Перевод: с русского на английский

с английского на русский

тип+контроля

  • 21 локация источников непрерывной АЭ

    1. continuous AE signal location

     

    локация источников непрерывной АЭ
    Методика определения места расположения источника сигнала непрерывной АЭ.
    [Standard Terminology for Nondestructive Examinations. ASTM E 1316.]
    Примечание
    Для локации источников непрерывной АЭ используются две методики:
    методика, основанная на оценке затухания сигналов;
    методика вычисления корреляционной функции.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

    2.40 локация источников непрерывной АЭ (continuous AE signal location): Методика определения места расположения источника сигнала непрерывной АЭ.

    Примечание - Этот тип локации обычно используют в течеискании при наличии непрерывной эмиссии. Распространенными методами локации источников непрерывной АЭ являются методы анализа ослабления и корреляции сигналов.

    Источник: ГОСТ Р ИСО 12716-2009: Контроль неразрушающий. Акустическая эмиссия. Словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > локация источников непрерывной АЭ

  • 22 мода волны

    1. wave mode

     

    мода волны
    Тип упругой волны, определяемый характером колебаний частиц среды.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

    Русско-английский словарь нормативно-технической терминологии > мода волны

  • 23 полное отражение

    1. total reflection

     

    полное отражение
    1. Отражение, при котором отраженная волна имеет тот же тип, что и падающая, а модуль коэффициента отражения равен единице.
    2. Отражение, происходящее при угле падения, превышающем критические углы, или при коэффициенте отражения, равном единице.
    [BS EN 1330-4:2000. Non-destructive testing - Terminology - Part 4: Terms used in ultrasonic testing]
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

    Русско-английский словарь нормативно-технической терминологии > полное отражение

  • 24 трубка со стержневым анодом

    1. rod anode tube

     

    трубка со стержневым анодом
    Тип рентгеновской трубки, в которой мишень находится на конце цилиндрического анода; такие трубки могут создавать панорамный пучок излучения.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

    Русско-английский словарь нормативно-технической терминологии > трубка со стержневым анодом

  • 25 цирконат-титанат свинца

    1. PZT
    2. lead zirconate-titanate

     

    цирконат-титанат свинца
    ЦТС

    Тип пьезоэлектрической керамики.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > цирконат-титанат свинца

  • 26 Общее

    1. IV)
    2. III)
    3. II)

    F.1. Общее

    В настоящем стандарте приводится большое число общих требований, которые могут или не могут быть применены в отношении отдельной машины. Поэтому простое, без квалифицированной оценки утверждение о соответствии оборудования всем требованиям настоящего стандарта является недостоверным. Прежде чем приступить к выполнению требований настоящего стандарта, его необходимо тщательно изучить. Техническими комитетами разрабатываются стандарты на отдельные виды продукции или на отдельные продукты (тип С в СЕН) и для конкретных производителей продукции. До выхода этих стандартов следует руководствоваться настоящим стандартом посредством:

    a) установления соответствия и

    b) выбора наиболее близких понятий к требованиям соответствующих разделов, и

    c) изменения требований разделов, если необходимо там, где специфические требования на машину перекрываются другими стандартами, относящимися к данному вопросу.

    В этом случае необходимо обеспечить правильный подбор модификаций и опций без снижения уровня защиты, необходимой для машины в соответствии с оценкой рисков.

    При использовании всех трех вышеприведенных принципов рекомендуется:

    - руководствоваться соответствующими разделами и пунктами настоящего стандарта:

    1) если указано соответствие применяемой опции,

    2) если требования могут быть конкретизированы для отдельной машины или оборудования;

    - руководствоваться напрямую соответствующими стандартами, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    Во всех случаях экспертизой устанавливается:

    - завершенность оценки рисков для машины;

    - прочтение и понимание всех требований настоящего стандарта;

    - правильность выбора варианта реализации требований настоящего стандарта при наличии альтернативы;

    - понимание альтернативы или специфических требований, определяемых для машины или ее эксплуатации, при отсутствии или отличии от соответствующих требований настоящего стандарта;

    - точность определения таких специфических требований.

    Приведенная на рисунке 1 блок-схема типичной машины должна быть использована в качестве отправной точки при решении данной задачи. Это определяется пунктами и разделами, имеющими отношение к специфическим требованиям к оборудованию.

    Настоящий стандарт является комплексным документом, и таблица F.1 призвана помочь в понимании применения требований настоящего стандарта к специальным машинам и установлении связей с другими стандартами по данной тематике.

    Таблица F.1 - Выбор вариантов применения требований стандарта

    Наименование раздела, пункта или подпункта

    Номер раздела, пункта или подпункта

    I)

    II)

    III)

    IV)

    Область применения

    1

    X

    ИСО 121 00 (все части) ИСО 14121 [28]

    Общие требования

    4

    X

    X

    X

    МЭК 60439

    Электрооборудование, соответствующее требованиям МЭК 60439

    4.2.2

    X

    X

    Устройство отключения питания (изолирующий распределитель)

    5.3

    X

    Цепи, на которые не распространяются общие правила по подключению к источнику питания

    5.3.5

    X

    X

    ИСО 12100 (все части)

    Предотвращение непреднамеренных пусков, изоляция

    5.4, 5.5, 5.6

    X

    X

    X

    ИСО 14118 [13]

    Защита от поражения электрическим током

    6

    X

    МЭК 60364-4-41

    Аварийное управление

    9.2.5.4

    X

    X

    ИСО 13850

    Двуручное управление

    9.2.6.2

    X

    X

    ИСО 13851 [14]

    Дистанционное управление

    9.2.7

    X

    X

    X

    Функции управления в случае отказа

    9.4

    X

    X

    X

    ИСО 14121 [28]

    Датчики положения

    10.1.4

    X

    X

    X

    ИСО 14119 [29]

    Цвета и маркировка операционного интерфейса

    10.2, 10.3, 10.4

    X

    X

    МЭК 60073

    Устройства аварийной остановки

    10.7

    X

    X

    ИСО 13850

    Устройства аварийного отключения

    10.8

    X

    Аппаратура управления, защита от внешних воздействий

    10.1.3, 11.3

    X

    X

    X

    МЭК 60529

    Идентификация проводов

    13.2

    X

    Подтверждение соответствия (испытания и проверка)

    18

    X

    X

    X

    Дополнительные требования (опросный лист)

    приложение В

    X

    X

    «X» обозначены разделы, пункты и подпункты настоящего стандарта, которые могут быть применены при следующих условиях:

    I) применение приведенных в разделе, пункте или подпункте материалов;

    II) использование дополнительных специфических требований;

    III) использование других требований;

    IV) использование других стандартов, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    <2>Приложение G

    Таблица G.1 иллюстрирует сравнение поперечных сечений проводников в Американском сортаменте проволоки (AWG) с квадратными миллиметрами, квадратными дюймами и круговыми милами.

    Таблица G.1 - Сравнение размеров проводников

    Номерной размер,

    Номер диаметра

    Площадь поперечного сечения

    Сопротивление медного провода при постоянном токе при 20°С,

    Круговой мил

    мм2

    дюйм2

    0,2

    0,196

    0,000304

    91,62

    387

    24

    0,205

    0,000317

    87,60

    404

    0,3

    0,283

    0,000438

    63,46

    558

    22

    0,324

    0,000504

    55,44

    640

    0,5

    0,500

    0,000775

    36,70

    987

    20

    0,519

    0,000802

    34,45

    1020

    0,75

    0,750

    0,001162

    24,80

    1480

    18

    0,823

    0,001272

    20,95

    1620

    1,0

    1,000

    0,001550

    18,20

    1973

    16

    1,31

    0,002026

    13,19

    2580

    1,5

    1,500

    0,002325

    12,20

    2960

    14

    2,08

    0,003228

    8,442

    4110

    2,5

    2,500

    0,003875

    7,56

    4934

    12

    3,31

    0,005129

    5,315

    6530

    4

    4,000

    0,006200

    4,700

    7894

    10

    5,26

    0,008152

    3,335

    10380

    6

    6,000

    0,009300

    3,110

    11841

    8

    8,37

    0,012967

    2,093

    16510

    10

    10,000

    0,001550

    1,840

    19735

    6

    13,3

    0,020610

    1,320

    26240

    16

    16,000

    0,024800

    1,160

    31576

    4

    21,1

    0,032780

    0,8295

    41740

    25

    25,000

    0,038800

    0,7340

    49339

    2

    33,6

    0,052100

    0,5211

    66360

    35

    35,000

    0,054200

    0,5290

    69073

    1

    42,4

    0,065700

    0,4139

    83690

    50

    47,000

    0,072800

    0,3910

    92756

    Сопротивление при температурах, отличных от 20 °С, вычисляют по формуле:

    R = RI[1 + 0,00393(t - 20)],

    где RI - сопротивление при 20°С;

    R - сопротивление при температуре t°C.

    <2>Приложение Н

    Таблица Н.1

    Обозначение ссылочного международного стандарта

    Обозначение и наименование соответствующего национального стандарта

    МЭК 60034-1

    ГОСТ 28330-89 Машины электрические асинхронные мощностью от 1 до 400 кВт включительно. Общие технические требования

    МЭК 60034-5

    *

    МЭК 60034-11

    *

    МЭК 60072-1

    *

    МЭК 60072-2

    *

    МЭК 60073:2002

    ГОСТ 29149-91 Цвета световой сигнализации и кнопок

    МЭК 60309-1:1999

    ГОСТ 29146.1-91 Соединители электрические промышленного назначения. Часть 1. Общие требования

    МЭК 60364-4-41:2001

    ГОСТ Р 50571.3-94( МЭК 60364-4-41-92) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током

    МЭК 60364-4-43:2001

    ГОСТ Р 50571.5-95 (МЭК 60364-4-43-77) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от сверхтока

    МЭК 60364-5-52:2001

    ГОСТ Р 50571.15-97( МЭК 60364-5-52-93) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки

    МЭК 60364-5-53:2002

    *

    МЭК 60364-5-54:2002

    ГОСТ Р 50571.10-96( МЭК 60364-5-54-80) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 54. Заземляющие устройства и защитные проводники

    МЭК 60364-6-61:2001

    ГОСТ Р 50571.16-99 Электроустановки зданий. Часть 6. Испытания. Глава 61. Приемо-сдаточные испытания

    МЭК 604 17-DB 2002

    *

    МЭК 60439-1:1999

    ГОСТ Р 51321.1-2000 Устройства комплектные низковольтные распределения и управления. Часть 1.Устройства, испытанные полностью или частично. Общие технические требования и методы испытаний

    МЭК 60446:1 999

    *

    МЭК 60447:2004

    ГОСТ Р МЭК 60447-2000 Интерфейс человеко-машинный. Принципы приведения в действие

    МЭК 60529:1999

    ГОСТ 14254-96( МЭК 529-89) Степени защиты, обеспечиваемые оболочками (Код IP)

    МЭК 60617-06:2001

    *

    МЭК 60621-3:1979

    *

    МЭК 60664-1:1992

    *

    МЭК 60947-1:2004

    ГОСТ Р 50030.1-2007( МЭК 60947-1: 2004) Аппаратура распределения и управления низковольтная. Часть 1. Общие требования

    МЭК 60947-2:2003

    ГОСТ Р 50030.2-99( МЭК 60947-2-98) Аппаратура распределения и управления низковольтная. Часть 2. Автоматические выключатели

    МЭК 60947-5-1:2003

    ГОСТ Р 50030.5.1-2005 (МЭК 60947-5-1:2003) Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления

    МЭК 60947-7-1:2002

    ГОСТ Р 50030.7.1-2000 (МЭК 60947-7-1-89) Аппаратура распределения и управления низковольтная. Часть 7. Электрооборудование вспомогательное. Раздел 1. Клеммные колодки для медных проводников

    МЭК 61082-1:1991

    *

    МЭК 61082-2:1993

    *

    МЭК 61082-3:1993

    *

    МЭК 61082-4:1996

    *

    МЭК 61140:2001

    ГОСТ Р МЭК 61140-2000 Защита от поражения электрическим током. Общие положения по безопасности, обеспечиваемой электрооборудованием и электроустановками в их взаимосвязи

    МЭК 61310 -2

    ГОСТ 28690-90 Знак соответствия технических средств требованиям электромагнитной совместимости. Форма, размеры, технические требования

    МЭК 61 310 (все части за исключением части 2)

    *

    МЭК 61 346 (все части)

    *

    МЭК 61557-3:1997

    ГОСТ Р МЭК 61557-3 2006 Сети электрические распределительные низковольтные напряжением до 1000 В переменного 1500 В постоянного тока. Электробезопасность. Аппаратура для испытаний, измерения и контроля средств защиты. Часть 3. Полное сопротивление контура

    МЭК 61 558-1: 1997

    *

    МЭК 61558-2-6

    *

    МЭК 61984:2001

    *

    МЭК 62023:2000

    *

    МЭК 62027:2000

    *

    МЭК 62061:2005

    *

    МЭК 62079:2001

    *

    ИСО 7000:2004

    *

    ИСО 12100-1:2003

    *

    ИСО 12100-2:2003

    *

    ИСО 13849-1:1999

    *

    ИСО 13849-2:2003

    *

    ИСО 13850:1996

    *

    *Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов

    <2>Библиография

    [1] МЭК 60038:2002

    Стандартные напряжения

    [2] МЭК 60204-11:2000

    Безопасность машин. Электрическое оборудование машин. Часть 11. Требования к высоковольтному оборудованию на напряжения свыше 1000 В переменного тока или 1500 В постоянного тока, но не свыше 36 кВ

    [3] МЭК 60204-31:1996

    Электрооборудование промышленных машин. Частные требования к швейным машинам, установкам и системам

    [4] МЭК 60204-32:1998

    Безопасность оборудования. Электрооборудование промышленных  машин. Часть 32. Требования к грузоподъемным машинам

    [5] МЭК 61000-6-1:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 1. Устойчивость к электромагнитным помехам в жилой, коммерческой и среде легкой индустрии

    [6] МЭК 61000-6-2:2005

    Совместимость технических средств электромагнитная. Часть 6-2. Общие требования. Устойчивость к электромагнитным помехам в промышленных зонах

    [7] СИСПР 61000-6-3:1996

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 3. Нормы эмиссии для жилых, коммерческих и среды легкой индустрии

    [8] МЭК 61000-6-4:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 4. Эмиссия помех в промышленных зонах

    [9] МЭК 61000-5-2:1997

    Электромагнитная совместимость. Часть 5. Монтаж и снижение помех в проводке. Раздел 2. Заземление и скрутка

    [10] МЭК 61496-1:2004

    Безопасность машин. Электрочувствительное защитное оборудование. Часть 1. Общие требования и испытания

    [11] МЭК 61800-3:2004

    Электроприводы регулируемые. Часть 3. Требования по электромагнитной совместимости и методы испытаний

    [12] МЭК 60947-5-2:1997

    Аппараты коммутационные и управления низковольтные. Часть 5-2. Устройства управления и переключатели. Выключатели конечные Дополнение 1 (1999) Дополнение 2 (2003)

    [13] ИСО 14118:2000

    Безопасность машин. Предотвращение непредусмотренного пуска

    [14] ИСО 13851:2002

    Безопасность машин. Средства управления обоими руками. Функциональные аспекты и принципы проектирования

    [15] ИСО 14122 серия

    Безопасность машин. Средства постоянного доступа к машине

    [16]СЕНЕЛЕК НD 516 S2

    Руководство по применению гармонизированных кабелей

    [17] МЭК 60287 (все части)

    Кабели. Расчет номинальных токов нагрузок в условиях установившегося режима

    [18] МЭК 60757:1983

    Коды для обозначения цветов

    [19] МЭК 60332 (все части)

    Испытания на огнестойкость электрических и оптических кабелей

    [20] МЭК 61084-1: 1991

    Кабельные проводящие и канализирующие системы для электрического монтажа. Часть 1. Основные требования

    [21] МЭК 60364 (все части)

    Электроустановки зданий

    [22] МЭК 61557 (все части)

    Безопасность в низковольтных  системах  электроснабжения   напряжением до 1000 В переменного тока и до 1500 В постоянного тока. Оборудование для проведения испытаний, измерений и контроля исполнения защитных функций

    [23] МЭК 60228:2004

    Жилы токопроводящие изолированных кабелей

    [24] МЭК 61200-53:1994

    Устройства электрические. Часть 53. Выбор и монтаж электрооборудования. Аппаратура коммутационная и управления

    [25] МЭК 61180-2:1994

    Техника для проведения высоковольтных испытаний низковольтного электрооборудования. Часть 2. Испытательное оборудование

    [26] МЭК 60335 (все части)

    Бытовое и аналогичное ему применение электричества. Безопасность

    [27] МЭК 60269-1:1998

    Предохранители низковольтные. Часть 1. Общие требования

    [28] ИСО 14121:1999

    Безопасность машин. Принципы оценки риска

    [29] ИСО 14119:1998

    Безопасность машин. Блокировочные устройства для ограждений. Принципы конструкции и выбора

    <2>

    Источник: ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > Общее

  • 27 биологическая нагрузка

    1. bioburden

    биологическая нагрузка (bioburden): Уровень и тип (например, патогенных или непатогенных) микроорганизмов, которые могут присутствовать в сырье, исходных материалах АФС, промежуточных продуктах или АФС. Биологическая нагрузка не рассматривается как загрязнение, если ее уровни не превышают установленные предельные значения или не происходит обнаружения определенных патогенных микроорганизмов.

    Источник: ГОСТ Р 52249-2009: Правила производства и контроля качества лекарственных средств оригинал документа

    Русско-английский словарь нормативно-технической терминологии > биологическая нагрузка

  • 28 прогон вычислительной машины

    Русско-английский большой базовый словарь > прогон вычислительной машины

  • 29 резервная машина

    Русско-английский большой базовый словарь > резервная машина

  • 30 счетная машина

    1. accounting machine
    2. calculating machine
    3. computer
    4. machine
    5. calculator
    6. adding machine

    Русско-английский большой базовый словарь > счетная машина

  • 31 целевая машина

    1. object computer
    2. object machine
    3. target computer
    4. target machine

    Русско-английский большой базовый словарь > целевая машина

  • 32 математическая статистика

    1. mathematical statistics

     

    математическая статистика
    Раздел математики, посвященный методам и правилам обработки и анализа статистических данных (т.е. сведений о числе объектов, обладающих определенными признаками, в какой-либо более или менее обширной совокупности). Сами методы и правила строятся безотносительно к тому, какие статистические данные обрабатываются (физические, экономические и др.), однако обращение с ними требует обязательного понимания сущности явления, изучаемого с помощью этих правил. К экономике М.с. применима по той причине, что экономические данные всегда представляют собой статистические сведения, т.е. сведения об однородных совокупностях объектов и явлений. Такими однородными совокупностями могут быть выпускаемые промышленностью изделия, персонал промышленности, данные о прибылях предприятий и т.д. В настоящее время существуют разные определения сущности М.с., и не следует удивляться, если вы увидите в одной книге, вопреки сказанному выше, утверждение, что М.с. — это «наука о принятии решений в условиях неопределенности», а в другой — что это «наука, объясняющая данные статистических наблюдений при помощи вероятностных моделей». Некоторые авторы считают, что она — раздел теории вероятностей, а другие, — что она лишь связана с этой теорией, представляя собой отдельную от нее науку. Наконец, распространено расширенное понимание предмета М.с. как охватывающей не только вероятностные аспекты, но и так называемую прикладную статистику («анализ данных«), включающую и объекты не обязательно вероятностной природы. В общем случае, анализ статистических данных методами М.с. позволяет сделать два вывода: либо вынести искомое суждение о характере и свойствах этих данных или взаимосвязей между ними, либо доказать, что собранных данных недостаточно для такого суждения. Причем выводы могут делаться не из сплошного рассмотрения всей совокупности данных, а из ее выборки, как правило, случайной (последнее означает, что каждая единица, включенная в выборку, могла быть с равными шансами, т.е. с равной вероятностью заменена любой другой). Центральное понятие М.с. — случайная величина — всякая наблюдаемая величина, изменяющаяся при повторениях общего комплекса условий, в которых она возникает. Если сам по себе набор, перечень значений этой величины неудобен для их изучения (поскольку их много), М.с. дает возможность получить необходимые сведения о случайной величине с существенно меньшим количеством чисел. Это объясняется тем, что статистические данные подчиняются таким законам распределения (или приводятся к ним порою искусственными приемами), которые характеризуются всего лишь несколькими параметрами, т.е. характеристиками. Зная их, можно получить столь же полное представление о значениях случайной величины, какое дается их подробным перечислением в очень длинной таблице. (Характеристиками распределения являются среднее, медиана, мода и т.д.). Если изучаются взаимосвязи между значениями разных случайных величин, то необходимые сведения для этого дают коэффициенты корреляции между ними. Когда совокупность анализируется по одному признаку, имеем дело с так называемой одномерной статистикой, когда же рассматривается несколько признаков — с многомерным статистическим анализом. М.с. охватывает широкий круг одномерных и многомерных методов и правил обработки статистических данных: от простых приемов статистического описания (выведение средней, а также степени и характера разброса исследуемых признаков вокруг нее, группировка данных по классам и сопоставление их характеристик и т.д.), правил отбора фактов при выборочном их рассмотрении до сложных методов исследования зависимостей между случайными величинами. Среди последних: выявление связей между случайнами величинами — корреляционный анализ, оценка величины случайной переменной, если величина другой или других известна — регрессионный анализ, выявление наиболее важных скрытых факторов, влияющих на изучаемые величины, — факторный анализ, определение степени влияния отдельных неколичественных факторов на общие результаты их действия (например, в научном эксперименте) — дисперсионный анализ. Перечисленные области составляют основные дисциплины, входящие в М.с. К ним примыкают также быстро развивающиеся упоминавшиеся выше методы «анализа данных», не основанные на традиционной для М.с. предпосылке вероятностной природы обрабатываемых данных. Для экономических исследований большое значение имеет также анализ стохастических процессов, в том числе «марковских процессов«. Задачи М.с. в экономике можно разделить на пять основных типов: а) оценка статистических данных; б) сравнение этих данных с каким-то стандартом и между собой (оно применяется при эксперименте или, например, в контроле качества на предприятиях); в) исследование связей между статистическими данными и их группами. Эти три типа позволяют вынести суждение описательного характера об изучаемых явлениях, подверженных по каким-то причинам искажающим случайным воздействиям. Следующий, четвертый тип задач связан с нахождением наилучшего варианта измерения изучаемых данных. И наконец, пятый тип задач связан с проблемами предвидения и развития, здесь важное место занимают задачи анализа временных рядов. Для экономики особенно ценно то, что М.с. позволяет на основании анализа течения событий в прошлом, т. е. изучения выбранных на определенные даты сведений о характерных чертах системы, предсказать (см. Прогнозирование) вероятное развитие изучаемого явления в будущем (если не изменятся существенно внешние или внутренние условия). В управлении хозяйственными и производственными процессами применяются различные математико-статистические методы. На них основаны многие методы исследования операций, в том числе — методы теории массового обслуживания, позволяющие наиболее эффективно организовывать ряд процессов производства и обслуживания населения, теории расписаний, предназначенной для выработки оптимальной последовательности производственных, транспортных и других операций, теории решений, теории управления запасами, а также теории планирования эксперимента и выборочного контроля качества продукции, сетевые методы планирования и управления. В эконометрических исследованиях на основе математико-статистической обработки данных строятся экономико-математические (экономико-статистические) модели экономических процессов, производятся экономические и технико-экономические прогнозы. Широкое распространение математико-статистических методов в общественном производстве, а также в других областях социально-экономической жизни общества (здравоохранение, экология, естественные науки) опирается на развитие электронно-вычислительной техники. Для решения типовых задач математико-статистической обработки данных созданы и применяются многочисленные стандартные прикладные компьютерные программы и системы.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > математическая статистика

  • 33 ПКВ

    Универсальный русско-английский словарь > ПКВ

  • 34 группа

    1) General subject: act (группа исполнителей, например, рок/поп-банда) пример: Other Scottish acts, such as the Mull Historical Society who also featured in the top 50, performed at a party in Glasgow where the result was announced.), aggies (Aggies), assemblage, band (организованная; людей), (организованная) bander (людей), batch, bevy, block, body, bracket, brass choir (инструментов), bunch, circle (людей), class, cluster bar, cohorts, complex (зданий), drover, flock, gang, group, handful, hands, herd, knot (людей), lay-out, league, mob (людей), octuplicate, outfit, pack, packet, parcel, party, persuasion, plump, posse, prong, series, set, tally, team, type, automatic call distribution split (Метод маршрутизации вызовов схожего типа между агентами в операторском центре. А также группа, укомплектованная агентами, обученными обслуживать определенный тип входящих вызовов.), clutch, (лиц, людей, например) body of
    2) Geology: tribe (пород)
    4) Naval: packet (волн)
    5) Medicine: residue, (воздействия) treatment arm (в контексте клинических исследований; целесообразно оставлять просто "группа"), (испытуемых, пациентов) arm (в контексте научных исследований по сравнению групп, получающих разное лечебное воздействие)
    6) Colloquial: lot (людей)
    7) Obsolete: nation (a nation of newspaper readers — люди, читающие газеты)
    10) Engineering: array, bank (баллонов, трансформаторов и т. п.), crew, ensemble, manning, pear (конвертера), radical, train (прокатных клетей или валков)
    12) Jocular: covey, covey (людей)
    13) Chemistry: board, family
    14) Construction: clump (деревьев)
    15) Mathematics: R-group R, assembly, cell, cluster, cohort, collection, gp (group), inquiry ensemble, item (данных), item of data (данных), pool, transvection-rich group
    17) Railway term: complication, row
    18) Law: delinquent gang, element (людей), violent gang
    21) Automobile industry: panel
    22) Artillery: straddle
    23) Diplomatic term: side
    25) Metallurgy: line
    26) Polygraphy: division
    27) Politics: club (особ. держав)
    29) Electronics: bundle
    30) Jargon: crowd
    31) Information technology: constellation (одинаковых элементов, образующих макроэлемент), group box (Ряд интерфейсных элементов, объединённых вместе для удобства работы с ними), group item (как элемент данных), heading, section
    32) Oil: mix (сейсмоприёмников, пунктов взрыва), mix (сейсмоприемников; пунктов взрыва), patch array, pattern array
    33) Immunology: type (крови)
    34) Simple: caboodle
    35) Geophysics: pattern
    37) Seismology: template
    38) Advertising: battery, network
    39) Business: category, layout, nest, part, range
    40) Network technologies: Computer Emergency Response Team, frame
    41) Programming: set of, a set of
    43) Quality control: batch (напр- требований, поступающих в систему массового обслуживания), battery (одинаковых деталей или установок), (рабочая) committee
    47) Makarov: aggregation, batch (частиц, волн), bath, bunch (частиц, волн), clump (предметов), cluster (однородных предметов и т.п.), cluster (частиц, волн), constellation (напр., одинаковых элементов), crew (сотрудников), drove, framework, group (сотрудников), order, pack (однородных объектов), package (однородных объектов), pattern (сейсмическая), pile (однородных объектов), quality, row (однотипных объектов), team (сотрудников), train (волн)
    48) Security: frame (данных)
    49) Gold mining: field crew
    50) SAP.tech. corporate group, grp

    Универсальный русско-английский словарь > группа

  • 35 щиток

    1) General subject: corselet (у насекомых), corslet (у насекомых), dashboard (экипажа), flap, handscreen (заслоняющий лицо от солнца, огня), mail (черепахи), pad (хоккей, крикет), test (беспозвоночных животных), split flap, (вестерн-седла) fender
    3) Biology: mail (черепах), pelta, scutellum
    4) Aviation: dash board, flap (закрылок), girt pad, panel board, slinger, visor
    5) Zoology: scute, scutum
    7) Botanical term: corymb, corymb (соцветие), fascicle
    9) Military: plate
    12) Railway term: hood
    13) Automobile industry: blind, ledge, splash plate, splashing plate
    14) Architecture: facia
    17) Entomology: clypeus
    19) Astronautics: flapper, visor assembly
    20) Food industry: carapace
    21) Mechanic engineering: (оба - комбайн.) flap
    22) Aeronautics: tab
    23) Drilling: safeguard, safety guard
    24) Sakhalin energy glossary: panelboard (управления, контроля)
    25) Automation: cover, (оградительный) fence
    26) Arms production: sight leaf
    27) Makarov: blind (защитное устройство), escutcheon (на приборе), ophthalmic filter (сетозащитный фильтр), panel (приборный), plain flap (посадочный), shield (защитное устройство), shield (кальцита, представляющий собой остаток от р-рения в пещере)
    30) Tengiz: ( small) shield, screen

    Универсальный русско-английский словарь > щиток

  • 36 регрессия

    Термин, обозначающий возврат к менее зрелому уровню психического развития. Как правило, регрессия возникает в ситуации, когда нарушаются процессы психической организации, соответствующие данной фазе развития. При этом регрессия рассматривается как один из механизмов защиты. Концепция регрессии тесно связана с положением о том, что психологическое развитие индивида проходит ряд фаз, каждая из которых характеризуется специфическими особенностями проявлений влечений Я, Я-идеала и Сверх-Я. Становление каждой фазы зависит от: 1) способа разрядки инстинктивных влечений, 2) функционирования Я; 3) присущих индивиду идеалов и проявлений совести.
    Обычно понятие регрессии принято рассматривать в двух аспектах. Либидинозная регрессия (регрессия либидо) представляет собой возвращение к ранним фазам организации инстинктивной жизни, возникающее в ходе нормального развития, когда индивид не способен справиться с требованиями биологически детерминированного процесса достижения большей зрелости. В таких случаях неразрешенные конфликты и тревога, исходящие из более ранних уровней развития, образуют в структуре психического аппарата "слабые места" (фиксации). Последние, как правило, и определяют тот уровень, к которому регрессирует психическая деятельность. В иных случаях регрессия проявляется в ответ на новые для индивида события и ситуации, возникающие в данной фазе развития, но оказывающие явно травматическое воздействие. В детском возрасте, когда развитие сексуальных влечений пока еще неустойчиво, либидинозные формы регрессии являются весьма распространенным механизмом. Так, например, пятилетний ребенок под влиянием стресса (соперничества с младшим братом или сестрой) прибегает к сосанию пальца, то есть к такому способу самоуспокоения, который он уже давно отбросил и позабыл.
    Другой тип регрессии — регрессия Я — представляет собой отход от более развитых и зрелых стадий психической организации к способам деятельности, характерным для более ранних периодов жизни. Хотя регрессия Я проявляется чаще всего вместе с либидинозной, первая из них сказывается прежде всего на вовлеченных в конфликт функциях Я. Регрессия Я проявляется в виде формальных характеристик процессов воображения, сопряженных с теми или иными дериватами конфликта влечений. Наиболее распространенными примерами регрессии этого типа являются утрата ребенком контроля над функциями мочевого пузыря, нарушения речи в ответ на выраженную стрессовую ситуацию и некоторые другие.
    В определенных случаях (чаще всего у пациентов-мазохистов) может наблюдаться и регрессия Сверх-Я. Нередко регрессия этого типа являет собой специфический ответ на ситуацию, когда интернализированный авторитет родителей вновь экстернализируется, затем проецируется на аналитика, рассматриваемого пациентом в качестве садистской фигуры в процессе переноса.
    Причины регрессии разнообразны. Некоторые ее формы встречаются в норме (как в детском, так и в зрелом возрасте) и рассматриваются как реакция на потребности индивида, которые подвергаются внешнему или внутреннему "давлению". Будучи неотъемлемой частью "колебательного" процесса развития, регрессия может способствовать переработке и последующей реинтеграции психического материала на более высоком уровне. В зрелом возрасте некоторые состояния могут служить запускающими механизмами для проявления архаических инстинктивных и поведенческих аспектов душевной жизни. К числу подобных состояний принято относить сновидения, любовь и вражду.
    Регрессия является одним из наиболее важных элементов психодинамического процесса. Именно она, возвращая пациента в более ранние и тем самым менее зрелые фазы психической организации, позволяет ему заново перерабатывать при переносе неразрешенные конфликты. Проявления регрессии усиливаются при возникновении разных состояний и расстройств: в случае чувства тревоги, вины, стыда, при депрессии, фрустрации или нарциссической обиде, выраженной астении, физических перегрузках, соматических заболеваниях и пр. Патологическая регрессия встречается при неврозах, психозах и перверсиях. В качестве основного динамического фактора регрессии выступает неразрешенный эдипов комплекс в сочетании со страхом кастрации и/или бессознательными сексуальными либо агрессивными побуждениями, провоцирующими чувство вины.
    \
    Лит.: [33, 202, 290, 295, 312, 469, 656]

    Словарь психоаналитических терминов и понятий > регрессия

  • 37 дифференциальный манометр

    1. differential-pressure gage
    2. differential pressure indicator
    3. differential pressure gage
    4. differential manometer
    5. differential gauge pressure

     

    дифференциальный манометр
    дифманометр

    Манометр для измерения разности двух давлений.
    Примечание
    Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
    [ГОСТ 8.271-77]

    дифференциальный манометр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    differential-pressure gage
    (engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

    [ http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

    Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
    Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной - с другой.

    4147
    Рис. 2.23

    Дифференциальный сильфонный манометр:

    а – схема привода стрелки;
    б – блок первичного преобразования;
    1 – «плюсовый» сильфон;
    2 – «минусовый» сильфон;
    3 – шток;
    4 – рычаг;
    5 – торсионный вывод;
    6 – цилиндрическая пружина;
    7 – компенсатор;
    8 – плоскостный клапан;
    9 – основание;
    10 и 11 – крышки;
    12 – подводящий штуцер;
    13 – манжета;
    14 – дросселирующий канал;
    15 – клапан;
    16 – рычажная система;
    17 – трибко-секторный механизм;
    18 – стрелка;
    19 – регулировочный винт;
    20 – натяжная пружина;
    21 – пробка;
    22 – уплотнительное резиновое кольцо

    «Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

    «Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

    «Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

    Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

    В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

    Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
    Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

    Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
    При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
    прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
     

    4148
    Рис. 2.24

    Показывающий дифференциальный манометр на основе мембранной коробки:

    1 – мембранная коробка;
    2 – держатель «плюсового» давления;
    3 – держатель «минусового» давления;
    4 – корпус;
    5 – передаточный механизм;
    6 – стрелка;
    7 – цифербла

    Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
    «Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
    Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

    Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

    В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
    Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

    Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
     

    4149
    Рис. 2.25

    Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – чувствительная гофрированная мембрана;
    4 – передающий шток;
    5 – передаточный механизм;
    6 – предохранительный клапан

    Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

    Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

    4150
    Рис. 2.26

    Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – входной блок;
    4 - чувствительная гофрированная мембрана;
    5 – толкатель;
    6 – сектор;
    7 – трибка;
    8 – стрелка;
    9 – циферблат;
    10 – разделительный сильфон

    Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
    Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

    4151
    Рис. 2.27

    Мембранный двухкамерный показывающий дифманометр:

    1 – «плюсовая» камера;
    2 – «минусовая» камера;
    3 – передающий шток;
    4 – сектор;
    5 – трибка;
    6 – коромысло

    Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
    Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

    4152
    Рис. 2.28.

    Дифманометр с магнитным преобразователем:

    1 – поворотный магнит;
    2 – стрелка;
    3 – корпус;
    4 – магнитный поршень;
    5 – фторопластовый сальник;
    6 – рабочий канал;
    7 – пробка;
    8 – диапазонная пружина;
    9 – блок электроконтактов

    Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
    Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
    В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

    Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

     

    4145     4146
        Показывающий дифференциальный манометр на основе трубчатой пружины

    1 и 2 – держатели;
    3 и 4 – трубчатые пружины;
    5 и 8 – трибки;
    6 – стрелка «плюсового» давления;
    7 и 9 – шкалы избыточного давления;
    10 – стрелка «минусового» давления

    В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

    «Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

    · расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

    · перепада - разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

    · уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

    10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

    1; 1,6; 2,5; 4; 6,3 МПа.

    У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

    А = а × 10n, (2.7)

    где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

    Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

    0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

    Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

    25; 40; 63; 100; 160; 250; 400 и 630 кПа;

    1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

    Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

    Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

    Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

    Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

    ДСП 160 (0…630 кПа)-32 МПа-1,5.

    После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

    Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

    При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

    20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

    20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

    Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

    Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

    Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

    Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

    Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

    Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

    Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

    [ http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > дифференциальный манометр

  • 38 расходомер жидкости (газа)

    1. flowmeter

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 39 расщепленный массив с контролем по четности

    1. Stripped Array with Parity
    2. RAID 4

     

    расщепленный массив с контролем по четности
    Как и RAID 3, требует дополнительного диска для данных контроля по четности, только данные расщепляются посекторно, а не побайтно. Это обеспечивает более быстрое выполнение операций чтения с дисков. Редко используемый тип дискового массива.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > расщепленный массив с контролем по четности

  • 40 ретрансляция кадров (в электросвязи)

    1. Frame Relay
    2. FR

     

    ретрансляция кадров
    Тип сети, построенной на базе высокоуровневого протокола FR, базирующегося на протоколе управления HDSL который обеспечивает быструю пересылку кадров с минимальными задержками в узлах. В сетях FR нет избыточности, присущей сетям на базе протокола Х.25, а потери на инкапсуляцию трафика не превышают 2-3 %, так как вместо контроля ошибок всего кадра проверяется лишь его целостность, а процедура обнаружения ошибок сохранена лишь для адресного поля. Определение степени достоверности приема информации в сетях FR возлагается на оборудование пользователей. Сетевой механизм пересылки кадров требует использования каналов с высоким отношением сигнал/шум (обычно не хуже 10-7).
    В архитектуре сетей frame relay используются два типа виртуальных каналов — постоянные (PVC) и коммутируемые (SVC), а при организации связи предпочтение отдается передачам по постоянным каналам.
    Протокол frame relay предусматривает контроль за перегрузкой сети, в том числе и с помощью уведомлений пользователей. Технология FR стандартизирована ITU-T (рекомендации 1.233, Q.92C-933, 1.370) и ANSI (стандарты Т1.606,602,617,618).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > ретрансляция кадров (в электросвязи)

См. также в других словарях:

  • Тип данных — (встречается также термин вид данных)  фундаментальное понятие теории программирования. Тип данных определяет множество значений, набор операций, которые можно применять к таким значениям и, возможно, способ реализации хранения значений и… …   Википедия

  • Тип меры неразрушающего контроля — Тип меры НК: совокупность мер одного и того же назначения, предназначенных для воспроизведения и хранения одних и тех же физических величин и изготовленных по одной и той же технической документации... Источник: Распоряжение ОАО РЖД от 20.12.2010 …   Официальная терминология

  • Тип здания или сооружения — (type of building or civil engineering works) – тип сооружений в зависимости от их функционального назначения, например, жилой дом, подпорная стена, промышленное здание, дорожный мост. [НСР ЕН 1990 2011] Рубрика термина: Бетонные и железобетонные …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Тип лесорастительных условий — лесоводственная классификационная единица, объединяющая лесные земли по сходству почвенных и гидрологических факторов, обеспечивающих произрастание лесной растительности определенного состава и производительности... Источник: Приказ Рослесхоза от …   Официальная терминология

  • Тип холодного оружия — Тип холодного оружия: группа образцов холодного оружия, характеризующаяся одинаковым комплексом конструктивных признаков... Источник: ОРУЖИЕ ХОЛОДНОЕ КЛИНКОВОЕ ДЛЯ НОШЕНИЯ С КАЗАЧЬЕЙ ФОРМОЙ И НАЦИОНАЛЬНЫМИ КОСТЮМАМИ НАРОДОВ РОССИЙСКОЙ ФЕДЕРАЦИИ.… …   Официальная терминология

  • ТИП АТРИБУЦИИ — Тип личности, определяющийся в зависимости от атрибуции ответственности за хорошие и плохие события, происходящие в жизни. См. теория атрибуции и локус контроля …   Толковый словарь по психологии

  • Тип производства — – классификационная категория производства, выделяемая по признакам широты номенклатуры, регулярности, стабильности и объема выпуска продукции. Примечания: 1 Различают типы производства: единичное, серийное, массовое 2 В соответствии с ГОСТ …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Тип средств измерений — – совокупность средств измерений, предназначенных для измерений одних и тех же величин, выраженных в одних и тех же единицах величин, основанных на одном и том же принципе действия, имеющих одинаковую конструкцию и изготовленных по одной и… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Тип строительной конструкции по материалу — (type of construction) – определяется в зависимости от основного строительного материала, например, железобетонная строительная конструкция, стальная строительная конструкция, деревянная строительная конструкция, кирпичная строительная… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Тип цемента — (cement grade) – обозначение, данное согласно системе ISO для определения сульфатостойкости определенного цемента. [СТ РК ИСО 10426 1] Рубрика термина: Виды цемента Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Тип игрового автомата — 3.3. Тип игрового автомата совокупность игровых автоматов, основанных на одном и том же принципе, имеющих одинаковые центральные блоки управления, одни и те же игровые программы, одну и ту же конструкцию и выполненных по одной и той же… …   Официальная терминология

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»