Перевод: с английского на английский

с английского на английский

Electricity

  • 1 Electricity

    [br]
    Thomson, Sir William

    Biographical history of technology > Electricity

  • 2 Merz, Charles Hesterman

    [br]
    b. 5 October 1874 Gateshead, England
    d. 14 October 1940 London, England
    [br]
    English engineer who pioneered large-scale integration of electricity-supply networks, which led to the inauguration of the British grid system.
    [br]
    Merz was educated at Bootham School in York and Armstrong College in Newcastle. He served an apprenticeship with the Newcastle Electric Supply Company at their first power station, Pandon Dene, and part of his training was at Robey and Company of Lincoln, steam engine builders, and the British Thomson-Houston Company, electrical equipment manufacturers. After working at Bankside in London and at Croydon, he became Manager of the Croydon supply undertaking. In 1898 he went to Cork on behalf of BTH to build and manage a tramway and electricity company. It was there that he met William McLellan, who later joined him in establishing a firm of consulting engineers. Merz, with his vision of large-scale electricity supply, pioneered an integrated traction and electricity scheme in north-eastern England. He was involved in the reorganization of electricity schemes in many countries and established a reputation as a leading parliamentary witness. Merz was appointed Director of Experiments and Research at the Admiralty, where his main contribution was the creation of an organization of outstanding engineers and scientists during the First World War. In 1925 he was largely responsible for a report of the Weir Committee which led to the Electricity (Supply) Act of 1926, the formation of the Central Electricity Board and the construction of the National Grid. The choice of 132 kV as the original grid voltage was that of Merz and his associates, as was the origin of the term "grid". Merz and his firm produced many technical innovations, including the first power-system control room and Merz-Price and Merz-Hunter forms of cable and transformer protection.
    [br]
    Principal Honours and Distinctions
    Institution of Electrical Engineers Faraday Medal 1931.
    Bibliography
    1903–4, with W.McLennan, "Power station design", Journal of the Institution of Electrical Engineers 33:696–742 (a classic on its subject).
    1929, "The national scheme of electricity supply in Great Britain", Proceedings of the British Association, Johannesburg.
    Further Reading
    J.Rowland, 1960, Progress in Power. The Contribution of Charles Merz and His Associates to Sixty Years of Electrical Development 1899–1959, London (the most detailed account).
    L.Hannah, 1979, Electricity Before Nationalisation, London.
    ——, 1985, Dictionary of Business Biography, ed. J.Jeremy, London, pp. 221–7 (a short account).
    GW

    Biographical history of technology > Merz, Charles Hesterman

  • 3 Bain, Alexander

    [br]
    b. October 1810 Watten, Scotland
    d. 2 January 1877 Kirkintilloch, Scotland
    [br]
    Scottish inventor and entrepreneur who laid the foundations of electrical horology and designed an electromagnetic means of transmitting images (facsimile).
    [br]
    Alexander Bain was born into a crofting family in a remote part of Scotland. He was apprenticed to a watchmaker in Wick and during that time he was strongly influenced by a lecture on "Heat, sound and electricity" that he heard in nearby Thurso. This lecture induced him to take up a position in Clerkenwell in London, working as a journeyman clockmaker, where he was able to further his knowledge of electricity by attending lectures at the Adelaide Gallery and the Polytechnic Institution. His thoughts naturally turned to the application of electricity to clockmaking, and despite a bitter dispute with Charles Wheatstone over priority he was granted the first British patent for an electric clock. This patent, taken out on 11 January 1841, described a mechanism for an electric clock, in which an oscillating component of the clock operated a mechanical switch that initiated an electromagnetic pulse to maintain the regular, periodic motion. This principle was used in his master clock, produced in 1845. On 12 December of the same year, he patented a means of using electricity to control the operation of steam railway engines via a steam-valve. His earliest patent was particularly far-sighted and anticipated most of the developments in electrical horology that occurred during the nineteenth century. He proposed the use of electricity not only to drive clocks but also to distribute time over a distance by correcting the hands of mechanical clocks, synchronizing pendulums and using slave dials (here he was anticipated by Steinheil). However, he was less successful in putting these ideas into practice, and his electric clocks proved to be unreliable. Early electric clocks had two weaknesses: the battery; and the switching mechanism that fed the current to the electromagnets. Bain's earth battery, patented in 1843, overcame the first defect by providing a reasonably constant current to drive his clocks, but unlike Hipp he failed to produce a reliable switch.
    The application of Bain's numerous patents for electric telegraphy was more successful, and he derived most of his income from these. They included a patent of 12 December 1843 for a form of fax machine, a chemical telegraph that could be used for the transmission of text and of images (facsimile). At the receiver, signals were passed through a moving band of paper impregnated with a solution of ammonium nitrate and potassium ferrocyanide. For text, Morse code signals were used, and because the system could respond to signals faster than those generated by hand, perforated paper tape was used to transmit the messages; in a trial between Paris and Lille, 282 words were transmitted in less than one minute. In 1865 the Abbé Caselli, a French engineer, introduced a commercial fax service between Paris and Lyons, based on Bain's device. Bain also used the idea of perforated tape to operate musical wind instruments automatically. Bain squandered a great deal of money on litigation, initially with Wheatstone and then with Morse in the USA. Although his inventions were acknowledged, Bain appears to have received no honours, but when towards the end of his life he fell upon hard times, influential persons in 1873 secured for him a Civil List Pension of £80 per annum and the Royal Society gave him £150.
    [br]
    Bibliography
    1841, British patent no. 8,783; 1843, British patent no. 9,745; 1845, British patent no.
    10,838; 1847, British patent no. 11,584; 1852, British patent no. 14,146 (all for electric clocks).
    1852, A Short History of the Electric Clocks with Explanation of Their Principles and
    Mechanism and Instruction for Their Management and Regulation, London; reprinted 1973, introd. W.Hackmann, London: Turner \& Devereux (as the title implies, this pamphlet was probably intended for the purchasers of his clocks).
    Further Reading
    The best account of Bain's life and work is in papers by C.A.Aked in Antiquarian Horology: "Electricity, magnetism and clocks" (1971) 7: 398–415; "Alexander Bain, the father of electrical horology" (1974) 9:51–63; "An early electric turret clock" (1975) 7:428–42. These papers were reprinted together (1976) in A Conspectus of Electrical Timekeeping, Monograph No. 12, Antiquarian Horological Society: Tilehurst.
    J.Finlaison, 1834, An Account of Some Remarkable Applications of the Electric Fluid to the Useful Arts by Alexander Bain, London (a contemporary account between Wheatstone and Bain over the invention of the electric clock).
    J.Munro, 1891, Heroes of the Telegraph, Religious Tract Society.
    J.Malster \& M.J.Bowden, 1976, "Facsimile. A Review", Radio \&Electronic Engineer 46:55.
    D.J.Weaver, 1982, Electrical Clocks and Watches, Newnes.
    T.Hunkin, 1993, "Just give me the fax", New Scientist (13 February):33–7 (provides details of Bain's and later fax devices).
    DV / KF

    Biographical history of technology > Bain, Alexander

  • 4 Ferranti, Sebastian Ziani de

    [br]
    b. 9 April 1864 Liverpool, England
    d. 13 January 1930 Zurich, Switzerland
    [br]
    English manufacturing engineer and inventor, a pioneer and early advocate of high-voltage alternating-current electric-power systems.
    [br]
    Ferranti, who had taken an interest in electrical and mechanical devices from an early age, was educated at St Augustine's College in Ramsgate and for a short time attended evening classes at University College, London. Rather than pursue an academic career, Ferranti, who had intense practical interests, found employment in 1881 with the Siemens Company (see Werner von Siemens) in their experimental department. There he had the opportunity to superintend the installation of electric-lighting plants in various parts of the country. Becoming acquainted with Alfred Thomson, an engineer, Ferranti entered into a short-lived partnership with him to manufacture the Ferranti alternator. This generator, with a unique zig-zag armature, had an efficiency exceeding that of all its rivals. Finding that Sir William Thomson had invented a similar machine, Ferranti formed a company with him to combine the inventions and produce the Ferranti- Thomson machine. For this the Hammond Electric Light and Power Company obtained the sole selling rights.
    In 1885 the Grosvenor Gallery Electricity Supply Corporation was having serious problems with its Gaulard and Gibbs series distribution system. Ferranti, when consulted, reviewed the design and recommended transformers connected across constant-potential mains. In the following year, at the age of 22, he was appointed Engineer to the company and introduced the pattern of electricity supply that was eventually adopted universally. Ambitious plans by Ferranti for London envisaged the location of a generating station of unprecedented size at Deptford, about eight miles (13 km) from the city, a departure from the previous practice of placing stations within the area to be supplied. For this venture the London Electricity Supply Corporation was formed. Ferranti's bold decision to bring the supply from Deptford at the hitherto unheard-of pressure of 10,000 volts required him to design suitable cables, transformers and generators. Ferranti planned generators with 10,000 hp (7,460 kW)engines, but these were abandoned at an advanced stage of construction. Financial difficulties were caused in part when a Board of Trade enquiry in 1889 reduced the area that the company was able to supply. In spite of this adverse situation the enterprise continued on a reduced scale. Leaving the London Electricity Supply Corporation in 1892, Ferranti again started his own business, manufacturing electrical plant. He conceived the use of wax-impregnated paper-insulated cables for high voltages, which formed a landmark in the history of cable development. This method of flexible-cable manufacture was used almost exclusively until synthetic materials became available. In 1892 Ferranti obtained a patent which set out the advantages to be gained by adopting sector-shaped conductors in multi-core cables. This was to be fundamental to the future design and development of such cables.
    A total of 176 patents were taken out by S.Z. de Ferranti. His varied and numerous inventions included a successful mercury-motor energy meter and improvements to textile-yarn produc-tion. A transmission-line phenomenon where the open-circuit voltage at the receiving end of a long line is greater than the sending voltage was named the Ferranti Effect after him.
    [br]
    Principal Honours and Distinctions
    FRS 1927. President, Institution of Electrical Engineers 1910 and 1911. Institution of Electrical Engineers Faraday Medal 1924.
    Bibliography
    18 July 1882, British patent no. 3,419 (Ferranti's first alternator).
    13 December 1892, British patent no. 22,923 (shaped conductors of multi-core cables). 1929, "Electricity in the service of man", Journal of the Institution of Electrical Engineers 67: 125–30.
    Further Reading
    G.Z.de Ferranti and R. Ince, 1934, The Life and Letters of Sebastian Ziani de Ferranti, London.
    A.Ridding, 1964, S.Z.de Ferranti. Pioneer of Electric Power, London: Science Museum and HMSO (a concise biography).
    R.H.Parsons, 1939, Early Days of the Power Station Industry, Cambridge, pp. 21–41.
    GW

    Biographical history of technology > Ferranti, Sebastian Ziani de

  • 5 Hammond, Robert

    [br]
    b. 19 January 1850 Waltham Cross, England
    d. 5 August 1915 London, England
    [br]
    English engineer who established many of the earliest public electricity-supply systems in Britain.
    [br]
    After an education at Nunhead Grammar School, Hammond founded engineering businesses in Middlesbrough and London. Obtaining the first concession from the Anglo- American Brush Company for the exploitation of their system in Britain, he was instrumental in popularizing the Brush arc-lighting generator. Schemes using this system, which he established at Chesterfield, Brighton, Eastbourne and Hastings in 1881–2, were the earliest public electricity-supply ventures in Britain. On the invention of the incandescent lamp, high-voltage Brush dynamos were employed to operate both arc and incandescent lamps. The limitations of this arrangement led Hammond to become the sole agent for the Ferranti alternator, introduced in 1882. Commencing practice as a consulting engineer, Hammond was responsible for the construction of many electricity works in the United Kingdom, of which the most notable were those at Leeds, Hackney (London) and Dublin, in addition to many abroad. Appreciating the need for trained engineers for the new electrical industry and profession then being created, in 1882 he established the Hammond Electrical Engineering College. Later, in association with Francis Ince, he founded Faraday House, a training school that pioneered the concept of "sandwich courses" for engineers. Between 1883 and 1903 he paid several visits to the United States to study developments in electric traction and was one of the advisers to the Postmaster General on the acquisition of the telephone companies.
    [br]
    Bibliography
    1884, Electric Light in Our Homes, London (one of the first detailed accounts of electric lighting).
    1897, "Twenty five years" developments in central stations', Electrical Review 41:683–7 (surveys nineteenth-century public electricity supply).
    Further Reading
    F.W.Lipscomb, 1973, The Wise Men of the Wires, London (the story of Faraday House). B.Bowers, 1985, biography, in Dictionary of Business Biography, Vol. III, ed. J.Jeremy, London, pp. 21–2 (provides an account of Hammond's business ventures). J.D.Poulter, 1986, An Early History of 'Electricity Supply, London.
    GW

    Biographical history of technology > Hammond, Robert

  • 6 Mavor, Henry Alexander

    [br]
    b. 1858 Stranraer, Scotland
    d. 16 July 1915 Mauchline, Ayrshire, Scotland
    [br]
    Scottish engineer who pioneered the use of electricity for lighting, power and the propulsion of ships.
    [br]
    Mavor came from a distinguished Scottish family with connections in medicine, industry and the arts. On completion of his education at Glasgow University, he joined R.J.Crompton \& Co.; then in 1883, along with William C.Muir, he established the Glasgow firm which later became well known as Mavor and Coulson. It pioneered the supply of electricity to public undertakings and equipped the first two generating stations in Scotland. Mavor and his fellow directors appreciated the potential demand by industry in Glasgow for electricity. Two industries were especially well served; first, the coal-mines, where electric lighting and power transformed efficiency and safety beyond recognition; and second, marine engineering. Here Mavor recognized the importance of the variable-speed motor in working with marine propellers which have a tighter range of efficient working speeds. In 1911 he built a 50 ft (15 m) motor launch, appropriately named Electric Arc, at Dumbarton and fitted it with an alternating-current motor driven by a petrol engine and dynamo. Within two years British shipyards were building electrically powered ships, and by the beginning of the First World War the United States Navy had a 20,000-ton collier with this new form of propulsion.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Engineers and Shipbuilders in Scotland 1894–6.
    Bibliography
    Mavor published several papers on electric power supply, distribution and the use of electricity for marine purposes in the Transactions of the Institution of Engineers and Shipbuilders in Scotland between the years 1890 and 1912.
    Further Reading
    Mavor and Coulson Ltd, 1911, Electric Propulsion of Ships, Glasgow.
    FMW

    Biographical history of technology > Mavor, Henry Alexander

  • 7 Salomans, Sir David Lionel

    [br]
    b. 1851
    d. 1925
    [br]
    English pioneer of electricity and the automobile in England.
    [br]
    Salomans inherited his baronetcy from his uncle, Sir David Salomans (1797–1873), who had been Member of Parliament for Greenwich and the first Jewish Lord Mayor of London. He was the archetypal amateur engineer and inventor of the Victorian age, indulging in such interests as photography, motoring, electricity, woodworking, polariscopy and astronomy. His house, "Broomhill", near Tun bridge Wells in Kent, was one of the first to be lit by electricity and is said to have been the first to use electricity for cooking. He acted as architect for the building of the stables, the water tower and the 150-seat theatre at his home. In 1874 he was granted a patent for an automatic railway signalling system. He was the founder in 1895 of the first motoring organization in Great Britain, the Self Propelled Traffic Association, forerunner of the Royal Automobile Club (RAC). He was also the organizer of the first motor show to be held in Britain, on 15 October 1895. It is said that, in spite of being the Mayor of Tunbridge Wells, Salomans defied the law and drove without the obligatory pedestrian with a red flag preceding his vehicle; this requirement was removed with the later Light (Road) Locomotives Act, which raised the speed limit to 12 mph (19 km/h).
    [br]
    Further Reading
    Various papers may be consulted from the Sir David Salomans Society. See also Simms, Frederick.
    IMcN

    Biographical history of technology > Salomans, Sir David Lionel

  • 8 Sturgeon, William

    SUBJECT AREA: Electricity
    [br]
    b. 22 May 1783 Whittington, Lancashire, England
    d. 4 December 1850 Prestwich, Manchester, England
    [br]
    English inventor and lecturer, discoverer of the electromagnet, and inventor of the first electric motor put to practical use.
    [br]
    After leaving an apprenticeship as a shoemaker, Sturgeon enlisted in the militia. Self-educated during service as a private in the Royal Artillery, he began to construct scientific apparatus. When he left the army in 1820 Sturgeon became an industrious writer, contributing papers to the Philosophical Magazine. In 1823 he was appointed Lecturer in Natural Science at the East India Company's Military College in Addiscombe. His invention in 1823 of an electromagnet with a horseshoe-shaped, soft iron core provided a much more concentrated magnetic field than previously obtained. An electric motor he designed in 1832 embodied his invention of the first metallic commutator. This was used to rotate a meat-roasting jack. Over an extended period he conducted researches into atmospheric electricity and also introduced the practice of amalgamating zinc in primary cells to prevent local action.
    Sturgeon became Lecturer at the Adelaide Gallery, London, in 1832, an appointment of short duration, terminating when the gallery closed. In 1836 he established a monthly publication, The Annals of Electricity, Magnetism and Chemistry; and Guardian of Experimental Science, the first journal in England to be devoted to the subject. It was to this journal that James Prescot Joule contributed the results of his own researches in electromagnetism. Due to lack of financial support the publication ceased in 1843 after ten volumes had been issued. At the age of 57 Sturgeon became Superintendent of the Victoria Gallery of Practical Science in Manchester; after this gallery closed, the last five years of his life were spent in considerable poverty.
    [br]
    Principal Honours and Distinctions
    Society of Arts Silver Medal 1825.
    Bibliography
    1836, Annals of Electricity 1:75–8 (describes his motor).
    All his published papers were collected in Scientific Researches, Experimental and Theoretical in Electricity, Magnetism and Electro-Chemistry, 1850, Bury; 1852, London.
    Further Reading
    J.P.Joule, 1857, biography, in Memoirs of the Literary and Philosophical Society 14, Manchester: 53–8.
    Biography, 1895, Electrician 35:632–5 (includes a list of Sturgeon's published work). P.Dunsheath, 1957, A History of Electrical Engineering, London: Faber \& Faber.
    GW

    Biographical history of technology > Sturgeon, William

  • 9 Ampère, André-Marie

    SUBJECT AREA: Electricity
    [br]
    b. 22 Jan 1775 Lyon, France
    d. 10 June 1836 Marseille, France
    [br]
    French physicist and mathematician who established laws and principles relating magnetism and electricity to each other.
    [br]
    Ampère was reputed to have mastered all the then-known mathematics by the age of 12. He became Professor of Physics and Chemistry at Bourg in 1801 and a professor of mathematics at the Ecole Polytechnique in Paris in 1809. Observing a demonstration in 1820 of Oersted's discovery that a magnetic needle was deflected when placed near a current-carrying wire, Ampère was inspired to investigate the subject of electricity, of which he had no previous experience. Within a week he had prepared the first of several important communications on his discoveries to the Academy of Sciences in Paris. Included was a new hypothesis formed on the basis of his experiments on the relation between electricity and magnetism. He investigated the forces exerted on each other by current-carrying conductors and the properties of a solenoid. His mathematical theory describing these phenomena provided the foundations for the development of electro-dynamics and his classic work Théorie mathématique des phénomènes électro-dynamiques was published in 1827.
    The name "ampere" was adopted to replace the name "weber" as a unit of current after Helmholtz proposed such a change in 1881.
    [br]
    Principal Honours and Distinctions
    Bibliography
    1827, Théorie mathématique des phénomènes électro-dynamiques, Paris; repub. 1958, Paris (his chief published work).
    Further Reading
    P.Lenard, 1933, Great Men of Science, London, pp. 223–30 (provides a short account). C.C.Gillispie (ed.), 1970, Dictionary of Scientific Biography, Vol. 1, New York, pp.
    139–46.
    GW

    Biographical history of technology > Ampère, André-Marie

  • 10 Cady, Walter Guyton

    [br]
    b. 10 December 1874 Providence, Rhode Island, USA
    d. 9 December 1974 Providence, Rhode Island, USA
    [br]
    American physicist renowned for his pioneering work on piezo-electricity.
    [br]
    After obtaining BSc and MSc degrees in physics at Brown University in 1896 and 1897, respectively, Cady went to Berlin, obtaining his PhD in 1900. Returning to the USA he initially worked for the US Coast and Geodetic Survey, but in 1902 he took up a post at the Wesleyan University, Connecticut, remaining as Professor of Physics from 1907 until his retirement in 1946. During the First World War he became interested in piezo-electricity as a result of attending a meeting on techniques for detecting submarines, and after the war he continued to work on the use of piezo-electricity as a transducer for generating sonar beams. In the process he discovered that piezo-electric materials, such as quartz, exhibited high-stability electrical resonance, and in 1921 he produced the first working piezo-electric resonator. This idea was subsequently taken up by George Washington Pierce and others, resulting in very stable oscillators and narrow-band filters that are widely used in the 1990s in radio communications, electronic clocks and watches.
    Internationally known for his work, Cady retired from his professorship in 1946, but he continued to work for the US Navy. From 1951 to 1955 he was a consultant and research associate at the California Institute of Technology, after which he returned to Providence to continue research at Brown, filing his last patent (one of over fifty) at the age of 93 years.
    [br]
    Principal Honours and Distinctions
    President, Institute of Radio Engineers 1932. London Physical Society Duddell Medal. Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Prize 1928.
    Bibliography
    28 January 1920, US patent no. 1,450,246 (piezo-electric resonator).
    1921, "The piezo-electric resonator", Physical Review 17:531. 1946, Piezoelectricity, New York: McGraw Hill (his classic work).
    Further Reading
    B.Jaffe, W.R.Cooke \& H.Jaffe, 1971, Piezoelectric Ceramics.
    KF

    Biographical history of technology > Cady, Walter Guyton

  • 11 Hopkinson, John

    [br]
    b. 27 July 1849 Manchester, England
    d. 27 August 1898 Petite Dent de Veisivi, Switzerland
    [br]
    English mathematician and electrical engineer who laid the foundations of electrical machine design.
    [br]
    After attending Owens College, Manchester, Hopkinson was admitted to Trinity College, Cambridge, in 1867 to read for the Mathematical Tripos. An appointment in 1872 with the lighthouse department of the Chance Optical Works in Birmingham directed his attention to electrical engineering. His most noteworthy contribution to lighthouse engineering was an optical system to produce flashing lights that distinguished between individual beacons. His extensive researches on the dielectric properties of glass were recognized when he was elected to a Fellowship of the Royal Society at the age of 29. Moving to London in 1877 he became established as a consulting engineer at a time when electricity supply was about to begin on a commercial scale. During the remainder of his life, Hopkinson's researches resulted in fundamental contributions to electrical engineering practice, dynamo design and alternating current machine theory. In making a critical study of the Edison dynamo he developed the principle of the magnetic circuit, a concept also arrived at by Gisbert Kapp around the same time. Hopkinson's improvement of the Edison dynamo by reducing the length of the field magnets almost doubled its output. In 1890, in addition to-his consulting practice, Hopkinson accepted a post as the first Professor of Electrical Engineering and Head of the Siemens laboratory recently established at King's College, London. Although he was not involved in lecturing, the position gave him the necessary facilities and staff and student assistance to continue his researches. Hopkinson was consulted on many proposals for electric traction and electricity supply, including schemes in London, Manchester, Liverpool and Leeds. He also advised Mather and Platt when they were acting as contractors for the locomotives and generating plant for the City and South London tube railway. As early as 1882 he considered that an ideal method of charging for the supply of electricity should be based on a two-part tariff, with a charge related to maximum demand together with a charge for energy supplied. Hopkinson was one the foremost expert witnesses of his day in patent actions and was himself the patentee of over forty inventions, of which the three-wire system of distribution and the series-parallel connection of traction motors were his most successful. Jointly with his brother Edward, John Hopkinson communicated the outcome of his investigations to the Royal Society in a paper entitled "Dynamo Electric Machinery" in 1886. In this he also described the later widely used "back to back" test for determining the characteristics of two identical machines. His interest in electrical machines led him to more fundamental research on magnetic materials, including the phenomenon of recalescence and the disappearance of magnetism at a well-defined temperature. For his work on the magnetic properties of iron, in 1890 he was awarded the Royal Society Royal Medal. He was a member of the Alpine Club and a pioneer of rock climbing in Britain; he died, together with three of his children, in a climbing accident.
    [br]
    Principal Honours and Distinctions
    FRS 1878. Royal Society Royal Medal 1890. President, Institution of Electrical Engineers 1890 and 1896.
    Bibliography
    7 July 1881, British patent no. 2,989 (series-parallel control of traction motors). 27 July 1882, British patent no. 3,576 (three-wire distribution).
    1901, Original Papers by the Late J.Hopkinson, with a Memoir, ed. B.Hopkinson, 2 vols, Cambridge.
    Further Reading
    J.Greig, 1970, John Hopkinson Electrical Engineer, London: Science Museum and HMSO (an authoritative account).
    —1950, "John Hopkinson 1849–1898", Engineering 169:34–7, 62–4.
    GW

    Biographical history of technology > Hopkinson, John

  • 12 Jacobi, Moritz Hermann von

    SUBJECT AREA: Electricity
    [br]
    b. 21 September 1801 Potsdam, Germany
    d. 27 February 1874 St Petersburg, Russia
    [br]
    German scientist who developed one of the first practical electric motors.
    [br]
    After studying architecture at Göttingen University, Jacobi turned his attention to physics and chemistry. In 1835 he was appointed a professor of civil engineering at the University of Dorpat (which later assumed the Estonian name of Tartu). Later, moving to St Petersburg, he became a member of the Imperial Academy of Sciences and commenced research on electricity and its practical applications. In December 1834 Jacobi presented a paper to the Academy of Sciences in Paris in which he stated that he had obtained rotation by electromagnetic methods in May of that year. Tsar Nicholas of Russia gave him a grant to prove that his electric motor had a practical application. Jacobi had a boat constructed that measured 28 ft in length and was propelled by paddles connected to an electric motor of his own design. Powered by Grove cells, it carried about fourteen passengers at a speed of almost 3 mph (5 km/h) on the River Neva. The weight of and possibly the fumes from the batteries contributed to the abandonment of the project. In 1839 Jacobi introduced electrotyping, i.e. the reproduction of forms by electrodeposition, which was one of the first commercial applications of electricity. In 1840 he reported the results of his investigations into the power of the electromagnet as a function of various parameters to the British Association.
    [br]
    Principal Honours and Distinctions
    Member, Imperial Academy of Sciences, St Petersburg, 1847.
    Bibliography
    Jacobi's papers are listed in Catalogue of Scientific Papers, 1868, Vol. III, London: Royal Society, pp. 517–18.
    1837, Annals of Electricity 1:408–15 and 419–44 (describes his motor).
    Further Reading
    E.H.Huntress, 1951, in Proceedings of the American Academy of Arts and Sciences 79: 22–3 (a short biography).
    B.Bowers, 1982, A History of Electric Light and Power, London.
    GW

    Biographical history of technology > Jacobi, Moritz Hermann von

  • 13 Westinghouse, George

    [br]
    b. 6 October 1846 Central Bridge, New York, USA
    d. 12 March 1914 New York, New York, USA
    [br]
    American inventor and entrepreneur, pioneer of air brakes for railways and alternating-current distribution of electricity.
    [br]
    George Westinghouse's father was an ingenious manufacturer of agricultural implements; the son, after a spell in the Union Army during the Civil War, and subsequently in the Navy as an engineer, went to work for his father. He invented a rotary steam engine, which proved impracticable; a rerailing device for railway rolling stock in 1865; and a cast-steel frog for railway points, with longer life than the cast-iron frogs then used, in 1868–9. During the same period Westinghouse, like many other inventors, was considering how best to meet the evident need for a continuous brake for trains, i.e. one by which the driver could apply the brakes on all vehicles in a train simultaneously instead of relying on brakesmen on individual vehicles. By chance he encountered a magazine article about the construction of the Mont Cenis Tunnel, with a description of the pneumatic tools invented for it, and from this it occurred to him that compressed air might be used to operate the brakes along a train.
    The first prototype was ready in 1869 and the Westinghouse Air Brake Company was set up to manufacture it. However, despite impressive demonstration of the brake's powers when it saved the test train from otherwise certain collision with a horse-drawn dray on a level crossing, railways were at first slow to adopt it. Then in 1872 Westinghouse added to it the triple valve, which enabled the train pipe to charge reservoirs beneath each vehicle, from which the compressed air would apply the brakes when pressure in the train pipe was reduced. This meant that the brake was now automatic: if a train became divided, the brakes on both parts would be applied. From then on, more and more American railways adopted the Westinghouse brake and the Railroad Safety Appliance Act of 1893 made air brakes compulsory in the USA. Air brakes were also adopted in most other parts of the world, although only a minority of British railway companies took them up, the remainder, with insular reluctance, preferring the less effective vacuum brake.
    From 1880 Westinghouse was purchasing patents relating to means of interlocking railway signals and points; he combined them with his own inventions to produce a complete signalling system. The first really practical power signalling scheme, installed in the USA by Westinghouse in 1884, was operated pneumatically, but the development of railway signalling required an awareness of the powers of electricity, and it was probably this that first led Westinghouse to become interested in electrical processes and inventions. The Westinghouse Electric Company was formed in 1886: it pioneered the use of electricity distribution systems using high-voltage single-phase alternating current, which it developed from European practice. Initially this was violently opposed by established operators of direct-current distribution systems, but eventually the use of alternating current became widespread.
    [br]
    Principal Honours and Distinctions
    Légion d'honneur. Order of the Crown of Italy. Order of Leopold.
    Bibliography
    Westinghouse took out some 400 patents over forty-eight years.
    Further Reading
    H.G.Prout, 1922, A Life of "George Westinghouse", London (biography inclined towards technicalities).
    F.E.Leupp, 1918, George Westinghouse: His Life and Achievements, Boston (London 1919) (biography inclined towards Westinghouse and his career).
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press, pp. 152–4.
    PJGR

    Biographical history of technology > Westinghouse, George

  • 14 Wright, Arthur

    [br]
    b. 1858 London, England
    d. 26 July 1931 Paignton, Devon, England
    [br]
    English engineer and electricity supply industry pioneer.
    [br]
    Arthur Wright, educated at Maryborough College, attended a course of training at the School of Submarine Telegraphy, Telephony and Electric Light in London. In 1882 he joined the Hammond Company in Brighton, the first company to afford a regular electricity supply in Britain on a commercial basis for street and private lighting. He invented a recording ammeter and also a thermal-demand indicator used in conjunction with a tariff based on maximum demand in addition to energy consumption. This indicator was to remain in use for almost half a century.
    Resigning his position in Brighton in 1889, he joined the staff of S.Z.de Ferranti and served with him during developments at the Grosvenor Gallery and Deptford stations in London. In 1891 he returned to Brighton as its first Borough Electrical Engineer. From 1900 onwards he had an extensive consulting practice designing early power stations, and was approached by many municipalities and companies in Britain, the United States, South America and Australia, primarily on finance and tariffs. Associated with the founding of the Municipal Electrical Association in 1905, the following year he became its first President.
    [br]
    Bibliography
    1901, British patent no. 23,153 (thermal maximum demand indicator).
    1922, "Early days of the Brighton electricity supply", Journal of the Institution of Electrical Engineers 60:497–9.
    Further Reading
    R.H.Parsons, 1939, Early Days of the Power Station Industry, Cambridge, pp. 13–17 (describes Wright's pioneering inventions).
    GW

    Biographical history of technology > Wright, Arthur

  • 15 Cardew, Philip

    [br]
    b. 24 September 1851 Leatherhead, Surrey, England
    d. 17 May 1910 Godalming, Surrey, England
    [br]
    English electrical engineer and inventory adviser to the Board of Trade.
    [br]
    After education at the Royal Military Academy in Woolwich, Cardew was placed in charge of Bermudan military telegraphs in 1876. In 1889 he was appointed the first Electrical Adviser to the Board of Trade, where he formulated valuable regulations for the safety and control of public electricity supplies. In 1883 Cardew invented the thermogalvanometer, a hot-wire measuring instrument, that became widely used as a voltmeter but was obsolete by 1907. The device depended for its action on the heating and subsequent elongation of a platinum wire and could be used on alternating currents of high frequency. Retiring from the Board of Trade in 1899, Cardew joined a partnership of consulting engineers with Sir William Preece and his son. Taking a particular interest in railway electrification, he became a director of the London Brighton \& South Coast Railway.
    [br]
    Principal Honours and Distinctions
    Inventions Exhibition Gold Medal 1885.
    Bibliography
    1881, Journal of the Society of Telegraph Engineers 10:111–14 (describes the application of electricity to railways).
    5 February 1883, British patent no. 623 (Cardew's hot-wire instrument).
    1898, Journal of the Institution of Electrical Engineers 19:425–47 (his account of Board of Trade legislation).
    Further Reading
    J.T.Stock and D.Vaughan, 1983, The Development of Instruments to Measure Electric Current, London: Science Museum (for instrument origins).
    Dictionary of National Biographyr, 1912, Vol. I, Suppl. 2, pp. 313–14.
    GW

    Biographical history of technology > Cardew, Philip

  • 16 Daft, Leo

    [br]
    b. 13 November 1843 Birmingham, England
    d. 28 March 1922
    [br]
    English electrical engineer, pioneer of electric-power generation and electric railways in the USA.
    [br]
    Leo Daft, son of a British civil engineer, studied electricity and emigrated to the USA in 1866. After various occupations including running a photographic studio, he joined in 1879 the New York Electric Light Company, which was soon merged into the Daft Electric Company. This company developed electrically powered machinery and built electric-power plants. In 1883 Daft built an electric locomotive called Ampere for the Saratoga \& Mount McGregor Railroad. This is said to have been the first electric main-line locomotive for standard gauge. It collected current from a central rail, had an output of 12 hp (9 kW) and hauled 10 tons at speeds up to 9 mph (14.5 km/h). Two years later Daft made a much improved locomotive for the New York Elevated Railway, the Benjamin Franklin, which drew current at 250 volts from a central rail and had two 48 in. (122 cm)-diameter driving wheels and two 33 in. (84 cm)-diameter trailing wheels. Re-equipped in 1888 with four driving wheels and a 125 hp (93 kW) motor, this could haul an eight-car train at 10 mph (16 km/h). Meanwhile, in 1884, Daft's company had manufactured all the electrical apparatus for the Massachusetts Electric Power Company, the first instance of a complete central station to generate and distribute electricity for power on a commercial scale. In 1885 it electrified a branch of the Baltimore Union Passenger Railway, the first electrically operated railway in the USA. Subsequently Daft invented a process for vulcanizing rubber onto metal that came into general use. He never became an American citizen.
    [br]
    Further Reading
    Dictionary of American Biography.
    F.J.G.Haut, 1969, The History of the Electric Locomotive, London: George Allen \& Unwin.
    PJGR

    Biographical history of technology > Daft, Leo

  • 17 Davenport, Thomas

    SUBJECT AREA: Electricity
    [br]
    b. 9 July 1802 Williamstown, Vermont, USA
    d. 6 July 1851 Salisbury, Vermont, USA
    [br]
    American craftsman and inventor who constructed the first rotating electrical machines in the United States.
    [br]
    When he was 14 years old Davenport was apprenticed to a blacksmith for seven years. At the close of his apprenticeship in 1823 he opened a blacksmith's shop in Brandon, Vermont. He began experimenting with electromagnets after observing one in use at the Penfield Iron Works at Crown Point, New York, in 1831. He saw the device as a possible source of power and by July 1834 had constructed his first electric motor. Having totally abandoned his regular business, Davenport built and exhibited a number of miniature machines; he utilized an electric motor to propel a model car around a circular track in 1836, and this became the first recorded instance of an electric railway. An application for a patent and a model were destroyed in a fire at the United States Patent Office in December 1836, but a second application was made and Davenport received a patent the following year for Improvements in Propelling Machinery by Magnetism and Electromagnetism. A British patent was also obtained. A workshop and laboratory were established in New York, but Davenport had little financial backing for his experiments. He built a total of over one hundred motors but was defeated by the inability to obtain an inexpensive source of power. Using an electric motor of his own design to operate a printing press in 1840, he undertook the publication of a journal, The Electromagnet and Mechanics' Intelligencer. This was the first American periodical on electricity, but it was discontinued after a few issues. In failing health he retired to Vermont where in the last year of his life he continued experiments in electromagnetism.
    [br]
    Bibliography
    1837, US patent no. 132, "Improvements in Propelling Machinery by Magnetism and Electromagnetism".
    6 June 1837 British patent no. 7,386.
    Further Reading
    F.L.Pope, 1891, "Inventors of the electric motor with special reference to the work of Thomas Davenport", Electrical Engineer, 11:1–5, 33–9, 65–71, 93–8, 125–30 (the most comprehensive account).
    Annals of Electricity (1838) 2:257–64 (provides a description of Davenport's motor).
    W.J.King, 1962, The Development of Electrical Technology in the 19th Century, Washington, DC: Smithsonian Institution, Paper 28, pp. 263–4 (a short account).
    GW

    Biographical history of technology > Davenport, Thomas

  • 18 Faraday, Michael

    SUBJECT AREA: Electricity
    [br]
    b. 22 September 1791 Newington, Surrey, England
    d. 25 August 1867 London, England
    [br]
    English physicist, discoverer of the principles of the electric motor and dynamo.
    [br]
    Faraday's father was a blacksmith recently moved south from Westmorland. The young Faraday's formal education was limited to attendance at "a Common Day School", and then he worked as an errand boy for George Riebau, a bookseller and bookbinder in London's West End. Riebau subsequently took him as an apprentice bookbinder, and Faraday seized every opportunity to read the books that came his way, especially scientific works.
    A customer in the shop gave Faraday tickets to hear Sir Humphry Davy lecturing at the Royal Institution. He made notes of the lectures, bound them and sent them to Davy, asking for scientific employment. When a vacancy arose for a laboratory assistant at the Royal Institution, Davy remembered Faraday, who he took as his assistant on an 18- month tour of France, Italy and Switzerland (despite the fact that Britain and France were at war!). The tour, and especially Davy's constant company and readiness to explain matters, was a scientific education for Faraday, who returned to the Royal Institution as a competent chemist in his own right. Faraday was interested in electricity, which was then viewed as a branch of chemistry. After Oersted's announcement in 1820 that an electric current could affect a magnet, Faraday devised an arrangement in 1821 for producing continuous motion from an electric current and a magnet. This was the basis of the electric motor. Ten years later, after much thought and experiment, he achieved the converse of Oersted's effect, the production of an electric current from a magnet. This was magneto-electric induction, the basis of the electric generator.
    Electrical engineers usually regard Faraday as the "father" of their profession, but Faraday himself was not primarily interested in the practical applications of his discoveries. His driving motivation was to understand the forces of nature, such as electricity and magnetism, and the relationship between them. Faraday delighted in telling others about science, and studied what made a good scientific lecturer. At the Royal Institution he introduced the Friday Evening Discourses and also the Christmas Lectures for Young People, now televised in the UK every Christmas.
    [br]
    Bibliography
    1991, Curiosity Perfectly Satisfyed. Faraday's Travels in Europe 1813–1815, ed. B.Bowers and L.Symons, Peter Peregrinus (Faraday's diary of his travels with Humphry Davy).
    Further Reading
    L.Pearce Williams, 1965, Michael Faraday. A Biography, London: Chapman \& Hall; 1987, New York: Da Capo Press (the most comprehensive of the many biographies of Faraday and accounts of his work).
    For recent short accounts of his life see: B.Bowers, 1991, Michael Faraday and the Modern World, EPA Press. G.Cantor, D.Gooding and F.James, 1991, Faraday, Macmillan.
    J.Meurig Thomas, 1991, Michael Faraday and the Royal Institution, Adam Hilger.
    BB

    Biographical history of technology > Faraday, Michael

  • 19 Gramme, Zénobe Théophile

    [br]
    b. 4 April 1826 Jehay-Bodignée, Belgium
    d. 20 January 1901 Bois de Colombes, Paris, France
    [br]
    Belgian engineer whose improvements to the dynamo produced a machine ready for successful commercial exploitation.
    [br]
    Gramme trained as a carpenter and showed an early talent for working with machinery. Moving to Paris he found employment in the Alliance factory as a model maker. With a growing interest in electricity he left to become an instrument maker with Heinrich Daniel Rühmkorff. In 1870 he patented the uniformly wound ring-armature dynamo with which his name is associated. Together with Hippolyte Fontaine, in 1871 Gramme opened a factory to manufacture his dynamos. They rapidly became a commercial success for both arc lighting and electrochemical purposes, international publicity being achieved at exhibitions in Vienna, Paris and Philadelphia. It was the realization that a Gramme machine was capable of running as a motor, i.e. the reversibility of function, that illustrated the entire concept of power transmission by electricity. This was first publicly demonstrated in 1873. In 1874 Gramme reduced the size and increased the efficiency of his generators by relying completely on the principle of self-excitation. It was the first practical machine in which were combined the features of continuity of commutation, self-excitation, good lamination of the armature core and a reasonably good magnetic circuit. This dynamo, together with the self-regulating arc lamps then available, made possible the innumerable electric-lighting schemes that followed. These were of the greatest importance in demonstrating that electric lighting was a practical and economic means of illumination. Gramme also designed an alternator to operate Jablochkoff candles. For some years he took an active part in the operations of the Société Gramme and also experimented in his own workshop without collaboration, but made no further contribution to electrical technology.
    [br]
    Principal Honours and Distinctions
    Knight Commander, Order of Leopold of Belgium 1897. Chevalier de la Légion d'honneur. Chevalier, Order of the Iron Crown, Austria.
    Bibliography
    9 June 1870, British patent no. 1,668 (the ring armature machine).
    1871, Comptes rendus 73:175–8 (Gramme's first description of his invention).
    Further Reading
    W.J.King, 1962, The Development of Electrical Technology in the 19th Century, Washington, DC: Smithsonian Institution, Paper 30, pp. 377–90 (an extensive account of Gramme's machines).
    S.P.Thompson, 1901, obituary, Electrician 66: 509–10.
    C.C.Gillispie (ed.), 1972, Dictionary of Scientific Biography, Vol. V, New York, p. 496.
    GW

    Biographical history of technology > Gramme, Zénobe Théophile

  • 20 Lodge, Sir Oliver Joseph

    [br]
    b. 12 June 1851 Penkhull, Staffordshire, England
    d. 22 August 1940 Lake, near Salisbury, Wiltshire, England
    [br]
    English physicist who perfected Branly's coherer; said to have given the first public demonstration of wireless telegraphy.
    [br]
    At the age of 8 Lodge entered Newport Grammar School, and in 1863–5 received private education at Coombs in Suffolk. He then returned to Staffordshire, where he assisted his father in the potteries by working as a book-keeper. Whilst staying with an aunt in London in 1866–7, he attended scientific lectures and became interested in physics. As a result of this and of reading copies of English Mechanic magazine, when he was back home in Hanley he began to do experiments and attended the Wedgewood Institute. Returning to London c. 1870, he studied initially at the Royal College of Science and then, from 1874, at University College, London (UCL), at the same time attending lectures at the Royal Institution.
    In 1875 he obtained his BSc, read a paper to the British Association on "Nodes and loops in chemical formulae" and became a physics demonstrator at UCL. The following year he was appointed a physics lecturer at Bedford College, completing his DSc in 1877. Three years later he became Assistant Professor of Mathematics at UCL, but in 1881, after only two years, he accepted the Chair of Experimental Physics at the new University College of Liverpool. There began a period of fruitful studies of electricity and radio transmission and reception, including development of the lightning conductor, discovery of the "coherent" effect of sparks and improvement of Branly's coherer, and, in 1894, what is said to be the first public demonstration of the transmission and reception (using a coherer) of wireless telegraphy, from Lewis's department store to the clock tower of Liverpool University's Victoria Building. On 10 May 1897 he filed a patent for selective tuning by self-in-ductance; this was before Marconi's first patent was actually published and its priority was subsequently upheld.
    In 1900 he became the first Principal of the new University of Birmingham, where he remained until his retirement in 1919. In his later years he was increasingly interested in psychical research.
    [br]
    Principal Honours and Distinctions
    Knighted 1902. FRS 1887. Royal Society Council Member 1893. President, Society for Psychical Research 1901–4, 1932. President, British Association 1913. Royal Society Rumford Medal 1898. Royal Society of Arts Albert Medal 1919. Institution of Electrical Engineers Faraday Medal 1932. Fourteen honorary degrees from British and other universities.
    Bibliography
    1875, "The flow of electricity in a plane", Philosophical Magazine (May, June and December).
    1876, "Thermo-electric phenomena", Philosophical Magazine (December). 1888, "Lightning conductors", Philosophical Magazine (August).
    1889, Modern Views of Electricity (lectures at the Royal Institution).
    10 May 1897, "Improvements in syntonized telegraphy without line wires", British patent no. 11,575, US patent no. 609,154.
    1898, "Radio waves", Philosophical Magazine (August): 227.
    1931, Past Years, An Autobiography, London: Hodder \& Stoughton.
    Further Reading
    W.P.Jolly, 1974, Sir Oliver Lodge, Psychical Resear cher and Scientist, London: Constable.
    E.Hawks, 1927, Pioneers of Wireless, London: Methuen.
    KF

    Biographical history of technology > Lodge, Sir Oliver Joseph

См. также в других словарях:

  • Electricity — (from the Greek word ήλεκτρον, (elektron), meaning amber, and finally from New Latin ēlectricus , amber like ) is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge. These include many… …   Wikipedia

  • Electricity — E lec*tric i*ty ([=e] l[e^]k*tr[i^]s [i^]*t[y^]), n.; pl. {Electricities} ([=e] l[e^]k*tr[i^]s [i^]*t[i^]z). [Cf. F. [ e]lectricit[ e]. See {Electric}.] 1. (Physics) a property of certain of the fundamental particles of which matter is composed,… …   The Collaborative International Dictionary of English

  • electricity — [ē΄lek tris′i tē; ē lek΄tris′i′tē, ilek΄tris′i tē] n. [see ELECTRIC] 1. a property of certain fundamental particles of all matter, as electrons (negative charges) and protons or positrons (positive charges) that have a force field associated with …   English World dictionary

  • electricity — 1640s (Browne), from ELECTRIC (Cf. electric) + ITY (Cf. ity). Originally in reference to friction …   Etymology dictionary

  • electricity — [n] energized matter, power AC, current, DC, electromagneticism, electron, galvanism, heat, hot stuff*, ignition, juice*, light, magneticism, service, spark, tension, utilities, voltage; concept 520 …   New thesaurus

  • electricity — ► NOUN 1) a form of energy resulting from the existence of charged particles (such as electrons or protons), either statically as an accumulation of charge or dynamically as a current. 2) the supply of electric current to a building for heating,… …   English terms dictionary

  • electricity — noun ADJECTIVE ▪ high voltage, low voltage ▪ mains (BrE) ▪ static ▪ cheap, low cost ▪ …   Collocations dictionary

  • electricity — /i lek tris i tee, ee lek /, n. 1. See electric charge. 2. See electric current. 3. the science dealing with electric charges and currents. 4. a state or feeling of excitement, anticipation, tension, etc. [1640 50; ELECTRIC + ITY] * * *… …   Universalium

  • electricity — n. 1) to generate; induce electricity 2) to conduct electricity 3) static electricity 4) electricity flows * * * [ɪˌlek trɪsɪtɪ] induce electricity static electricity to conduct electricity to generate electricity flows …   Combinatory dictionary

  • electricity — e|lec|tric|i|ty [ ı,lek trısəti, ,ilek trısəti ] noun uncount *** a form of energy that can produce light, heat, and power for machines, computers, televisions, etc.: The machines run on electricity. a supply of electricity Switch off the… …   Usage of the words and phrases in modern English

  • electricity */*/*/ — UK [ɪˌlekˈtrɪsətɪ] / US / US [ˌɪlekˈtrɪsətɪ] noun [uncountable] a form of energy that can produce light, heat, and power for machines, computers, televisions etc The machines run on electricity. an electricity supply Switch off the electricity… …   English dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»