависит от преобладающего элемента.

    Например поставляемая продукция «автомобиль» состоит из технических средств (например шин), перерабатываемых материалов (горючее, охлаждающая жидкость), программных средств (программное управление двигателем, инструкция водителю) и услуги (разъяснения по эксплуатации, даваемые продавцом).

    2 Услуга является результатом, по меньшей мере, одного действия, обязательно осуществленного при взаимодействии поставщика (3.3.6) и потребителя (3.3.5), она, как правило, нематериальна. Предоставление услуги может включать, к примеру, следующее:

    - деятельность, осуществленную на поставленной потребителем материальной продукции (например автомобиль, нуждающийся в ремонте);

    - деятельность, осуществленную на поставленной потребителем нематериальной продукции (например заявление о доходах, необходимое для определения размера налога);

    - предоставление нематериальной продукции (например информации в смысле передачи знаний);

    - создание благоприятных условий для потребителей (например в гостиницах и ресторанах).

    Программное средство содержит информацию и обычно является нематериальным, может также быть в форме подходов, операций или процедуры (3.4.5).

    Техническое средство, как правило, является материальным и его количество выражается исчисляемой характеристикой (3.5.1). Перерабатываемые материалы обычно являются материальными и их количество выражается непрерывной характеристикой. Технические средства и перерабатываемые материалы часто называются товарами.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.4.4 проектирование и разработка (en design and development; fr conception et développement): Совокупность процессов (3.4.1), переводящих требования (3.1.2) в установленные характеристики (3.5.1) или нормативную и техническую документацию (3.7.3) на продукцию (3.4.2), процесс (3.4.1) или систему (3.2.1).

    Примечания

    1 Термины «проектирование» и «разработка» иногда используют как синонимы, а иногда - для определения различных стадий процесса проектирования и разработки в целом.

    2 Для обозначения объекта проектирования и разработки могут применяться определяющие слова (например проектирование и разработка продукции или проектирование и разработка процесса).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.11 разрешение на отклонение (en concession; fr dérogation (aprés production): Разрешение на использование или выпуск (3.6.13) продукции (3.4.2), которая не соответствует установленным требованиям (3.1.2).

    Примечание - Разрешение на отклонение обычно распространяется на поставку продукции с несоответствующими характеристиками (3.5.1) для установленных согласованных ограничений по времени или количеству данной продукции.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.4.5 процедура (en procedure; fr procédure): Установленный способ осуществления деятельности или процесса (3.4.1).

    Примечания

    1 Процедуры могут быть документированными или недокументированными.

    2 Если процедура документирована, часто используется термин «письменная процедура» или «документированная процедура». Документ (3.7.2), содержащий процедуру, может называться «документированная процедура».

    <3>3.5 Термины, относящиеся к характеристикам

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.5.1 характеристика (en characteristic; fr caractéristique): Отличительное свойство.

    Примечания

    1 Характеристика может быть собственной или присвоенной.

    2 Характеристика может быть качественной или количественной.

    3 Существуют различные классы характеристик, такие как:

    - физические (например механические, электрические, химические или биологические характеристики);

    - органолептические (например связанные с запахом, осязанием, вкусом, зрением, слухом);

    - этические (например вежливость, честность, правдивость);

    - временные (например пунктуальность, безотказность, доступность);

    - эргономические (например физиологические характеристики или связанные с безопасностью человека);

    - функциональные (например максимальная скорость самолета).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.5.2 характеристика качества (en quality characteristic; fr caractéristique qualité): Присущая характеристика (3.5.1) продукции (3.4.2), процесса (3.4.1) или системы (3.2.1), вытекающая из требования (3.1.2).

    Примечания

    1 «Присущая» означает имеющаяся в чем-то. Прежде всего это относится к постоянной характеристике.

    2 Присвоенные характеристики продукции, процесса или системы (например цена продукции, владелец продукции) не являются характеристиками качества этой продукции, процесса или системы.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.5.3 надежность (en dependability; fr sûreté de fonctionnement): Собирательный термин, применяемый для описания свойства готовности и влияющих на него свойств безотказности, ремонтопригодности и обеспеченности технического обслуживания и ремонта.

    Примечание - Надежность применяется только для общего неколичественного описания свойства. [МЭК 60050-191:1990].

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.5.4 прослеживаемость (en traceability; fr tracabilité): Возможность проследить историю, применение или местонахождение того, что рассматривается.

    Примечания

    1 При рассмотрении продукции (3.4.2) прослеживаемость может относиться к:

    - происхождению материалов и комплектующих;

    - истории обработки;

    - распределению и местонахождению продукции после поставки.

    2 В области метрологии определение, приведенное в VIM-1993, 6.10, является принятым.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.1 соответствие (en conformity; fr conformite): Выполнение требования (3.1.2).

    Примечания

    1 Настоящее определение согласуется с приведенным в Руководстве ИСО/МЭК 2, но отличается от него формулировкой, чтобы соответствовать концепции ИСО 9000.

    2 В английском языке термин «conformance» является синонимом, но он вызывает возражения.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.3 дефект (en defect; fr defaut): Невыполнение требования (3.1.2), связанного с предполагаемым или установленным использованием.

    Примечания

    1 Различие между понятиями дефект и несоответствие (3.6.2) является важным, так как имеет подтекст юридического характера, связанный с вопросами ответственности за качество продукции. Следовательно, термин «дефект» надо использовать чрезвычайно осторожно.

    2 Использование, предполагаемое потребителем (3.3.5), может зависеть от характера информации, такой как инструкции по использованию и техническому обслуживанию, предоставляемые поставщиком (3.3.6).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.4 предупреждающее действие (en preventive; fr action preventive): Действие, предпринятое для устранения причины потенциального несоответствия (3.6.2) или другой потенциально нежелательной ситуации.

    Примечания

    1 У потенциального несоответствия может быть несколько причин.

    2 Предупреждающее действие предпринимается для предотвращения возникновения события, тогда как корректирующее действие (3.6.5) - для предотвращения повторного возникновения события.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.5 корректирующее действие (en corrective action; fr action corrective): Действие, предпринятое для устранения причины обнаруженного несоответствия (3.6.2) или другой нежелательной ситуации.

    Примечания

    1 У несоответствия может быть несколько причин.

    2 Корректирующее действие предпринимается для предотвращения повторного возникновения события, тогда как предупреждающее действие (3.6.4) - для предотвращения возникновения события.

    3 Существует различие между коррекцией (3.6.6) и корректирующим действием.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.6 коррекция (en correction; fr correction): Действие, предпринятое для устранения обнаруженного несоответствия (3.6.2).

    Примечания

    1 Коррекция может осуществляться в сочетании с корректирующим действием (3.6.5).

    2 Коррекция может включать, например переделку (3.6.7) или снижение градации (3.6.8).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.7 переделка (en rework; fr reprise): Действие, предпринятое в отношении несоответствующей продукции (3.4.2), с тем чтобы она соответствовала требованиям (3.1.2).

    Примечание - В отличие от переделки ремонт (3.6.9) может состоять в воздействии на отдельные части несоответствующей продукции или в их замене.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.8 снижение градации (en regrade; fr reclassement): Изменение градации (3.1.3) несоответствующей продукции (3.4.2), чтобы она соответствовала требованиям (3.1.2), отличным от исходных.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.9 ремонт (en repair; fr réparation): Действие, предпринятое в отношении несоответствующей продукции (3.4.2), чтобы сделать ее приемлемой для предполагаемого использования.

    Примечания

    1 Ремонт включает действие по исправлению, предпринятое в отношении ранее соответствовавшей продукции для ее восстановления с целью использования, например как часть технического обслуживания.

    2 В отличие от переделки (3.6.7) ремонт может воздействовать на отдельные части несоответствующей продукции или изменять их.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.12 разрешение на отступление (en deviation permit; fr dérogation (avant production): Разрешение на отступление от исходных установленных требований (3.1.2) к продукции (3.4.2) до ее производства.

    Примечание - Разрешение на отступление, как правило, дается на ограниченное количество продукции или период времени, а также для конкретного использования.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.6.13 выпуск (en release; fr libération): Разрешение на переход к следующей стадии процесса (3.4.1).

    Примечание - В английском языке, в контексте компьютерных программных средств, термином «release» часто называют версию самих программных средств.

    <3>3.7 Термины, относящиеся к документации

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7.2 документ (en document; fr document): Информация (3.7.1) и соответствующий носитель.

    Примеры: записи (3.7.6), нормативная и техническая документация (3.7.3), процедурный документ, чертеж, отчет, стандарт.

    Примечания

    1 Носитель может быть бумажным, магнитным, электронным или оптическим компьютерным диском, фотографией или эталонным образцом, или комбинацией из них.

    2 Комплект документов, например технических условий и записей, часто называется «документацией».

    3 Некоторые требования (3.1.2) (например требование к разборчивости) относятся ко всем видам документов, однако могут быть иные требования к техническим условиям (например требование к управлению пересмотрами) и записям (например требование к восстановлению).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7.3 нормативная и техническая документация (en specification; fr spécification): Документы (3.7.2), устанавливающие требования (3.1.2).

    Примечания

    1 Нормативные документы могут относиться к деятельности (например документированная процедура, технологическая документация на процесс или методику испытаний) или продукции (3.4.2) (например технические условия на продукцию, эксплуатационная документация и чертежи).

    2 Термин дан в редакции, отличной от приведенной в ИСО 9000, в соответствии с терминологией, принятой в Российской Федерации.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7.4 руководство по качеству (en quality manual; fr manuеl qualité): Документ (3.7.2), определяющий систему менеджмента качества (3.2.3) организации (3.3.1).

    Примечание - Руководства по качеству могут различаться по форме и детальности изложения, исходя из соответствия размеру и сложности организации.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7.5 план качества (en quality plan; fr qualité): Документ (3.7.2), определяющий, какие процедуры (3.4.5) и соответствующие ресурсы, кем и когда должны применяться к конкретному проекту (3.4.3), продукции (3.4.2), процессу (3.4.1) или контракту.

    Примечания

    1 Эти процедуры обычно включают те процедуры, которые имеют ссылки на процессы менеджмента качества и процессы производства продукции.

    2 План качества часто содержит ссылки на разделы руководства по качеству (3.7.4) или документированные процедуры.

    3 План качества, как правило, является одним из результатов планирования качества (3.2.9).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7.6 запись (en record; fr enregistrement): Документ (3.7.2), содержащий достигнутые результаты или свидетельства осуществленной деятельности.

    Примечания

    1 Записи могут использоваться, например для документирования прослеживаемости (3.5.4), свидетельства проведения верификации (3.8.4), предупреждающих действий (3.6.4) и корректирующих действий (3.6.5).

    2 Обычно пересмотры записей не нуждаются в управлении.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.8.1 объективное свидетельство (en objective evidence; fr preuve tangible): Данные, подтверждающие наличие или истинность чего-либо.

    Примечание - Объективное свидетельство может быть получено путем наблюдения, измерения, испытания (3.8.3) или другими способами.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.8.2 контроль (en inspection; fr contrôle): Процедура оценивания соответствия путем наблюдения и суждений, сопровождаемых соответствующими измерениями, испытаниями или калибровкой. [Руководство ИСО/МЭК 2].

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.8.5 валидация (en validation; fr validation): Подтверждение на основе представления объективных свидетельств (3.8.1) того, что требования (3.1.2), предназначенные для конкретного использования или применения, выполнены.

    Примечания

    1 Термин «подтверждено» используется для обозначения соответствующего статуса.

    2 Условия применения могут быть реальными или смоделированными.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.8.6 процесс квалификации (en qualification process; fr processus de qualification): Процесс (3.4.1) демонстрации способности выполнить установленные требования (3.1.2).

    Примечания

    1 Термин «квалифицирован» используется для обозначения соответствующего статуса.

    2 Квалификация может распространяться на работников, продукцию (3.4.2), процессы или системы (3.2.1).

    Пример: квалификация аудиторов (экспертов по сертификации систем качества), квалификация материала.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.8.7 анализ (en review; fr revue): Деятельность, предпринимаемая для установления пригодности, адекватности, результативности (3.2.14) рассматриваемого объекта для достижения установленных целей.

    Примечание - Анализ может также включать определение эффективности (3.2.15).

    Примеры: анализ со стороны руководства, анализ проектирования и разработки, анализ требований потребителей и анализ несоответствий.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.10.1 система управления измерениями (en measurement control system; fr systéme de maîtrise de la measure): Совокупность взаимосвязанных или взаимодействующих элементов, необходимых для достижения метрологического подтверждения пригодности (3.10.3) и постоянного управления процессами измерения (3.10.2).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.10.3 метрологическое подтверждение пригодности (en metrological confirmation; fr confirmation métrologique): Совокупность операций, необходимая для обеспечения соответствия измерительного оборудования (3.10.4) требованиям (3.1.2), отвечающим его назначению.

    Примечания

    1 Метрологическое подтверждение пригодности обычно включает калибровку или верификацию (3.8.4), любую необходимую юстировку или ремонт (3.6.9) и последующую перекалибровку, сравнение с метрологическими требованиями для предполагаемого использования оборудования, а также требуемое пломбирование и маркировку.

    2 Метрологическое подтверждение пригодности не выполнено до тех пор, пока пригодность измерительного оборудования для использования по назначению не будет продемонстрирована и задокументирована.

    3 Требования к использованию по назначению включают такие характеристики, как диапазон, разрешающая способность, максимально допустимые погрешности и т.д.

    4 Требования к метрологическому подтверждению пригодности обычно отличаются от требований на продукцию и в них не регламентируются.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.10.4 измерительное оборудование (en measuring equipment; fr équipement de mesure): Средства измерения, программные средства, эталоны, стандартные образцы, вспомогательная аппаратура или комбинация из них, необходимые для выполнения процесса измерения (3.10.2).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.10.5 метрологическая характеристика (en metrological characteristic; fr caractéristique metrologyque): Отличительная особенность, которая может повлиять на результаты измерения.

    Примечания

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    Англо-русский словарь нормативно-технической терминологии > EN

  • 27 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

  • 28 switching technology

    1. технология коммутации

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > switching technology

  • 29 installation

    1. установка, монтаж, сборка
    2. устройство, установка; оборудование; монтажные приборы и принадлежности
    3. внедрение; водворение; расположение, размещение

    * * *

    * * *
    оборудование, устройство,установка; монтаж, сборка; размещение; введение в строй

    * * *
    установка, устройство (напр., вычислительный центр); монтаж; ввод в строй; размещение, расположение

    * * *
    1) установка; устройство; агрегат; система
    2) оборудование; аппаратура
    3) размещение, расположение
    5) ввод в эксплуатацию; внедрение
    - compressor installation
    - diver-assisted installation
    - diverless installation
    - drilling mud reconditioning installation
    - fast pumping installation
    - field installation
    - fluid extinguishing installation
    - gas-cleaning installation
    - gas-extinguishing installation
    - geared pumping power installation
    - ground installation
    - liquid natural gas installation
    - movable installation
    - pipe installation
    - rope installation
    - scraper installation
    * * *

    Англо-русский словарь нефтегазовой промышленности > installation

  • 30 commercialization

    [kəˌmɜːʃəlaɪ'zeɪʃ(ə)n]
    1) Общая лексика: извлечение дохода, коммерциализация, прибыли (из чего-л.), коммерческая реализация (АД), коммерческое применение
    3) Экономика: реализация (распродажа), введение в хозяйственный оборот
    5) Реклама: коммерциализация (перевод деятельности на коммерческую основу, преследующую извлечение прибыли), развёртывание серийного производства
    6) Деловая лексика: распродажа, реализация
    7) Автоматика: выпуск( оборудования) для продажи, промышленное внедрение, промышленный выпуск
    9) Алюминиевая промышленность: промышленная эксплуатация

    Универсальный англо-русский словарь > commercialization

  • 31 integration

    [ˌɪntɪ'greɪʃ(ə)n]
    1) Общая лексика: интегрирование, комбинирование, объединение в одно целое, сведение в единое целое, слияние, укрупнение, инте (включение какой-л. чужеродной ДНК (вирусной, плазмидной и т.п.) в геном (в молекулу ДНК) клетки-реципиента (клетки-хозяина); также И. - целесообразное объединение и координация структур и функций целостной системы (организма)), единое целое, интеграция, соединение
    2) Компьютерная техника: комплектование
    5) Техника: встраивание (в одно целое), компоновка, накопление, объединение, специфическая рекомбинация, компоновка (деталей конструкции в систему), сборка (модулей), внедрение (напр. нового оборудования в дополнение к уже имеющемуся), сопряжение (систем)
    6) Профессиональный термин: комплексирование
    8) Железнодорожный термин: сумма, суммирование
    9) Юридический термин: интеграционный
    16) Экология: включение
    17) Промышленность: вовлечение (напр. заказчика в процесс разработки и выпуска нового изделия по спецзаказу)
    18) Микроэлектроника: ИС, интегральная схема
    19) Сетевые технологии: объединение в систему, стыковка
    20) Автоматика: встройка, сопряжение (напр. станка и системы ЧПУ)
    22) Макаров: степень интеграции (ИС), объединение (в одно целое), включение (в состав), внедрение (в существующую практику производства), интеграция (напр. в микроэлектронике), единство (организма)

    Универсальный англо-русский словарь > integration

  • 32 энергетический менеджмент

    1. energy management

     

    энергетический менеджмент
    Система управления, основанная на проведении типовых измерений и проверок, обеспечивающая такую работу предприятия, при которой потребляется только совершенно необходимое для производства количество энергии.
    В то же время энергетический менеджмент - это инструмент управления предприятием, который обеспечивает постоянное исследование, позволяющее обладать знанием о распределении и уровнях потребления энергоресурсов на предприятии, а также об оптимальном использовании энергоресурсов как для производства, так и для непроизводственных нужд, например для теплоснабжения зданий и сооружений.
    [ http://www.ccssu.crimea.ua/crimea/ac/6/2_7.html]

    Путем внедрения энергетического менеджмента можно получить более подробную картину потребления энергии, провести сравнение уровней потребления данного предприятия или хозяйства с потреблением энергии на аналогичных других предприятиях, выполнить более точную оценку энергосберегающих мероприятий или проектов по экономии энергии, планируемых для внедрения на данном предприятии.

    Энергетический менеджмент начинается с назначения руководством предприятия в должности лица, ответственного за проведение этой работы на предприятии - энергетического менеджера.

    Основные обязанности энергетического менеджера заключаются в следующем:

    • участие в составлении карты потребления энергии на предприятии в сотрудничестве с энергетическим аудитором;
    • сбор данных по потреблению топливно-энергетических ресурсов;
    • составление плана установки дополнительных счетчиков и контрольно-измерительной аппаратуры;
    • расчет ключевых данных по повышению эффективности использования в целом и по отдельным производствам;
    • локализация, оценка и определение приоритетности мер по экономии энергии;
    • составление схемы аварийной остановки оборудования и вариантов энергоснабжения для случаев аварийного прекращения подачи энергии;
    • внедрение новых технологий для повышения энергоэффективности производства;
    • информирование персонала предприятия о деятельности по энергетическому менеджменту.

    Вся текущая деятельность предприятия по энергосбережению планируется менеджером с обязательной оценкой необходимых энергетических затрат. Им проводится сбор данных по объему производства и использованию сырья, расчет удельных показателей по потреблению энергии на единицу производимой продукции, по предприятию в целом и для отдельных энергетических установок и систем.

    Ежедневно или еженедельно энергетический менеджер может пользоваться расчетными данными в качестве "индикаторов" для быстрого реагирования в случае внезапного роста потребления энергии. Для этой цели может быть разработана математическая модель потребления энергии на данном предприятии. Используя данную модель можно довольно просто произвести сравнение расчетного и действительного уровней потребления. Собранные данные могут быть использованы для составления бюджета по энергосбережению на последующие годы.

    После проведения первоначального аудита и создания карты потребления энергии, должны быть проконтролированы основные показатели потребления энергии предприятием и на основе их анализа запланированы первоочередные меры по повышению их эффективности. Далее, после внедрения первоочередных мер, основные показатели (т.е. достигнутые результаты) опять проверяются, анализируются, планируются следующие мероприятия, внедряются и так далее постоянно.

    Задача энергетического менеджера заключается в организации производственного процесса таким образом, чтобы показанный цикл повторялся непрерывно. В этом случае изменение условий работы предприятия, внедрение новых технологий, запуск в производство новых видов продукции не будут выводить предприятие из энергетически эффективного режима.

    [ http://www.ccssu.crimea.ua/crimea/ac/6/2_7.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > энергетический менеджмент

  • 33 deployment

    1. развёртывание
    2. внедрение (в практику)

     

    внедрение
    1. Процесс планомерного перевода объекта (предприятия или организации, системы управления, отдельного процесса или его элемента) из существующего состояния в новое, предусмотренное проектом.
    2. Распространение нововведений, достижение практического использования прогрессивных идей, изобретений, результатов научных исследований.
    [ http://www.lexikon.ru/dict/buh/index.html]

    Тематики

    EN

     

    развёртывание
    ввод в эксплуатацию

    (ITIL Service Transition)
    Деятельность, отвечающая за перемещение нового или измененного оборудования, программного обеспечения, документации, процесса и т.п., в среду промышленной эксплуатации. Развёртывание – это часть процесса управления релизами и развёртыванием.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    deployment
    (ITIL Service Transition)
    The activity responsible for movement of new or changed hardware, software, documentation, process etc. to the live environment. Deployment is part of the release and deployment management process.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > deployment

  • 34 energy management

    1. энергетический менеджмент
    2. управление энергопотреблением
    3. управление производством и распределением электроэнергии
    4. управление потреблением электроэнергии
    5. управление в области производства энергии
    6. регулирование потребления энергии

     

    регулирование потребления энергии
    регулирование использования энергии


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

     

    управление в области производства энергии

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    energy management
    The administration or handling of power derived from sources such as fossil fuel, electricity and solar radiation. (Source: RHW / FFD)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

     

    управление потреблением электроэнергии

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    управление производством и распределением электроэнергии

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    управление энергопотреблением

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    энергетический менеджмент
    Система управления, основанная на проведении типовых измерений и проверок, обеспечивающая такую работу предприятия, при которой потребляется только совершенно необходимое для производства количество энергии.
    В то же время энергетический менеджмент - это инструмент управления предприятием, который обеспечивает постоянное исследование, позволяющее обладать знанием о распределении и уровнях потребления энергоресурсов на предприятии, а также об оптимальном использовании энергоресурсов как для производства, так и для непроизводственных нужд, например для теплоснабжения зданий и сооружений.
    [ http://www.ccssu.crimea.ua/crimea/ac/6/2_7.html]

    Путем внедрения энергетического менеджмента можно получить более подробную картину потребления энергии, провести сравнение уровней потребления данного предприятия или хозяйства с потреблением энергии на аналогичных других предприятиях, выполнить более точную оценку энергосберегающих мероприятий или проектов по экономии энергии, планируемых для внедрения на данном предприятии.

    Энергетический менеджмент начинается с назначения руководством предприятия в должности лица, ответственного за проведение этой работы на предприятии - энергетического менеджера.

    Основные обязанности энергетического менеджера заключаются в следующем:

    • участие в составлении карты потребления энергии на предприятии в сотрудничестве с энергетическим аудитором;
    • сбор данных по потреблению топливно-энергетических ресурсов;
    • составление плана установки дополнительных счетчиков и контрольно-измерительной аппаратуры;
    • расчет ключевых данных по повышению эффективности использования в целом и по отдельным производствам;
    • локализация, оценка и определение приоритетности мер по экономии энергии;
    • составление схемы аварийной остановки оборудования и вариантов энергоснабжения для случаев аварийного прекращения подачи энергии;
    • внедрение новых технологий для повышения энергоэффективности производства;
    • информирование персонала предприятия о деятельности по энергетическому менеджменту.

    Вся текущая деятельность предприятия по энергосбережению планируется менеджером с обязательной оценкой необходимых энергетических затрат. Им проводится сбор данных по объему производства и использованию сырья, расчет удельных показателей по потреблению энергии на единицу производимой продукции, по предприятию в целом и для отдельных энергетических установок и систем.

    Ежедневно или еженедельно энергетический менеджер может пользоваться расчетными данными в качестве "индикаторов" для быстрого реагирования в случае внезапного роста потребления энергии. Для этой цели может быть разработана математическая модель потребления энергии на данном предприятии. Используя данную модель можно довольно просто произвести сравнение расчетного и действительного уровней потребления. Собранные данные могут быть использованы для составления бюджета по энергосбережению на последующие годы.

    После проведения первоначального аудита и создания карты потребления энергии, должны быть проконтролированы основные показатели потребления энергии предприятием и на основе их анализа запланированы первоочередные меры по повышению их эффективности. Далее, после внедрения первоочередных мер, основные показатели (т.е. достигнутые результаты) опять проверяются, анализируются, планируются следующие мероприятия, внедряются и так далее постоянно.

    Задача энергетического менеджера заключается в организации производственного процесса таким образом, чтобы показанный цикл повторялся непрерывно. В этом случае изменение условий работы предприятия, внедрение новых технологий, запуск в производство новых видов продукции не будут выводить предприятие из энергетически эффективного режима.

    [ http://www.ccssu.crimea.ua/crimea/ac/6/2_7.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > energy management

  • 35 installation

    1) установка; агрегат; система
    2) оборудование; аппаратура
    3) размещение, расположение
    5) ввод в эксплуатацию; внедрение
    -
    absorption installation
    -
    acceleration installation
    -
    air conditioning installation
    -
    atomic installation
    -
    automatic block installation
    -
    blower installation
    -
    blow-through carburetor installation
    -
    boiler installation
    -
    cable installation
    -
    CAD/CAM installation
    -
    car installation
    -
    cathodic protection installation
    -
    charcoal installation
    -
    coke-discharging installation
    -
    coke-oven installation
    -
    computer installation
    -
    control installation
    -
    converter installation
    -
    cooling installation
    -
    cutting installation
    -
    desalination installation
    -
    diesel-electric propulsion installation
    -
    diver-assisted installation
    -
    diver-assist installation
    -
    diverless installation
    -
    DNC installation
    -
    domestic electrical installation
    -
    drier installation
    -
    dry coke-quenching installation
    -
    dry powder fire extinguishing installation
    -
    drying installation
    -
    dust-arrester installation
    -
    EB casting installation
    -
    EBM installation
    -
    effluent filter installation
    -
    electric installation
    -
    electric power installation
    -
    electrical propulsion installation
    -
    electric propulsion installation
    -
    electrochemical machining installation
    -
    electron-beam casting installation
    -
    electron-beam melting installation
    -
    electronic control fabric takedown installation
    -
    electronic installation
    -
    electronic patterning installation
    -
    electroslag installation
    -
    engine installation
    -
    extinguishing installation
    -
    factory installation
    -
    field installation
    -
    finger tight installation
    -
    FMS related installation
    -
    foam fire extinguishing installation
    -
    gas-cleaning installation
    -
    generator-transformer installation
    -
    heating installation
    -
    heat installation
    -
    homogenization installation
    -
    horizontal installation
    -
    hydraulic multipurpose installation
    -
    hydroelectric installation
    -
    incineration installation
    -
    indoor electrical installation
    -
    industrial electrical installation
    -
    influent filter installation
    -
    interlocking installation
    -
    internal installation
    -
    inverter installation
    -
    leaching installation
    -
    lighting installation
    -
    low-voltage installation
    -
    magnetic stirrer installation
    -
    multihead installation
    -
    multimachine installation
    -
    NC installation
    -
    offset installation
    -
    outdoor electrical installation
    -
    pipe installation
    -
    pouring ladle drying installation
    -
    power installation
    -
    process installation
    -
    propulsion installation
    -
    pumped-storage installation
    -
    pumping installation
    -
    racking installation
    -
    radio installation
    -
    recovery installation
    -
    rectifying installation
    -
    retrofit installation
    -
    robot/conveyor installation
    -
    robotic installation
    -
    route installation
    -
    sandblasting installation
    -
    sandblast installation
    -
    showering installation
    -
    software installation
    -
    steel-degassing installation
    -
    suck-through carburetor installation
    -
    takedown installation
    -
    total-energy installation
    -
    turbine installation
    -
    turbo-electric propulsion installation
    -
    turnout installation
    -
    vacuum-treating installation
    -
    ventilation installation
    -
    vertical installation
    -
    water-accumulator installation
    -
    waterfront installation

    Англо-русский словарь технических терминов > installation

  • 36 industry

    сущ.
    1) эк. промышленность, промышленный сектор, индустрия (совокупность отраслей, занимающихся производством средств производства и предметов потребления, а также добычей природных богатств и их дальнейшей обработкой)

    I believe there will be more jobs created with the advancement of technology in our industry and agriculture. — Я верю, что внедрение новых технологий приведет к созданию дополнительных рабочих мест в промышленности и сельском хозяйстве.

    The company combines producing with processing and selling, connecting trade, industry and agriculture. — Эта компания объединяет производство сельскохозяйственной продукции с ее обработкой и продажей, таким образом объединяя в себе торговлю, промышленность и сельское хозяйство.

    See:
    2) эк., стат. отрасль экономики; отрасль промышленности (сфера экономической деятельности, связанная с обеспечением близкими или родственными товарами/услугами)
    See:
    3) эк. отрасль (в экономической теории: совокупность фирм, производящих один продукт)
    Syn:

    * * *
    1) промышленность: совокупность всех предприятий, производящих товары с помощью машин и оборудования (в отличие от сельского хозяйства и сферы услуг); 2) машиностроение; 3) отрасль промышленности.
    * * *
    * * *
    Отрасль промышленности (сектор экономики), отрасль экономики; вид экономической деятельности; предприятие; промышленность; отрасль
    . Категория, описывающая основную деятельность компании. Данная категория, как правило, определятся наибольшей частью доходов . Инвестиционная деятельность .

    Англо-русский экономический словарь > industry

  • 37 deployment

    [dɪ'plɔɪmənt]
    6) Юридический термин: разворот
    8) Автомобильный термин: раскрытие подушки безопасности
    9) место службы (как пункт в послужном списке), боевое задание, командировка в зону военных действий
    10) Дипломатический термин: (широкое) использование, размещение (ядерного оружия и т.п.), размещение (сил)
    11) Психология: рассредоточение
    12) Космонавтика: вывод на орбиту, раскрытие
    13) Глоссарий компании Сахалин Энерджи: работа
    14) Сетевые технологии: использование, применение
    15) Сахалин Р: ввод в действие (ТЭО стр.), развёртывание (платформы)
    16) Авиационная медицина: развёртывание (парашюта), выпуск (тормозного парашюта)
    17) Макаров: развёртывание (напр. антенны), раскрытие (напр. парашюта), раскрытие (напр., парашюта)
    18) SAP.тех. перераспределение
    20) Военно-политический термин: развёртывание (in theatre), переброска (to the theatre, in theatre)

    Универсальный англо-русский словарь > deployment

  • 38 introduction of new equipment

    Универсальный англо-русский словарь > introduction of new equipment

  • 39 Rationalisierungskredit

    сущ.
    1) общ. кредит на проведение рационализации (производства), кредит на внедрение новой техники и модернизацию оборудования
    2) бизн. целевой кредит (напр. ссуда на модернизацию производства)

    Универсальный немецко-русский словарь > Rationalisierungskredit

  • 40 Rationalisierungsinvestitionen

    f pl
    капиталовложения на проведение рационализации (производства); инвестиции в модернизацию оборудования и внедрение новой техники

    Deutsch-Russisch Wörterbuch für Finanzen und Wirtschaft > Rationalisierungsinvestitionen

См. также в других словарях:

  • Интеграция бортового оборудования — (ИБО) (от латинского integratio восстановление, восполнение, integer целый) структурное, функциональное, схемно конструктивное объединение отдельных видов систем, приборов, агрегатов бортового оборудования для снижения массы оборудования,… …   Энциклопедия техники

  • интеграция бортового оборудования — (ИБО) (от лат. integratio — восстановление, восполнение, integer — целый) — структурное, функциональное, схемно конструктивное объединение отдельных видов систем, приборов, агрегатов бортового оборудования для снижения массы… …   Энциклопедия «Авиация»

  • интеграция бортового оборудования — (ИБО) (от лат. integratio — восстановление, восполнение, integer — целый) — структурное, функциональное, схемно конструктивное объединение отдельных видов систем, приборов, агрегатов бортового оборудования для снижения массы… …   Энциклопедия «Авиация»

  • Лауреаты Государственной премии СССР в области науки и техники (1967—1979) — Список лауреатов Содержание 1 1967 2 1968 3 1969 4 1970 5 1971 6 …   Википедия

  • Лауреаты Государственной премии СССР в области науки и техники (1980—1991) — Содержание 1 1980 2 1981 3 1982 4 1983 5 1984 6 1985 …   Википедия

  • Лауреаты премии Ленинского комсомола в области науки и техники — Содержание 1 1970 2 1972 3 1974 4 1976 4.1 Премии за 1975 год …   Википедия

  • Технологический процесс — (Process) Определение технологического процесса, типы технологического процесса Определение технологического процесса, типы технологического процесса, правила процесса Содержание Содержание Определение . Понятие технологического процесса Основные …   Энциклопедия инвестора

  • Электропоезд ЭД4 — ЭД4 ЭД4МК 0074&# …   Википедия

  • ЭД4М — Электропоезд ЭД4 В эксплуатации 1997 Производитель Демиховский машиностроительный завод Серия ЭД4 Вагонов на состав 4, 6, 7, 8, 9, 10, 11 Вместимость 3226 человек (при 7 пасс/м2) …   Википедия

  • ЭД4 — Электропоезд ЭД4 …   Википедия

  • ЭД4МКМ-АЭРО — Электропоезд ЭД4 В эксплуатации 1997 Производитель Демиховский машиностроительный завод Серия ЭД4 Вагонов на состав 4, 6, 7, 8, 9, 10, 11 Вместимость 3226 человек (при 7 пасс/м2) …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»