-
21 контроль как процесс учёта
Деятельность предприятия можно контролировать двумя методами: методом надзорного контроля и методом контроля эффективности управления. — A business can be controlled by two methods: custodial control and management efficiency control.
Russian-English Dictionary "Microeconomics" > контроль как процесс учёта
-
22 совершенство управления
Русско-английский словарь по химии > совершенство управления
-
23 совершенство управления
Русско-английский словарь по нефти и газу > совершенство управления
-
24 управление доступом
Русско-английский военно-политический словарь > управление доступом
-
25 коэффициент
coefficient, constant, factor, figure, index, modulus, rate, ratio* * *коэффицие́нт м.
coefficientкоэффицие́нт при … — the coefficient of …коэффицие́нт учи́тывает (напр. трение, турбулентность и т. п.) — the coefficient corrects for (e. g., friction, turbulence, etc.)коэффицие́нт абрази́вности — abrasion factorкоэффицие́нт абсо́рбции — absorption factor, absorptance, absorptivityкоэффицие́нт авари́йного просто́я — emergency shut-down coefficientаку́стико-электри́ческий коэффицие́нт — acoustic-electric factor, acousto-electric indexкоэффицие́нт амплиту́дного искаже́ния — amplitude distortion factorкоэффицие́нт амплиту́ды (напряжения тока и т. п.) — peak factorкоэффицие́нт амплиту́ды и́мпульса — crest factor of a pulseкоэффицие́нт анаморфо́зы опт. — anamorphic ratio, anamorphosing factorкоэффицие́нт асимме́трии индикатри́сы рассе́яния — scattering indicatrix, asymmetry coefficientбарометри́ческий коэффицие́нт — barometric coefficientкоэффицие́нт бегу́щей волны́ — travelling-wave factorкоэффицие́нт безопа́сности — safety factor, margin of safetyкоэффицие́нт безопа́сности по отноше́нию к … — factor of safety on …коэффицие́нт блокиро́вки вчт. — blocking factorбу́квенный коэффицие́нт вчт. — literal coefficientкоэффицие́нт быстрохо́дности ( гидротурбины) — specific speed, type characteristicвариацио́нный коэффицие́нт — coefficient of variationкоэффицие́нт вертика́льной полноты́ мор. — vertical prismatic coefficientвесово́й коэффицие́нт — weight coefficient, weight factorкоэффицие́нт взаи́мной инду́кции — mutual inductanceкоэффицие́нт ви́димости — visibility factorкоэффицие́нт вихрево́го сопротивле́ния — eddy-making resistance coefficientкоэффицие́нт влия́ния ко́рпуса мор. — hull efficiencyкоэффицие́нт возвра́та — reset ratioкоэффицие́нт возвра́та тепла́ — reheat factorкоэффицие́нт возде́йствия по интегра́лу — integral action coefficientкоэффицие́нт возде́йствия по произво́дной — derivative action coefficientкоэффицие́нт волново́го сопротивле́ния — wave-resistance [wave-drag] coefficientкоэффицие́нт волоче́ния — drag coefficientкоэффицие́нт воспроизводи́мости — repeatability factorкоэффицие́нт воспроизво́дства ( ядерного горючего) — breeding ratioкоэффицие́нт воспроизво́дства, избы́точный ( ядерного горючего) — breeding gainкоэффицие́нт втори́чной эми́ссии — secondary emission ratioкоэффицие́нт вы́годности автотрансформа́тора — co-ratio of an autotransformerкоэффицие́нт га́зового усиле́ния — gas amplification factorкоэффицие́нт геометри́ческого подо́бия — coefficient of geometric similarityкоэффицие́нт гистере́зиса — hysteresis constantкоэффицие́нт гото́вности — availability (factor)коэффицие́нт дальноме́ра — stadia factorкоэффицие́нт деле́ния (делителя частоты, пересчётной схемы и т. п.) — count-down (ratio), division ratioкоэффицие́нт демпфи́рования — damping factorкоэффицие́нт диэлектри́ческих поте́рь — dielectric loss factorкоэффицие́нт дневно́го освеще́ния — daylight factorкоэффицие́нт добро́тности — (контура, катушки и т. п.) factor of merit Q-factor; ( измерительного прибора) torque-to-weight ratioкоэффицие́нт дове́рия стат. — confidence coefficientкоэффицие́нт дроссели́рования — throttling coefficientкоэффицие́нт ду́бности — degree of tannage, tanning numberкоэффицие́нт есте́ственной освещё́нности — daylight factorкоэффицие́нт жё́сткости — stiffness coefficientжи́дкостный коэффицие́нт кож. — volume [water-to-goods, water-to-pelt] ratioкоэффицие́нт загру́зки — loading factorкоэффицие́нт загру́зки турби́ны — turbine load factorкоэффицие́нт загрязне́ния — fouling factorкоэффицие́нт заня́тия тлф. — call fillкоэффицие́нт запа́здывания — lag coefficientкоэффицие́нт запа́са при отпуска́нии реле́ — safety factor for drop-outкоэффицие́нт запа́са при сраба́тывании реле́ — safety factor for pick-upкоэффицие́нт заполне́ния ( отношение длительности импульса к периоду повторения) — pulse ratio, pulse duty factorкоэффицие́нт заполне́ния обмо́тки — space factor of a windingкоэффицие́нт заполне́ния су́дна — block coefficient of a shipкоэффицие́нт затуха́ния — damping factor; ( линии передачи) attenuation constantкоэффицие́нт защи́тного де́йствия анте́нны — front-to-back ratio of an antennaкоэффицие́нт звукопоглоще́ния — sound absorption coefficient, acoustical absorptivityкоэффицие́нт звукопропуска́ния — sound transmission coefficient acoustical transmittivityкоэффицие́нт зерка́льных поме́х радио — image ratioкоэффицие́нт избы́тка во́здуха — excess-air-coefficientкоэффицие́нт излуче́ния — emissivityкоэффицие́нт инве́рсии — inversion level ratioкоэффицие́нт инду́кции — self-inductanceкоэффицие́нт иониза́ции — ionization coefficientкоэффицие́нт искаже́ния — distortion factorкоэффицие́нт искаже́ния площаде́й картогр. — area-distortion ratioкоэффицие́нт искаже́ния форм картогр. — shape-distortion ratioкоэффицие́нт испо́льзования — utilization factorкоэффицие́нт ка́чества ( в радиобиологии) — relative biological effectivenessкоэффицие́нт ка́чества (телегра́фной) свя́зи — error rate of (telegraph) communicationкоэффицие́нт кисло́тности — acid numberкоэффицие́нт когере́нтности — normalized coherence functionкоэффицие́нт контра́стности — gammaкоэффицие́нт концентра́ции свз. — demand [load, capacity] factorкоэффицие́нт концентра́ции напряже́ний (напр. в металле) — notch-sensitivity indexкоэффицие́нт концентра́ции телефо́нной нагру́зки — telephone traffic load factorкоэффицие́нт кру́тки — coefficient of twist, twist factorкоэффицие́нт лету́чести — fugacity coefficientкоэффицие́нт лине́йного расшире́ния — coefficient of linear expansionкоэффицие́нт лобово́го сопротивле́ния — drag coefficientкоэффицие́нт массообме́на — mass-transfer coefficientкоэффицие́нт массопереда́чи — mass-transfer coefficientмасшта́бный коэффицие́нт вчт. — scale factorуточня́ть масшта́бный коэффицие́нт — revise (and improve) scale factorкоэффицие́нт моде́ли ( в моделировании) — coefficient of the model equationдеформи́ровать коэффицие́нты моде́ли — strain the coefficients in the model equation(s)коэффицие́нт модуля́ции — ( при амплитудной модуляции) брит. depth of modulation; амер. percent modulation; ( при частотной модуляции) modulation indexкоэффицие́нт моме́нта — torque coefficientкоэффицие́нт мо́щности — power factor, cos \\коэффицие́нт нагру́зки эл. — load factorкоэффицие́нт надё́жности — reliability indexкоэффицие́нт нака́чки элк. — pumping ratioкоэффицие́нт напра́вленного де́йствия анте́нны — directive (antenna) gainкоэффицие́нт нелине́йного искаже́ния — non-linear distortion [klirr] factorкоэффицие́нт неодновреме́нности — diversity factorнеопределё́нный коэффицие́нт — undetermined coefficientкоэффицие́нт обжа́тия прок. — draft ratio, reduction coefficientкоэффицие́нт обра́тной свя́зи — feedback factorкоэффицие́нт о́бщей полноты́ мор. — block coefficientкоэффицие́нт объедине́ния по вхо́ду элк. — fan-inкоэффицие́нт объё́много расшире́ния — coefficient of volumetric expansionкоэффицие́нт ослабле́ния синфа́зных сигна́лов — common-mode rejection ratioкоэффицие́нт оста́точного сопротивле́ния — residual-resistance coefficientкоэффицие́нт отда́чи — yield efficiencyкоэффицие́нт отпуска́ния реле́ — reset factor of a relayкоэффицие́нт отраже́ния — reflectance, reflectivity, reflection factorпереводно́й коэффицие́нт — conversion factorкоэффицие́нт переда́чи элк., автмт. — gain (factor)коэффицие́нт переда́чи дифференциа́льного регуля́тора — derivative gain (factor)коэффицие́нт переда́чи интегра́льного регуля́тора — integral gain (factor)коэффицие́нт переда́чи по напряже́нию — voltage transfer ratioкоэффицие́нт переда́чи преобразова́теля — transducer gainкоэффицие́нт переда́чи пропорциона́льного регуля́тора — proportional gain [factor]коэффицие́нт переда́чи прямо́го тра́кта — forward-circuit gainкоэффицие́нт перекрё́стных поме́х — crosstalk factorкоэффицие́нт перено́са — (base) transport factorкоэффицие́нт переориенти́рования топ. — overcorrection factorкоэффицие́нт пересчё́та — scaling ratio, scaling factorкоэффицие́нт пло́тности укла́дки ( лесоматериалов) — stacking factorкоэффицие́нт пове́рхностного расшире́ния — coefficient of surface expansionкоэффицие́нт повторе́ния вчт. — replication factorкоэффицие́нт поглоще́ния — absorption factor, absorptance, absorptivityкоэффицие́нт подавле́ния синфа́зной поме́хи — common-mode rejection factorкоэффицие́нт подъё́мной си́лы — lift coefficientкоэффицие́нт поле́зного де́йствия [кпд] — efficiencyкоэффицие́нт поле́зного де́йствия излуче́ния анте́нны — radiation efficiencyкоэффицие́нт поле́зного де́йствия, индика́торный — indicated efficiencyкоэффицие́нт поле́зного де́йствия по ано́ду — plate efficiencyкоэффицие́нт поле́зного де́йствия, тя́говый — propulsion efficiencyкоэффицие́нт поле́зного де́йствия, эффекти́вный — effective [net] efficiencyкоэффицие́нт по́лного сопротивле́ния — total-resistance coefficientкоэффицие́нт полнодреве́сности — stacking factorкоэффицие́нт полноты́ водоизмеще́ния — block coefficientкоэффицие́нт полноты́ ми́дель-шпанго́ута — midship(-section) coefficientкоэффицие́нт полноты́ пло́щади ватерли́нии — waterplane (area) coefficientкоэффицие́нт полноты́ пло́щади пла́вания — waterplane (area) coefficientкоэффицие́нт полноты́ сгора́ния — combustion efficiencyкоэффицие́нт по́лных затра́т — coefficient of overall outlaysкоэффицие́нт по́ля эл. — field-form factorкоэффицие́нт попере́чной полноты́ мор. — transverse prismatic coefficientпопра́вочный коэффицие́нт — correction factorкоэффицие́нт попу́тного пото́ка мор. — wake fractionкоэффицие́нт по́ристости — voids ratioкоэффицие́нт поры́вистости — gust factorпостоя́нный коэффицие́нт — constant coefficientкоэффицие́нт поте́рь — loss factorкоэффицие́нт потокосцепле́ния — linkage coefficientкоэффицие́нт преломле́ния — index of refraction, refractive indexкоэффицие́нт продо́льной полноты́ мор. — prismatic coefficientкоэффицие́нт проница́емости се́тки ( лампы) — penetration factor, durchgriff, through-gripкоэффицие́нт пропорциона́льного возде́йствия — proportional action (factor)коэффицие́нт пропорциона́льности — coefficient [factor] of proportionality, proportionality factorпропульси́вный коэффицие́нт мор. — propulsive coefficientкоэффицие́нт просто́я — downtime rate, downtime ratioкоэффицие́нт профила́ктики — preventive maintenance ratioкоэффицие́нт прямоуго́льности1. ( магнитных материалов) squareness ratio2. (усилителей, приёмников) bandwidth ratio, (bandwidth) shape factor, relative bandwidthкоэффицие́нт прямы́х затра́т — cost coefficientкоэффицие́нт Пуассо́на сопр. — Poisson's ratioкоэффицие́нт пульса́ции — ripple factor, ripple ratio, percent rippleкоэффицие́нт пусто́тности — void ratioкоэффицие́нт разбавле́ния — dilution ratioкоэффицие́нт разветвле́ния по вы́ходу элк. — fan-outкоэффицие́нт распростране́ния — propagation factor; ( линии передачи) propagation constantкоэффицие́нт расшире́ния, терми́ческий — thermal coefficient of expansionкоэффицие́нт регре́ссии — coefficient of regressionкоэффицие́нт регули́рования — control factorкоэффицие́нт самовыра́внивания — self-regulationкоэффицие́нт самоинду́кции — (self-)inductanceкоэффицие́нт свя́зи — coupling coefficientкоэффицие́нт скольже́ния — coefficient of sliding [kinetic] frictionкоэффицие́нт скру́тки ( кабеля) — lay ratioкоэффицие́нт слы́шимости — audibility factorкоэффицие́нт стабилиза́ции — stabilization factorкоэффицие́нт стати́ческой оши́бки — position error coefficientкоэффицие́нт стоя́чей волны́ — standing-wave ratio, SWRкоэффицие́нт стоя́чей волны́ по напряже́нию — voltage standing-wave rate, VSWRкоэффицие́нт суже́ния струи́ — contraction coefficientкоэффицие́нт та́ры ваго́на — tare-load ratio of a railway carкоэффицие́нт температу́рного расшире́ния — coefficient of thermal expansionтемперату́рный коэффицие́нт — temperature coefficientтемперату́рный коэффицие́нт ё́мкости — temperature coefficient of capacitanceтемперату́рный коэффицие́нт индукти́вности — temperature coefficient of inductanceтемперату́рный коэффицие́нт сопротивле́ния — temperature coefficient of resistanceтемперату́рный коэффицие́нт частоты́ — temperature coefficient of frequencyтемперату́рный коэффицие́нт электродви́жущей си́лы — temperature coefficient of electromotive forceкоэффицие́нт температуропрово́дности — thermal diffusivityкоэффицие́нт тензочувстви́тельности — the gauge factor of a strain gaugeкоэффицие́нт теплово́го расшире́ния — coefficient of thermal expansionкоэффицие́нт термоэлектродви́жущей си́лы — thermoelectric coefficientкоэффицие́нт трансформа́ции — transformation ratioкоэффицие́нт тре́ния — friction coefficientкоэффицие́нт тре́ния движе́ния — coefficient of sliding [kinetic] frictionкоэффицие́нт тре́ния поко́я — coefficient of friction of rest, coefficient of static frictionтрёхцве́тный коэффицие́нт (в колориметрии, телевидении) — trichromatic coefficient, chromaticity coordinateуглово́й коэффицие́нт ( прямой линии) — slopeуде́льный коэффицие́нт ( в колориметрии) — relative trichromatic coordinate, distribution coefficientкоэффицие́нт уплотне́ния ( в порошковой металлургии) — compression ratioкоэффицие́нт уса́дки — shrinkage factor, shrinkage ratioкоэффицие́нт усиле́ния1. ( лампы) amplification factor2. (каскада, схемы) gain (factor)коэффицие́нт усиле́ния анте́нны — antenna gainкоэффицие́нт усиле́ния без обра́тной свя́зи — open-loop gainкоэффицие́нт усиле́ния по то́ку — current gainкоэффицие́нт уста́лости — fatigue ratioкоэффицие́нт утри́рования релье́фной ка́рты — ratio of exaggerationкоэффицие́нт фа́зового регули́рования — phase control factorкоэффицие́нт фа́зы ( линии передачи) — phase (shift) constantкоэффицие́нт фо́рмы1. (напряжения, тока) form factor2. ( лесоматериала) diameter quotientхолоди́льный коэффицие́нт — coefficient of performance of a refrigerating machineчислово́й коэффицие́нт — numerical coefficientкоэффицие́нт шерохова́тости — roughness factor, roughness coefficientкоэффицие́нт шу́ма — noise factor, noise figureкоэффицие́нт шунти́рования изм. — multiplying power of a shuntкоэффицие́нт экрани́рования — screening number, screening constantкоэффицие́нт электровооружё́нности труда́ — electric power (available) per workerкоэффицие́нт эффекти́вности усили́теля — root gain-bandwidth productкоэффицие́нт я́ркости — luminance factor -
26 коэффициент использования
1) General subject: use factor2) Military: factor of utilization, in-commission rate, utilization coefficient3) Engineering: activity factor, application rate, application rate (ar), coefficient of utilization, degree of utilization, duty cycle, duty factor (оборудования), fill (напр. линии связи), load ratio, operating factor (оборудования), operating ratio, operation factor (оборудования), operation ratio, operational factor (оборудования), output factor, throughput, usage, usage factor, use effect, utilization, utilization factor4) Mathematics: capacite factor, coefficient5) Railway term: coefficient of output, coefficient of performance, consumer's load factor (энергосистемы)6) Economy: coefficient of recovery (питательных веществ), measure of utilization (напр. обслуживающего устройства), rate of use, up-time ratio (напр., оборудования), utilization parameter, utilization rate (производственных мощностей)7) Accounting: coefficient of occupation, fill, measure of utilisation (напр. обслуживающего устройства), utilisation factor, utilisation parameter, utilisation rate (производственных мощностей), utilisation ratio8) Automobile industry: operation factor (отношение длительности фактического использования машины или оборудования ко всему рассматриваемому промежутку времени)9) Telecommunications: occupation efficiency10) Information technology: activity ratio, percent uptime (машинного времени), processing ratio (отношение эффективно используемого времени к полному машинному времени), utilization ratio (отношение эффективно используемого времени к полному машинному времени)11) Oil: activity factor (оборудования), capacity factor (оборудования), efficiency, output coefficient, packing factor, readiness factor (оборудования), usage coefficient, utilization rate (оборудования, скважин)12) Toxicology: UF, utilization factor, UF13) Fishery: rate of removal14) Astronautics: utilization efficiency factor15) Transport: percentage of miles laden16) Theory of mass service: clearing ratio, servicing factor17) Metrology: duty cycle (например, оборудования), duty factor (например, оборудования)18) Mechanics: efficiency ratio, net working rate19) Ecology: oxygen utilization quotient, utilization quotient20) Advertising: use efficiency21) Business: stock utilization22) Sakhalin energy glossary: operations factor23) Solar energy: utilizability function24) EBRD: availability (оборудования, электростанции и т. п.), operating ratio (OR)25) Automation: duty factor (напр. станка), (технического) efficiency ratio (напр. станков), (технического) net working rate (напр. станка), (технического) operating ratio (напр. станков), utilization (оборудования), (технического) utilization coefficient, (технического) utilization factor, utilization factor (оборудования), (технического) utilization level, (технического) utilization rate (напр. станков), (технического) utilization ratio (напр. станков), (технического) work rate (напр. станков), (технического) working efficiency (напр. станка), (технического) working rate (напр. станков)26) Quality control: coefficient of efficiency, load factor27) Robots: degree of utilization (оборудования), percent uptime (оборудования)28) Sakhalin S: operating factor (предприятия)29) Sakhalin A: interactive ratio, unity ratio30) Makarov: capacity factor (мощности, ёмкости водохранилища и т.п.), clearing ratio (ТМО), coefficient of occupation (ТМО), coefficient of recovery (напр. питательных веществ растениями), efficiency (машины), efficiency (напр. питательных элементов удобрений растениями), fill (ТМО), load ratio (ТМО), operation factor (напр. оборудования отношение времени использования к календарному времени), recovery rate (напр. питательных веществ, удобрений растениями), servicing factor (ТМО), up-time ratio (напр. оборудования), use coefficient (напр. питательных элементов удобрений, корма), use efficiency (напр. питательных элементов удобрений), utilizability function (солнечной радиации), utilization coefficient (напр. питательных элементов удобрений, корма), utilization parameter (ТМО)31) Electrical engineering: load ratio (оборудования), (эксплуатационного) operating time ratio, use factor (мощности), utilization factor (мощности)32) General subject: capacity factor (воды)Универсальный русско-английский словарь > коэффициент использования
-
27 производительность
1) General subject: capacity, efficiency, performance, power, producibility, production, productive capacity, productiveness, productivity, rated capacity, rating2) Biology: carrying capacity (напр. фитоценоза)3) Aviation: yield capacity4) Naval: displacement (насоса), give out5) Engineering: actual output, capability, cubic capacity (в кубическом измерении), delivery, discharge (насосной станции, компрессора), discharge capacity (насосной станции), duty, effect, flow capacity, marked capacity, melting rate (плавильной печи), operating rate, output, output rate, throughput rate, turn-over6) Agriculture: displacement (насоса), positive displacement pump (насоса)7) Construction: dump power, production cantilevering, production capacity, working capacity (труда)8) Railway term: capacitivity, capacity of production, delivery volume (насоса или компрессора), effect (машины)9) Economy: labour performance, output capacity, productive efficiency, yielding capacity, yield10) Accounting: productiveness (машин)11) Automobile industry: delivery volume (насоса, компрессора), discharge (насоса), specific output12) Mining: delivery (насоса, вентилятора), displacement (насоса, компрессора), ratings13) Diplomatic term: (номинальная) capacity14) Forestry: productive capacity (леса), yield power, yielding capacity (растений или почвы), yielding power16) Polygraphy: production speed17) Information technology: bandwidth, duty cycle, processing power (ЭВМ), productivity (вычислительной машины или системы), throughput (машины)18) Oil: capacity (компрессора), capacity in tons per hour, discharge (насосной станции), discharge capacity (насоса; насосной станции), flow rate, flow rate (насоса, компрессора), flowrate, operating efficiency, power efficiency, producing capacity (нефтехимической установки), production rate, productive capacity (нефтехимической установки), productive rate, productivity (скважины), rate of production, screening capacity, throughput capacity, throughput19) Astronautics: gross productivity, rated output, rating data20) Korean: binary (употреблено в тексте корейской фирмы, производящей машины инжекционного литья)21) Geophysics: young yield22) Mechanic engineering: performance capacity23) Metrology: throughput (насоса)24) Mechanics: build rate, manufacturing rate, operation rate, output value, work rate, yield rate26) Power engineering: (электрическая) capacity27) Patents: operativity28) Business: outturn, rate of throughput, work output29) Drilling: e (efficiency), eff (efficiency), indicated output, rate30) Sakhalin energy glossary: Production throughput31) Microelectronics: throughput speed32) Polymers: delivery value, manufacturing capacity33) Automation: capacity level, effective output, flow, job rate, manufacturing capability, process flow, process speed, production flow, production level, production output, production volume, productivity rate, throughput capability, throughput performance, throughput volume, work oyster, working efficiency, working rate34) Quality control: (наибольшая) capacity, work capacity, working capacity37) Aviation medicine: efficacy38) Makarov: carrying capacity (пастбища), delivery (насоса или вентилятора), delivery volume (компрессора), duty (котла, насоса и т.п.), grazing capacity (пастбища), output capability, speed, velocity, work pace39) oil&gas: well capacity (скважины), well production (скважины)40) Logistics: delivery capacity, servicing capacity42) Water supply: flow rate production (например, водоочистной установки), flowrate production (например, водоочистной установки)43) Phraseological unit: bang for the buck44) Microsoft: Performance Center45) Cement: recovery rate of heater (теплообменника)Универсальный русско-английский словарь > производительность
-
28 коэффициент
1) coefficient
2) component
3) factor
4) figure
5) index
6) <math.> modulus
7) multiplier
8) parameter
9) rate
10) ratio
– барометрический коэффициент
– безразмерный коэффициент
– буквенный коэффициент
– вариационный коэффициент
– весовой коэффициент
– коэффициент абразивности
– коэффициент абсорбции
– коэффициент акустико-электрический
– коэффициент амплитудный
– коэффициент асимметрии
– коэффициент безопасности
– коэффициент блокировки
– коэффициент быстроходности
– коэффициент весовой
– коэффициент взаимодействия
– коэффициент взаимоиндукции
– коэффициент взвешивающий
– коэффициент видимости
– коэффициент вобуляции
– коэффициент возврата
– коэффициент волочения
– коэффициент воспроизводимости
– коэффициент воспроизводства
– коэффициент выпрямления
– коэффициент вязкости
– коэффициент гашения
– коэффициент гибели
– коэффициент гистерезиса
– коэффициент готовности
– коэффициент дальномера
– коэффициент деления
– коэффициент демпфирования
– коэффициент деполяризации
– коэффициент детонации
– коэффициент диффузии
– коэффициент добротности
– коэффициент доверия
– коэффициент дросселирования
– коэффициент дубности
– коэффициент жесткости
– коэффициент жидкостный
– коэффициент загрузки
– коэффициент загрязнения
– коэффициент занятия
– коэффициент занятости
– коэффициент запаздывания
– коэффициент запаса
– коэффициент заполнения
– коэффициент затенения
– коэффициент затухания
– коэффициент зацепления
– коэффициент звукоизоляции
– коэффициент звукоотражения
– коэффициент звукопередачи
– коэффициент звукопоглощения
– коэффициент звукопроницаемости
– коэффициент звукопропускания
– коэффициент избирательности
– коэффициент излучения
– коэффициент изменчивости
– коэффициент импульсный
– коэффициент инверсии
– коэффициент индукции
– коэффициент инерции
– коэффициент инцидентности
– коэффициент ионизации
– коэффициент искажений
– коэффициент искажения
– коэффициент использования
– коэффициент истечения
– коэффициент качества
– коэффициент кислотности
– коэффициент когерентности
– коэффициент комы
– коэффициент контраста
– коэффициент контрастности
– коэффициент концентрации
– коэффициент корреляции
– коэффициент крутки
– коэффициент кручения
– коэффициент летучести
– коэффициент лучепоглощения
– коэффициент массообмена
– коэффициент модели
– коэффициент модуляции
– коэффициент момента
– коэффициент мощности
– коэффициент нагрузки
– коэффициент надежности
– коэффициент накачки
– коэффициент наполнения
– коэффициент направленности
– коэффициент настройки
– коэффициент непрозрачности
– коэффициент неравномерности
– коэффициент несогласованности
– коэффициент неустойчивости
– коэффициент нитяного
– коэффициент обеспеченности
– коэффициент обжатия
– коэффициент оборачиваемости
– коэффициент одновременности
– коэффициент однородности
– коэффициент опрессовки
– коэффициент ослабевания
– коэффициент ослабления
– коэффициент отдачи
– коэффициент отклонения
– коэффициент отражения
– коэффициент передачи
– коэффициент перекрытия
– коэффициент переноса
– коэффициент переориентирования
– коэффициент пересчета
– коэффициент перехода
– коэффициент планиметра
– коэффициент повторения
– коэффициент подавления
– коэффициент полнодревесности
– коэффициент поля
– коэффициент поправочный
– коэффициент пористости
– коэффициент порывистости
– коэффициент потенциалопроводности
– коэффициент потерь
– коэффициент потокосцепления
– коэффициент предельный
– коэффициент преломления
– коэффициент при
– коэффициент прилива
– коэффициент приспособления
– коэффициент производства
– коэффициент проницаемости
– коэффициент пропорциональности
– коэффициент пропускания
– коэффициент простоя
– коэффициент профилактики
– коэффициент прочности
– коэффициент Пуассона
– коэффициент пульсации
– коэффициент пустотности
– коэффициент разбавления
– коэффициент разброса
– коэффициент различимости
– коэффициент разложения
– коэффициент размагничивания
– коэффициент размножения
– коэффициент разновреммености
– коэффициент разрывной
– коэффициент Рака
– коэффициент распределения
– коэффициент распространения
– коэффициент рассеивания
– коэффициент рассеяния
– коэффициент растяжения
– коэффициент расхождения
– коэффициент расширения
– коэффициент реактивности
– коэффициент регрессии
– коэффициент регулирования
– коэффициент редукции
– коэффициент режимный
– коэффициент самовыравнивания
– коэффициент самоиндукции
– коэффициент светлоты
– коэффициент связанности
– коэффициент связи
– коэффициент сдвига
– коэффициент сжимаемости
– коэффициент синхронизации
– коэффициент скольжения
– коэффициент слоистости
– коэффициент слышимости
– коэффициент сменности
– коэффициент соединения
– коэффициент сопротивления
– коэффициент состоятельности
– коэффициент стабилизации
– коэффициент теневой
– коэффициент тензочувствительности
– коэффициент теплообмена
– коэффициент теплоотдачи
– коэффициент теплопередачи
– коэффициент теплопроводности
– коэффициент трансформации
– коэффициент трения
– коэффициент трехцветный
– коэффициент увеличения
– коэффициент угловой
– коэффициент удаления
– коэффициент удлинения
– коэффициент укрутки
– коэффициент уменьшения
– коэффициент умножения
– коэффициент уплотнения
– коэффициент усадки
– коэффициент усиления
– коэффициент усталости
– коэффициент утечки
– коэффициент утрирования
– коэффициент фазы
– коэффициент формы
– коэффициент холодный
– коэффициент цвета
– коэффициент цветности
– коэффициент черноты
– коэффициент шероховатости
– коэффициент Штреля
– коэффициент шума
– коэффициент шумов
– коэффициент шунтирования
– коэффициент эдс термоэлектрический
– коэффициент экранирования
– коэффициент эксцесса
– коэффициент электроакустический
– коэффициент энергопотерь
– коэффициент энтропии
– коэффициент эффективности
– коэффициент яркости
– масштабный коэффициент
– направляющий коэффициент
– неопределенный коэффициент
– переводной коэффициент
– поправочный коэффициент
– постоянный коэффициент
– средний коэффициент
– старший коэффициент
– температурный коэффициент
– угловой коэффициент
– удельный коэффициент
– упаковочный коэффициент
– числовой коэффициент
коэффициент аварийного простоя — <engin.> emergency outage factor, emergency shut-down coefficient
коэффициент бегущей волны — travelling-wave factor
коэффициент вертикальной полноты — <naut.> vertical prismatic coefficient
коэффициент вихревого сопротивления — eddy-making resistance coefficient
коэффициент влияния корпуса — hull efficiency
коэффициент возврата тепла — reheat factor
коэффициент волнового сопротивления — <phys.> wave drag coefficient
коэффициент воспроизводства избыточный — <engin.> breeding gain
коэффициент вторичной эмиссии — secondary emission rate
коэффициент выпрямления кристалла — < radio> crystal ratio
коэффициент газового усиления — gas amplification factor
коэффициент демпфирующей силы — <phys.> damping coefficient
коэффициент диэлектрических энергопотерь — <electr.> dielectric loss factor, dielectric loss index
коэффициент дневного освещения — <phot.> daylight factor, daylight ratio
коэффициент допустимоого числа чтений — <comput.> count-down ratio, read-around ratio
коэффициент естественной освещенности — <phot.> daylight factor, daylight ratio
коэффициент загрузки турбины — turbine load factor
коэффициент занятия линии — line occupancy
коэффициент запаса при отпускании — <comput.> safety factor for dropout
коэффициент запаса при срабатывании — <comput.> safety factor for pickup
коэффициент заполнения судна — block coefficient of a ship
коэффициент защитного действия — < radio> directivity, front-to-back ratio, space factor
коэффициент зеркальных помех — < radio> image interference ratio, image ratio
коэффициент избытка воздуха — excess air coefficient, <engin.> excess air ratio
коэффициент избытка окислителя — <engin.> excess oxidant ratio
коэффициент изменивости размаха — coefficient of variation of range
коэффициент импульсного цикла — <electr.> pulse duty factor
коэффициент индуктивного сопротивления — <phys.> induced drag coefficient
коэффициент ионизации линейный — <phys.> specific ionization coefficient
коэффициент искажения площадей — <topogr.> area-distortion ratio
коэффициент искажения форм — <topogr.> shape-distortion ratio
коэффициент искривления рупора — < radio> flare factor
коэффициент качества связи — error rate of communication
коэффициент концентрации напряжений — notch sensitivity index
коэффициент линейного расширения — coefficient of linear expansion
коэффициент лобового сопротивления — head drag coefficient
коэффициент лучистого отражения — <opt.> radiant reflectivity
коэффициент модуляции активной проводимости — <phys.> pump modulation factor
коэффициент мощности винта — <phys.> propeller power coefficient
коэффициент направленного действия — <electr.> directive gain
коэффициент нелинейных искажений — < radio> distortion factor
коэффициент нитяного дальномера — instrumental constant of stadia
коэффициент обратного рассеяния — <phys.> backscattering coefficient
коэффициент обратной связи — coefficient of feedback, feedback factor
коэффициент общей полноты — <transp.> block coefficient
коэффициент объединения по входу — <electr.> fan-in
коэффициент объемного расширения — coefficient of volumetric expansion
коэффициент одновременности нагрузки — demand factor
коэффициент ослабления синфазных сигналов — < radio> common-mode rejection ratio
коэффициент отпускания реле — reset factor of a relay
коэффициент отражения баланса — <commun.> balance return loss
коэффициент отражения оконечной аппаратуры — <commun.> terminal return loss
коэффициент отражения толстого слоя — reflectivity
коэффициент отраженного рассеяния — <phys.> backscattering coefficient
коэффициент отрицательной обратной связи — degeneration factor
коэффициент ошибок по битам — <comput.> bit error rate
коэффициент паровой реактивности — <engin.> void coefficient
коэффициент передачи дифференциального регулятора — <comput.> derivative gain
коэффициент передачи интегрального регулятора — <comput.> integral gain
коэффициент передачи пропорционального регулятора — <comput.> proportional gain
коэффициент плоской земли — < radio> plane earth factor
коэффициент плотности укладки — stacking factor
коэффициент поверхностного расширения — coefficient of surface expansion
коэффициент поглощения звездного вещества — <astr.> stellar absorption coefficient
коэффициент подавления синфазной помехи — < radio> common-mode rejection ratio
коэффициент подъемной силы — lift coefficient
коэффициент полезного действия — effeciency, yield, <engin.> efficiency, <math.> efficiency factor
коэффициент полезного действия антенны — radiation efficiency
коэффициент полноты водоизмещения — <transp.> block coefficient
коэффициент полноты давления — <engin.> pressure coefficient
коэффициент полноты мидель-шпангоута — <transp.> midship coefficient
коэффициент полноты площади ватерлинии — <transp.> waterplane coefficient
коэффициент полноты площади плавания — <transp.> waterplane coefficient
коэффициент полноты сгорания — combustion efficiency
коэффициент полных затрат — coefficient of overall outlays
коэффициент понижения частоты — < radio> pulse scaling ratio
коэффициент попадания синфазной помехи — < radio> common-mode rejection ratio
коэффициент поперечной полноты — <transp.> transverse prismatic coefficient
коэффициент поправочный угловой — <tech.> phase-angle correction factor
коэффициент попутного потока — wake fraction
коэффициент порядковой корреляции — rank correlation coefficient
коэффициент преобразования двойной — <tech.> reciprocal transfer ratio
коэффициент продольной полноты — <transp.> prismatic coefficient
коэффициент пропорционального регулирования — <comput.> proportional control factor
коэффициент прямых затрат — cost coefficient, <comput.> input-output coefficient
коэффициент разветвления по выходу — <electr.> fan-out
коэффициент ранговой корреляции — <math.> Spearman index of cograduation
коэффициент сжатия Земли — <geol.> ellipticity, value of flattening
коэффициент сжатия тестов — <comput.> test compression factor
коэффициент силовой частоты — <electr.> frequency force factor
коэффициент силы тяги — <engin.> thrust coefficient
коэффициент скорости сопла — <phys.> nozzle efficiency, nozzle velocity coefficient
коэффициент скоса пазов — skew factor
коэффициент смешанной корреляции — coefficient of determination
коэффициент соотношения компонентов топлива — <engin.> fuel-air ratio, mixture ratio
коэффициент сопряженности признаков — coefficient of contingency
коэффициент статической ошибки — <comput.> position error coefficient
коэффициент сужения струи — <phys.> contraction coefficient
коэффициент тары вагона — tare-load ratio of a railcar
коэффициент температурной стабильности — thermal stability factor
коэффициент теплового расширения — coefficient of thermal expansion
коэффициент теплового удлинения — coefficient of thermal expansion
коэффициент термоэлектродвижущей силы — absolute thermoelectric power, <electr.> thermoelectric coefficient
коэффициент трения покоя — coefficient of friction of rest, coefficient of static friction
коэффициент трудового участия — labor participation factor
коэффициент увлечения Френеля — Fresnel dragging coefficient
коэффициент уклона местности — <geol.> ratio of slope
коэффициент укорочения шага — pitch factor
коэффициент уменьшения отклонения — <comput.> deviation reduction factor
коэффициент усадки стружки — chip reduction coefficient
коэффициент усиления антенны — antenna gain
коэффициент усиления без обратной связи — <electr.> open-loop gain
коэффициент усиления по току — current gain
коэффициент шаговый обмоточный — pitch factor
коэффициент шарообразной Земли — < radio> spherical earth factor
коэффициент эффективности усилителя — <electr.> root gain-bandwidth product
относительный коэффициент направленности по полю — < radio> pattern-propagation factor
полный коэффициент корреляции — total coefficient of correlation
результирующий температурный коэффициент — temperature tracking
сводный коэффициент корреляции — multiple coefficient of correlation
частный коэффициент корреляции — partial coefficient of correlation
-
29 экономичный коэффициент полезного действия
1) Economy: economic efficiency, economical efficiency3) Makarov: most economic efficiency, most economical efficiencyУниверсальный русско-английский словарь > экономичный коэффициент полезного действия
-
30 эффективность
effectiveness
- охлаждения — cooling efficiency
- применения — operational effectiveness
- рулей — control (surface) effectiveness
способность рулей (элеронов) при отклонении создавать момент относительно соответствующей оси, проходящей через центр тяжести самолета, необходимый для управления. — ability of control surfaces elevator, rudder, ailerons), when deflected, to create pitching, yawing and rolling moment to control the airplane attitude in flight.
-, топливная — fuel efficiency
повышается за счет улучшения аэродинамики и снижения веса ла.
- торможения — braking effectiveness
braking effectiveness during readjustment period is reduced.
- торможения колес — wheel braking capability
спойлеры способствуют максимальной эффективности торможения колес. — spollers afford maximum wheel braking capability.
- управления — control effectiveness
- эксплуатации (использования) — utilization
- элеронов — aileron effectiveness
элероны могут сохранять свою эффективность при больших углах атаки. — the ailerons may retain their effectiveness at large angles of attack.Русско-английский сборник авиационно-технических терминов > эффективность
-
31 модульный центр обработки данных (ЦОД)
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)
-
32 пропускная способность
1) General subject: capacity, capacity (канала связи, тж. channel capacity), carrying capacity, output, through-put, throughput capability (АД), pass-through function2) Computers: zero error capacity3) Medicine: patient capacity (больницы, госпиталя)4) Military: admission rate (медицинского учреждения), capacity (дороги), intake capacity, target engagement rate (комплекса), traffic handling capacity (системы связи, дороги), trafficability, trafficability throughput5) Engineering: acceptance rate (аэропорта или взлётно-посадочной полосы), capability, carrier power (напр. гальванической ванны), carrying capacity (напр. канала связи), conveyance capacity (водовода), conveying capacity (водовода), data throughput (канала передачи данных), full-capacity discharge (напр. водосброса), information throughput (канала связи), performance, processing capacity, recreational potential (национального парка), throughput (продукции), throughput efficiency, throughput rate, traffic carrying capacity, transfer capability (ЛЭП), transmissive capacity, transmitting capacity (ЛЭП), transport capability, (у сопел, форсунок, распылителей) k-value6) Agriculture: carrying capacity (канала или русла), discharge capacity (обычно сооружения или трубопровода)7) Chemistry: carrying power8) Construction: carrying capacity (трубопровода), discharge capacity (водотока), discharge rate (двери, трубопровода и т. п.), discharge value (всех выходов из здания или зала), throughput (трубопровода), traffic capacity (дороги)9) Mathematics: flow capacity, traffic capacity (транспорта)10) Railway term: actual carrying capacity, crossing capacity, efficiency, estimated capacity (горки), train-handling capacity, working capacity11) Economy: delivery capacity, power transfer capability, throughput capacity (напр. трубопровода)12) Automobile industry: swallowing capacity (напр. компрессора), traffic capacity (дороги, улицы)13) Hydrography: hydraulic performance (сооружения)14) Mining: current capacity, throughput ability (ЮАР)15) Road works: possible cantilevering, traffic capacity16) Telecommunications: carrier capacity (канала связи), carrier load, code capacity, communications capacity, information efficiency, light grasp, traffic capability, traffic-handling capacity, transmission capacity17) Information technology: bandwidth, bandwidth capacity, data troughput, network capacity, throughput (канала), transport capacity18) Oil: deliverability (перфорационных каналов), discharge capacity (трубопровода), flow capacity (трубопровода), leak off capacity, leak-off capacity (породы), operating flow (нагнетательной скважины), rate of flow (трубопровода), through-put capacity, traffic handling capacity, delivery value, throughput capacity19) Special term: reception capacity20) Communications: bandwidth capability21) Astronautics: channel capacity, information-handling capacity22) Transport: traffic performance23) Coolers: transmittivity24) Ecology: recreational potential (напр. национального парка)25) Power engineering: (электрическая) capacity, carrying capacitance, discharge capacitance (разрядника), transfer capacity, transmission capacitance (ЛЭП), transmitting capacitance (ЛЭП)26) Business: capacity of highway, handling capacity, rate of throughput27) Household appliances: traffic through-put28) Sakhalin energy glossary: flow rate (of a pump), transmissivity, troughput (capacity) (OPL Tender Update)29) Polymers: discharge30) Automation: bandwidth (напр. компьютерной сети), throughput performance31) Quality control: throughout capacity32) Plastics: flow capacity (трубы)33) Telephony: traffic-carrying capacity34) Sakhalin R: flow rate of a pump36) Chemical weapons: productivity, throughput ( of the elemination facility) (объекта ликвидации; производительность), throughput rates37) Makarov: carrying capacity (канала или сооружения), carrying capacity (пастбища), carrying power (напр. гальванической ванны), channel capacity (канала связи), conveyance factor (канала или трубопровода), discharge capacity (водовода), full-capacity discharge (напр., водосброса), grazing capacity (пастбища), rated capacity, rating, recreational potential (напр., национального парка), separating power (центрифуги, сепаратора), stock-carrying capacity (пастбища), stocking capacity (пастбища), throughput capacity (очистной установки), throughput efficiency (коммуникационной сети)38) Security: bandwidth (канала), through-flow rate (контрольного пункта), transit speed (контролируемого прохода)39) Gold mining: throughput (mln ore t/yr, MMTPA)40) oil&gas: annual flowrate in metric tons per year, flow efficiency (трубопровода), flowrate, mass flow rate (в единицах массы за единицу времени), mass flowrate (в единицах массы за единицу времени), through capacity41) Logistics: discharge capabilities, installation capacity, turnover capacity42) Electrical engineering: discharge capacity (разрядника), transmission capacity (ЛЭП)43) General subject: capacity dischargeУниверсальный русско-английский словарь > пропускная способность
-
33 средняя производительность
1) Engineering: average efficiency, average performance2) Railway term: effective average3) Economy: average productiveness, mean efficiency4) Forestry: medium duty5) Metallurgy: eff. average efficiency6) Information technology: sustained mode performance7) Oil: average output8) Coolers: medium capacity9) Business: average productivity10) Drilling: av eff (everage efficiency)11) Quality control: actual efficiency12) Chemical weapons: average throughputУниверсальный русско-английский словарь > средняя производительность
-
34 контроль контрол·ь
(проверка, наблюдение с целью проверки) control, inspection; (за выполнением договора и т.п.) тех. verification; monitoringбыть / находиться под контроль ем — to be under control
ввести контроль — to adopt / impose control (over)
взять под контроль — to bring / to put (smth.) under control
держать под контролем — to have control (over), to hold the key (of)
обеспечить контроль — to ensure / to provide for verification
ослабить контроль — to loosen / to slacken control (over)
осуществлять контроль — to exercise / have control (over), to carry out verification
передать под чей-л. контроль — to place under smb.'s control
получить контроль — to gain control (over)
потерять контроль — to lose control (of)
сократить количество ядерного оружия при (надлежащем) контроле — to reduce verifiably the quantity of nuclear weapons
сохранить контроль — to retain control (over)
ужесточить контроль — to tighten control (over)
усилить контроль — to strengthen control (over)
установить контроль — to set up / to establish control (over)
адекватный / надлежащий / соответствующий контроль — adequate / appropriate control / verification
под адекватным / надлежащим / соответствующим контролем — adequately verified
валютный контроль — currency / exchange control; (сдача государству валюты и покупка её по установленному курсу) rationing of foreign exchange
форма государственного экономического контроля (юридически одобренная, но применяемая при определённых условиях) — stand-by control
действенный / эффективный контроль — effective / efficient control (over)
дистанционный контроль — remote control / monitoring / verification; extraterritorial monitoring
инструментальный контроль, контроль с помощью приборов — instrumental control / verification / monitoring
народный контроль — public control, voluntary public inspection
непрерывный контроль с помощью установленных на месте приборов — continuous monitoring with on-site instruments
открытый контроль (за уничтожением запасов оружия и т.п.) — demonstrative verification
паспортный контроль — passport control / inspection
поэтапный контроль — stage-by-stage control, control by stages
правительственный контроль, контроль правительства — government control / inspection
радиационный контроль — radiation / radiological monitoring
строгий контроль — strict control, stringent monitoring / verification
под строгим и эффективным международным контролем — under strict and effective international control
финансовый контроль — financial control (over)
контроль деятельности администрации — control of the work of administration / managerial staff
контроль за атмосферой / состоянием атмосферы — atmospheric monitoring
контроль за непроизводством (химического оружия и т.п.) — nonproduction control, monitoring of the nonproduction
контроль запасов (химического оружия и т.п.) — inspection of stocks
контроль за соблюдением (договора, соглашения и т.п.) — control of / over the observance (of), verification / monitoring of compliance (with)
контроль за соблюдением запрещения испытаний ядерного оружия — test-ban control / verification
контроль за соблюдением положений договора — verification of compliance with the provisions of a treaty
контроль за состоянием окружающей среды — environmental control / monitoring of the state of the environment
контроль за уничтожением (запасов определённого вида оружия) — destruction control, verification of stockpiles destruction
контроль над вооружениями — arms control, control of arms
контроль над ядерными вооружениями — control of nuclear weapons, nuclear-arms control
контроль над органами массовой информации — control over mass / news media
контроль над химическим оружием — chemical-weapons control / verification
контроль с использованием национальных технических средств — verification by national technical means
меры по контролю — verification measures, measures of verification
методы контроля — verification methods / technique
методы контроля, которые не выходят за предусмотренные / согласованные рамки, методы контроля, которые не носят характера вмешательства — nonintrusive (methods of) verification
персонал, проводящий контроль — verification personnel
-
35 коэффициент охвата
1) Engineering: sweep efficiency (коллектора при вытеснении нефти)3) Oil: conformance factor, surface efficiency (коллектора при вытеснении нефти), sweep ratio, volumetric efficiency (при заводнении)4) Sakhalin energy glossary: sweeping efficiency (при заводнении)5) Quality control: coverage factorУниверсальный русско-английский словарь > коэффициент охвата
-
36 критерий эффективности
1) Military: (боевой) efficiency criterion2) Engineering: performance criterion (функционирования)3) Mathematics: criterion of efficiency4) Economy: effectiveness measure, efficiency criterion, measure of efficiency5) Telecommunications: measure effectiveness6) Advertising: standard of performance7) Polymers: measure of effectiveness8) Quality control: effectiveness criterion9) oil&gas: performance criteriaУниверсальный русско-английский словарь > критерий эффективности
-
37 мощность
1) General subject: agripower, capacity, duty, energy, mightiness, power, rating, vigour, width (жилы или пласта), yield, output, outturn, multiplicity (определяет какое количество экземпляров одного класса ассоциировано с одним экземпляром другого класса. В общем случае возможные значения мощности задаются множеством положительных целочисленных значений)2) Geology: competence, competency4) Aviation: rower7) American: soup8) Sports: muscular power9) Military: horsepower (в лошадиных силах), power, yield (ядерного боеприпаса)10) Engineering: breadth, capability, capacity (производственная), depth (горных пород), discharge rate, marked capacity, power (физическая величина), thickness (горных пород), volume, watt (в ваттах), wattage (в ваттах), watts11) Agriculture: (номинальная) capacity, thickness (почвы)12) Construction: depth (пласта), dump power, horse-power (в л. с.), horsepower rating, load cantilevering, work, delivery13) Mathematics: cardinal number, cardinality measure, order (группы), potency14) Railway term: belt power, capacity value, power rating15) Law: might16) Economy: rate of work, working efficiency17) Automobile industry: indicated efficiency, power output19) Diplomatic term: devote energies, yield (атомного заряда)21) Telecommunications: ability22) Information technology: cardinality (множества), strength23) Oil: horsepower, size, thickness24) Astronautics: rating data25) Power engineering: (электрическая) capacity26) Business: working capacity29) Automation: horsepower capacity, output (на выходе), power capacity, source density31) Cables: capacity (производственная), power (физическая величина)33) Makarov: capacity (номинальная), competence (потока), depth (напр. пласта, облачности), duty (полезная работа машины), power level, production, range (телескопа и т.п.), thickness (напр. пласта), thickness (напр., пласта), work per time35) Electrochemistry: electrical energy36) SAP.tech. cap.38) Cement: power efficiency39) General subject: power (критерия) -
38 наиболее экономичный коэффициент полезного действия
1) Economy: economical efficiency2) Accounting: economic efficiency3) Quality control: most economical efficiency4) Makarov: most economic efficiencyУниверсальный русско-английский словарь > наиболее экономичный коэффициент полезного действия
-
39 оптимизация
оптимизация
Процесс отыскания варианта, соответствующего критерию оптимальности
[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]
оптимизация
1. Процесс нахождения экстремума функции, т.е. выбор наилучшего варианта из множества возможных, процесс выработки оптимальных решений; 2. Процесс приведения системы в наилучшее (оптимальное) состояние. Иначе говоря, первое определение трактует термин «О.» как факт выработки и принятия оптимального решения (в широком смысле этих слов); мы выясняем, какое состояние изучаемой системы будет наилучшим с точки зрения предъявляемых к ней требований (критерия оптимальности) и рассматриваем такое состояние как цель. В этом смысле применяется также термин «субоптимизация» в случаях, когда отыскивается оптимум по какому-либо одному критерию из нескольких в векторной задаче оптимизации (см. Оптимальность по Парето, Векторная оптимизация). Второе определение имеет в виду процесс выполнения этого решения: т.е. перевод системы от существующего к искомому оптимальному состоянию. В зависимости от вида используемых критериев оптимальности (целевых функций или функционалов) и ограничений модели (множества допустимых решений) различают скалярную О., векторную О., мно¬гокритериальную О., стохастическую О (см. Стохастическое программирование), гладкую и негладкую (см. Гладкая функция), дискретную и непрерывную (см. Дискретность, Непрерывность), выпуклую и вогнутую (см. Выпуклость, вогнутость) и др. Численные методы О., т.е. методы построения алгоритмов нахождения оп¬тимальных значений целевых функций и соответствующих точек области допустимых значений — развитой отдел современной вычислительной математики. См. Оптимальная задача.
[ http://slovar-lopatnikov.ru/]Параллельные тексты EN-RU из ABB Review. Перевод компании Интент
The quest for the optimumВопрос оптимизацииThroughout the history of industry, there has been one factor that has spurred on progress more than any other. That factor is productivity. From the invention of the first pump to advanced computer-based optimization methods, the key to the success of new ideas was that they permitted more to be achieved with less. This meant that consumers could, over time and measured in real terms, afford to buy more with less money. Luxuries restricted to a tiny minority not much more than a generation ago are now available to almost everybody in developed countries, with many developing countries rapidly catching up.На протяжении всей истории промышленности существует один фактор, подстегивающий ее развитие сильнее всего. Он называется «производительность». Начиная с изобретения первого насоса и заканчивая передовыми методами компьютерной оптимизации, успех новых идей зависел от того, позволяют ли они добиться большего результата меньшими усилиями. На языке потребителей это значит, что они всегда хотят купить больше, а заплатить меньше. Меньше чем поколение назад, многие предметы считались роскошью и были доступны лишь немногим. Сейчас в развитых странах, число которых быстро увеличивается, подобное может позволить себе почти каждый.With industry and consumers expecting the trend towards higher productivity to continue, engineering companies are faced with the challenge of identifying and realizing further optimization potential. The solution often lies in taking a step back and looking at the bigger picture. Rather than optimizing every step individually, many modern optimization techniques look at a process as a whole, and sometimes even beyond it. They can, for example, take into account factors such as the volatility of fuel quality and price, the performance of maintenance and service practices or even improved data tracking and handling. All this would not be possible without the advanced processing capability of modern computer and control systems, able to handle numerous variables over large domains, and so solve optimization problems that would otherwise remain intractable.На фоне общей заинтересованности в дальнейшем росте производительности, машиностроительные и проектировочные компании сталкиваются с необходимостью определения и реализации возможностей по оптимизации своей деятельности. Для того чтобы найти решение, часто нужно сделать шаг назад, поскольку большое видится на расстоянии. И поэтому вместо того, чтобы оптимизировать каждый этап производства по отдельности, многие современные решения охватывают процесс целиком, а иногда и выходят за его пределы. Например, они могут учитывать такие факторы, как изменение качества и цены топлива, результативность ремонта и обслуживания, и даже возможности по сбору и обработке данных. Все это невозможно без использования мощных современных компьютеров и систем управления, способных оперировать множеством переменных, связанных с крупномасштабными объектами, и решать проблемы оптимизации, которые другим способом решить нереально.Whether through a stunning example of how to improve the rolling of metal, or in a more general overview of progress in optimization algorithms, this edition of ABB Review brings you closer to the challenges and successes of real world computer-based optimization tasks. But it is not in optimization and solving alone that information technology is making a difference: Who would have thought 10 years ago, that a technician would today be able to diagnose equipment and advise on maintenance without even visiting the factory? ABB’s Remote Service makes this possible. In another article, ABB Review shows how the company is reducing paperwork while at the same time leveraging quality control through the computer-based tracking of production. And if you believed that so-called “Internet communities” were just about fun, you will be surprised to read how a spin-off of this idea is already leveraging production efficiency in real terms. Devices are able to form “social networks” and so facilitate maintenance.Рассказывая об ошеломляющем примере того, как был усовершенствован процесс прокатки металла, или давая общий обзор развития алгоритмов оптимизации, этот выпуск АББ Ревю знакомит вас с практическими задачами и достигнутыми успехами оптимизации на основе компьютерных технологий. Но информационные технологии способны не только оптимизировать процесс производства. Кто бы мог представить 10 лет назад, что сервисный специалист может диагностировать производственное оборудование и давать рекомендации по его обслуживанию, не выходя из офиса? Это стало возможно с пакетом Remote Service от АББ. В другой статье этого номера АББ Ревю рассказывается о том, как компания смогла уменьшить бумажный документооборот и одновременно повысить качество управления с помощью компьютерного контроля производства. Если вы считаете, что так называемые «интернет-сообщества» служат только для развлечения,то очень удивитесь, узнав, что на основе этой идеи можно реально повысить производительность. Формирование «социальной сети» из автоматов значительно облегчает их обслуживание.This edition of ABB Review also features several stories of service and consulting successes, demonstrating how ABB’s expertise has helped customers achieve higher levels of productivity. In a more fundamental look at the question of what reliability is really about, a thought-provoking analysis sets out to find the definition of that term that makes the greatest difference to overall production.В этом номере АББ Ревю есть несколько статей, рассказывающих об успешных решениях по организации дистанционного сервиса и консультирования. Из них видно, как опыт АББ помогает нашим заказчикам повысить производительность своих предприятий. Углубленные размышления о самой природе термина «надежность» приводят к парадоксальным выводам, способным в корне изменить представления об оптимизации производства.Robots have often been called “the extended arm of man.” They are continuously advancing productivity by meeting ever-tightening demands on precision and efficiency. This edition of ABB Review dedicates two articles to robots.Робот – это могучее «продолжение» человеческой руки. Применение роботов способствует постоянному повышению производительности, поскольку они отвечают самым строгим требованиям точности и эффективности. Две статьи в этом номере АББ Ревю посвящены роботам.Further technological breakthroughs discussed in this issue look at how ABB is keeping water clean or enabling gas to be shipped more efficiently.Говоря о других технологических достижениях, обсуждаемых на страницах журнала, следует упомянуть о том, как компания АББ обеспечивает чистоту воды, а также более эффективную перевозку сжиженного газа морским транспортом.The publication of this edition of ABB Review is timed to coincide with ABB Automation and Power World 2009, one of the company’s greatest customer events. Readers visiting this event will doubtlessly recognize many technologies and products that have been covered in this and recent editions of the journal. Among the new products ABB is launching at the event is a caliper permitting the flatness of paper to be measured optically. We are proud to carry a report on this product on the very day of its launch.Публикация этого номера АББ Ревю совпала по времени с крупнейшей конференцией для наших заказчиков «ABB Automation and Power World 2009». Читатели, посетившие ее, смогли воочию увидеть многие технологии и изделия, описанные в этом и предыдущих выпусках журнала. Среди новинок, представленных АББ на этой конференции, был датчик, позволяющий измерять толщину бумаги оптическим способом. Мы рады сообщить, что сегодня он готов к выпуску.Тематики
EN
DE
FR
Русско-английский словарь нормативно-технической терминологии > оптимизация
40 визуальный контроль
1. sight check2. visual verification3. visual timing verification4. eyeballing5. sight controlРусско-английский большой базовый словарь > визуальный контроль
СтраницыСм. также в других словарях:
Control table — This simple control table directs program flow according to the value of the single input variable. Each table entry holds a possible input value to be tested for equality (implied) and a relevant subroutine to perform in the action column. The… … Wikipedia
Efficiency Movement — Part of the Politics series on Progressivism Schools American Progressivism Modern liberalism Progressive education Ideas Anti racism Civil liberties … Wikipedia
Control of the National Grid — The National Grid is the high voltage electric power transmission network in Great Britain, connecting power stations and major substations, and has a synchronized organization such that electricity generated anywhere in Great Britain can be used … Wikipedia
Control (management) — Controlling is one of the managerial functions like planning, organizing, staffing and directing. It is an important function because it helps to check the errors and to take the corrective action so that deviation from standards are minimized… … Wikipedia
efficiency — /ɪ fɪʃ(ə)nsi/ noun the ability to work well or to produce the right result or the right work quickly ● a business efficiency exhibition ● The bus system is run with a high degree of efficiency. ● We called in an efficiency expert to report on… … Dictionary of banking and finance
Control center solutions — This article is about Command Control installations. For other uses Command and Control Infrastructure, see Control center solutions (disambiguation). Control Center Solution is a generic term for different flavors of technical arrangement within … Wikipedia
Control volume — Thermodynamics … Wikipedia
Control of the National Grid (UK) — The National Grid (UK) is the high voltage electric power transmission network in Great Britain, connecting power stations and major substations to ensure that electricity generated anywhere in Great Britain can be used to satisfy demand… … Wikipedia
control — Synonyms and related words: Masan, R and D, abate, ability, abnegation, absolutism, abstinence, acme, action, address, adeptness, administration, adroitness, airmanship, allay, alleviate, ancestral spirits, angel, aplomb, apparition, appearance,… … Moby Thesaurus
control — The exercising of influence, regulation, or restriction over an activity, process, or individual. In an auditing context, control is often understood to be an action or practice that assists an organization to achieve its objectives, though this… … Auditor's dictionary
efficiency — Synonyms and related words: ability, able, ableness, address, adept, adeptness, adequacy, adroitness, airmanship, applicability, artfulness, artisanship, artistry, availability, bravura, brilliance, caliber, capability, capable, capableness,… … Moby Thesaurus
Перевод: с русского на английский
с английского на русский- С английского на:
- Русский
- С русского на:
- Все языки
- Английский
- Немецкий
- Французский