-
1 replicate test
Техника: параллельный опыт -
2 agar replicate test
Медицина: тест отпечатков на агаре (реплик), тест реплик на агаре -
3 sample
ˈsɑ:mpl
1. сущ.
1) а) образец, образчик, экземпляр to distribute, hand out ( free) samples ≈ раздавать образцы floor sample ≈ товар, потерявший товарный вид free sample ≈ бесплатный образец, экземпляр б) проба (часто для научного или медицинского исследования) they took samples of my blood ≈ у меня взяли кровь на пробу ∙ Syn: pattern
1., specimen
2) пример, образец ( о нематериальных сущностях) Syn: example, illustration, instance
1.
3) мат.;
стат. выборка We based our analysis on a random sample of more than 200 people. ≈ Наш анализ опирается на исследование случайной выборки, состоящей из более чем 200 человек.
4) модель, шаблон
2. прил. представляющий собой образец, пример sample questions ≈ примерные вопросы (напр., к экзамену)
3. гл.
1) а) брать образцы или пробы;
особ. определять качество на основе анализа отдельного образца Syn: test
2. б) пробовать на вкус, дегустировать( блюда, напитки) Syn: taste
2.
2) испытывать, пробовать a good chance to sample a different way of life ≈ неплохой шанс попробовать изменить образ жизни Syn: try
2.
3) представлять собой образец, образчик;
служить образчиком (чего-л.)
4) снабжать образцами (особ. какой-л. продукции) to sample the dealers with new articles ≈ снабдить торговых представителей образцами новых товаров образец, образчик;
проба - fine * прекрасный образчик - a book of *s альбом образцов - *s of air for analysis пробы воздуха для анализа - to sell by * продавать по образцам - up to *, equal to * соответствующий образцу - below /not up to, not equal to/ * не соответствующи образцу - as per * (коммерческое) согласно образцу - representative * характерный образец - * bottle пробная бутылка - * tea образец чая - * operation order( военное) примерный боевой приказ образец, пример - a * of courage образец смелости - to give a * of one's knowledge продемонстрировать свою образованность шаблон, модель (статистика) выборка, замер, выборочная совокупность - * census выборочная перепись - * unit единица выборки - representative * репрезентативная /представительная/ выборка отбирать образцы или пробы пробовать, испытывать - it was the first time I had *d camp life тогда я впервые испытал лагерную /походную/ жизнь adequate ~ образец, соответствующий требованиям biased ~ стат. необъективная выборка biased ~ стат. пристрастная выборка biased ~ смещенная выборка biased ~ стат. смещенная выборка bivariate ~ двумерная выборка blood ~ образец крови ~ образец, образчик;
book of samples альбом образцов censored ~ цензурированная выборка cluster ~ стат. групповой выбор commercial ~ (not for sale) торговый образец товара не для продажи counter ~ конкурирующий образец free ~ бесплатный образец judgment ~ преднамеренный выбор large ~ большая выборка lot ~ выборка из партии moderate-sized ~ выборка умеренного объема multicensored ~ многократно цензурированная выборка multiphase ~ многофазная выборка multipurpose ~ многоцелевая выборка multistage ~ многоступенчатая выборка nongrouped ~ негруппированная выборка normal ~ нормальная выборка ordered ~ упорядоченная выборка probability ~ вероятностная выборка proportionate ~ пропорциональная выборка purposive ~ преднамеренная выборка quality ~ выборочный уровень качества quasi-random ~ квазислучайная выборка quota ~ пропорциональная выборка quota ~ стат. пропорциональная выборка random ~ образец, взятый по схеме случайного отбора random ~ произвольная выборка random ~ случайная выборка random ~ случайный отбор reference ~ контрольный образец replicate ~ повторная выборка representative ~ представительная выборка representative ~ репрезентативная выборка sample брать пробы ~ выборка ~ выборочная партия( товара, изделий) ~ выборочная партия ~ stat. выборочная совокупность ~ замер ~ образец, образчик;
book of samples альбом образцов ~ образец ~ образец товара ~ образчик ~ отбирать образцы, брать образчик или пробу ~ отбирать образцы ~ отбирать образцы или пробы ~ проба ~ пробовать, испытывать ~ производить выборку ~ шаблон, модель ~ шаблон ~ of data вчт. набор данных ~ of no value stat. непредставительная выборка ~ of no value stat. нерепрезентативная выборка single ~ однократная выборка singly censored ~ однократно цензурированная выборка small ~ малая выборка small ~ theory теория малых выборок stratified ~ районированная выборка stratified ~ расслоенная выборка stratified ~ типическая выборка systematic ~ систематическая выборка systematical ~ систематическая выборка test ~ образец для испытаний test ~ опытный образец test ~ пробный образец three-stage ~ трехступенчатая выборка trade ~ образец товара truncated ~ усеченная выборка two-stage ~ двухступенчатая выборка unbiased ~ беспристрастная выборка unbiased ~ несмещенная выборка unbiased ~ объективная выборка uncensored ~ нецензурированная выборка unordered ~ неупорядоченная выборка unrepresentative ~ непредставительная выборка unrepresentative ~ нерепрезентативная выборка unsolicited ~ образец, высланный без запроса -
4 sample
[ˈsɑ:mpl]adequate sample образец, соответствующий требованиям biased sample стат. необъективная выборка biased sample стат. пристрастная выборка biased sample смещенная выборка biased sample стат. смещенная выборка bivariate sample двумерная выборка blood sample образец крови sample образец, образчик; book of samples альбом образцов censored sample цензурированная выборка cluster sample стат. групповой выбор commercial sample (not for sale) торговый образец товара не для продажи counter sample конкурирующий образец free sample бесплатный образец judgment sample преднамеренный выбор large sample большая выборка lot sample выборка из партии moderate-sized sample выборка умеренного объема multicensored sample многократно цензурированная выборка multiphase sample многофазная выборка multipurpose sample многоцелевая выборка multistage sample многоступенчатая выборка nongrouped sample негруппированная выборка normal sample нормальная выборка ordered sample упорядоченная выборка probability sample вероятностная выборка proportionate sample пропорциональная выборка purposive sample преднамеренная выборка quality sample выборочный уровень качества quasi-random sample квазислучайная выборка quota sample пропорциональная выборка quota sample стат. пропорциональная выборка random sample образец, взятый по схеме случайного отбора random sample произвольная выборка random sample случайная выборка random sample случайный отбор reference sample контрольный образец replicate sample повторная выборка representative sample представительная выборка representative sample репрезентативная выборка sample брать пробы sample выборка sample выборочная партия (товара, изделий) sample выборочная партия sample stat. выборочная совокупность sample замер sample образец, образчик; book of samples альбом образцов sample образец sample образец товара sample образчик sample отбирать образцы, брать образчик или пробу sample отбирать образцы sample отбирать образцы или пробы sample проба sample пробовать, испытывать sample производить выборку sample шаблон, модель sample шаблон sample of data вчт. набор данных sample of no value stat. непредставительная выборка sample of no value stat. нерепрезентативная выборка single sample однократная выборка singly censored sample однократно цензурированная выборка small sample малая выборка small sample theory теория малых выборок stratified sample районированная выборка stratified sample расслоенная выборка stratified sample типическая выборка systematic sample систематическая выборка systematical sample систематическая выборка test sample образец для испытаний test sample опытный образец test sample пробный образец three-stage sample трехступенчатая выборка trade sample образец товара truncated sample усеченная выборка two-stage sample двухступенчатая выборка unbiased sample беспристрастная выборка unbiased sample несмещенная выборка unbiased sample объективная выборка uncensored sample нецензурированная выборка unordered sample неупорядоченная выборка unrepresentative sample непредставительная выборка unrepresentative sample нерепрезентативная выборка unsolicited sample образец, высланный без запроса -
5 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
-
6 culture
axenic culture — аксенная [стерильная] культура
callus culture — каллусная культура, культура каллуса
cell culture — культура клеток, клеточная культура
embryo culture — культура зародышей, эмбриокультура
flask culture — культура, выращиваемая в колбе
growing culture — растущая [размножающаяся] культура
high density culture — культура с высокой густотой [плотностью] посева
maintaining culture — культура для поддержания (роста клеток, тканей)
monolayer culture — монослойная [однослойная] культура
nurse culture — культура-«нянька»
resistant culture — резистентная [устойчивая] культура
sister cultures — сестринские [параллельные] культуры
submerged culture — погружённая [глубинная] культура
suspended cell culture — культура ткани из суспендированных клеток, суспендированная культура клеток
Англо-русский терминологический перечень по культуре тканей растений > culture
-
7 operator
1) оператор, знак операциив программировании - символ (знак, последовательность знаков или ключевое слово), используемый в качестве функции при инфиксной или префиксной записи. Другими словами - это символ, объединяющий операнды в выражения; показывающий, какая операция должна быть выполнена над операндами. Простейшими операторами являются знаки арифметических действий, например сложения. Каждый оператор имеет арность (arity) - число операндов, которые ему необходимы. Операторы делятся на унарные, применяемые к одному операнду (unary operator), и бинарные, применяемые к двум операндам (binary operator). Для определения порядка действий в выражении операторам присваивается старшинство (operator precedence). По типу операций операторы делятся на арифметические (arithmetic operator), логические (logical operator, Boolean operator), присваивания (assignment operator), сравнения (relational operator) и условные (conditional operator). Некоторые ЯВУ позволяют определять и переопределять операторысм. тж. crossover operator, data parallel operator, decrement operator, dereferencing operator, dot operator, equality test operator, infix notation, modulus operator, nullary operator, operand, operator associativity, operator overloading, output operator, plus-plus operator, precedence, postfix operator, prefix notation, primitive, proximity operator, remainder operator, replicate operator, right-associative operator, string operator, subscript operator2) см. telecoms operator3) оператор ( ЭВМ, вычислительного комплекса, центра обработки данных)а) оператор ЭВМ - почти исчезнувшая специальность, бывшая популярной во времена пакетной обработки. Оператор устанавливал (монтировал) магнитные диски и ленты, заправлял бумагу в АЦПУ, ставил на счёт колоды перфокарт с заданиями и т. д. Например, without operator intervention - без вмешательства операторасм. тж. mainframeб) обязанности оператора вычислительного комплекса и центра обработки данных простираются от обслуживания оборудования до выполнения специализированных запросовсм. тж. human operatorАнгло-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > operator
-
8 sample
1) образец; проба2) кернер•- average sample - check sample - composite sample - concrete sample - control sample - core sample - disturbed sample - dust sample - grab sample - laboratory sample - proof sample - random sample - replicate sample - test sample - undisturbed sample - water sample* * *1. образец, проба2. выборка3. шаблон; модель4. керн- sample of fresh concreteto take samples — брать пробы, производить отбор проб [образцов]
- air or oven-dried sample
- auger sample
- block sample
- borehole sample
- bottom sample
- chunk sample
- core sample
- dumbbell sample
- hand carved sample
- hydrologic sample
- redeposited sample
- remolded sample
- representative sample
- undisturbed sample -
9 sample
образец; проба, взятая на испытание; модель; шаблон; выборка; II отбирать пробные образцы (напр. для испытания); пробовать; испытывать; брать пробы; производить выборку- sample piece - sample section - sample size - sample taken at random - bailer sample - dump sample - failed test sample - grab sample - replicate sample - standard sample - subsurface sample -
10 experiment
1) опыт || производить опыты2) эксперимент || экспериментировать• -
11 culture
culture 1. культура (напр. бактерий) ; 2. разведение, выращиваниеculture культура, культивирование организмов или тканей в лабораторных условиях на искусственно приготовленной средеculture chamber культуральная камераadhesive culture культура в капле среды на покровном стеклеaerated culture аэрированная культураaerobic culture аэробная культураagar culture культура на агареagitated culture перемешиваемая встряхиванием культураanaerobic culture анаэробная культураanimal culture культура клеток животныхaroma-producing culture ароматообразующая культураartificial culture искусственное разведениеaseptic culture асептическое выращиваниеaxenic culture аксенная культура, стерильная культура; чистая культураbatch culture культура одного производственного циклаbatch culture периодическая культураbroth culture бульонная культураcallus tissue culture культура каллусных тканейcell culture культура клетокcell suspension culture суспензионная культура клетокchorioallantoic culture хориоаллантоисная культураclonal culture клонированная культураcontaminated culture загрязненная культураcontaminated culture нечистая культураcontinuons-flow culture проточная культураcontrol culture контрольная культураdark-grown culture выращенная в темноте культураdeep-liquid culture глубинная культураdifferentiated culture дифференцированная культураdiploidization of culture диплоидизация культурыdried culture высушенная культураdroplet culture капельная культураembryo culture культура эмбрионовenrichment culture обогатительная культураexcised embryo culture культура изолированных эмбрионовexcised organ culture культура изолированных органовexperimental culture экспериментальная культураexplant culture культура тканиexposition of culture воздействие на культуруfed-batch culture подпитываемая культура одного производственного циклаfreeze-dried culture лиофилизованная культураfrozen culture замороженная культураfungal culture культура грибовgerm culture микробная культураglycerolized culture глицериновая культураgrowing culture растущая культура; размножающаяся культураhabituated culture адаптированная культураheavily sporulating culture обильно спорулирующая культураheterogeneous culture гетерогенная культураhigh density culture концентрированная культураhomogeneous culture гомогенная культураhousing patent culture коллекционная патентованная культураhuman cell culture культура клеток человекаhuman tissue culture культура ткани человекаimproving culture conditions оптимизированные условия культивированияimpure culture загрязнённая культураisolated clonal culture изолированная клонированная культураisolated protoplast culture культура изолированных протопластовlaboratory culture лабораторная культураlarge-scale culture крупномасштабная культураliquid culture культура в жидкой средеlogarithmic phase culture культура, находящаяся в логарифмической фазе ростаlong-period culture длительная культураmaintaining culture поддерживаемая культураmaintaining culture сохраняемая культураmanufacturing plant culture промышленная культураmass culture массовая культураmicrocarrier culture культура клеток на микроносителяхmixed culture смешанная культураmonolayer cell culture монослойная культураmonolayer culture монослойная культура, однослойная культураmonospecies culture монокультураmonoxenic culture моноксенная культураnegative culture отрицательная культураnonproliferating culture непролиферирующая культураnonsporulating culture неспорообразующая культураold culture старая культураopen culture непрерывная культураovernight culture ночная культураPetri dish culture культура на чашках ПетриPetry dish culture культура на чашках Петриplant cell culture культура клеток растенияplant tissue culture культура клеток растительной тканиplate culture культура на чашках Петриpositive culture положительная культураpreserved culture законсервированная культураpreserved culture сохраняемая культураprimary culture первичная культураproduction culture производственная культураprompt culture закваскаprompt culture затравочная культураprotoplast culture культура протопластовpure culture чистая культураreference culture тест-культураreplicate culture реплицированная культураresistant culture резистентная культураroll bottle culture роллерная культураrotated culture роллерная культураroutine culture стандартная культураseed culture посевная культураselective culture селективная культураserum-free culture бессывороточная культураshort-term culture кратковременная культураsingle cell culture культура, полученная из одной клеткиsingle cell culture культура одной клеткиsingle cell culture культура одноклеточного организмаsingle-cell culture культура, выделенная из одной клеткиsister culture сестринская культураslant culture культура на скошенном агареslide culture культура на предметном стеклеslope culture культура на скошенном агареsmear culture культура мазкомsoil culture почвенная культураsoil-water culture культура на почвенной вытяжкеspent culture отработанная культураsporulating culture спорулирующая культураstabilized culture стабилизированная культураstarter culture закваскаstatic culture статическая культураsteady-state culture стационарная культураstock culture штамм, чистая культураstock culture collection базовая коллекция культур микроорганизмовstock yeast culture маточные дрожжиstored culture законсервированная культураstroke culture поверхностная культураsubmerged culture погружённая культура, глубинная культураsurface culture поверхностная культураsuspended cell culture культура ткани из суспендированных клетокsuspension culture суспензионная культураsynchronized culture синхронизированная культураsynchronous culture синхронно растущая культураtest-tube culture пробирочная культураtissue culture тканевая культура, культура тканиtumor tissue culture культура опухолевой тканиtwo-membered culture смешанная культура двух видов организмовtype culture стандартная культураtype culture типовая культураunialgal culture альгологически чистая культура (свободная от водорослей других видов)water culture водная культураworking culture рабочая культураyoung culture молодая культураEnglish-Russian dictionary of biology and biotechnology > culture
-
12 rehearsal
репетиция
Пошаговая отработка в реальном масштабе времени определенных видов деятельности с привлечением всех участвующих в ней сотрудников. Репетиции проводятся на объектах Игр или в других местах, и воспроизводят типичную деятельность во время Игр, осуществляемую в определенный промежуток времени. Репетиции могут охватывать проведение церемоний и спортивных соревнований или обеспечивать проверку технологической готовности. Репетиции проводятся до тестовых мероприятий и до начала Игр. Цель проведения репетиций — отработать одновременную совместную деятельность функциональных подразделений, команд, обслуживающих объекты, и группы управления, и выявить системные или общие проблемы.
[Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]EN
rehearsal
Real time walkthroughs of specific activities involving the entire relevant workforce. They are conducted on site or off site and replicate a typical time period of the Games. There are a number of types of rehearsals (e.g. technology, ceremonies and sport). Rehearsals are conducted prior to test events and prior to the Games. The intention of a rehearsal is to provide functional teams, venue teams and command teams with simultaneous activities as a means of assessing systemic or system-wide issues.
[Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]Тематики
EN
Англо-русский словарь нормативно-технической терминологии > rehearsal
См. также в других словарях:
Replicate — may refer to:* In biology, replication is a process by which genetic material, a cell, or an organism reproduces or makes an exact copy or copies * in an experiment a replicate test is a fully repeated set of test conditions: see Replication… … Wikipedia
Test call generator — Test Call Generators are Revenue Assurance solutions that replicate events on a Telecoms network to identify potential revenue leakage and to help achieve regulatory compliance. Both Cellular and Fixed Line Telecom operators utilise Test Call… … Wikipedia
fluctuation test — Test devised by Luria & Delbruck to determine whether genetic variation in a bacterial population arises spontaneously or adaptively. In the original version the statistical variance in the number of bacteriophage resistant cells in separate… … Dictionary of molecular biology
Turing test — dablink|For the Doctor Who novel named after the test, see The Turing Test (novel).For the opera named after the test, see under the composer, Julian Wagstaff.The Turing test is a proposal for a test of a machine s ability to demonstrate… … Wikipedia
Rorschach inkblot test — The Rorschach inkblot test (pronounced IPA2|ʁoɐʃax) is a method of psychological evaluation. Psychologists use this test to try to examine the personality characteristics and emotional functioning of their patients. The Rorschach is currently the … Wikipedia
Model-Test-Model — (MTM) is a process that intends to use high fidelity/high resolution combat models to simulate and replicate field operational tests.[1][2][3][4] The MTM Process is divided into 5 phases: Long Term Planning Identify the responsibility among… … Wikipedia
Subject matter expert Turing test — A subject matter expert Turing test is a variation of the Turing test where a computer system attempts to replicate an expert in a given field such as chemistry or marketing. This concept was described by Ray Kurzweil in his 2005 book The… … Wikipedia
MythBusters (2010 season) — Country of origin Australia United States No. of episodes 25 (includes 4 specials) Broadcast Original channel … Wikipedia
Mars effect — A Gauqelin diagram mapping incidence of birth time and latitude to the natal position of Mars relative to the ecliptic of the rotating earth, showing peaks just after its daily rising and culmination in mid heaven (horizon and mid heaven are… … Wikipedia
MythBusters — Genre Documentary Science Created by Peter Rees Starrin … Wikipedia
MythBusters (2007 season) — Country of origin Australia United States No. of episodes 25 (includes 4 specials) Broadcast Original channel Discovery Channel … Wikipedia