Перевод: с английского на английский

с английского на английский

my+life+and+work

  • 101 Gibson, R.O.

    [br]
    fl. 1920s–30s
    [br]
    English chemist who, with E.O.Fawcett, discovered polythene.
    [br]
    Dr Gibson's work towards the discovery of polythene had its origin in a visit in 1925 to Dr A. Michels of Amsterdam University; the latter had made major advances in techniques for studying chemical reactions at very high pressures. After working with Michels for a time, in 1926 Gibson joined Brunner Mond, one of the companies that went on to form the chemical giant Imperial Chemical Industries (ICI). The company supported research into fundamental chemical research that had no immediate commercial application, including the field being cultivated by Michels and Gibson. In 1933 Gibson was joined by another ICI chemist, E.O.Fawcett, who had worked with W.H. Carothers in the USA on polymer chemistry. They were asked to study the effects of high pressure on various reaction systems, including a mixture of benzaldehyde and ethylene. Gibson's notebook for 27 March that year records that after a loss of pressure during which the benzaldehyde was blown out of the reaction tube, a waxy solid was observed in the tube. This is generally recognized as the first recorded observation of polythene. By the following June they had shown that the white, waxy solid was a fairly high molecular weight polymer of ethylene formed at a temperature of 443°K and a pressure of 2,000 bar. However, only small amounts of the material were produced and its significance was not immediately recognized. It was not until two years later that W.P.Perrin and others, also ICI chemists, restarted work on the polymer. They showed that it could be moulded, drawn into threads and cast into tough films. It was a good electrical insulator and almost inert chemically. A British patent for producing polythene was taken out in 1936, and after further development work a production plant began operating in September 1939, just as the Second World War was breaking out. Polythene had arrived in time to make a major contribution to the war effort, for it had the insulating properties required for newly developing work on radar. When peacetime uses became possible, polythene production surged ahead and became the major industry it is today, with a myriad uses in industry and in everyday life.
    [br]
    Bibliography
    1964, The Discovery of Polythene, Royal Institute of Chemistry Lecture Series 1, London.
    LRD

    Biographical history of technology > Gibson, R.O.

  • 102 Berry, Henry

    SUBJECT AREA: Canals, Ports and shipping
    [br]
    b. 1720 Parr (?), near St Helens, Lancashire, England
    d. 30 July 1812 Liverpool, England
    [br]
    English canal and dock engineer who was responsible for the first true canal, as distinct from a canalized river, in England.
    [br]
    Little is known of Berry's early life, but it is certain that he knew the district around St Helens intimately, which was of assistance to him in his later canal works. He became Clerk and Assistant to Thomas Steers and proved his natural engineering ability in helping Steers in both the construction of the Newry navigation in Ireland and his supervision of the construction of Salthouse Dock in Liverpool. On Steers's death in 1750 Berry was appointed, at the age of 30, Dock Engineer for Liverpool Docks, and completed the Salthouse Dock three years later. In 1755 he was allowed by the Liverpool Authority—presumably because his full-time service was not required at the docks at that time—to survey and construct the Sankey Brook Navigation (otherwise known as the St Helens Canal), which was completed in 1757. Berry was instructed to make the brook navigable, but with the secret consent and connivance of one of the proprietors he built a lateral canal, the work commencing on 5 September 1755. This was the first dead-water canal in the country, as distinct from an improved river navigation, and preceded Brindley's Bridgewater Canal by some five or six years. On the canal he also constructed at Blackbrook the first pair of staircase locks to be built in England.
    Berry later advised on improvements to the Weaver Navigation, and his design for the new locks was accepted. He also carried out in 1769 a survey for a Leeds and Liverpool Canal, but this was not proceeded with and it was left to others to construct this canal. He advised turnpike trustees on bridge construction, but his main work was in Liverpool dock construction and between 1767 and 1771 he built the George's Dock. His final dock work was King's Dock, which was opened on 3 October 1788; he resigned at the age of 68 when the dock was completed. He lived for another 24 years, during which he was described in the local directories as "gentleman" instead of "engineer" or "surveyor" as he had been previously.
    [br]
    Further Reading
    S.A.Harris, 1937, "Liverpool's second dock engineer", Transactions of the Historic Society of Lancashire and Cheshire 89.
    JHB

    Biographical history of technology > Berry, Henry

  • 103 Crookes, Sir William

    SUBJECT AREA: Electricity
    [br]
    b. 17 June 1832 London, England
    d. 4 April 1919 London, England
    [br]
    English chemist and physicist who carried out studies of electrical discharges and cathode rays in rarefied gases, leading to the development of the cathode ray tube; discoverer of the element thallium and the principle of the Crookes radiometer.
    [br]
    Crookes entered the Royal College of Chemistry at the age of 15, and from 1850 to 1854 held the appointment of Assistant at the college. In 1854 he became Superintendent of the Meteorological Department at the Radcliffe Observatory in Oxford. He moved to a post at the College of Science in Chester the following year. Soon after this he inherited a large fortune and set up his own private laboratory in London. There he studied the nature of electrical discharges in gases at low pressure and discovered the dark space (later named after him) that surrounds the negative electrode, or cathode. He also established that the rays produced in the process (subsequently shown by J.J.Thompson to be a stream of electrons) not only travelled in straight lines, but were also capable of producing heat and/or light upon impact with suitable anode materials. Using a variety of new methods to investigate these "cathode" rays, he applied them to the spectral analysis of compounds of selenium and, as a result, in 1861 he discovered the element thallium, finally establishing its atomic weight in 1873. Following his discovery of thallium, he became involved in two main lines of research: the properties of rarified gases, and the investigation of the elements of the "rare earths". It was also during these experiments that he discovered the principle of the Crookes radiometer, a device in which light is converted into rotational motion and which used to be found frequently in the shop windows of English opticians. Also among the fruits of this work were the Crookes tubes and the development of spectacle lenses with differential ranges of radiational absorption. In the 1870s he became interested in spiritualism and acquired a reputation for his studies of psychic phenomena, but at the turn of the century he returned to traditional scientific investigations. In 1892 he wrote about the possibility of wireless telegraphy. His work in the field of radioactivity led to the invention of the spinthariscope, an early type of detector of alpha particles. In 1900 he undertook investigations into uranium which led to the study of scintillation, an important tool in the study of radioactivity.
    While the theoretical basis of his work has not stood the test of time, his material discoveries, observations and investigations of new facts formed a basis on which others such as J.J. Thomson were to develop subatomic theory. His later involvement in the investigation of spiritualism led to much criticism, but could be justified on the basis of a belief in the duty to investigate all phenomena.
    [br]
    Principal Honours and Distinctions
    Knighted 1897. Order of Merit 1910. FRS 1863. President, Royal Society 1913–15. Honorary LLD Birmingham. Honorary DSc Oxon, Cambridge, Sheffield, Durham, Ireland and Cape of Good Hope.
    Bibliography
    1874, On Attraction and Repulsion Resulting from Radiation.
    1874, "Researches in the phenomenon of spiritualism", Society of Metaphysics; reprinted in facsimile, 1986.
    Further Reading
    E.E.Fournier D'Albe, 1923, Life of Sir William Crookes. Who Was Who II, 1916–28, London: A. \& C. Black. T.I.Williams, 1969, A Biographical Dictionary of Scientists. See also Braun, Karl Ferdinand.
    KF / MG

    Biographical history of technology > Crookes, Sir William

  • 104 Denny, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 25 May 1847 Dumbarton, Scotland
    d. 17 March 1887 Buenos Aires, Argentina
    [br]
    Scottish naval architect and partner in the leading British scientific shipbuilding company.
    [br]
    From 1844 until 1962, the Clyde shipyard of William Denny and Brothers, Dumbarton, produced over 1,500 ships, trained innumerable students of all nationalities in shipbuilding and marine engineering, and for the seventy-plus years of their existence were accepted worldwide as the leaders in the application of science to ship design and construction. Until the closure of the yard members of the Denny family were among the partners and later directors of the firm: they included men as distinguished as Dr Peter Denny (1821(?)–95), Sir Archibald Denny (1860–1936) and Sir Maurice Denny (1886– 1955), the main collaborator in the design of the Denny-Brown ship stabilizer.
    One of the most influential of this shipbuilding family was William Denny, now referred to as William 3! His early education was at Dumbarton, then on Jersey and finally at the Royal High School, Edinburgh, before he commenced an apprenticeship at his father's shipyard. From the outset he not only showed great aptitude for learning and hard work but also displayed an ability to create good relationships with all he came into contact with. At the early age of 21 he was admitted a partner of the shipbuilding business of William Denny and Brothers, and some years later also of the associated engineering firm of Denny \& Co. His deep-felt interest in what is now known as industrial relations led him in 1871 to set up a piecework system of payment in the shipyard. In this he was helped by the Yard Manager, Richard Ramage, who later was to found the Leith shipyard, which produced the world's most elegant steam yachts. This research was published later as a pamphlet called The Worth of Wages, an unusual and forward-looking action for the 1860s, when Denny maintained that an absentee employer should earn as much contempt and disapproval as an absentee landlord! In 1880 he initiated an awards scheme for all company employees, with grants and awards for inventions and production improvements. William Denny was not slow to impose new methods and to research naval architecture, a special interest being progressive ship trials with a view to predicting effective horsepower. In time this led to his proposal to the partners to build a ship model testing tank beside the Dumbarton shipyard; this scheme was completed in 1883 and was to the third in the world (after the Admiralty tank at Torquay, managed by William Froude and the Royal Netherlands Navy facility at Amsterdam, under B.J. Tideman. In 1876 the Denny Shipyard started work with mild-quality shipbuilding steel on hulls for the Irrawaddy Flotilla Company, and in 1879 the world's first two ships of any size using this weight-saving material were produced: they were the Rotomahana for the Union Steamship Company of New Zealand and the Buenos Ayrean for the Allan Line of Glasgow. On the naval-architecture side he was involved in Denny's proposals for standard cross curves of stability for all ships, which had far-reaching effects and are now accepted worldwide. He served on the committee working on improvements to the Load Line regulations and many other similar public bodies. After a severe bout of typhoid and an almost unacceptable burden of work, he left the United Kingdom for South America in June 1886 to attend to business with La Platense Flotilla Company, an associate company of William Denny and Brothers. In March the following year, while in Buenos Aires, he died by his own hand, a death that caused great and genuine sadness in the West of Scotland and elsewhere.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1886. FRS Edinburgh 1879.
    Bibliography
    William Denny presented many papers to various bodies, the most important being to the Institution of Naval Architects and to the Institution of Engineers and Shipbuilders in Scotland. The subjects include: trials results, the relation of ship speed to power, Lloyd's Numerals, tonnage measurement, layout of shipyards, steel in shipbuilding, cross curves of stability, etc.
    Further Reading
    A.B.Bruce, 1889, The Life of William Denny, Shipbuilder, London: Hodder \& Stoughton.
    Denny Dumbarton 1844–1932 (a souvenir hard-back produced for private circulation by the shipyard).
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Denny, William

  • 105 Haber, Fritz

    SUBJECT AREA: Chemical technology
    [br]
    b. 9 December 1868 Breslau, Germany (now Wroclaw, Poland)
    d. 29 January 1934 Basel, Switzerland
    [br]
    German chemist, inventor of the process for the synthesis of ammonia.
    [br]
    Haber's father was a manufacturer of dyestuffs, so he studied organic chemistry at Berlin and Heidelberg universities to equip him to enter his father's firm. But his interest turned to physical chemistry and remained there throughout his life. He became Assistant at the Technische Hochschule in Karlsruhe in 1894; his first work there was on pyrolysis and electrochemistry, and he published his Grundrisse der technischen Electrochemie in 1898. Haber became famous for thorough and illuminating theoretical studies in areas of growing practical importance. He rose through the academic ranks and was appointed a full professor in 1906. In 1912 he was also appointed Director of the Institute of Physical Chemistry and Electrochemistry at Dahlem, outside Berlin.
    Early in the twentieth century Haber invented a process for the synthesis of ammonia. The English chemist and physicist Sir William Crookes (1832–1919) had warned of the danger of mass hunger because the deposits of Chilean nitrate were becoming exhausted and nitrogenous fertilizers would not suffice for the world's growing population. A solution lay in the use of the nitrogen in the air, and the efforts of chemists centred on ways of converting it to usable nitrate. Haber was aware of contemporary work on the fixation of nitrogen by the cyanamide and arc processes, but in 1904 he turned to the study of ammonia formation from its elements, nitrogen and hydrogen. During 1907–9 Haber found that the yield of ammonia reached an industrially viable level if the reaction took place under a pressure of 150–200 atmospheres and a temperature of 600°C (1,112° F) in the presence of a suitable catalyst—first osmium, later uranium. He devised an apparatus in which a mixture of the gases was pumped through a converter, in which the ammonia formed was withdrawn while the unchanged gases were recirculated. By 1913, Haber's collaborator, Carl Bosch had succeeded in raising this laboratory process to the industrial scale. It was the first successful high-pressure industrial chemical process, and solved the nitrogen problem. The outbreak of the First World War directed the work of the institute in Dahlem to military purposes, and Haber was placed in charge of chemical warfare. In this capacity, he developed poisonous gases as well as the means of defence against them, such as gas masks. The synthetic-ammonia process was diverted to produce nitric acid for explosives. The great benefits and achievement of the Haber-Bosch process were recognized by the award in 1919 of the Nobel Prize in Chemistry, but on account of Haber's association with chemical warfare, British, French and American scientists denounced the award; this only added to the sense of bitterness he already felt at his country's defeat in the war. He concentrated on the theoretical studies for which he was renowned, in particular on pyrolysis and autoxidation, and both the Karlsruhe and the Dahlem laboratories became international centres for discussion and research in physical chemistry.
    With the Nazi takeover in 1933, Haber found that, as a Jew, he was relegated to second-class status. He did not see why he should appoint staff on account of their grandmothers instead of their ability, so he resigned his posts and went into exile. For some months he accepted hospitality in Cambridge, but he was on his way to a new post in what is now Israel when he died suddenly in Basel, Switzerland.
    [br]
    Bibliography
    1898, Grundrisse der technischen Electrochemie.
    1927, Aus Leben und Beruf.
    Further Reading
    J.E.Coates, 1939, "The Haber Memorial Lecture", Journal of the Chemical Society: 1,642–72.
    M.Goran, 1967, The Story of Fritz Haber, Norman, OK: University of Oklahoma Press (includes a complete list of Haber's works).
    LRD

    Biographical history of technology > Haber, Fritz

  • 106 Lovelock, James Ephraim

    [br]
    b. 26 July 1919 Brixton, London, England
    [br]
    English biologist and philosopher, inventor of the microwave oven and electron capture detector.
    [br]
    Lovelock was brought up in Brixton in modest circumstances. At the age of 4 he was given a toy electrical set, which first turned his attention towards the study of science. From the Strand School, Brixton, he went on to the universities of Manchester and London, and after graduating in science, in 1941 he joined the National Institute for Medical Research, Mill Hill, as a staff scientist, remaining there for twenty years. During the early 1950s, he and his colleagues were engaged in research into freezing live animals and bringing them back to life by heating: Lovelock was struck by the intense pain this process caused the animals, and he sought a more humane method. He tried diathermy or internal heating through the effect of a continuous wave magnetron borrowed from the Navy. He found that the animals were brought back to life painlessly, and impressed with his success he tried baking a potato for his lunch in the apparatus and found that it cooked amazingly quickly compared with the one hour normally needed in an ordinary oven. Lovelock had invented the microwave oven, but its commercial possibilities were not at first realized.
    In the late 1950s he invented the electron capture detector, which proved to be more sensitive than any other analytical equipment in detecting and measuring toxic substances. The apparatus therefore had obvious uses in testing the quality of the environment and so offered a tremendous boost to the "green" movement. In 1961 he was invited to joint the US National Aeronautics and Space Administration (NASA) to employ the apparatus in an attempt to detect life in space.
    In the early 1970s Lovelock relinquished his biological work in order to devote his attention to philosophical matters, specifically to develop his theory of the Universe, now widely celebrated as the "Gaia theory". In this controversial theory, Lovelock regards our planet and all its living beings, including humans, as a single living organism.
    [br]
    Principal Honours and Distinctions
    CBE 1990. FRS 1974. Many academic awards and honorary degrees. Visiting Professor, University of Reading 1967–90.
    Bibliography
    1979, Gaia.
    1983, The Great Extinction.
    1988, The Ages of Gaia.
    1991, Gaia: The Practical Science of Planetary Medicine.
    LRD

    Biographical history of technology > Lovelock, James Ephraim

  • 107 Morris, William Richard, Viscount Nuffield

    [br]
    b. 10 October 1877 Worcester, England
    d. 22 August 1963 Nuffield Place, England
    [br]
    English industrialist, car manufacturer and philanthropist.
    [br]
    Morris was the son of Frederick Morris, then a draper. He was the eldest of a family of seven, all of whom, except for one sister, died in childhood. When he was 3 years old, his father moved to Cowley, near Oxford, where he attended the village school. After a short time with a local bicycle firm he set up on his own at the age of 16 with a capital of £4. He manufactured pedal cycles and by 1902 he had designed a motor cycle and was doing car-repair work. By 1912, at the Motor Show, he was able to announce his first car, the 8.9 hp, two-seater Morris Oxford with its characteristic "bull-nose". It could perform at up to 50 mph (80 km/h) and 50 mpg (5.65 1/100 km). It cost £165.
    Though untrained, Morris was a born engineer as well as a natural judge of character. This enabled him to build up a reliable team of assistants in his growing business, with an order for four hundred cars at the Motor Show in 1912. Much of his business was built up in the assembly of components manufactured by outside suppliers. In he moved out of his initial premises by New College in Longwall and bought land at Cowley, where he brought out his second model, the 11.9hp Morris Oxford. This was after the First World War, during which car production was reduced to allow the manufacture of tanks and munitions. He was awarded the OBE in 1917 for his war work. Morris Motors Ltd was incorporated in 1919, and within fifteen months sales of cars had reached over 3,000 a year. By 1923 he was producing 20,000 cars a year, and in 1926 50,000, equivalent to about one-third of Britain's output. With the slump, a substantial overdraft, and a large stock of unsold cars, Morris took the bold decision to cut the prices of cars in stock, which then sold out within three weeks. Other makers followed suit, but Morris was ahead of them.
    Morris was part-founder of the Pressed Steel Company, set up to produce car bodies at Cowley. A clever operation with the shareholding of the Morris Motors Company allowed Morris a substantial overall profit to provide expansion capital. By 1931 his "empire" comprised, in addition to Morris Motors, the MG Car Company, the Wolseley Company, the SU Carburettor Company and Morris Commercial Cars. In 1936, the value of Morris's financial interest in the business was put at some £16 million.
    William Morris was a frugal man and uncomplicated, having little use for all the money he made except to channel it to charitable purposes. It is said that in all he gave away some £30 million during his lifetime, much of it invested by the recipients to provide long-term benefits. He married Elizabeth Anstey in 1904 and lived for thirty years at Nuffield Place. He lived modestly, and even after retirement, when Honorary President of the British Motor Corporation, the result of a merger between Morris Motors and the Austin Motor Company, he drove himself to work in a modest 10 hp Wolseley. His generosity benefited many hospitals in London, Oxford, Birmingham and elsewhere. Oxford Colleges were another class of beneficiary from his largesse.
    [br]
    Principal Honours and Distinctions
    Viscount 1938; Baron (Lord Nuffield) 1934; Baronet 1929; OBE 1917; GBE 1941; CH 1958. FRS 1939. He was a doctor of seven universities and an honorary freeman of seven towns.
    Further Reading
    R.Jackson, 1964, The Nuffield Story.
    P.W.S.Andrews and E.Brunner, The Life of Lord Nuffield.
    IMcN

    Biographical history of technology > Morris, William Richard, Viscount Nuffield

  • 108 Morse, Samuel Finley Breeze

    SUBJECT AREA: Telecommunications
    [br]
    b. 27 April 1791 Charlestown, Massachusetts, USA
    d. 2 April 1872 New York City, New York, USA
    [br]
    American portrait painter and inventor, b est known for his invention of the telegraph and so-called Morse code.
    [br]
    Following early education at Phillips Academy, Andover, at the age of 14 years Morse went to Yale College, where he developed interests in painting and electricity. Upon graduating in 1810 he became a clerk to a Washington publisher and a pupil of Washington Allston, a well-known American painter. The following year he travelled to Europe and entered the London studio of another American artist, Benjamin West, successfully exhibiting at the Royal Academy as well as winning a prize and medal for his sculpture. Returning to Boston and finding little success as a "historical-style" painter, he built up a thriving portrait business, moving in 1818 to Charleston, South Carolina, where three years later he established the (now defunct) South Carolina Academy of Fine Arts. In 1825 he was back in New York, but following the death of his wife and both of his parents that year, he embarked on an extended tour of European art galleries. In 1832, on the boat back to America, he met Charles T.Jackson, who told him of the discovery of the electromagnet and fired his interest in telegraphy to the extent that Morse immediately began to make suggestions for electrical communications and, apparently, devised a form of printing telegraph. Although he returned to his painting and in 1835 was appointed the first Professor of the Literature of Art and Design at the University of New York City, he began to spend more and more time experimenting in telegraphy. In 1836 he invented a relay as a means of extending the cable distance over which telegraph signals could be sent. At this time he became acquainted with Alfred Vail, and the following year, when the US government published the requirements for a national telegraph service, they set out to produce a workable system, with finance provided by Vail's father (who, usefully, owned an ironworks). A patent was filed on 6 October 1837 and a successful demonstration using the so-called Morse code was given on 6 January 1838; the work was, in fact, almost certainly largely that of Vail. As a result of the demonstration a Bill was put forward to Congress for $30,000 for an experimental line between Washington and Baltimore. This was eventually passed and the line was completed, and on 24 May 1844 the first message, "What hath God wrought", was sent between the two cities. In the meantime Morse also worked on the insulation of submarine cables by means of pitch tar and indiarubber.
    With success achieved, Morse offered his invention to the Government for $100,000, but this was declined, so the invention remained in private hands. To exploit it, Morse founded the Magnetic Telephone Company in 1845, amalgamating the following year with the telegraph company of a Henry O'Reilly to form Western Union. Having failed to obtain patents in Europe, he now found himself in litigation with others in the USA, but eventually, in 1854, the US Supreme Court decided in his favour and he soon became very wealthy. In 1857 a proposal was made for a telegraph service across the whole of the USA; this was completed in just over four months in 1861. Four years later work began on a link to Europe via Canada, Alaska, the Aleutian Islands and Russia, but it was abandoned with the completion of the transatlantic cable, a venture in which he also had some involvement. Showered with honours, Morse became a generous philanthropist in his later years. By 1883 the company he had created was worth $80 million and had a virtual monopoly in the USA.
    [br]
    Principal Honours and Distinctions
    LLD, Yale 1846. Fellow of the Academy of Arts and Sciences 1849. Celebratory Banquet, New York, 1869. Statue in New York Central Park 1871. Austrian Gold Medal of Scientific Merit. Danish Knight of the Danneborg. French Légion d'honneur. Italian Knight of St Lazaro and Mauritio. Portuguese Knight of the Tower and Sword. Turkish Order of Glory.
    Bibliography
    E.L.Morse (ed.), 1975, Letters and Journals, New York: Da Capo Press (facsimile of a 1914 edition).
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph (discusses his telegraphic work and its context).
    C.Mabee, 1943, The American Leonardo: A Life of Samuel Morse; reprinted 1969 (a detailed biography).
    KF

    Biographical history of technology > Morse, Samuel Finley Breeze

  • 109 Napier (Neper), John

    [br]
    b. 1550 Merchiston Castle, Edinburgh, Scotland
    d. 4 April 1617 Merchiston Castle, Edinburgh, Scotland
    [br]
    Scottish mathematician and theological writer noted for his discovery of logarithms, a powerful aid to mathematical calculations.
    [br]
    Born into a family of Scottish landowners, at the early age of 13 years Napier went to the University of St Andrews in Fife, but he apparently left before taking his degree. An extreme Protestant, he was active in the struggles with the Roman Catholic Church and in 1594 he dedicated to James VI of Scotland his Plaine Discovery of the Whole Revelation of St John, an attempt to promote the Protestant case in the guise of a learned study. About this time, as well as being involved in the development of military equipment, he devoted much of his time to finding methods of simplifying the tedious calculations involved in astronomy. Eventually he realized that by representing numbers in terms of the power to which a "base" number needed to be raised to produce them, it was possible to perform multiplication and division and to find roots, by the simpler processes of addition, substraction and integer division, respectively.
    A description of the principle of his "logarithms" (from the Gk. logos, reckoning, and arithmos, number), how he arrived at the idea and how they could be used was published in 1614 under the title Mirifici Logarithmorum Canonis Descriptio. Two years after his death his Mirifici Logarithmorum Canonis Constructio appeared, in which he explained how to calculate the logarithms of numbers and gave tables of them to eight significant figures, a novel feature being the use of the decimal point to distinguish the integral and fractional parts of the logarithm. As originally conceived, Napier's tables of logarithms were calculated using the natural number e(=2.71828…) as the base, not directly, but in effect according to the formula: Naperian logx= 107(log e 107-log e x) so that the original Naperian logarithm of a number decreased as the number increased. However, prior to his death he had readily acceded to a suggestion by Henry Briggs that it would greatly facilitate their use if logarithms were simply defined as the value to which the decimal base 10 needed to be raised to realize the number in question. He was almost certainly also aware of the work of Joost Burgi.
    No doubt as an extension of his ideas of logarithms, Napier also devised a means of manually performing multiplication and division by means of a system of rods known as Napier's Bones, a forerunner of the modern slide-rule, which evolved as a result of successive developments by Edmund Gunther, William Oughtred and others. Other contributions to mathematics by Napier include important simplifying discoveries in spherical trigonometry. However, his discovery of logarithms was undoubtedly his greatest achievement.
    [br]
    Bibliography
    Napier's "Descriptio" and his "Constructio" were published in English translation as Description of the Marvelous Canon of Logarithms (1857) and W.R.MacDonald's Construction of the Marvelous Canon of Logarithms (1889), which also catalogues all his works. His Rabdologiae, seu Numerationis per Virgulas Libri Duo (1617) was published in English as Divining Rods, or Two Books of Numbering by Means of Rods (1667).
    Further Reading
    D.Stewart and W.Minto, 1787, An Account of the Life Writings and Inventions of John Napier of Merchiston (an early account of Napier's work).
    C.G.Knott (ed.), 1915, Napier Tercentenary Memorial Volume (the fullest account of Napier's work).
    KF

    Biographical history of technology > Napier (Neper), John

  • 110 Oberth, Hermann Julius

    SUBJECT AREA: Aerospace
    [br]
    b. 25 June 1894 Nagyszeben, Transylvania (now Sibiu, Romania)
    d. 29 December 1989 Nuremberg, Germany
    [br]
    Austro-Hungarian lecturer who is usually regarded, with Robert Goddard, as one of the "fathers" of modern astronautics.
    [br]
    The son of a physician, Oberth originally studied medicine in Munich, but his education was interrupted by the First World War and service in the Austro-Hungarian Army. Wounded, he passed the time by studying astronautics. He apparently simulated weightlessness and worked out the design for a long-range liquid-propelled rocket, but his ideas were rejected by the War Office; after the war he submitted them as a dissertation for a PhD at Heidelberg University, but this was also rejected. Consequently, in 1923, whilst still an unknown mathematics teacher, he published his ideas at his own expense in the book The Rocket into Interplanetary Space. These included a description of how rockets could achieve a sufficient velocity to escape the gravitational field of the earth. As a result he gained international prestige almost overnight and learned of the work of Robert Goddard and Konstantin Tsiolkovsky. After correspondence with the Goddard and Tsiolkovsky, Oberth published a further work in 1929, The Road to Space Travel, in which he acknowledged the priority of Goddard's and Tsiolkovski's calculations relating to space travel; he went on to anticipate by more than thirty years the development of electric and ionic propulsion and to propose the use of giant mirrors to control the weather. For this he was awarded the annual Hirsch Prize of 10,000 francs. From 1925 to 1938 he taught at a college in Mediasch, Transylvania, where he carried out experiments with petroleum and liquid-air rockets. He then obtained a lecturing post at Vienna Technical University, moving two years later to Dresden University and becoming a German citizen. In 1941 he became assistant to the German rocket engineer Werner von Braun at the rocket development centre at Peenemünde, and in 1943 he began work on solid propellants. After the Second World War he spent a year in Switzerland as a consultant, then in 1950 he moved to Italy to develop solid-propellant anti-aircraft rockets for the Italian Navy. Five years later he moved to the USA to carry out advanced rocket research for the US Army at Huntsville, Alabama, and in 1958 he retired to Feucht, near Nuremberg, Germany, where he wrote his autobiography.
    [br]
    Principal Honours and Distinctions
    French Astronautical Society REP-Hirsch Prize 1929. German Society for Space Research Medal 1950. Diesel German Inventors Medal 1954. American Astronautical Society Award 1955. German Federal Republic Award 1961. Institute of Aviation and Astronautics Medal 1969.
    Bibliography
    1923, Die Rakete zu den Planetenraumen; repub. 1934 as The Rocket into Interplanetary Space (autobiography).
    1929, Wege zur Raumschiffahrt [Road to Space Travel].
    1959, Stoff und Leben [Material and Life].
    Further Reading
    R.Spangenburg and D.Moser, 1990, Space People from A to Z, New York: Facts on File. H.Wulforst, 1991, The Rocketmakers: The Dreamers who made Spaceflight a Reality, New York: Crown Publishers.
    KF / IMcN

    Biographical history of technology > Oberth, Hermann Julius

  • 111 Poulsen, Valdemar

    [br]
    b. 23 November 1869 Copenhagen, Denmark
    d. 23 July 1942 Gentofte, Denmark
    [br]
    Danish engineer who developed practical magnetic recording and the arc generator for continuous radio waves.
    [br]
    From an early age he was absorbed by phenomena of physics to the exclusion of all other subjects, including mathematics. When choosing his subjects for the final three years in Borgedydskolen in Christianshavn (Copenhagen) before university, he opted for languages and history. At the University of Copenhagen he embarked on the study of medicine in 1889, but broke it off and was apprenticed to the machine firm of A/S Frichs Eftf. in Aarhus. He was employed between 1893 and 1899 as a mechanic and assistant in the laboratory of the Copenhagen Telephone Company KTAS. Eventually he advanced to be Head of the line fault department. This suited his desire for experiment and measurement perfectly. After the invention of the telegraphone in 1898, he left the laboratory and with responsible business people he created Aktieselskabet Telegrafonen, Patent Poulsen in order to develop it further, together with Peder Oluf Pedersen (1874– 1941). Pedersen brought with him the mathematical background which eventually led to his professorship in electronic engineering in 1922.
    The telegraphone was the basis for multinational industrial endeavours after it was demonstrated at the 1900 World's Exhibition in Paris. It must be said that its strength was also its weakness, because the telegraphone was unique in bringing sound recording and reproduction to the telephone field, but the lack of electronic amplifiers delayed its use outside this and the dictation fields (where headphones could be used) until the 1920s. However, commercial interest was great enough to provoke a number of court cases concerning patent infringement, in which Poulsen frequently figured as a witness.
    In 1903–4 Poulsen and Pedersen developed the arc generator for continuous radio waves which was used worldwide for radio transmitters in competition with Marconi's spark-generating system. The inspiration for this work came from the research by William Duddell on the musical arc. Whereas Duddell had proposed the use of the oscillations generated in his electric arc for telegraphy in his 1901 UK patent, Poulsen contributed a chamber of hydrogen and a transverse magnetic field which increased the efficiency remarkably. He filed patent applications on these constructions from 1902 and the first publication in a scientific forum took place at the International Electrical Congress in St Louis, Missouri, in 1904.
    In order to use continuous waves efficiently (the high frequency constituted a carrier), Poulsen developed both a modulator for telegraphy and a detector for the carrier wave. The modulator was such that even the more primitive spark-communication receivers could be used. Later Poulsen and Pedersen developed frequency-shift keying.
    The Amalgamated Radio-Telegraph Company Ltd was launched in London in 1906, combining the developments of Poulsen and those of De Forest Wireless Telegraph Syndicate. Poulsen contributed his English and American patents. When this company was liquidated in 1908, its assets were taken over by Det Kontinentale Syndikat for Poulsen Radio Telegrafi, A/S in Copenhagen (liquidated 1930–1). Some of the patents had been sold to C.Lorenz AG in Berlin, which was very active.
    The arc transmitting system was in use worldwide from about 1910 to 1925, and the power increased from 12 kW to 1,000 kW. In 1921 an exceptional transmitter rated at 1,800 kW was erected on Java for communications with the Netherlands. More than one thousand installations had been in use worldwide. The competing systems were initially spark transmitters (Marconi) and later rotary converters ( Westinghouse). Similar power was available from valve transmitters only much later.
    From c. 1912 Poulsen did not contribute actively to further development. He led a life as a well-respected engineer and scientist and served on several committees. He had his private laboratory and made experiments in the composition of matter and certain resonance phenomena; however, nothing was published. It has recently been suggested that Poulsen could not have been unaware of Oberlin Smith's work and publication in 1888, but his extreme honesty in technical matters indicates that his development was indeed independent. In the case of the arc generator, Poulsen was always extremely frank about the inspiration he gained from earlier developers' work.
    [br]
    Bibliography
    1899, British patent no. 8,961 (the first British telegraphone patent). 1903, British patent no. 15,599 (the first British arc-genera tor patent).
    His scientific publications are few, but fundamental accounts of his contribution are: 1900, "Das Telegraphon", Ann. d. Physik 3:754–60; 1904, "System for producing continuous oscillations", Trans. Int. El. Congr. St. Louis, Vol. II, pp. 963–71.
    Further Reading
    A.Larsen, 1950, Telegrafonen og den Traadløse, Ingeniørvidenskabelige Skrifter no. 2, Copenhagen (provides a very complete, although somewhat confusing, account of Poulsen's contributions; a list of his patents is given on pp. 285–93).
    F.K.Engel, 1990, Documents on the Invention of Magnetic Re cor ding in 1878, New York: Audio Engineering Society, reprint no. 2,914 (G2) (it is here that doubt is expressed about whether Poulsen's ideas were developed independently).
    GB-N

    Biographical history of technology > Poulsen, Valdemar

  • 112 Russell, John Scott

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 May 1808 Parkhead, near Glasgow, Scotland
    d. 8 June 1882 Isle of Wight, England
    [br]
    Scottish engineer, naval architect and academic.
    [br]
    A son of the manse, Russell was originally destined for the Church and commenced studies at the University of St Andrews, but shortly afterwards he transferred to Glasgow, graduating MA in 1825 when only 17 years old. He began work as a teacher in Edinburgh, working up from a school to the Mechanics Institute and then in 1832 to the University, where he took over the classes in natural philosophy following the death of the professor. During this period he designed and advised on the application of steam power to road transport and to the Forth and Clyde Canal, thereby awakening his interest in ships and naval architecture.
    Russell presented papers to the British Association over several years, and one of them, The Wave Line Theory of Ship Form (although now superseded), had great influence on ship designers of the time and helped to establish the formal study of hydromechanics. With a name that was becoming well known, Russell looked around for better opportunities, and on narrowly missing appointment to the Chair of Mathematics at Edinburgh University he joined the upand-coming Clyde shipyard of Caird \& Co., Greenock, as Manager in 1838.
    Around 1844 Russell and his family moved to London; following some business problems he was in straitened circumstances. However, appointment as Secretary to the Committee setting up the Great Exhibition of 1851 eased his path into London's intellectual society and allowed him to take on tasks such as, in 1847, the purchase of Fairbairn's shipyard on the Isle of Dogs and the subsequent building there of I.K. Brunel's Great Eastern steamship. This unhappy undertaking was a millstone around the necks of Brunel and Russell and broke the health of the former. With the yard failing to secure the order for HMS Warrior, the Royal Navy's first ironclad, Russell pulled out of shipbuilding and for the remainder of his life was a designer, consultant and at times controversial, but at all times polished and urbane, member of many important committees and societies. He is remembered as one of the founders of the Institution of Naval Architects in 1860. His last task was to design a Swiss Lake steamer for Messrs Escher Wyss, a company that coincidentally had previously retained Sir William Fairbairn.
    [br]
    Principal Honours and Distinctions
    FRS 1847.
    Bibliography
    John Scott Russell published many papers under the imprint of the British Association, the Royal Society of Arts and the Institution of Naval Architects. His most impressive work was the mammoth three-volume work on shipbuilding published in London in 1865 entitled The Modern System of Naval Architecture. Full details and plans of the Great Eastern are included.
    Further Reading
    G.S.Emmerson, 1977, John Scott Russell, a Great Victorian Engineer and Naval Architect, London: Murray
    FMW

    Biographical history of technology > Russell, John Scott

  • 113 time sovereignty

    Gen Mgt
    control over the way you spend your time. Time sovereignty gives employees the ability to arrange their working lives to suit their own situations. It involves handing decisions on working hours to employees, enabling them to work flexibly, so that they can better juggle the work-life balance. Time sovereignty is more than just good time management, as it gives people control over the way they arrange their lives, rather than having to manage time within the decreed hours. It has been argued that rather than viewing work and home as separate lives, employees should see that they are living just one life that integrates both parts. Time sovereignty gives mastery over managing life as a whole.

    The ultimate business dictionary > time sovereignty

  • 114 Elgar, Francis

    SUBJECT AREA: Ports and shipping
    [br]
    b. April 1845 Portsmouth, England
    d. 16 January 1909 Monte Carlo, Monaco
    [br]
    English naval architect and shipbuilder.
    [br]
    Elgar enjoyed a fascinating professional life, during which he achieved distinction in the military, merchant, academic and political aspects of his profession. At the age of 14 he was apprenticed as a shipwright to the Royal Dockyard at Portsmouth but when he was in his late teens he was selected as one of the Admiralty students to further his education at the Royal School of Naval Architecture at South Kensington, London. On completion of the course he was appointed to Birkenhead, where the ill-fated HMS Captain was being built, and then to Portsmouth Dockyard. In 1870 the Captain was lost at sea and Francis Elgar was called on to prepare much of the evidence for the Court Martial. This began his life-long interest in ship stability and in ways of presenting this information in an easily understood form to ship operators.
    In 1883 he accepted the John Elder Chair of Naval Architecture at Glasgow University, an appointment which formalized the already well-established teaching of this branch of engineering at Glasgow. However, after only three years he returned to public service in the newly created post of Director of Royal Dockyards, a post that he held for a mere six years but which brought about great advances in the speed of warship construction, with associated reductions in cost. In 1892 he was made Naval Architect and Director of the Fairfield Shipbuilding Company in Glasgow, remaining there until he retired in 1907. The following year he accepted the post of Chairman of the Birkenhead shipyard of Cammell Laird \& Co.; this was a recent amalgamation of two companies, and he retained this position until his death. Throughout his life, Elgar acted on many consultative bodies and committees, including the 1884 Ship Load Line Enquiry. His work enabled him to keep abreast of all current thinking in ship design and construction.
    [br]
    Principal Honours and Distinctions
    FRS. FRSE. Chevalier de la Légion d'honneur.
    Bibliography
    Elgar produced some remarkable papers, which were published by the Institutions of Naval Architects, Civil Engineers and Engineers and Shipbuilders in Scotland as well as by the Royal Society. He published several books on shipbuilding.
    FMW

    Biographical history of technology > Elgar, Francis

  • 115 Liebig, Justus von

    [br]
    b. 12 May 1803 Darmstadt, Germany
    d. 18 April 1873 Munich, Germany
    [br]
    German chemist, pioneer in the training of chemists and in agricultural chemistry.
    [br]
    As the son of a pharmacist, Lei big early acquired an interest in chemistry. In 1822 he pursued his chemical studies in Paris under Joseph Louis Gay-Lussac (1778–1850), one of the leading chemists of the time. Three years later he became Professor of Chemistry in the small university of Giessen, near Frankfurt, where he remained for over thirty years. It was there that he established his celebrated laboratory for training in practical chemistry. The laboratory itself and the instruction given by Liebig were a model for the training of chemists throughout Europe and a steady stream of well-qualified chemists issued forth from Giessen. It was the supply of well-trained chemists that proved to be the basis for Germany's later success in industrial chemistry. The university now bears Liebig's name, and the laboratory has been preserved as a museum in the same state that it was in after the extensions of 1839. Liebig's many and important researches into chemical theory and organic chemistry lie outside the scope of this Dictionary. From 1840 he turned to the chemistry of living things. In agriculture, he stressed the importance of fertilizers containing potassium and phosphorus, although he underrated the role of nitrogen. Liebig thereby exerted a powerful influence on the movement to provide agriculture with a scientific basis.
    [br]
    Further Reading
    C.Paoloni, 1968, Justus von Liebig: eine Bibliographie sämtlicher Veröffentlichungen, Heidelberg: Carl Winter (includes a complete list of Liebig's papers and books, published collections of his letters and a list of secondary works about him).
    A.W.Hofmann, 1876, The Life Work of Liebig (Faraday Lecture), London (a valuable reference).
    J.R.Partington, 1964, A History of Chemistry, Vol. 4, London (a well-documented account of his work).
    F.R.Moulton, 1942, Liebig and After Liebig: A Century of Progress in Agricultural Chemistry, Washington, DC: American Association for the Advancement of Science, publication 18 (for Liebig's work in agricultural chemistry).
    J.B.Morrell, 1972, "The chemist breeders", Ambix 19:1–47 (for information about Liebig's laboratory).
    LRD

    Biographical history of technology > Liebig, Justus von

  • 116 Thomson, James

    [br]
    b. 16 February 1822 Belfast, Ireland (now Northern Ireland)
    d. 8 May 1892 Glasgow, Scotland
    [br]
    Irish civil engineer noted for his work in hydraulics and for his design of the "Vortex" turbine.
    [br]
    James Thomson was a pupil in several civil-engineering offices, but the nature of the work was beyond his physical capacity and from 1843 onwards he devoted himself to theoretical studies. Hhe first concentrated on the problems associated with the expansion of liquids when they reach their freezing point: water is one such example. He continued this work with his younger brother, Lord Kelvin (see Thomson, Sir William).
    After experimentation with a "feathered" paddle wheel as a young man, he turned his attention to water power. In 1850 he made his first patent application, "Hydraulic machinery and steam engines": this patent became his "Vortex" turbine design. He settled in Belfast, the home of the MacAdam-Fourneyron turbine, in 1851, and as a civil engineer became the Resident Engineer to the Belfast Water Commissioners in 1853. In 1857 he was appointed Professor of Civil Engineering and Surveying at Queen's College, Belfast.
    Whilst it is understood that he made his first turbine models in Belfast, he came to an arrangement with the Williamson Brothers of Kendal to make his turbine. In 1856 Williamsons produced their first turbine to Thomson's design and drawings. This was the Vortex Williamson Number 1, which produced 5 hp (3.7 kW) under a fall of 31 ft (9.4 m) on a 9 in. (23 cm) diameter supply. The rotor of this turbine ran in a horizontal plane. For several years the Williamson catalogue described their Vortex turbine as "designed by Professor James Thomson".
    Thomson continued with his study of hydraulics and water flow both at Queen's College, Belfast, and, later, at Glasgow University, where he became Professor in 1873, succeeding Macquorn Rankine, another famous engineer. At Glasgow, James Thomson studied the flow in rivers and the effects of erosion on river beds. He was also an authority on geological formations such as the development of the basalt structure of the Giant's Causeway, north of Belfast.
    James Thomson was an extremely active engineer and a very profound teacher of civil engineering. His form of water turbine had a long life before being displaced by the turbines designed in the twentieth century.
    [br]
    Bibliography
    1850, British patent no. 13,156 "Hydraulic machinery and steam engines".
    Further Reading
    Gilkes, 1956, One Hundred Years of Water Power, Kendal.
    KM

    Biographical history of technology > Thomson, James

  • 117 Zhang Sixun (Chang Ssu-Hsun)

    SUBJECT AREA: Horology
    [br]
    b. fl. late 10th century
    [br]
    Chinese astronomer and clockmaker who built the earliest recorded astronomical clock tower with a hydromechanical escapement.
    [br]
    Most clepsydra clocks, such as that of al-Jarazi, measured time continuously by the constant flow of a liquid and most mechanical clocks measure time discontinuously by means of an escapement. The clepsydra clock devised by Zhang Sixun in 976 and completed in 979 was unusual as it incorporated an escapement. It consisted of a large wheel with buckets around its periphery. A constant stream of water was directed into one of the buckets until it reached a predetermined weight, this released the wheel, allowing it to rotate to a new position where the process was repeated (this mechanism may have been introduced by the Chinese astronomer and mathematician Zhang Heng in the second century). The water was later replaced by mercury to prevent freezing in winter. With suitable gearing the movement of the wheel was used to drive a celestial globe, a carousel for written time announcements and jacks for audible time signals. This clock has not survived and is known only from the work Hsin I Hsiang Fa Yao (New Armillary Sphere and Celestial Globe System Essentials), which was printed in 1172 and is ascribed to Su Song. This work also describes two similar but later astronomical clock towers with water-wheel escape-ments. Several models of the water-wheel escapement have been constructed from the description in this work.
    [br]
    Further Reading
    J.Needham (ed.), 1965, Science and Civilisation in China Vol. IV.2, Cambridge: Cambridge University Press: 38, 111, 165, 463, 469–71, 490, 524, 527–8, 533, 540.
    J.H.Combridge, 1975, "The astronomical clocktowers of Chang Ssu-Hsun and his successors, A.D. 976 to 1126", Antiquarian Horology 9: 288–301.
    J.Needham, Wang Ling and J.de Solla Price, 1986, Heavenly Clockwork. The Great Astronomical Clocks of Medieval China (2nd edn with supplement by J.H.Combridge), London (for a broader view of Chinese horology).
    J.H.Combridge, 1979, "Clockmaking in China", in The Country Life International Dictionary of Clocks, ed. Alan Smith, London.
    DV

    Biographical history of technology > Zhang Sixun (Chang Ssu-Hsun)

  • 118 Weber, Max

    (1864–1920) Gen Mgt
    German sociologist. Remembered for his work on power and authority, published in Theory of Social and Economic Organization (1924), where he proposed bureaucracy as the most efficient form of organization.
         After studying legal and economic history, Weber was a law professor at the University of Freiburg and later at the University of Heidelberg. He studied the sociology of religion and in this area he produced his best-known work, The Protestant Work Ethic and the Spirit of Capitalism (1904). In political sociology he examined the relationship between social and economic organizations. Towards the end of his life, Weber developed his political interests and was on the committee that drafted the constitution of the Weimar Republic in 1918.

    The ultimate business dictionary > Weber, Max

  • 119 Caetano, Marcello José das Neves Alves

    (19061980)
       Marcello Caetano, as the last prime minister of the Estado Novo, was both the heir and successor of Antônio de Oliveira Salazar. In a sense, Caetano was one of the founders and sustainers of this unusual regime and, at various crucial stages of its long life, Caetano's contribution was as important as Salazar's.
       Born in Lisbon in 1906 to a middle-class family, Caetano was a member of the student generation that rebelled against the unstable parliamentary First Republic and sought answers to Portugal's legion of troubles in conservative ideologies such as integralism, Catholic reformism, and the Italian Fascist model. One of the most brilliant students at the University of Lisbon's Law School, Caetano soon became directly involved in government service in various ministries, including Salazar's Ministry of Finance. When Caetano was not teaching full-time at the law school in Lisbon and influencing new generations of students who became critical of the regime he helped construct, Caetano was in important government posts and working on challenging assignments. In the 1930s, he participated in reforms in the Ministry of Finance, in the writing of the 1933 Constitution, in the formation of the new civil code, of which he was in part the author, and in the construction of corporativism, which sought to control labor-management relations and other aspects of social engineering. In a regime largely directed by academics from the law faculties of Coimbra University and the University of Lisbon, Caetano was the leading expert on constitutional law, administrative law, political science, and colonial law. A prolific writer as both a political scientist and historian, Caetano was the author of the standard political science, administrative law, and history of law textbooks, works that remained in print and in use among students long after his exile and death.
       After his apprenticeship service in a number of ministries, Caetano rose steadily in the system. At age 38, he was named minister for the colonies (1944 47), and unlike many predecessors, he "went to see for himself" and made important research visits to Portugal's African territories. In 1955-58, Caetano served in the number-three position in the regime in the Ministry of the Presidency of the Council (premier's office); he left office for full-time academic work in part because of his disagreements with Salazar and others on regime policy and failures to reform at the desired pace. In 1956 and 1957, Caetano briefly served as interim minister of communications and of foreign affairs.
       Caetano's opportunity to take Salazar's place and to challenge even more conservative forces in the system came in the 1960s. Portugal's most prominent law professor had a public falling out with the regime in March 1962, when he resigned as rector of Lisbon University following a clash between rebellious students and the PIDE, the political police. When students opposing the regime organized strikes on the University of Lisbon campus, Caetano resigned his rectorship after the police invaded the campus and beat and arrested some students, without asking permission to enter university premises from university authorities.
       When Salazar became incapacitated in September 1968, President Américo Tomás named Caetano prime minister. His tasks were formidable: in the midst of remarkable economic growth in Portugal, continued heavy immigration of Portuguese to France and other countries, and the costly colonial wars in three African colonies, namely Angola, Guinea- Bissau, and Mozambique, the regime struggled to engineer essential social and political reforms, win the wars in Africa, and move toward meaningful political reforms. Caetano supported moderately important reforms in his first two years in office (1968-70), as well as the drafting of constitutional revisions in 1971 that allowed a slight liberalization of the Dictatorship, gave the opposition more room for activity, and decentrali zed authority in the overseas provinces (colonies). Always aware of the complexity of Portugal's colonial problems and of the ongoing wars, Caetano made several visits to Africa as premier, and he sought to implement reforms in social and economic affairs while maintaining the expensive, divisive military effort, Portugal's largest armed forces mobilization in her history.
       Opposed by intransigent right-wing forces in various sectors in both Portugal and Africa, Caetano's modest "opening" of 1968-70 soon narrowed. Conservative forces in the military, police, civil service, and private sectors opposed key political reforms, including greater democratization, while pursuing the military solution to the African crisis and personal wealth. A significant perspective on Caetano's failed program of reforms, which could not prevent the advent of a creeping revolution in society, is a key development in the 1961-74 era of colonial wars: despite Lisbon's efforts, the greater part of Portuguese emigration and capital investment during this period were directed not to the African colonies but to Europe, North America, and Brazil.
       Prime Minister Caetano, discouraged by events and by opposition to his reforms from the so-called "Rheumatic Brigade" of superannuated regime loyalists, attempted to resign his office, but President Américo Tomás convinced him to remain. The publication and public reception of African hero General Antônio Spinola's best-selling book Portugal e Futuro (Portugal and the Future) in February 1974 convinced the surprised Caetano that a coup and revolution were imminent. When the virtually bloodless, smoothly operating military coup was successful in what became known as the Revolution of 25 April 1974, Caetano surrendered to the Armed Forces Movement in Lisbon and was flown to Madeira Island and later to exile in Brazil, where he remained for the rest of his life. In his Brazilian exile, Caetano was active writing important memoirs and histories of the Estado Novo from his vantage point, teaching law at a private university in Rio de Janeiro, and carrying on a lively correspondence with persons in Portugal. He died at age 74, in 1980, in Brazil.

    Historical dictionary of Portugal > Caetano, Marcello José das Neves Alves

  • 120 teleworking

    Gen Mgt
    a geographically dispersed work environment where workers can work at home on a computer and transmit data and documents to a central office via telephone lines. As people become accustomed to working via e-mail and the Internet, teleworking is proving ever more popular.
         The advantages of teleworking are considerable, offering as it does an excellent compromise between the security of fulltime employment and the liberty and privacy of self-employment. However, it also has disadvantages—the most important of which is the danger of being left behind, forgotten, or overlooked when new assignments or promotions come up within the organization. It is therefore supremely important for teleworkers to build a plan for staying visible and connected with the people they work with, even if they spend much of their working life in their home office.

    The ultimate business dictionary > teleworking

См. также в других словарях:

  • Life and Work (magazine) — Life and Work is the editorially independent monthly magazine of the Church of Scotland. It was founded in 1879 by Archibald Hamilton Charteris (1835 1908). It incorporated the Mission Record of the Church of Scotland from 1900, and at the 1929… …   Wikipedia

  • Life and work of Ludwig van Beethoven — This is a detailed account of the life and work of Ludwig van Beethoven. For more on this composer, see the main article Ludwig van Beethoven for his family see Van Beethoven Family. Role of Musical Biography It is common for listeners to… …   Wikipedia

  • Life and Energy — is one of Isaac Asimov s most famous and popular scientific books. Fact|date=August 2007 Life and Energy is about the biological and physical world, and their contrasts and comparisons. The first chapters deal with the common questions of the… …   Wikipedia

  • Life and How to Survive It — is a self help psychology book written by therapist Robin Skynner and comedian John Cleese. The book is written in a question and answer form, with Cleese asking questions about relationships, and his therapist Skynner answering them.It is the… …   Wikipedia

  • Life and Fate — infobox Book | name = Life and Fate title orig = translator = author = Vasily Grossman illustrator = cover artist = country = U.S.S.R. language = Russian series = genre = publisher = release date = media type = pages = isbn = preceded by =… …   Wikipedia

  • Life's Work — infobox television show name = Life s Work genre = Sitcom runtime = Approx. 28 minutes country = USA network = ABC first aired = September 17, 1996 last aired = June 10, 1997 language = English num seasons = 1 num episodes = 18 creator =Warren… …   Wikipedia

  • Life and culture of Jats — The Life and culture of Jats is full of diversity and approaches most closely to that ascribed to the traditional Aryan colonists of India. The Jat lifestyle was designed to foster a martial spirit. As the situation changed, some Jats started… …   Wikipedia

  • Life, and Nothing More... — Infobox Film name = Life, and Nothing More... caption = Film poster director = Abbas Kiarostami producer = Ali Reza Zarrin writer = Abbas Kiarostami starring = Farhad Kheradmand Buba Bayour music = cinematography = Homayun Payvar editing = Abbas… …   Wikipedia

  • The Life and Opinions of Tristram Shandy, Gentleman —   …   Wikipedia

  • List of magical characters in The Life and Times of Juniper Lee — This is a list of magical characters that have appeared on the American animated television series The Life and Times of Juniper Lee . They are sorted alphabetically by class.Demons5th Level IncubusIn Take My Life Please , Cletus and Gus… …   Wikipedia

  • Museum of Ayrshire Country Life and Costume — Dalgarven Mill is near Kilwinning, North Ayrshire, Scotland and home to the Museum of Ayrshire Country Life and Costume. The watermill has been completely restored over a number of years and is now run by the Dalgarven Mill Trust. The village of… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»