Перевод: с английского на английский

с английского на английский

my+life+and+work

  • 61 Roberts, Richard

    [br]
    b. 22 April 1789 Carreghova, Llanymynech, Montgomeryshire, Wales
    d. 11 March 1864 London, England
    [br]
    Welsh mechanical engineer and inventor.
    [br]
    Richard Roberts was the son of a shoemaker and tollkeeper and received only an elementary education at the village school. At the age of 10 his interest in mechanics was stimulated when he was allowed by the Curate, the Revd Griffith Howell, to use his lathe and other tools. As a young man Roberts acquired a considerable local reputation for his mechanical skills, but these were exercised only in his spare time. For many years he worked in the local limestone quarries, until at the age of 20 he obtained employment as a pattern-maker in Staffordshire. In the next few years he worked as a mechanic in Liverpool, Manchester and Salford before moving in 1814 to London, where he obtained employment with Henry Maudslay. In 1816 he set up on his own account in Manchester. He soon established a reputation there for gear-cutting and other general engineering work, especially for the textile industry, and by 1821 he was employing about twelve men. He built machine tools mainly for his own use, including, in 1817, one of the first planing machines.
    One of his first inventions was a gas meter, but his first patent was obtained in 1822 for improvements in looms. His most important contribution to textile technology was his invention of the self-acting spinning mule, patented in 1825. The normal fourteen-year term of this patent was extended in 1839 by a further seven years. Between 1826 and 1828 Roberts paid several visits to Alsace, France, arranging cottonspinning machinery for a new factory at Mulhouse. By 1826 he had become a partner in the firm of Sharp Brothers, the company then becoming Sharp, Roberts \& Co. The firm continued to build textile machinery, and in the 1830s it built locomotive engines for the newly created railways and made one experimental steam-carriage for use on roads. The partnership was dissolved in 1843, the Sharps establishing a new works to continue locomotive building while Roberts retained the existing factory, known as the Globe Works, where he soon after took as partners R.G.Dobinson and Benjamin Fothergill (1802–79). This partnership was dissolved c. 1851, and Roberts continued in business on his own for a few years before moving to London as a consulting engineer.
    During the 1840s and 1850s Roberts produced many new inventions in a variety of fields, including machine tools, clocks and watches, textile machinery, pumps and ships. One of these was a machine controlled by a punched-card system similar to the Jacquard loom for punching rivet holes in plates. This was used in the construction of the Conway and Menai Straits tubular bridges. Roberts was granted twenty-six patents, many of which, before the Patent Law Amendment Act of 1852, covered more than one invention; there were still other inventions he did not patent. He made his contribution to the discussion which led up to the 1852 Act by publishing, in 1830 and 1833, pamphlets suggesting reform of the Patent Law.
    In the early 1820s Roberts helped to establish the Manchester Mechanics' Institute, and in 1823 he was elected a member of the Literary and Philosophical Society of Manchester. He frequently contributed to their proceedings and in 1861 he was made an Honorary Member. He was elected a Member of the Institution of Civil Engineers in 1838. From 1838 to 1843 he served as a councillor of the then-new Municipal Borough of Manchester. In his final years, without the assistance of business partners, Roberts suffered financial difficulties, and at the time of his death a fund for his aid was being raised.
    [br]
    Principal Honours and Distinctions
    Member, Institution of Civil Engineers 1838.
    Further Reading
    There is no full-length biography of Richard Roberts but the best account is H.W.Dickinson, 1945–7, "Richard Roberts, his life and inventions", Transactions of the Newcomen Society 25:123–37.
    W.H.Chaloner, 1968–9, "New light on Richard Roberts, textile engineer (1789–1864)", Transactions of the Newcomen Society 41:27–44.
    RTS

    Biographical history of technology > Roberts, Richard

  • 62 Psychoanalysis

       [Psychoanalysis] seeks to prove to the ego that it is not even master in its own house, but must content itself with scanty information of what is going on unconsciously in the mind. (Freud, 1953-1974, Vol. 16, pp. 284-285)
       Although in the interview the analyst is supposedly a "passive" auditor of the "free association" narration by the subject, in point of fact the analyst does direct the course of the narrative. This by itself does not necessarily impair the evidential worth of the outcome, for even in the most meticulously conducted laboratory experiment the experimenter intervenes to obtain the data he is after. There is nevertheless the difficulty that in the nature of the case the full extent of the analyst's intervention is not a matter that is open to public scrutiny, so that by and large one has only his own testimony as to what transpires in the consulting room. It is perhaps unnecessary to say that this is not a question about the personal integrity of psychoanalytic practitioners. The point is the fundamental one that no matter how firmly we may resolve to make explicit our biases, no human being is aware of all of them, and that objectivity in science is achieved through the criticism of publicly accessible material by a community of independent inquirers.... Moreover, unless data are obtained under carefully standardized circumstances, or under different circumstances whose dependence on known variables is nevertheless established, even an extensive collection of data is an unreliable basis for inference. To be sure, analysts apparently do attempt to institute standard conditions for the conduct of interviews. But there is not much information available on the extent to which the standardization is actually enforced, or whether it relates to more than what may be superficial matters. (E. Nagel, 1959, pp. 49-50)
       3) No Necessary Incompatibility between Psychoanalysis and Certain Religious Formulations
       here would seem to be no necessary incompatibility between psychoanalysis and those religious formulations which locate God within the self. One could, indeed, argue that Freud's Id (and even more Groddeck's It), the impersonal force within which is both the core of oneself and yet not oneself, and from which in illness one become[s] alienated, is a secular formation of the insight which makes religious people believe in an immanent God. (Ryecroft, 1966, p. 22)
       Freudian analysts emphasized that their theories were constantly verified by their "clinical observations."... It was precisely this fact-that they always fitted, that they were always confirmed-which in the eyes of their admirers constituted the strongest argument in favour of these theories. It began to dawn on me that this apparent strength was in fact their weakness.... It is easy to obtain confirmations or verifications, for nearly every theory-if we look for confirmation. (Popper, 1968, pp. 3435)
       5) Psychoanalysis Is Not a Science But Rather the Interpretation of a Narrated History
       Psychoanalysis does not satisfy the standards of the sciences of observation, and the "facts" it deals with are not verifiable by multiple, independent observers.... There are no "facts" nor any observation of "facts" in psychoanalysis but rather the interpretation of a narrated history. (Ricoeur, 1974, p. 186)
       6) Some of the Qualities of a Scientific Approach Are Possessed by Psychoanalysis
       In sum: psychoanalysis is not a science, but it shares some of the qualities associated with a scientific approach-the search for truth, understanding, honesty, openness to the import of the observation and evidence, and a skeptical stance toward authority. (Breger, 1981, p. 50)
       [Attributes of Psychoanalysis:]
       1. Psychic Determinism. No item in mental life and in conduct and behavior is "accidental"; it is the outcome of antecedent conditions.
       2. Much mental activity and behavior is purposive or goal-directed in character.
       3. Much of mental activity and behavior, and its determinants, is unconscious in character. 4. The early experience of the individual, as a child, is very potent, and tends to be pre-potent over later experience. (Farrell, 1981, p. 25)
       Our sceptic may be unwise enough... to maintain that, because analytic theory is unscientific on his criterion, it is not worth discussing. This step is unwise, because it presupposes that, if a study is not scientific on his criterion, it is not a rational enterprise... an elementary and egregious mistake. The scientific and the rational are not co-extensive. Scientific work is only one form that rational inquiry can take: there are many others. (Farrell, 1981, p. 46)
       Psychoanalysts have tended to write as though the term analysis spoke for itself, as if the statement "analysis revealed" or "it was analyzed as" preceding a clinical assertion was sufficient to establish the validity of what was being reported. An outsider might easily get the impression from reading the psychoanalytic literature that some standardized, generally accepted procedure existed for both inference and evidence. Instead, exactly the opposite has been true. Clinical material in the hands of one analyst can lead to totally different "findings" in the hands of another. (Peterfreund, 1986, p. 128)
       The analytic process-the means by which we arrive at psychoanalytic understanding-has been largely neglected and is poorly understood, and there has been comparatively little interest in the issues of inference and evidence. Indeed, psychoanalysts as a group have not recognized the importance of being bound by scientific constraints. They do not seem to understand that a possibility is only that-a possibility-and that innumerable ways may exist to explain the same data. Psychoanalysts all too often do not seem to distinguish hypotheses from facts, nor do they seem to understand that hypotheses must be tested in some way, that criteria for evidence must exist, and that any given test for any hypothesis must allow for the full range of substantiation/refutation. (Peterfreund, 1986, p. 129)

    Historical dictionary of quotations in cognitive science > Psychoanalysis

  • 63 Brown, Andrew

    SUBJECT AREA: Ports and shipping
    [br]
    b. October 1825 Glasgow, Scotland
    d. 6 May 1907 Renfrew, Scotland
    [br]
    Scottish engineer and specialist shipbuilder, dredge-plant authority and supplier.
    [br]
    Brown commenced his apprenticeship on the River Clyde in the late 1830s, working for some of the most famous marine engineering companies and ultimately with the Caledonian Railway Company. In 1850 he joined the shipyard of A. \& J.Inglis Ltd of Partick as Engineering Manager; during his ten years there he pioneered the fitting of link-motion valve gear to marine engines. Other interesting engines were built, all ahead of their time, including a three-cylinder direct-acting steam engine.
    His real life's work commenced in 1860 when he entered into partnership with the Renfrew shipbuilder William Simons. Within one year he had designed the fast Clyde steamer Rothesay Castle, a ship less than 200 ft (61 m) long, yet which steamed at c.20 knots and subsequently became a notable American Civil War blockade runner. At this time the company also built the world's first sailing ship with wire-rope rigging. Within a few years of joining the shipyard on the Cart (a tributary of the Clyde), he had designed the first self-propelled hopper barges built in the United Kingdom. He then went on to design, patent and supervise the building of hopper dredges, bucket ladder dredges and sand dredges, which by the end of the century had capacity of 10,000 tons per hour. In 1895 they built an enclosed hopper-type ship which was the prototype of all subsequent sewage-dumping vessels. Typical of his inventions was the double-ended screw-elevating deck ferry, a ship of particular value in areas where there is high tidal range. Examples of this design are still to be found in many seaports of the world. Brown ultimately became Chairman of Simons shipyard, and in his later years took an active part in civic affairs, serving for fifteen years as Provost of Renfrew. His influence in establishing Renfrew as one of the world's centres of excellence in dredge design and building was considerable, and he was instrumental in bringing several hundred ship contracts of a specialist nature to the River Clyde.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Engineers and Shipbuilders in Scotland.
    Bibliography
    A Century of Shipbuilding 1810 to 1910, Renfrew: Wm Simons.
    Further Reading
    F.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge.
    FMW

    Biographical history of technology > Brown, Andrew

  • 64 Grimthorpe (of Grimthorpe), Edmund Beckett, Baron

    SUBJECT AREA: Horology
    [br]
    b. 12 May 1816 Newark, Nottinghamshire, England
    d. 29 April 1905 St Albans, Hertfordshire, England
    [br]
    English lawyer and amateur horologist who was the first successfully to apply the gravity escapement to public clocks.
    [br]
    Born Edmund Beckett Denison, he was educated at Eton and Trinity College, Cambridge, where he studied mathematics, graduating in 1838. He was called to the Bar in 1841 and became a Queen's Counsel in 1854. He built up a large and lucrative practice which gave him the independence to pursue his many interests outside law. His interest in horology may have been stimulated by a friend and fellow lawyer, J.M. Bloxham, who interestingly had invented a gravity escapement with an affinity to the escapement eventually used by Denison. Denison studied horology with his usual thoroughness and by 1850 he had published his Rudimentary Treatise on Clock and Watchmaking. It was natural, therefore, that he should have been invited to be a referee when a disagreement arose over the design of the clock for the new Houses of Parliament. Typically, he interpreted his brief very liberally and designed the clock himself. The most distinctive feature of the clock, in its final form, was the incorporation of a gravity escapement. A gravity escapement was particularly desirable in a public clock as it enabled the pendulum to receive a constant impulse (and thus swing with a constant amplitude), despite the variable forces that might be exerted by the wind on the exposed hands. The excellent performance of the prestigious clock at Westminster made Denison's form of gravity escapement de rigueur for large mechanical public clocks produced in Britain and in many other countries. In 1874 he inherited his father's baronetcy, dropping the Denison name, but later adopted the name Grimthorpe when he was created a Baron in 1886.
    [br]
    Principal Honours and Distinctions
    Peerage 1886. President, British Horological Institute 1868–1905.
    Bibliography
    His highly idiosyncratic A Rudimentary Treatise on Clocks and Watchmaking first published in 1850, went through eight editions, with slight changes of title, and became the most influential work in English on the subject of public clocks.
    Further Reading
    Vaudrey Mercer, 1977, The Life and Letters of Edward John Dent, London, pp. 650–1 (provides biographical information relating to horology; also contains a reliable account of Denison's involvement with the clock at Westminster).
    A.L.Rawlings, 1948, The Science of Clocks and Watcher, repub. 1974, pp. 98–102 (provides a technical assessment of Denison's escapement).
    DV

    Biographical history of technology > Grimthorpe (of Grimthorpe), Edmund Beckett, Baron

  • 65 Varian, Sigurd Fergus

    [br]
    b. 4 May 1901 Syracuse, New York, USA
    d. 18 October 1961 Puerto Vallarta, Mexico
    [br]
    American electrical engineer who, with his brother Russell, developed the klystron microwave tube.
    [br]
    Sigurd Varian left school in 1920 and entered California Polytechnic to study engineering, but he soon dropped out and trained as an electrician, taking up employment with the Southern Californian Edison Company. As a result of working on an airfield he developed an interest in flying. He took lessons and in 1924 bought a First World War biplane and became a "barnstorming" pilot, giving flying displays and joy-rides, etc., to earn his living. Beset by several prolonged bouts of tuberculosis, he used his periods of recuperation to study aerial navigation and to devise navigation instruments. In 1929 he took a permanent job as a pilot for Pan American in Mexico, but in 1935 he went to California to work on electron tubes with his younger brother, Eric. They were soon joined by Russell, and with William Hansen they developed the klystron. For details of this part of his life and the founding of Varian Associates, see under Russell Varian. In later years, his health increasingly poor, he lived in semi-retirement in Mexico, where he died in a plane crash while flying himself home.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Medal.
    Bibliography
    1939, with R.S.Varian, "High frequency oscillator and amplifier", Journal of Applied Physics 10:321 (describes the klystron).
    Further Reading
    J.R.Pierce, 1962, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers 979 (provides background to development of the klystron).
    D.Varian, 1983, The Inventor and the Pilot (biographies of the brothers).
    KF

    Biographical history of technology > Varian, Sigurd Fergus

  • 66 Mathematics

       The world of mathematics, which you contemn, is really a beautiful world; it has nothing to do with life and death and human sordidness, but is eternal, cold and passionless. To me pure mathematics is one of the highest forms of art; it has a sublimity quite special to itself, and an immense dignity derived from the fact that its world is exempt from change and time. I am quite serious in this....
    athematics is the only thing we know of that is capable of perfection; in thinking about it we become Gods. (Russell [to Helen Thomas, 30 December 1901], 1992, Letter No. 98, p. 224)
       One of the deepest problems of nature is the success of mathematics as a language for describing and discovering features of physical reality. In short, why does mathematics work?...
       We humans have stripped back the clouds that cloak our understanding of our cosmic beginning and our current persistence to the stage that exposes the mathematical structure of the world more clearly than it has ever been observed before.... Furthermore, the attention of seriously equipped thinkers, those thinkers we call scientists, is at last beginning to turn to that other great conundrum of being: consciousness.... If we can understand why that supreme construct of the human intellect, that archdisembodiment of intellect, mathematics, works as a description of the world, then maybe we shall have an insight into cognition....
       The name deep structuralism is intended to convey the idea that the physical world has the same logical structure as mathematics. By implication, the reason why mathematics works as a description of physical reality is that they share the same logical structure.
    ... By weak deep structuralism I shall mean that mathematics and physical reality merely share the same logical structure and mathematics is a mirror that can be held up to nature. By strong deep structuralism I shall mean that mathematics and physical reality do not merely share the same logical structure but are actually the same. In other words, according to the hypothesis of strong deep structuralism, physical reality is mathematics and mathematics is physical reality.... The reason why we may be conscious of the world, including the inner, introspective world of emotion and intellect, may be that our brains are material portrayals of the same deep structure. That may also be the reason why brains can generate the mathematics that we need to comprehend the world. (Atkins, 1992, pp. 99-101, 109-111)

    Historical dictionary of quotations in cognitive science > Mathematics

  • 67 change management

    Gen Mgt
    the coordination of a structured period of transition from situation A to situation B in order to achieve lasting change within an organization. Change management can be of varying scope, from continuous improvement, which involves small ongoing changes to existing processes, to radical and substantial change involving organizational strategy. Change management can be reactive or proactive. It can be instigated in reaction to something in an organization’s external environment, for example, in the realms of economics, politics, legislation, or competition, or in reaction to something within the processes, structures, people, and events of the organization’s internal environment. It may also be instigated as a proactive measure, for example, in anticipation of unfavorable economic conditions in the future. Change management usually follows five steps: recognition of a trigger indicating that change is needed; clarification of the end point, or “where we want to be”; planning how to achieve the change; accomplishment of the transition; and maintenance to ensure the change is lasting. Effective change management involves alterations on a personal level, for example, a shift in attitudes or work routines, and thus personnel management skills such as motivation are vital to successful change. Other important influences on the success of change management include leadership style, communication, and a unified positive attitude to the change among the workforce. Business process reengineering is one type of change management, involving the redesign of processes within an organization to raise performance. Change agents are those people within an organization who are leaders and champions of the change process. With the accelerating pace of change in the business environment in the 1990s and 2000s, change has become accepted as a fact of business life and is the subject of books on management.

    The ultimate business dictionary > change management

  • 68 employee commitment

    HR
    the psychological bond of an employee to an organization, the strength of which depends on the degree of employee involvement, employee loyalty, and belief in the values of the organization. Employee commitment was badly damaged in the late 20th century during corporate reorganizations and downsizing, which undermined job security and resulted in fewer promotion opportunities. This led to the renegotiation of the psychological contract and the need to develop strategies for increasing commitment. These included flexible working and work-life balance policies, teamwork, training and development, employee participation, and empowerment.

    The ultimate business dictionary > employee commitment

  • 69 Pascal, Blaise

    [br]
    b. 19 June 1623 Clermont Ferrand, France
    d. 19 August 1662 Paris, France
    [br]
    French mathematician, physicist and religious philosopher.
    [br]
    Pascal was the son of Etienne Pascal, President of the Court of Aids. His mother died when he was 3 years old and he was brought up largely by his two sisters, one of whom was a nun at Port Royal. They moved to Paris in 1631 and again to Rouen ten years later. He received no formal education. In 1654 he was involved in a carriage accident in which he saw a mystical vision of God and from then on confined himself to philosophical rather than scientific matters. In the field of mathematics he is best known for his work on conic sections and on the laws of probability. As a youth he designed a calculating machine of which, it is said, some seventy were made. His main contribution to technology was his elucidation of the laws of hydrostatics which formed the basis of all hydrostatic machines in subsequent years. Pascal, however, did not put these laws to any practical use: that was left to the English cabinet-maker and engineer Joseph Bramah more than a century later. Suffering from indifferent health, Pascal persuaded his brother-in-law Périer to repeat the experiments of Evangelista Torricelli on the pressure of the atmosphere. This involved climbing the 4,000 ft (1,220 m) of the Puy de Dôme, a mountain close to Clermont, with a heavy mercury-in-glass barometer. The experiment was reported in the 1647 pamphlet "Expériences nouvelles touchant le vide". The Hydrostatic Law was laid down by Pascal in Traité de l'équilibre des liqueurs, published a year after his death. In this he established the fact that in a fluid at rest the pressure is transmitted equally in all directions.
    [br]
    Bibliography
    1647, "Expériences nouvelles touchant le vide". 1663, Traité de l'équilibre des liqueurs.
    Further Reading
    J.Mesnard, 1951, Pascal, His Life and Works.
    I.McNeil, 1972, Hydraulic Power, London: Longmans.
    IMcN

    Biographical history of technology > Pascal, Blaise

  • 70 Aspinall, Sir John Audley Frederick

    [br]
    b. 25 August 1851 Liverpool, England
    d. 19 January 1937 Woking, England
    [br]
    English mechanical engineer, pioneer of the automatic vacuum brake for railway trains and of railway electrification.
    [br]
    Aspinall's father was a QC, Recorder of Liverpool, and Aspinall himself became a pupil at Crewe Works of the London \& North Western Railway, eventually under F.W. Webb. In 1875 he was appointed Manager of the works at Inchicore, Great Southern \& Western Railway, Ireland. While he was there, some of the trains were equipped, on trial, with continuous brakes of the non-automatic vacuum type. Aspinall modified these to make them automatic, i.e. if the train divided, brakes throughout both parts would be applied automatically. Aspinall vacuum brakes were subsequently adopted by the important Great Northern, Lancashire \& Yorkshire, and London \& North Western Railways.
    In 1883, aged only 32, Aspinall was appointed Locomotive Superintendent of the Great Southern \& Western Railway, but in 1886 he moved in the same capacity to the Lancashire \& Yorkshire Railway, where his first task was to fit out the new works at Horwich. The first locomotive was completed there in 1889, to his design. In 1899 he introduced a 4–4–2, the largest express locomotive in Britain at the time, some of which were fitted with smokebox superheaters to Aspinall's design.
    Unusually for an engineer, in 1892 Aspinall was appointed General Manager of the Lancashire \& Yorkshire Railway. He electrified the Liverpool-Southport line in 1904 at 600 volts DC with a third rail; this was an early example of main-line electrification, for it extended beyond the Liverpool suburban area. He also experimented with 3,500 volt DC overhead electrification of the Bury-Holcombe Brook branch in 1913, but converted this to 1,200 volts DC third rail to conform with the Manchester-Bury line when this was electrified in 1915. In 1918 he was made a director of the Lancashire \& Yorkshire Railway.
    [br]
    Principal Honours and Distinctions
    Knighted 1917. President, Institution of Mechanical Engineers 1909. President, Institution of Civil Engineers 1918.
    Further Reading
    H.A.V.Bulleid, 1967, The Aspinall Era, Shepperton: Ian Allan (provides a good account of Aspinall and his life's work).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 19 (a good brief account).
    PJGR

    Biographical history of technology > Aspinall, Sir John Audley Frederick

  • 71 Tagliacocci, Gaspard

    SUBJECT AREA: Medical technology
    [br]
    b. 1546 Bologna, Italy
    d. 7 November 1599 Bologna, Italy
    [br]
    Italian physician, surgeon and anatomist, first exponent of plastic surgery and other cosmetic surgery techniques.
    [br]
    He studied at Bologna University and took his degree in medicine at the age of 24. He was later appointed Professor of Surgery and of Anatomy. In his writings he appears to have preceded some of the work of Paré and gives a detailed account of rhinoplasty facilitated by the deployment of strips of skin. He also described a type of artificial eye resembling Paré's ekblepharon. His surgical skill appears to have been highly regarded by his contemporaries.
    [br]
    Bibliography
    1598, Chirurgerie Nova de Narium, Aurium, Labiorum que Defecta per Institutionem Cutis ex Humero, arte hactenus omnibus ignota sarciendo, Frankfurt.
    Further Reading
    H.Reichner, 1950, The Life and Times of Gaspere Tagliacozzi.
    MG

    Biographical history of technology > Tagliacocci, Gaspard

  • 72 kaizen

    Gen Mgt, Ops
    the Japanese term for the continuous improvement of current processes. Kaizen is derived from the words “kai,” meaning “change,” and “zen,” meaning “good” or “for the better.” It is a philosophy that can be applied to any area of life, but its application has been most famously developed at the Toyota Motor Company, and it underlies the philosophy of total quality management. Under kaizen, continuous improvement can mean waste elimination, innovation, or working to new standards. The kaizen process makes use of a range of techniques, including small-group problem solving, statistical techniques, brainstorming, and work study. Although kaizen forms only part of a strategy of continuous improvement, for many employees it is the element that most closely affects them and is therefore synonymous with continuous improvement.

    The ultimate business dictionary > kaizen

  • 73 Creativity

       Put in this bald way, these aims sound utopian. How utopian they areor rather, how imminent their realization-depends on how broadly or narrowly we interpret the term "creative." If we are willing to regard all human complex problem solving as creative, then-as we will point out-successful programs for problem solving mechanisms that simulate human problem solvers already exist, and a number of their general characteristics are known. If we reserve the term "creative" for activities like discovery of the special theory of relativity or the composition of Beethoven's Seventh Symphony, then no example of a creative mechanism exists at the present time. (Simon, 1979, pp. 144-145)
       Among the questions that can now be given preliminary answers in computational terms are the following: how can ideas from very different sources be spontaneously thought of together? how can two ideas be merged to produce a new structure, which shows the influence of both ancestor ideas without being a mere "cut-and-paste" combination? how can the mind be "primed," so that one will more easily notice serendipitous ideas? why may someone notice-and remember-something fairly uninteresting, if it occurs in an interesting context? how can a brief phrase conjure up an entire melody from memory? and how can we accept two ideas as similar ("love" and "prove" as rhyming, for instance) in respect of a feature not identical in both? The features of connectionist AI models that suggest answers to these questions are their powers of pattern completion, graceful degradation, sensitization, multiple constraint satisfaction, and "best-fit" equilibration.... Here, the important point is that the unconscious, "insightful," associative aspects of creativity can be explained-in outline, at least-by AI methods. (Boden, 1996, p. 273)
       There thus appears to be an underlying similarity in the process involved in creative innovation and social independence, with common traits and postures required for expression of both behaviors. The difference is one of product-literary, musical, artistic, theoretical products on the one hand, opinions on the other-rather than one of process. In both instances the individual must believe that his perceptions are meaningful and valid and be willing to rely upon his own interpretations. He must trust himself sufficiently that even when persons express opinions counter to his own he can proceed on the basis of his own perceptions and convictions. (Coopersmith, 1967, p. 58)
       he average level of ego strength and emotional stability is noticeably higher among creative geniuses than among the general population, though it is possibly lower than among men of comparable intelligence and education who go into administrative and similar positions. High anxiety and excitability appear common (e.g. Priestley, Darwin, Kepler) but full-blown neurosis is quite rare. (Cattell & Butcher, 1970, p. 315)
       he insight that is supposed to be required for such work as discovery turns out to be synonymous with the familiar process of recognition; and other terms commonly used in the discussion of creative work-such terms as "judgment," "creativity," or even "genius"-appear to be wholly dispensable or to be definable, as insight is, in terms of mundane and well-understood concepts. (Simon, 1989, p. 376)
       From the sketch material still in existence, from the condition of the fragments, and from the autographs themselves we can draw definite conclusions about Mozart's creative process. To invent musical ideas he did not need any stimulation; they came to his mind "ready-made" and in polished form. In contrast to Beethoven, who made numerous attempts at shaping his musical ideas until he found the definitive formulation of a theme, Mozart's first inspiration has the stamp of finality. Any Mozart theme has completeness and unity; as a phenomenon it is a Gestalt. (Herzmann, 1964, p. 28)
       Great artists enlarge the limits of one's perception. Looking at the world through the eyes of Rembrandt or Tolstoy makes one able to perceive aspects of truth about the world which one could not have achieved without their aid. Freud believed that science was adaptive because it facilitated mastery of the external world; but was it not the case that many scientific theories, like works of art, also originated in phantasy? Certainly, reading accounts of scientific discovery by men of the calibre of Einstein compelled me to conclude that phantasy was not merely escapist, but a way of reaching new insights concerning the nature of reality. Scientific hypotheses require proof; works of art do not. Both are concerned with creating order, with making sense out of the world and our experience of it. (Storr, 1993, p. xii)
       The importance of self-esteem for creative expression appears to be almost beyond disproof. Without a high regard for himself the individual who is working in the frontiers of his field cannot trust himself to discriminate between the trivial and the significant. Without trust in his own powers the person seeking improved solutions or alternative theories has no basis for distinguishing the significant and profound innovation from the one that is merely different.... An essential component of the creative process, whether it be analysis, synthesis, or the development of a new perspective or more comprehensive theory, is the conviction that one's judgment in interpreting the events is to be trusted. (Coopersmith, 1967, p. 59)
       In the daily stream of thought these four different stages [preparation; incubation; illumination or inspiration; and verification] constantly overlap each other as we explore different problems. An economist reading a Blue Book, a physiologist watching an experiment, or a business man going through his morning's letters, may at the same time be "incubating" on a problem which he proposed to himself a few days ago, be accumulating knowledge in "preparation" for a second problem, and be "verifying" his conclusions to a third problem. Even in exploring the same problem, the mind may be unconsciously incubating on one aspect of it, while it is consciously employed in preparing for or verifying another aspect. (Wallas, 1926, p. 81)
       he basic, bisociative pattern of the creative synthesis [is] the sudden interlocking of two previously unrelated skills, or matrices of thought. (Koestler, 1964, p. 121)
        11) The Earliest Stages in the Creative Process Involve a Commerce with Disorder
       Even to the creator himself, the earliest effort may seem to involve a commerce with disorder. For the creative order, which is an extension of life, is not an elaboration of the established, but a movement beyond the established, or at least a reorganization of it and often of elements not included in it. The first need is therefore to transcend the old order. Before any new order can be defined, the absolute power of the established, the hold upon us of what we know and are, must be broken. New life comes always from outside our world, as we commonly conceive that world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." (Ghiselin, 1985, p. 4)
       New life comes always from outside our world, as we commonly conceive our world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." Chaos and disorder are perhaps the wrong terms for that indeterminate fullness and activity of the inner life. For it is organic, dynamic, full of tension and tendency. What is absent from it, except in the decisive act of creation, is determination, fixity, and commitment to one resolution or another of the whole complex of its tensions. (Ghiselin, 1952, p. 13)
       [P]sychoanalysts have principally been concerned with the content of creative products, and with explaining content in terms of the artist's infantile past. They have paid less attention to examining why the artist chooses his particular activity to express, abreact or sublimate his emotions. In short, they have not made much distinction between art and neurosis; and, since the former is one of the blessings of mankind, whereas the latter is one of the curses, it seems a pity that they should not be better differentiated....
       Psychoanalysis, being fundamentally concerned with drive and motive, might have been expected to throw more light upon what impels the creative person that in fact it has. (Storr, 1993, pp. xvii, 3)
       A number of theoretical approaches were considered. Associative theory, as developed by Mednick (1962), gained some empirical support from the apparent validity of the Remote Associates Test, which was constructed on the basis of the theory.... Koestler's (1964) bisociative theory allows more complexity to mental organization than Mednick's associative theory, and postulates "associative contexts" or "frames of reference." He proposed that normal, non-creative, thought proceeds within particular contexts or frames and that the creative act involves linking together previously unconnected frames.... Simonton (1988) has developed associative notions further and explored the mathematical consequences of chance permutation of ideas....
       Like Koestler, Gruber (1980; Gruber and Davis, 1988) has based his analysis on case studies. He has focused especially on Darwin's development of the theory of evolution. Using piagetian notions, such as assimilation and accommodation, Gruber shows how Darwin's system of ideas changed very slowly over a period of many years. "Moments of insight," in Gruber's analysis, were the culminations of slow long-term processes.... Finally, the information-processing approach, as represented by Simon (1966) and Langley et al. (1987), was considered.... [Simon] points out the importance of good problem representations, both to ensure search is in an appropriate problem space and to aid in developing heuristic evaluations of possible research directions.... The work of Langley et al. (1987) demonstrates how such search processes, realized in computer programs, can indeed discover many basic laws of science from tables of raw data.... Boden (1990a, 1994) has stressed the importance of restructuring the problem space in creative work to develop new genres and paradigms in the arts and sciences. (Gilhooly, 1996, pp. 243-244; emphasis in original)

    Historical dictionary of quotations in cognitive science > Creativity

  • 74 Owen, Robert

    SUBJECT AREA: Textiles
    [br]
    b. 14 May 1771 Newtown, Montgomeryshire, Wales
    d. 17 November 1858 Newtown, Montgomeryshire, Wales
    [br]
    Welsh cotton spinner and social reformer.
    [br]
    Robert Owen's father was also called Robert and was a saddler, ironmonger and postmaster of Newtown in Montgomeryshire. Robert, the younger, injured his digestion as a child by drinking some scalding hot "flummery", which affected him for the rest of his life. He developed a passion for reading and through this visited London when he was 10 years old. He started work as a pedlar for someone in Stamford and then went to a haberdasher's shop on old London Bridge in London. Although he found the work there too hard, he stayed in the same type of employment when he moved to Manchester.
    In Manchester Owen soon set up a partnership for making bonnet frames, employing forty workers, but he sold the business and bought a spinning machine. This led him in 1790 into another partnership, with James M'Connel and John Kennedy in a spinning mill, but he moved once again to become Manager of Peter Drink-water's mill. These were all involved in fine spinning, and Drinkwater employed 500 people in one of the best mills in the city. In spite of his youth, Owen claims in his autobiography (1857) that he mastered the job within six weeks and soon improved the spinning. This mill was one of the first to use Sea Island cotton from the West Indies. To have managed such an enterprise so well Owen must have had both managerial and technical ability. Through his spinning connections Owen visited Glasgow, where he met both David Dale and his daughter Anne Caroline, whom he married in 1799. It was this connection which brought him to Dale's New Lanark mills, which he persuaded Dale to sell to a Manchester consortium for £60,000. Owen took over the management of the mills on 1 January 1800. Although he had tried to carry out social reforms in the manner of working at Manchester, it was at New Lanark that Owen acquired fame for the way in which he improved both working and living conditions for the 1,500-strong workforce. He started by seeing that adequate food and groceries were available in that remote site and then built both the school and the New Institution for the Formation of Character, which opened in January 1816. To the pauper children from the Glasgow and Edinburgh slums he gave a good education, while he tried to help the rest of the workforce through activities at the Institution. The "silent monitors" hanging on the textile machines, showing the performance of their operatives, are famous, and many came to see his social experiments. Owen was soon to buy out his original partners for £84,000.
    Among his social reforms were his efforts to limit child labour in mills, resulting in the Factory Act of 1819. He attempted to establish an ideal community in the USA, to which he sailed in 1824. He was to return to his village of "Harmony" twice more, but broke his connection in 1828. The following year he finally withdrew from New Lanark, where some of his social reforms had been abandoned.
    [br]
    Bibliography
    1857, The Life of Robert Owen, Written by Himself, London.
    Further Reading
    G.D.H.Cole, 1965, Life of Robert Owen (biography).
    J.Butt (ed.), 1971, Robert Owen, Prince of Cotton Spinners, Newton Abbot; S.Pollard and J.Salt (eds), 1971, Robert Owen, Prophet of the Poor. Essays in Honour of the
    Two-Hundredth Anniversary of His Birth, London (both describe Owen's work at New Lanark).
    RLH

    Biographical history of technology > Owen, Robert

  • 75 Fairbairn, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 19 February 1789 Kelso, Roxburghshire, Scotland
    d. 18 August 1874 Farnham, Surrey, England
    [br]
    Scottish engineer and shipbuilder, pioneer in the use of iron in structures.
    [br]
    Born in modest circumstances, Fairbairn nevertheless enjoyed a broad and liberal education until around the age of 14. Thereafter he served an apprenticeship as a millwright in a Northumberland colliery. This seven-year period marked him out as a man of determination and intellectual ability; he planned his life around the practical work of pit-machinery maintenance and devoted his limited free time to the study of mathematics, science and history as well as "Church, Milton and Recreation". Like many before and countless thousands after, he worked in London for some difficult and profitless years, and then moved to Manchester, the city he was to regard as home for the rest of his life. In 1816 he was married. Along with a workmate, James Lillie, he set up a general engineering business, which steadily enlarged and ultimately involved both shipbuilding and boiler-making. The partnership was dissolved in 1832 and Fairbairn continued on his own. Consultancy work commissioned by the Forth and Clyde Canal led to the construction of iron steamships by Fairbairn for the canal; one of these, the PS Manchester was lost in the Irish Sea (through the little-understood phenomenon of compass deviation) on her delivery voyage from Manchester to the Clyde. This brought Fairbairn to the forefront of research in this field and confirmed him as a shipbuilder in the novel construction of iron vessels. In 1835 he operated the Millwall Shipyard on the Isle of Dogs on the Thames; this is regarded as one of the first two shipyards dedicated to iron production from the outset (the other being Tod and MacGregor of Glasgow). Losses at the London yard forced Fairbairn to sell off, and the yard passed into the hands of John Scott Russell, who built the I.K. Brunel -designed Great Eastern on the site. However, his business in Manchester went from strength to strength: he produced an improved Cornish boiler with two firetubes, known as the Lancashire boiler; he invented a riveting machine; and designed the beautiful swan-necked box-structured crane that is known as the Fairbairn crane to this day.
    Throughout his life he advocated the widest use of iron; he served on the Admiralty Committee of 1861 investigating the use of this material in the Royal Navy. In his later years he travelled widely in Europe as an engineering consultant and published many papers on engineering. His contribution to worldwide engineering was recognized during his lifetime by the conferment of a baronetcy by Queen Victoria.
    [br]
    Principal Honours and Distinctions
    Created Baronet 1869. FRS 1850. Elected to the Academy of Science of France 1852. President, Institution of Mechnical Engineers 1854. Royal Society Gold Medal 1860. President, British Association 1861.
    Bibliography
    Fairbairn wrote many papers on a wide range of engineering subjects from water-wheels to iron metallurgy and from railway brakes to the strength of iron ships. In 1856 he contributed the article on iron to the 8th edition of Encyclopaedia Britannica.
    Further Reading
    W.Pole (ed.), 1877, The Life of Sir William Fairbairn Bart, London: Longmans Green; reprinted 1970, David and Charles Reprints (written in part by Fairbairn, but completed and edited by Pole).
    FMW

    Biographical history of technology > Fairbairn, William

  • 76 Tideman, Bruno Joannes

    SUBJECT AREA: Ports and shipping
    [br]
    b. 7 August 1834 Amsterdam, The Netherlands
    d. 11 February 1883 Amsterdam, The Netherlands
    [br]
    Dutch naval architect and constructor, early hydrodyna midst.
    [br]
    The first thirty years of Tideman's life followed the normal pattern for a naval architect: study at the Breda Military Academy, work in the Royal Dockyards of Vlissingen as a constructor and then experience in the United Kingdom "standing by" an armoured vessel being built for the Dutch at Birkenhead. Tideman took the opportunity to acquaint himself with current developments in British shipyards and to study the work of Macquorn Rankine at Glasgow University.
    On his return to the Netherlands he was given the task of adapting the Royal Dockyard of Amsterdam for ironclad construction and from 1870 iron ships were built there. From 1868 until 1873 he taught shipbuilding at what was then the Delft Polytechnic, but resigned on his appointment as Chief Naval Constructor of Holland.
    Through representations to appropriate authority he assisted in founding the great shipyard Koninklijke Maatschappij "De Schelde" and in the setting up of Dutch ferry services across the North Sea. His interest in ship design and in the pioneering work of William Froude led to the founding of the world's second ship model test tank in 1876 in a sheltered part of the Royal Amsterdam Dockyard. The design was based on Froude's Torquay Tank.
    As Scotland's first tank was not opened until 1883, he attracted work from the Clyde, including the testing of the Russian Imperial Yacht Livadia built by Elder's of Glasgow. This contract was so critical that it was agreed that a quartersize model be tested on Loch Lomond. Throughout his life he was respected as an all-round engineer and consultancy work flowed in, the vast bulk of it from Britain. Continual trying to improve standards, Tideman was working on a development plan for Dutch shipbuilding at the time of his death.
    [br]
    Further Reading
    J.M.Dirkzwager, 1970, Bruno Joannes Tideman 1834–1883. Grondlegger van de Moderne Scheepsbouw in Nederland, Leiden.
    FMW

    Biographical history of technology > Tideman, Bruno Joannes

  • 77 Jeanneret, Charles-Edouard (Le Corbusier)

    [br]
    b. 6 October 1887 La Chaux-de-Fonds, Switzerland
    d. 27 August 1965 Cap Martin, France
    [br]
    Swiss/French architect.
    [br]
    The name of Le Corbusier is synonymous with the International style of modern architecture and city planning, one utilizing functionalist designs carried out in twentieth-century materials with modern methods of construction. Charles-Edouard Jeanneret, born in the watch-making town of La Chaux-de-Fonds in the Jura mountain region, was the son of a watch engraver and dial painter. In the years before 1918 he travelled widely, studying building in many countries. He learned about the use of reinforced concrete in the studio of Auguste Perret and about industrial construction under Peter Behrens. In 1917 he went to live in Paris and spent the rest of his life in France; in 1920 he adopted the name of Le Corbusier, one derived from that of his ancestors (Le Corbesier), and ten years later became a French citizen.
    Le Corbusier's long working life spanned a career divided into three distinct parts. Between 1905 and 1916 he designed a number of simple and increasingly modern houses; the years 1921 to 1940 were ones of research and debate; and the twenty years from 1945 saw the blossoming of his genius. After 1917 Le Corbusier gained a reputation in Paris as an architect of advanced originality. He was particularly interested in low-cost housing and in improving accommodation for the poor. In 1923 he published Vers une architecture, in which he planned estates of mass-produced houses where all extraneous and unnecessary features were stripped away and the houses had flat roofs and plain walls: his concept of "a machine for living in". These white boxes were lifted up on stilts, his pilotis, and double-height living space was provided internally, enclosed by large areas of factory glazing. In 1922 Le Corbusier exhibited a city plan, La Ville contemporaine, in which tall blocks made from steel and concrete were set amongst large areas of parkland, replacing the older concept of city slums with the light and air of modern living. In 1925 he published Urbanisme, further developing his socialist ideals. These constituted a major reform of the industrial-city pattern, but the ideas were not taken up at that time. The Depression years of the 1930s severely curtailed architectural activity in France. Le Corbusier designed houses for the wealthy there, but most of his work prior to 1945 was overseas: his Centrosoyus Administration Building in Moscow (1929–36) and the Ministry of Education Building in Rio de Janeiro (1943) are examples. Immediately after the end of the Second World War Le Corbusier won international fame for his Unité d'habitation theme, the first example of which was built in the boulevard Michelet in Marseille in 1947–52. His answer to the problem of accommodating large numbers of people in a small space at low cost was to construct an immense all-purpose block of pre-cast concrete slabs carried on a row of massive central supports. The Marseille Unité contains 350 apartments in eight double storeys, with a storey for shops half-way up and communal facilities on the roof. In 1950 he published Le Modular, which described a system of measurement based upon the human male figure. From this was derived a relationship of human and mathematical proportions; this concept, together with the extensive use of various forms of concrete, was fundamental to Le Corbusier's later work. In the world-famous and highly personal Pilgrimage Church of Notre Dame du Haut at Ronchamp (1950–5), Le Corbusier's work was in Expressionist form, a plastic design in massive rough-cast concrete, its interior brilliantly designed and lit. His other equally famous, though less popular, ecclesiastical commission showed a contrasting theme, of "brutalist" concrete construction with uncompromisingly stark, rectangular forms. This is the Dominican Convent of Sainte Marie de la Tourette at Eveux-sur-l'Arbresle near Lyon, begun in 1956. The interior, in particular, is carefully worked out, and the lighting, from both natural and artificial sources, is indirect, angled in many directions to illuminate vistas and planes. All surfaces are carefully sloped, the angles meticulously calculated to give optimum visual effect. The crypt, below the raised choir, is painted in bright colours and lit from ceiling oculi.
    One of Le Corbusier's late works, the Convent is a tour de force.
    [br]
    Principal Honours and Distinctions
    Honorary Doctorate Zurich University 1933. Honorary Member RIBA 1937. Chevalier de la Légion d'honneur 1937. American Institute of Architects Gold Medal 1961. Honorary Degree University of Geneva 1964.
    Bibliography
    His chief publications, all of which have been numerously reprinted and translated, are: 1923, Vers une architecture.
    1935, La Ville radieuse.
    1946, Propos d'urbanisme.
    1950, Le Modular.
    Further Reading
    P.Blake, 1963, Le Corbusier: Architecture and Form, Penguin. R.Furneaux-Jordan, 1972, Le Corbusier, Dent.
    W.Boesiger, 1970, Le Corbusier, 8 vols, Thames and Hudson.
    ——1987, Le Corbusier: Architect of the Century, Arts Council of Great Britain.
    DY

    Biographical history of technology > Jeanneret, Charles-Edouard (Le Corbusier)

  • 78 Nobel, Immanuel

    [br]
    b. 1801 Gävle, Sweden
    d. 3 September 1872 Stockholm, Sweden
    [br]
    Swedish inventor and industrialist, particularly noted for his work on mines and explosives.
    [br]
    The son of a barber-surgeon who deserted his family to serve in the Swedish army, Nobel showed little interest in academic pursuits as a child and was sent to sea at the age of 16, but jumped ship in Egypt and was eventually employed as an architect by the pasha. Returning to Sweden, he won a scholarship to the Stockholm School of Architecture, where he studied from 1821 to 1825 and was awarded a number of prizes. His interest then leaned towards mechanical matters and he transferred to the Stockholm School of Engineering. Designs for linen-finishing machines won him a prize there, and he also patented a means of transforming rotary into reciprocating movement. He then entered the real-estate business and was successful until a fire in 1833 destroyed his house and everything he owned. By this time he had married and had two sons, with a third, Alfred (of Nobel Prize fame; see Alfred Nobel), on the way. Moving to more modest quarters on the outskirts of Stockholm, Immanuel resumed his inventions, concentrating largely on India rubber, which he applied to surgical instruments and military equipment, including a rubber knapsack.
    It was talk of plans to construct a canal at Suez that first excited his interest in explosives. He saw them as a means of making mining more efficient and began to experiment in his backyard. However, this made him unpopular with his neighbours, and the city authorities ordered him to cease his investigations. By this time he was deeply in debt and in 1837 moved to Finland, leaving his family in Stockholm. He hoped to interest the Russians in land and sea mines and, after some four years, succeeded in obtaining financial backing from the Ministry of War, enabling him to set up a foundry and arms factory in St Petersburg and to bring his family over. By 1850 he was clear of debt in Sweden and had begun to acquire a high reputation as an inventor and industrialist. His invention of the horned contact mine was to be the basic pattern of the sea mine for almost the next 100 years, but he also created and manufactured a central-heating system based on hot-water pipes. His three sons, Ludwig, Robert and Alfred, had now joined him in his business, but even so the outbreak of war with Britain and France in the Crimea placed severe pressures on him. The Russians looked to him to convert their navy from sail to steam, even though he had no experience in naval propulsion, but the aftermath of the Crimean War brought financial ruin once more to Immanuel. Amongst the reforms brought in by Tsar Alexander II was a reliance on imports to equip the armed forces, so all domestic arms contracts were abruptly cancelled, including those being undertaken by Nobel. Unable to raise money from the banks, Immanuel was forced to declare himself bankrupt and leave Russia for his native Sweden. Nobel then reverted to his study of explosives, particularly of how to adapt the then highly unstable nitroglycerine, which had first been developed by Ascanio Sobrero in 1847, for blasting and mining. Nobel believed that this could be done by mixing it with gunpowder, but could not establish the right proportions. His son Alfred pursued the matter semi-independently and eventually evolved the principle of the primary charge (and through it created the blasting cap), having taken out a patent for a nitroglycerine product in his own name; the eventual result of this was called dynamite. Father and son eventually fell out over Alfred's independent line, but worse was to follow. In September 1864 Immanuel's youngest son, Oscar, then studying chemistry at Uppsala University, was killed in an explosion in Alfred's laboratory: Immanuel suffered a stroke, but this only temporarily incapacitated him, and he continued to put forward new ideas. These included making timber a more flexible material through gluing crossed veneers under pressure and bending waste timber under steam, a concept which eventually came to fruition in the form of plywood.
    In 1868 Immanuel and Alfred were jointly awarded the prestigious Letterstedt Prize for their work on explosives, but Alfred never for-gave his father for retaining the medal without offering it to him.
    [br]
    Principal Honours and Distinctions
    Imperial Gold Medal (Russia) 1853. Swedish Academy of Science Letterstedt Prize (jointly with son Alfred) 1868.
    Bibliography
    Immanuel Nobel produced a short handwritten account of his early life 1813–37, which is now in the possession of one of his descendants. He also had published three short books during the last decade of his life— Cheap Defence of the Country's Roads (on land mines), Cheap Defence of the Archipelagos (on sea mines), and Proposal for the Country's Defence (1871)—as well as his pamphlet (1870) on making wood a more physically flexible product.
    Further Reading
    No biographies of Immanuel Nobel exist, but his life is detailed in a number of books on his son Alfred.
    CM

    Biographical history of technology > Nobel, Immanuel

  • 79 Smeaton, John

    [br]
    b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, England
    d. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England
    [br]
    English mechanical and civil engineer.
    [br]
    As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.
    In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.
    The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.
    On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.
    Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.
    [br]
    Principal Honours and Distinctions
    FRS 1753.
    Bibliography
    1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.
    Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.
    Further Reading
    S.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).
    LRD

    Biographical history of technology > Smeaton, John

  • 80 Albert, Prince Consort

    [br]
    b. 26 August 1819 The Rosenau, near Coburg, Germany
    d. 14 December 1861 Windsor Castle, England
    [br]
    German/British polymath and Prince Consort to Queen Victoria.
    [br]
    Albert received a sound education in the arts and sciences, carefully designed to fit him for a role as consort to the future Queen Victoria. After their marriage in 1840, Albert threw himself into the task of establishing his position as, eventually, Prince Consort and uncrowned king of England. By his undoubted intellectual gifts, unrelenting hard work and moral rectitude, Albert moulded the British constitutional monarchy into the form it retains to this day. The purchase in 1845 of the Osborne estate in the Isle of Wight provided not only the growing royal family with a comfortable retreat from London and public life, but Albert with full scope for his abilities as architect and planner. With Thomas Cubitt, the eminent engineer and contractor, Albert erected at Osborne one of the most remarkable buildings of the nineteenth century. He went on to design the house and estate at Balmoral in Scotland, another notable creation.
    Albert applied his abilities as architect and planner in the promotion of such public works as the London sewer system and, in practical form, the design of cottages for workers, such as those in south London, as well as those on the royal estates. Albert's other main contribution to technology was as educationist in a broad sense. In 1847, he was elected Chancellor of Cambridge University. He was appalled at the low standards and narrow curriculum prevailing there and at Oxford. He was no mere figurehead, but took a close and active interest in the University's affairs. With his powerful influence behind them, the reforming fellows were able to force measures to raise standards and widen the curriculum to take account, in particular, of the rapid progress in the natural sciences. Albert was instrumental in ending the lethargy of centuries and laying the foundations of the modern British university system.
    In 1847 the Prince became Secretary of the Royal Society of Arts. With Henry Cole, the noted administrator who shared Albert's concern for the arts, he promoted a series of exhibitions under the auspices of the Society. From these grew the idea of a great exhibition of the products of the decorative and industrial arts. It was Albert who decided that its scope should be international. As Chairman of the organizing committee, by sheer hard work he drove the project through to a triumphant conclusion. The success of the Exhibition earned it a handsome profit for which Albert had found a use even before it closed. The proceeds went towards the purchase of a site in South Kensington, for which he drew up a grand scheme for a complex of museums and colleges for the education of the people in the sciences and the arts. This largely came to fruition and South Kensington today is a fitting memorial to the Prince Consort's wisdom and concern for the public good.
    [br]
    Further Reading
    Sir Theodore Martin, 1875–80, The Life of His Royal Highness, the Prince Consort, 5 vols, London; German edn 1876; French edn 1883 (the classic life of the Prince).
    R.R.James, 1983, Albert, Prince Consort: A Biography, London: Hamish Hamilton (the standard modern biography).
    L.R.Day, 1989, "Resources for the study of the history of technology in the Science Museum Library", IATUL Quarterly 3:122–39 (provides a short account of the rise of South Kensington and its institutions).
    LRD

    Biographical history of technology > Albert, Prince Consort

См. также в других словарях:

  • Life and Work (magazine) — Life and Work is the editorially independent monthly magazine of the Church of Scotland. It was founded in 1879 by Archibald Hamilton Charteris (1835 1908). It incorporated the Mission Record of the Church of Scotland from 1900, and at the 1929… …   Wikipedia

  • Life and Work — may refer to *Committee of Christian Life and Work, a Church of Scotland committee *Life and Work (magazine), a Church of Scotland magazine *Life and Work (conference), a 1925 ecumenical conference and programme …   Wikipedia

  • Life and work of Ludwig van Beethoven — This is a detailed account of the life and work of Ludwig van Beethoven. For more on this composer, see the main article Ludwig van Beethoven for his family see Van Beethoven Family. Role of Musical Biography It is common for listeners to… …   Wikipedia

  • Life and Energy — is one of Isaac Asimov s most famous and popular scientific books. Fact|date=August 2007 Life and Energy is about the biological and physical world, and their contrasts and comparisons. The first chapters deal with the common questions of the… …   Wikipedia

  • Life and How to Survive It — is a self help psychology book written by therapist Robin Skynner and comedian John Cleese. The book is written in a question and answer form, with Cleese asking questions about relationships, and his therapist Skynner answering them.It is the… …   Wikipedia

  • Life and Fate — infobox Book | name = Life and Fate title orig = translator = author = Vasily Grossman illustrator = cover artist = country = U.S.S.R. language = Russian series = genre = publisher = release date = media type = pages = isbn = preceded by =… …   Wikipedia

  • Life's Work — infobox television show name = Life s Work genre = Sitcom runtime = Approx. 28 minutes country = USA network = ABC first aired = September 17, 1996 last aired = June 10, 1997 language = English num seasons = 1 num episodes = 18 creator =Warren… …   Wikipedia

  • Life and culture of Jats — The Life and culture of Jats is full of diversity and approaches most closely to that ascribed to the traditional Aryan colonists of India. The Jat lifestyle was designed to foster a martial spirit. As the situation changed, some Jats started… …   Wikipedia

  • Life, and Nothing More... — Infobox Film name = Life, and Nothing More... caption = Film poster director = Abbas Kiarostami producer = Ali Reza Zarrin writer = Abbas Kiarostami starring = Farhad Kheradmand Buba Bayour music = cinematography = Homayun Payvar editing = Abbas… …   Wikipedia

  • Life and background of David Paterson — David Paterson was born in Brooklyn to Portia and Basil Paterson, later a New York state senator and secretary of state, and deputy mayor of New York City.] His younger brother, Daniel, now works in the New York state court system. cite news… …   Wikipedia

  • Early life and military career of John McCain — The early life and military career of John Sidney McCain III spans forty five years (1936 ndash;1981). McCain s father and grandfather were admirals in the United States Navy. McCain was born in the Panama Canal Zone, and attended many schools… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»