Перевод: со всех языков на английский

с английского на все языки

aeroplanes

  • 81 vliegtuigjes vouwen

    vliegtuigjes vouwen
    make paper aeroplanes/airplanes

    Van Dale Handwoordenboek Nederlands-Engels > vliegtuigjes vouwen

  • 82 თვითმფრინავები

    n
    aeroplanes

    Georgian-English dictionary > თვითმფრინავები

  • 83 дистанция


    distance
    - (строительная или чертежная) (рис. 31) — station
    - взлета, потребная (пвд) — takeoff distance required
    пвд должна быть не больше располагаемой дистанции взлета. пвд должна выбираться как большая из указанных ниже двух величин: — the takeoff distance required shall be the greatest of:
    а) 1,15 дистанции нормального взлета. — а) 1.15 times the gross distance to accelerate with all power-units operating from the starting point to the rotation speed, to effect a transition to climbing flight and attain a screen height of 35 feet.
    б) длины дистанции продолженного взлета (нлгс-2). — b) the gross distance to accelerate with all power-units operating from the starting point to the power-unit failure point, then to accelerate to the rotation speed, and to attain a screen height of 35 feet.
    - взлета, располагаемая (рдв) — takeoff distance available
    рдв равна сумме длины впп, уменьшенной на длину участка выруливания, и свободной зоны (сз) полосы воздушных подходов (нлгс-2) (рис. 112). — the takeoff distance available is an accelerate-stop distance available augmented by the length measured in direction оf takeoff of the surface of the runway, stopway and clearway declared by the aerodrome authority suitable for climb to 15 m (50 feet).
    -, взлетная (lвзл.) — takeoff distance
    расстояние no горизонтали, проходимое самолетом с момента страгивания на линии старта до момента набоpa высоты 10 м (над уровнем впп в точке отрыва самолета) с одновременным достижением скорости не менее безопасной скорости взлета v2, характеризующее собственно взлет самолета (нлгс-2) (рис. 112). — the horizontal distance along the takeoff path from the start of the takeoff to the point at which the airplane is 35 feet above the takeoff surface.
    -, взлетная (до высоты...м) — takeoff distance (to...m)
    - выдерживания (при посадке)hold-off distance
    - выравнивания (при посадке)flare-out distance
    - между двумя разминувшимися в воздухе лаmiss distance
    - набора высоты(horizontal) distance covered in climb
    - (взлетная, прерванного взлета) — (takeoff accelerate-stop) distance
    определяемая для гладкой, сухой впп с жестким покрытием — based on smooth, dry, hard surfaced runways
    - от линии отсчета, горизонтальная — horizontal distance total from reference
    - планированияgliding distance
    -, полная взлетная (lпв) — gross takeoff distance
    расстояние no горизонтали. проходимое самолетом с момента страгивания на линии старта до момента выхода на высоту 400 м (над уровнем впп в точке отрыва самолета), либо до момента, к которому заканчивается переход от взлетной к полетной конфигурации и достигается скорость, равная 1,25 vc, для полетной конфигурации (нлгс-2)(рис.112). — the horizontal distance extending from a standing start to а point in the takeoff at which the airplane is 400 m above the takeoff surface, or at which the transition from the takeoff to en route configuration is completed and a speed 1.25 vs is reached.
    - полная посадочная (lпп)gross landing distance
    ' расстояние по горизонтали, проходимое самолетом с момента входа в глиссаду на высоте 400 м (над уровнем впп в точке ожидаемого касания самолета) при заходе на посадку до момента полной его остановки после пробега по впп (нлгс-2) (рис. 115). — the horizontal distance required for the airplane to land and to come to a complete stop from the point at which the airplane is 400 m above the landing surface.
    -, посадочная — landing distance
    расстояние по горизонтали, проходимое самолетом, с момента пролета высоты 15 м (над уровнем впп в точке ожидаемого касания самолета) при посадке до момента полной его остановки после пробега по впп (нлгс-2) (рис. 115) — the horizontal distance necessary to land and to come to а complete stop (or to a speed of approximately 3 knots for water landings) from a point 50 feet above the landing surface.
    -, потребная взлетная (см. д. взлета, потребная) — takeoff distance required (todr)
    -, потребная посадочная — landing distance required
    -, потребная посадочная - на запасном аэродроме — landing distance required-alternate aerodrome
    -, потребная посадочная - на основном аэродроме — landing distance required-destination aerodrome
    - прерванного взлета (вертолета)rejected takeoff distance
    - прерванного взлета (lпрв, самолета) — accelerate-stop distance
    расстояние по горизонтали, проходимое самолетом с момента страгивания на линии старта до момента полной остановки самолета на летной полосе при прекращении взлета в случае отказа одного критического двигатепя (нлгс-2). -' " — "accelerate-stop distance" means the distance required to accelerate an airplane to a specified speed and, assuming failure of the critical engine at the instant that speed (v1) is attained, to bring the airplane to a stop.
    - прерванного взлета,потребная (пдпв) — accelerate-stop distance required
    дистанция, потребная самолету, для достижения точки отказа критического двигателя от линии старта до точки полной остановки самолета. — the distance required for the airplane to reach the critical point from a standing start and, assuming the critical power-unit to fail suddenly at this point, to stop.
    - прерванного взлета, располагаемая (рдпв) — accelerate-stop distance available
    рпдв равна располагаемой летной полосе, уменьшенной на длину участка выруливания(нлгс-2)(рис.112). — accelerate-stop distance available is equal to the takeoff run available augmented by the length measured in direction of the takeoff of the surface of the runway and stopway.
    - при двух работающих двигателях, потребная взлетная — takеoff distance required with two engines operating
    - при торможении винтами, посадочная — landing distance with reversible propellers
    - при торможении реверсивным устройством, посадочная — landing distance with (effective) reverse thrust
    - продолженного (завершенного) взлета (lзв)continued takeoff distance
    взлетная дистанция, определенная при отказавшем на протяжении взпетной дистанции одном критическом двигателе (нлгс-2). — takeoff distance with а сritiса1 engine inoperative.
    - пролета (двух ла для предотвращения столкновения)miss distance miss distance of collision hazard
    -, проходимая на участке — horizontal distance increment during segment
    - разбегаtakeoff run
    - разбега, потребная (см. "длина разбега, потребная") — takeoff run required
    - разбега, располагаемая (см. "длина разбега, располагаемая") — takeoff run available
    -, располагаемая взлетная (см. "дистанция взлета, располагаемая") — takeoff distance available (toda)
    -, располагаемая посадочная — landing distance available
    длина части поверхности аэродрома свободная от препятствий, способная выдержать вес данного самолета, и лежащая в пределах аэродрома, обеспечивающих безопасный пробег самолета в данном направлении. — the length of that part of the surface of an aerodrome that is free from all obstructions, capable of bearing the weight of the aeroplane under prevailling operating conditions, within the limits of the surface declared available for the ground run of aeroplanes landing in a particular direction.
    -, располагаемая посадочная для влажной впп (рпдв) (рис. 115) — landing distance available (wet runway)
    -, располагаемая посадочная для сухой впп (рпдс) — landing distance available (dry runway)
    принимается равной длине впп, уменьшенной на длину участка выруливания (нлгс-2) (рис. 115).
    - с высоты 15 м, посадочная — landing distance from 15 m
    -, строительная (чертежная) (рис. 131) — station
    - с учетом поправочных коэффициентов, взлетная — corrected takeoff distance
    - участка разгона, горизонтальная — horizontal distance of acceleration segment
    - участка разгона, горизонтальная (четвертый участок траектории взлета) — (fourth) acceleration segment horizontal distance
    -, фактическая посадочная (рис. 115) — landing distance
    -, штилевая — still-air distance
    -, штилевая, эквивалентная — equivalent still-air distance (esad)
    -, чертежная — station
    увеличивать д. на... % на каждые... ос выше нормальной температуры для данной высоты — increase the distance... % per each... ос above standard altitude temperature

    Русско-английский сборник авиационно-технических терминов > дистанция

  • 84 длина без винтов


    overall lenght excluding rotors
    (вертолета)
    - взлетно-посадочной полосы (геометрическая)runwау length
    - впп (в смысле длины летной полосы)field length
    - впп, потребная (а летных характеристиках) — field length required
    - впп, приведенная — corrected runway length
    - впп, располагаемая — field length available
    - впп, фактическая располагаемая — actual available runway length
    -, габаритная — overall length
    - летной полосыfield length
    - летной полосы (в направлении взлета)takeoff field length
    данная длина охватывает потребную дистанцию разбега, потребную дистанцию взлета и потребную дистанцию прерванного взпета. — this term embraces the takeoff run required, the takeoff distance required and the emergency distance required.
    - летной полосы (в направлении посадки)landing field length

    this term is used to describe the landing distance requ i red.
    - летной полосы на вынос точки приземления (перелет)stopway
    - летной полосы, несбапансированная — unbalanced field length
    условие, обеспечивающее при скорости между дистанцией взлета и дистанцией прерванного взлета. — condition where vi is sevi неравенство lected to make the tak distance and accelerate-stop distance unequal.
    - летной полосы, потребная — field length required
    потребная длина лп указывается для облегчения расчета взлета с аэродромов со сбапансированной длиной лп. — а takeoff field (length) required graph should be given to facilitate the takeoff calculation for aerodromes at which balanced field length operations are used.
    - летной полосы, распопагаемая (рлп) — field length available
    равна сумме длин впп и концевой полосы безопасности (кпб), в направлении которой производится взлет или посадка (нлгс-2). — the graphs should be in a form which allows the user to proceed from the field lengths available to obtain the weight.
    - летной полосы, сбапансированная — balanced field length
    условие, обеспечивающее при скорости vi равенство между дистанцией взлета и дистанцией прерванного взлета. — condition where vi is selected to make takeoff distance equal to the accelerate-stop distance.
    - пробега (lпр)landing ground run
    расстояние no горизонтали. проходимое самолетом с момента касания до момента полной его остановки на вцп (нлгс-2). — the normal ground or water run of aircraft landing in a particular direction.
    - пробега (гидросамолета)landing water run
    - пробега, потребная — landing run required
    - пробега, располагаемая — landing run available
    - разбега (lp) — takeoffground run, takeoff run
    расстояние no горизонтали. проходимое самолетом с момента страгивания на линии старта до момента его отрыва от вцп (нлгс-2) (рис. 112). — the normal ground or water run of airplanes taking off in а particular direction.
    - разбега (гидросамопета)takeoff water run
    - разбега, потребная (пдр) — takeoff run required (torr)
    пдр должна быть не больше рдр, пдр должна выбираться как большая из.указанных ниже двух величин: — if the takeoff distance ineludes а clearway, the takeoff run is the greater of:
    а) 1,15 суммы длины разбега и расстояния по горизонтали от точки отрыва самолета до точки, расположенной на равном расстоянии между точкой отрыва и точкой на траектории, находящейся на высоте 10 м (над уровнем вцп) при нормальном взлете, — а) 115 percent of the horizontal distance along the takeoff path, with the engines operating, from the start of the takeoff to а point equidistant between the point at which v[_of is reached and the point at which the airplane is 35 feet above the taksoff surface.
    б) суммы длины разбега (lp) и расстояния по горизонтали от точки, расположенной на равном расстоянии между точкой отрыва и точкой на траектории на высоте 10 м при продолженном взлете, когда отказ критического двигателя распознается в точке принятия решения (нлгс-2). — b) the horizontal distance along the takeoff path from the start of the takeoff to a point equidistant between the point at which v@_o@ is reached and the point at which the airplane is 35 feet, above the takeoff surface.
    - разбега, располагаемая (рдр) — takeoff run available (tora)
    рдр равна длине вцп, уменьшенной на длину учаетка выруливания (нлгс-2) (рис. 112). — the length of that part of the surface of an aerodrome that is declared available for the normal ground or water run of aeroplanes taking off in a particular direction.
    - с винтами (вертолета)overall length with rotors operating
    - участка нарастания нитейсивности порыва ветраgust gradient distance
    - участка разгона на земле (при взлете)acceleration distance
    - участка торможения (при прерванном взлете)stopping distance
    - хордыchord length

    а length of that part of the chord which is intercepted by the aerofoil section bou n dary.
    - этапа полной траектории начального набора высотыlength of gross takeoff flight path element
    - этапа чистой траектории начального набора высотыlength of net takeoff flight path element
    - шкалы (прибора) по д. детали — scale length along the length of a part

    Русско-английский сборник авиационно-технических терминов > длина без винтов

  • 85 Austin, Herbert, Baron Austin

    [br]
    b. 8 November 1866 Little Missenden, Buckinghamshire, England
    d. 23 May 1941 Lickey Grange, near Bromsgrove, Herefordshire, England
    [br]
    English manufacturer of cars.
    [br]
    The son of Stephen (or Steven) Austin, a farmer of Wentworth, Yorkshire, he was educated at Rotherham Grammar School and then went to Australia with an uncle in 1884. There he became apprenticed as an engineer at the Langlands Foundry in Melbourne. He moved to the Wolseley Sheep Shearing Company, and soon after became its Manager; in 1893 he returned to England, where he became Production Manager to the English branch of the same company in Birmingham. The difficulties of travel in Australia gave him an idea of the advantages of motor-driven vehicles, and in 1895 he produced the first Wolseley car. In 1901 he was appointed to the Wolseley board, and from 1911 he was Chairman.
    His first car was a three-wheeler. An improved model was soon available, and in 1901 the Wolseley company took over the machine tool and motor side of Vickers Sons and Maxim and traded under the name of the Wolseley Tool and Motor Car Company. Herbert Austin was the General Manager. In 1905 he decided to start his own company and formed the Austin Motor Company Ltd, with works at Longbridge, near Birmingham. With a workforce of 270, the firm produced 120 cars in 1906; by 1914 a staff of 2,000 were producing 1,000 cars a year. The First World War saw production facilities turned over to the production of aeroplanes, guns and ammunition.
    Peacetime brought a return to car manufacture, and 1922 saw the introduction of the 7 hp "Baby Austin", a car for the masses. Many other models followed. By 1937 the original Longbridge factory had grown to 220 acres, and the staff had increased to over 16,000, while the number of cars produced had grown to 78,000 per year.
    Herbert Austin was a philanthropist who endowed many hospitals and not a few universities; he was created a Baron in 1936.
    [br]
    Principal Honours and Distinctions
    Baron 1936.
    Further Reading
    1941, Austin Magazine (June).
    IMcN

    Biographical history of technology > Austin, Herbert, Baron Austin

  • 86 Caproni, Giovanni Battista (Gianni), Conte di Taliedo

    SUBJECT AREA: Aerospace
    [br]
    b. 3 June 1886 Massone, Italy
    d. 29 October 1957 Rome, Italy
    [br]
    Italian aircraft designer and manufacturer, well known for his early large-aircraft designs.
    [br]
    Gianni Caproni studied civil and electrical engineering in Munich and Liège before moving on to Paris, where he developed an interest in aeronautics. He built his first aircraft in 1910, a biplane with a tricycle undercarriage (which has been claimed as the world's first tricycle undercarriage). Caproni and his brother, Dr Fred Caproni, set up a factory at Malpensa in northern Italy and produced a series of monoplanes and biplanes. In 1913 Caproni astounded the aviation world with his Ca 30 three-engined biplane bomber. There followed many variations, of which the most significant were the Ca 32 of 1915, the first large bomber to enter service in significant numbers, and the Ca 42 triplane of 1917 with a wing span of almost 30 metres.
    After the First World War, Caproni designed an even larger aircraft with three pairs of triplane wings (i.e. nine wings each of 30 metres span) and eight engines. This Ca 60 flying boat was designed to carry 100 passengers. In 1921 it made one short flight lightly loaded; however, with a load of sandbags representing sixty passengers, it crashed soon after take-off. The project was abandoned but Caproni's company prospered and expanded to become one of the largest groups of companies in Italy. In the 1930s Caproni aircraft twice broke the world altitude record. Several Caproni types were in service when Italy entered the Second World War, and an unusual research aircraft was under development. The Caproni-Campini No. 1 (CC2) was a jet, but it did not have a gas-turbine engine. Dr Campini's engine used a piston engine to drive a compressor which forced air out through a nozzle, and by burning fuel in this airstream a jet was produced. It flew with limited success in August 1940, amid much publicity: the first German jet (1939) and the first British jet (1941) were both flown in secret. Caproni retained many of his early aircraft for his private museum, including some salvaged parts from his monstrous flying boat.
    [br]
    Principal Honours and Distinctions
    Created Conte di Taliedo 1940.
    Further Reading
    Dizionario biografico degli Italiani, 1976, Vol. XIX.
    The Caproni Museum has published two books on the Caproni aeroplanes: Gli Aeroplani Caproni -1909–1935 and Gli Aeroplani Caproni dal 1935 in poi. See also Jane's
    fighting Aircraft of World War 1; 1919, republished 1990.
    JDS

    Biographical history of technology > Caproni, Giovanni Battista (Gianni), Conte di Taliedo

  • 87 Curtiss, Glenn Hammond

    SUBJECT AREA: Aerospace
    [br]
    b. 21 May 1878 Hammondsport, New York, USA
    d. 23 July 1930 Buffalo, New York, USA
    [br]
    American designer of aeroplanes, especially seaplanes.
    [br]
    Curtiss started his career in the bicycle business, then became a designer of motor-cycle engines, and in 1904 he designed and built an airship engine. The success of his engine led to him joining the Aerial Experimental Association (AEA), founded by the inventor Alexander Graham Bell. Working with the AEA, Curtiss built several engines and designed a biplane, June Bug, in which he won a prize for the first recorded flight of over 1 km (1,100yd) in the USA. In 1909 Curtiss joined forces with Augustus M.Herring, who had earlier flown Octave Chanute's gliders, to form the Herring-Curtiss Company. Their Gold Bug was a success and led to the Golden Flyer, in which Glenn Curtiss won the Gordon Bennett Cup at Rheims in France with a speed of 75.7 km/h (47 mph). At this time the Wright brothers accused Curtiss and the new Curtiss Aeroplane Company of infringing their patent rights, and a bitter lawsuit ensued. The acrimony subsided during the First World War and in 1929 the two companies merged to form the Curtiss-Wright Corporation.
    Curtiss had started experimenting with water-based aircraft in 1908, but it was not until 1911 that he managed to produce a successful float-plane. He then co-operated with the US Navy in developing catapults to launch aircraft from ships at sea. During the First World War, Curtiss produced the JN-4 Jenny trainer, which became probably his best-known design. This sturdy bi-plane continued in service long after the war and was extensively used by "barnstorming" pilots at air shows and for early mail flights. In 1919 a Navy-Curtiss NC-4 flying boat achieved the first flight across the Atlantic, having made the crossing in stages, refuelling en route. Curtiss himself, however, had little interest in aviation in his later years and turned his attention to real-estate development in Florida.
    [br]
    Principal Honours and Distinctions
    Robert J.Collier Trophy 1911, 1912. US Aero Club Gold Medal 1911, 1912. Smithsonian Institution Langley Gold Medal 1913.
    Further Reading
    L.S.Casey, 1981, Curtiss: The Hammondsport Era 1907–1915, New York. C.R.Roseberry, 1972, Glenn Curtiss, Pioneer of Flight, New York.
    R.Taylor and Walter S.Taylor, 1968, Overland and Sea, New York (biography). Alden Heath, 1942, Glenn Curtiss: Pioneer of Naval Aviation, New York.
    JDS

    Biographical history of technology > Curtiss, Glenn Hammond

  • 88 Fabre, Henri

    SUBJECT AREA: Aerospace
    [br]
    b. 29 November 1882 Marseilles, France
    d. June 1984 France
    [br]
    French engineer, designer of the first seaplane, in which he made the first flight from water.
    [br]
    After obtaining a degree in engineering, Fabre specialized in hydrodynamics. Around 1904 he developed an interest in flying and followed the progress of early French aviators such as Archdeacon, Voisin and Blériot who were experimenting with float-gliders. Fabre carried out many experiments during the following years, including airflow tests on various surfaces and hydrodynamic tests on different designs for floats. He also built a propeller-driven motor car to develop the most efficient design for a propeller. In 1909 he built his first "hydro-aeroplane", but it failed to fly. By March 1910 he built a new float plane which was very different from contemporary French aeroplanes. It was a tail-first (canard) monoplane and had unusual Warren girder spars exposed to the airstream. The engine was a conventional Gnome rotary mounted at the rear of the machine. On 28 March 1910 Fabre, who had no previous experience of flying, decided he was ready to test his hydro-aeroplane. First he made several straight runs to test the planing properties of his three floats, then he made several short hops. In the afternoon Fabre took off from the harbour at La Mède near Marseille before official witnesses: he was able to claim the first flight by a powered seaplane. His hydro-aeroplane is preserved in the Musée de l'Air et de l'Espace in Paris.
    Despite several accidents, Fabre continued to improve his design and in October of 1910 Glenn Curtiss, the American designer, visited Fabre to compare notes. A year later Curtiss built the first of his many successful seaplanes. Fabre did not continue as an aircraft designer, but he went on to design and manufacture floats for other people.
    [br]
    Bibliography
    1980, J'ai vu naître l'aviation, Grenoble (autobiography).
    JDS

    Biographical history of technology > Fabre, Henri

  • 89 Farman, Henri

    SUBJECT AREA: Aerospace
    [br]
    b. 26 May 1874 Paris, France
    d. 17 July 1958 Paris, France
    [br]
    French aeroplane designer who modified Voisin biplanes and later, with his brother Maurice (b. 21 March 1877 Paris, France; d. 26 February 1964 Paris, France), created a major aircraft-manufacturing company.
    [br]
    The parents of Henri and Maurice Farman were British subjects living in Paris, but their sons lived all their lives in France and became French citizens. As young men, both became involved in cycle and automobile racing. Henri (or Henry—he used both versions) turned his attention to aviation in 1907 when he bought a biplane from Gabriel Voisin. Within a short time he had established himself as one of the leading pilots in Europe, with many record-breaking flights to his credit. Farman modified the Voisin with his own improvements, including ailerons, and then in 1909 he designed the first Farman biplane. This became the most popular biplane in Europe from the autumn of 1909 until well into 1911 and is one of the classic aeroplanes of history. Meanwhile, Maurice Farman had also begun to design and build biplanes; his first design of 1909 was not a great success but from it evolved two robust biplanes nicknamed the "Longhorn" and the "Shorthorn", so called because of their undercarriage skids. In 1912 the brothers joined forces and set up a very large factory at Billancourt. The "Longhorn" and "Shorthorn" became the standard training aircraft in France and Britain during the early years of the First World War. The Farman brothers went on to produce a number of other wartime designs, including a large bomber. After the war the Farmans produced a series of large airliners which played a key role in establishing France as a major airline operator. Most famous of these was the Goliath, a twin-engined biplane capable of carrying up to twelve passengers. This was produced from 1918 to 1929 and was used by many airlines, including the Farman Line. The brothers retired when their company was nationalized in 1937.
    [br]
    Bibliography
    1910, The Aviator's Companion, London (with his brother Dick Farman).
    Further Reading
    M.Farman, 1901, 3,000 kilomètres en ballon, Paris (an account of several balloon flights from 1894 to 1900).
    J.Liron, 1984, Les Avions Farman, Paris (provides comprehensive descriptions of all Farman aircraft).
    Jane's Fighting Aircraft of World War I, 1990, London (reprint) (gives details of all early Farman aircraft).
    J.Stroud, 1966, European Aircraft since 1910, London (provides details about Farman air-liners).
    JDS

    Biographical history of technology > Farman, Henri

  • 90 Handley Page, Sir Frederick

    SUBJECT AREA: Aerospace
    [br]
    b. 15 November 1885 Cheltenham, England
    d. 21 April 1962 London, England
    [br]
    English aviation pioneer, specialist in large aircraft and developer of the slotted wing for safer slow flying.
    [br]
    Frederick Handley Page trained as an electrical engineer but soon turned his attention to the more exciting world of aeronautics. He started by manufacturing propellers for aeroplanes and airships, and then in 1909 he founded a public company. His first aeroplane, the Bluebird, was not a success, but an improved version flew well. It was known as the "Yellow Peril" because of its yellow doped finish and made a notable flight across London from Barking to Brooklands. In 1910 Handley Page became one of the first college lecturers in aeronautical engineering. During the First World War Handley Page concentrated on the production of large bombers. The 0/100 was a biplane with a wing span of 100 ft (30 m) and powered by two engines: it entered service in 1916. In 1918 an improved version, the 0/400, entered service and a larger four-engined bomber made its first flight. This was the V/1500, which was designed to bomb Berlin, but the war ended before this raid took place. After the war, Handley Page turned his attention to airline operations with the great advantage of having at his disposal large bombers which could be adapted to carry passengers. Handley Page Air Transport Ltd was formed in 1919 and provided services to several European cities. Eventually this company became part of Imperial Airways, but Handley Page continued to supply them with large airliners. Probably the most famous was the majestic HP 42 four-engined biplane, which set very high standards of comfort and safety. Safety was always important to Handley Page and in 1920 he developed a wing with a slot along the leading edge: this made slow flying safer by delaying the stall. Later versions used separate aerofoil-shaped slats on the leading edge that were sometimes fixed, sometimes retractable. The HP 42 was fitted with these slats. From the 1930s Handley Page produced a series of bombers, such as the Heyford, Hampden, Harrow and, most famous of all, the Halifax, which played a major role in the Second World War. Then followed the Victor V-bomber of 1952 with its distinctive "crescent" wing and high tailplane. Sir Frederick's last venture was the Herald short-haul airliner of 1955; designed to replace the ubiquitous Douglas DC-3, it was only a limited success.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1918. Lord Lieutenant of the County of Middlesex 1956–60. Honorary Fellow of the Royal Aeronautical Society.
    Bibliography
    1950, "Towards slower and safer flying, improved take-off and landing and cheaper airports", Journal of the Royal Aeronautical Society.
    Further Reading
    D.C.Clayton, 1970, Handley Page: An Aircraft Album, London (for details of his aircraft).
    C.H.Barnes, 1976, Handley Page Aircraft since 1907, London.
    JDS

    Biographical history of technology > Handley Page, Sir Frederick

  • 91 Henson, William Samuel

    SUBJECT AREA: Aerospace
    [br]
    b. 3 May 1812 Nottingham, England
    d. 22 March 1888 New Jersey, USA
    [br]
    English (naturalized American) inventor who patented a design for an "aerial steam carriage" and combined with John Stringfellow to build model aeroplanes.
    [br]
    William Henson worked in the lacemaking industry and in his spare time invented many mechanical devices, from a breech-loading cannon to an ice-machine. It could be claimed that he invented the airliner, for in 1842 he prepared a patent (granted in 1843) for an "aerial steam carriage". The patent application was not just a vague outline, but contained detailed drawings of a large monoplane with an enclosed fuselage to accommodate the passengers and crew. It was to be powered by a steam engine driving two pusher propellers aft of the wing. Henson had followed the lead give by Sir George Cayley in his basic layout, but produced a very much more advanced structural design with cambered wings strengthened by streamlined bracing wires: the intended wing-span was 150 ft (46 m). Henson probably discussed the design of the steam engine and boiler with his friend John Stringfellow (who was also in the lacemaking industry). Stringfellow joined Henson and others to found the Aerial Transit Company, which was set up to raise the finance needed to build Henson's machine. A great publicity campaign was mounted with artists' impressions of the "aerial steam carriage" flying over London, India and even the pyramids. Passenger-carrying services to India and China were proposed, but the whole project was far too optimistic to attract support from financiers and the scheme foundered. Henson and Stringfellow drew up an agreement in December 1843 to construct models which would prove the feasibility of an "aerial machine". For the next five years they pursued this aim, with no real success. In 1848 Henson and his wife emigrated to the United States to further his career in textiles. He became an American citizen and died there at the age of 75.
    [br]
    Bibliography
    Henson's diary is preserved by the Institute of Aeronautical Sciences in the USA. Henson's patent of 1842–3 is reproduced in Balantyne and Pritchard (1956) and Davy (1931) (see below).
    Further Reading
    H.Penrose, 1988, An Ancient Air: A Biography of John Stringfellow, Shrewsbury.
    A.M.Balantyne and J.L.Pritchard, 1956, "The lives and work of William Samuel Henson and John Stringfellow", Journal of the Royal Aeronautical Society (June) (an attempt to analyse conflicting evidence; includes a reproduction of Henson's patent).
    M.J.B.Davy, 1931, Henson and Stringfellow, London (an earlier work with excellent drawings from Henson's patent).
    JDS

    Biographical history of technology > Henson, William Samuel

  • 92 Levavasseur, Léon

    [br]
    b. 8 January 1863 Cherbourg, France
    d. 26 February 1922 Puteaux, France
    [br]
    French designer of Antoinette aeroplanes and engines.
    [br]
    Léon Levavasseur was an artist who became an electrical engineer and in 1902 Technical Director of a firm called Société Antoinette, headed by Jules Gastambide (Antoinette being the name of Gastambide's daughter). Levavasseur's first aeroplane, built in 1903, was a bird-like machine which did not fly. The engine showed promise, however, and Levavasseur developed it for use in motor boats from 1904. In 1906 he produced two Antoinette aero-engines, one of 24 hp (18 kW) and the other 50 hp (37 kW), which were used by Alberto Santos-Dumont and several other early designers. In February 1908 Levavasseur produced a tractor (propeller at the front) monoplane, the Gastambide- Mengin I, for two of his colleagues. Flown by a mechanic, this managed several short hops before it crash-landed. It was rebuilt and improved to become the Antoinette II and later in the year became the first monoplane to complete a circular flight. Levavasseur then went on to produce a series of Antoinette monoplanes which, with the monoplanes of Louis Blériot, challenged the pusher biplanes of Voisin and Farman. The rivalry between the Antoinettes and Blériots made headlines in 1909 when they were being prepared to win the Daily Mail prize for the first flight across the English Channel. Hubert Latham took off in his Antoinette on 19 July 1909, but his engine failed and he had to be rescued from the sea. On 25 July Louis Blériot took off in his Blériot No. XI and won both the prize and worldwide acclaim. In 1911 Latham flew his Antoinette across the Golden Gate at San Francisco. The same year Levavasseur built a revolutionary streamlined three-seater monoplane with cantilever wings (no wire bracing), but this Monobloc Antoinette failed; with it the line of Antoinettes came to an end.
    [br]
    Further Reading
    C.H.Gibbs-Smith, 1965, The Invention of the Aeroplane 1799–1909, London (provides details of the Antoinette monoplanes).
    F.Peyrey, 1909, Les Oiseaux artificiels, Paris (a contemporary account of the early machines).
    JDS

    Biographical history of technology > Levavasseur, Léon

  • 93 Short, Hugh Oswald

    SUBJECT AREA: Aerospace
    [br]
    b. 16 January 1883 Derbyshire, England
    d. 4 December 1969 Haslemere, England
    [br]
    English co-founder, with his brothers Horace Short (1872–1917) and Eustace (1875–1932), of the first company to design and build aeroplanes in Britain.
    [br]
    Oswald Short trained as an engineer; he was largely self-taught but was assisted by his brothers Eustace and Horace. In 1898 Eustace and the young Oswald set up a balloon business, building their first balloon in 1901. Two years later they sold observation balloons to the Government of India, and further orders followed. Meanwhile, in 1906 Horace designed a high-altitude balloon with a spherical pressurized gondola, an idea later used by Auguste Piccard, in 1931. Horace, a strange genius with a dominating character, joined his younger brothers in 1908 to found Short Brothers. Their first design, based on the Wright Flyer, was a limited success, but No. 2 won a Daily Mail prize of £1,000. In the same year, 1909, the Wright brothers chose Shorts to build six of their new Model A biplanes. Still using the basic Wright layout, Horace designed the world's first twin-engined aeroplane to fly successfully: it had one engine forward of the pilot, and one aft. During the years before the First World War the Shorts turned to tractor biplanes and specialized in floatplanes for the Admiralty.
    Oswald established a seaplane factory at Rochester, Kent, during 1913–14, and an airship works at Cardington, Bedfordshire, in 1916. Short Brothers went on to build the rigid airship R 32, which was completed in 1919. Unfortunately, Horace died in 1917, which threw a greater responsibility onto Oswald, who became the main innovator. He introduced the use of aluminium alloys combined with a smooth "stressed-skin" construction (unlike Junkers, who used corrugated skins). His sleek biplane the Silver Streak flew in 1920, well ahead of its time, but official support was not forthcoming. Oswald Short struggled on, trying to introduce his all-metal construction, especially for flying boats. He eventually succeeded with the biplane Singapore, of 1926, which had an all-metal hull. The prototype was used by Sir Alan Cobham for his flight round Africa. Several successful all-metal flying boats followed, including the Empire flying boats (1936) and the ubiquitous Sunderland (1937). The Stirling bomber (1939) was derived from the Sunderland. The company was nationalized in 1942 and Oswald Short retired the following year.
    [br]
    Principal Honours and Distinctions
    Honorary Fellow of the Royal Aeronautical Society. Freeman of the City of London. Oswald Short turned down an MBE in 1919 as he felt it did not reflect the achievements of the Short Brothers.
    Bibliography
    1966, "Aircraft with stressed skin metal construction", Journal of the Royal Aeronautical Society (November) (an account of the problems with patents and officialdom).
    Further Reading
    C.H.Barnes, 1967, Shorts Aircraft since 1900, London; reprinted 1989 (a detailed account of the work of the Short brothers).
    JDS

    Biographical history of technology > Short, Hugh Oswald

  • 94 Stringfellow, John

    SUBJECT AREA: Aerospace
    [br]
    b. 6 December 1799 Sheffield, England
    d. 13 December 1883 Chard, England
    [br]
    English inventor and builder of a series of experimental model aeroplanes.
    [br]
    After serving an apprenticeship in the lace industry, Stringfellow left Nottingham in about 1820 and moved to Chard in Somerset, where he set up his own business. He had wide interests such as photography, politics, and the use of electricity for medical treatment. Stringfellow met William Samuel Henson, who also lived in Chard and was involved in lacemaking, and became interested in his "aerial steam carriage" of 1842–3. When support for this project foundered, Henson and Stringfellow drew up an agreement "Whereas it is intended to construct a model of an Aerial Machine". They built a large model with a wing span of 20 ft (6 m) and powered by a steam engine, which was probably the work of Stringfellow. The model was tested on a hillside near Chard, often at night to avoid publicity, but despite many attempts it never made a successful flight. At this point Henson emigrated to the United States. From 1848 Stringfellow continued to experiment with models of his own design, starting with one with a wing span of 10 ft (3m). He decided to test it in a disused lace factory, rather than in the open air. Stringfellow fitted a horizontal wire which supported the model as it gained speed prior to free flight. Unfortunately, neither this nor later models made a sustained flight, despite Stringfellow's efficient lightweight steam engine. For many years Stringfellow abandoned his aeronautical experiments, then in 1866 when the (Royal) Aeronautical Society was founded, his interest was revived. He built a steam-powered triplane, which was demonstrated "flying" along a wire at the world's first Aeronautical Exhibition, held at Crystal Palace, London, in 1868. Stringfellow also received a cash prize for one of his engines, which was the lightest practical power unit at the Exhibition. Although Stringfellow's models never achieved a really successful flight, his designs showed the way for others to follow. Several of his models are preserved in the Science Museum in London.
    [br]
    Principal Honours and Distinctions
    Member of the (Royal) Aeronautical Society 1868.
    Bibliography
    Many of Stringfellow's letters and papers are held by the Royal Aeronautical Society, London.
    Further Reading
    Harald Penrose, 1988, An Ancient Air: A Biography of John Stringfellow, Shrewsbury. A.M.Balantyne and J.Laurence Pritchard, 1956, "The lives and work of William Samuel Henson and John Stringfellow", Journal of the Royal Aeronautical Society (June) (an attempt to analyse conflicting evidence).
    M.J.B.Davy, 1931, Henson and Stringfellow, London (an earlier work with excellent drawings from Henson's patent).
    "The aeronautical work of John Stringfellow, with some account of W.S.Henson", Aeronau-tical Classics No. 5 (written by John Stringfellow's son and held by the Royal Aeronautical Society in London).
    JDS

    Biographical history of technology > Stringfellow, John

  • 95 сближающие самолеты

    Авиация и космонавтика. Русско-английский словарь > сближающие самолеты

  • 96 اختراع

    اِخْتِراع \ invention: inventing; sth. invented: Aeroplanes are a modern invention.

    Arabic-English dictionary > اختراع

  • 97 ارتفاع

    اِرْتِفَاع \ altitude: height (esp. height measured above sea level): Modern aeroplanes can fly at very high altitudes. height: measurement from top to bottom: What is the height of this building?. rise: an increase; an upward movement: a rise in the cost of living. \ بِارْتِفَاع \ high: (in compounds) to the height of: The grass was waist-high.

    Arabic-English dictionary > ارتفاع

  • 98 درجة

    دَرَجَةٌ \ class: (mostly in compounds) a level of quality: I travelled in a second-class carriage. Is that a good-class hotel?. degree: a measure of quality: His work shows a high degree of skill. grade: a step or level, in quality or rank: Aeroplanes use a high grade of petrol. mark: a sign (usu. a number, sometimes A, B, C, etc.) that is given by a teacher to show the quality of a piece of work in school: low marks; full marks; a bad mark. point: a particular position in space or time, or in a course or change: the highest point on the road; the most difficult point in our talks; the boiling point of water. rank: a social or official position of a certain level: He was a nobleman of the highest rank. A captain holds a much lower rank than a general. step: a flat place for one’s foot, when one walks from one level to another: the front doorstep; mind the step. \ See Also فئة (فِئَة)، منزلة (مَنْزِلَة)، مرتبة (مَرْتَبَة)، علامة (علامَة)، نقطة( نقطة)‏

    Arabic-English dictionary > درجة

  • 99 سار

    سَارَ \ do: to go (at a certain speed, or for a certain distance): This car can do 80 miles an hour. We did 150 miles before breakfast. drive (drove, driven): (of any kind of power) to make a machine work: This engine is driven by electricity. follow: to go along (a road). go: (also go off) to take a certain course: All went (off) well at our meeting, work This clock goes by electricity. run: (of a vehicle or ship) to go: Trains run every hour from here to Glasgow. The car ran off the road. travel: to move; go: Light travels faster than sound. walk: to move along on one’s feet at a natural speed. \ See Also مشى (مَشَى)‏ \ سَارَ \ race: to rush; go at full speed: The car raced past me. \ See Also عدا بأقصى سُرْعَة \ سَارَ \ plod: to walk with slow heavy steps: The farmer plodded across the muddy field. \ See Also عَمِلَ ببطُء وتَثَاقَل \ سَارَ بِبُطْء \ drag: to move slowly: The sick donkey dragged behind the others. \ سَارَ بِخُطًى مُنْتَظِمَة \ pace: to walk with regular steps: He paced anxiously up and down the room. \ سَارَ بِخُطًى واسِعة \ stride: to walk with long steps. \ سَارَ بسُرعةٍ عادية \ cruise: (of cars or aeroplanes) to travel at a speed that uses a reasonable amount of petrol, not at top speed. \ سَارَ بِغَيْرِ اتّزَانٍ فوقَ طريقٍ وَعِر \ bump: to move unsteadily over rough ground: The car bumped along the track. \ سَارَ رُوَيدًا \ amble: to walk slowly. \ سَارَ سِيرتَهُ \ follow in sb.’s footsteps: to follow sb.’s example, esp. one’s way of life: He wants to follow in his father’s footsteps and become a doctor. \ سَارَ على دواليب أو عجلات \ roll: to move on wheels: The train rolled slowly into the station. \ سَارَ قُدُمًا \ advance: to go forward; move forward: The army advanced towards the enemy. \ سَارَ مُتَعَرِّجًا \ zigzag: to go in zigzag manner. \ سَارَ الهُويْنَا \ jog: (of people, animals, vehicles, etc.) to move unsteadily or with little progress: We jogged along on our donkeys.

    Arabic-English dictionary > سار

  • 100 طار

    طَارَ \ fly (flew, flown): to move through the air like a bird: Bees and aeroplanes fly.

    Arabic-English dictionary > طار

См. также в других словарях:

  • Aéroplanes Voisin — (also known as Brothers Voisin , fr. Les Frères Voisin) was a French aircraft company, one of the first in the world. The company was formed in 1906 by the brothers Charles and Gabriel Voisin. Gabriel had previously collaborated with fellow… …   Wikipedia

  • aeroplanes — aer·o·plane || eÉ™rÉ™pleɪn n. airplane, jet plane …   English contemporary dictionary

  • AEROPLANES — …   Useful english dictionary

  • Taylorcraft Aeroplanes (England) Ltd — est une entreprise britannique de construction aéronautique aujourd hui disparue qui est souvent confondue avec la firme américaine Taylorcraft (en). Produire des avions américains Taylorcraft Alexander Lance Wykes, homme d’affaires anglais… …   Wikipédia en Français

  • The Blue Aeroplanes — are a Bristol based rock group featuring Gerard Langley, whose poetic lyrics (largely spoken) were combined with a heavily guitar centric band to produce albums such as Swagger , Tolerance , and Beatsongs . After Cavaliers/Roundheads was released …   Wikipedia

  • Keane Aeroplanes — Pour les articles homonymes, voir Keane. Keane Aeroplanes a été fondé en 1920 par Horace Keane à North Beach dans l île de Long Island, aux États Unis d Amérique. L’année suivante, il engagea N.W. Dalton, co dessinateur du ACE K 1 Biplane, dont… …   Wikipédia en Français

  • Société de Production des Aéroplanes Deperdussin — (SPAD) war ein französischer Flugzeughersteller. Inhaltsverzeichnis 1 Der Beginn Die Ära Deperdussin 2 Die Ära Blériot 3 Das Ende des Unternehmens …   Deutsch Wikipedia

  • Список самолётов Aéroplanes Henry Potez — Самолёты Aéroplanes Henry Potez создавались в период существования фирмы (1919 1963). Первый самолёт (SEA I) был построен совместно с Марселем блоком и Луи Королле. С 1919 фирма стала независимой и начала выпускать собственные самолёты.… …   Википедия

  • List of hijacking of Indian aeroplanes — *1971 January 30 : An Indian Airlines plane on its way from Srinagar to Jammu was hijacked by Hashim Quereshi and Ashraf Quereshi of the JKLF, who took it to Lahore. Zulfikar Ali Bhutto, then Foreign Minister of Pakistan rushed to Lahore and met… …   Wikipedia

  • Pilot licensing in Canada — is governed by Transport Canada in accordance with the Aeronautics Act and the Canadian Aviation Regulations (CARs). A person may operate an aircraft or act as a flight crew member only with a licence issued by Transport Canada. Personnel… …   Wikipedia

  • P:BP — Projet:Maritime/Bistro du port « C est curieux chez les marins ce besoin de faire des phrases… » Maître Folace, dans Les Tontons flingueurs Sommaire 1 Août 1.1 Vieux gréements ou gréements …   Wikipédia en Français

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»