Перевод: со всех языков на все языки

со всех языков на все языки

(длиной+от+51+мм+и+более)

  • 61 Langholzsortiment

    1. длинномерный сортимент

     

    длинномерный сортимент
    Круглый сортимент длиной более 6,5 м.
    [ ГОСТ 17462-84]

    Тематики

    • продукц. лесозаготовит. промышленности

    EN

    DE

    26. Длинномерный сортимент

    D. Langholzsortiment

    E. Long log

    Круглый сортимент длиной более 6,5 м

    Источник: ГОСТ 17462-84: Продукция лесозаготовительной промышленности. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Langholzsortiment

  • 62 длинномерный сортимент

    1. long log

     

    длинномерный сортимент
    Круглый сортимент длиной более 6,5 м.
    [ ГОСТ 17462-84]

    Тематики

    • продукц. лесозаготовит. промышленности

    EN

    DE

    26. Длинномерный сортимент

    D. Langholzsortiment

    E. Long log

    Круглый сортимент длиной более 6,5 м

    Источник: ГОСТ 17462-84: Продукция лесозаготовительной промышленности. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > длинномерный сортимент

  • 63 wire

    1. шина (в электротехнике)
    2. проволочное соединение
    3. провод
    4. отвод пьезоэлектрического резонатора
    5. кабель
    6. защита от доступа к опасным частям проволокой
    7. делать (электро)проводку

     

    делать (электро)проводку
    монтировать проводку


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    электрический кабель
    кабель

    Кабельное изделие, содержащее одну или более изолированных жил (проводников), заключенных в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации может иметься соответствующий защитный покров, в который может входить броня, и пригодное, в частности, для прокладки в земле и под водой.
    [ ГОСТ 15845-80]

    кабель

    1. Одна или несколько изолированных токопроводящих жил или проводников, заключённых в герметическую оболочку с верхним защитным покрытием
    2. Гибкий несущий элемент висячих систем, кабель-кранов и канатных подвесных дорог
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    кабель электрический
    Кабель 1. для передачи на расстояние электрической энергии либо сигналов высокого или низкого напряжений
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    кабель
    Один или несколько скрученных изолированных гибких проводников, предназначенных для обматывания объектов контроля в целях их продольного или тороидного намагничивания.

    кабель
    Экранированный проводник, соединяющий электронный блок с преобразователем или электронные блоки между собой

    кабель

    -
    [IEV number 151-12-38]

    EN

    cable
    assembly of one or more conductors and/or optical fibres, with a protective covering and possibly filling, insulating and protective material
    [IEV number 151-12-38]

    FR

    câble, m
    assemblage d'un ou plusieurs conducteurs ou fibres optiques, muni d'une enveloppe protectrice et éventuellement de matériaux de remplissage, d'isolation et de protection
    [IEV number 151-12-38]

    3954
    Пример конструкции кабеля:


    1 - Токопроводящие жилы;
    2 - Бумага, пропитанная маслом;
    3 - Джутовый заполнитель;
    4 - Свинцовая оболочка;
    5 - Бумажная лента;
    6 - Прослойка из джута;
    7 - Стальная ленточная броня;
    8 - Джутовый покров.
     

    Кабели на напряжение до 1 кВ и выше...
    [ГОСТ  12.2.007.14-75]

    ... силовые кабели с медными или алюминиевыми жилами с резиновой изоляцией, в свинцовой, поливинилхлоридной или резиновой оболочке, с защитными покровами или без них, предназначенные для неподвижной прокладки в электрических сетях напряжением 660 В переменного тока частотой 50 Гц или 1000 В постоянного тока и на напряжение 3000, 6000 и 10000 В постоянного тока.

    Кабели предназначены для прокладки:
    - на трассах с неограниченной разностью уровней.
    - внутри помещений, в каналах, туннелях, в местах, не подверженных вибрации, в условиях отсутствия механических воздействий на кабель..
    - в земле (траншеях), если кабель не подвергается значительным растягивающим усилиям

    Строительная длина кабелей должна быть не менее 125 м. Допускаются маломерные отрезки длиной не менее 20 м в количестве не более 10 % от общей длины сдаваемой партии кабелей.
    [ ГОСТ 433-73]

    ... монтажные многожильные кабели с поливинилхлоридной изоляцией и оболочкой, предназначенные для фиксированного межприборного монтажа электрических устройств, работающих при номинальном переменном напряжении до 500 В частоты до 400 Гц или постоянном напряжении до 750 В.

    Требования к стойкости при механических воздействиях

    - Кабели должны быть механически прочными при воздействии вибрационных нагрузок в диапазоне частот 1-5000 Гц с ускорением до 392 м/с2 (40 g).
    - Кабели должны быть механически прочными при воздействии многократных ударов с ускорением 1471 м/с2 (150 g) при длительности удара 1-3 мс.
    - Кабели должны быть механически прочными при воздействии одиночных ударов с ускорением 9810 м/с2(1000 g) и линейных нагрузок с ускорением до 4905 м/с2 (500 g).

    Требования к стойкости при климатических воздействиях

    -Кабели должны быть стойкими к воздействию повышенной температуры 343 К (70°С), при этом за повышенную температуру принимают температуру наиболее нагреваемого элемента конструкции кабеля.
    - Кабели должны быть стойкими к воздействию пониженной температуры - 223 К (минус 50°С).
    - Кабели должны быть стойкими к воздействию относительной влажности воздуха до 98 % при температуре 308 К (35°С).
    - Кабели климатического исполнения Т должны быть стойкими к воздействию плесневых грибов.

    [ ГОСТ 10348-80]
     

    Тематики

    • кабели, провода...

    Классификация

    >>>

    Обобщающие термины

    Действия

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

     

    отвод пьезоэлектрического резонатора
    отвод
    Токопроводящая деталь, соединяющая электроды с выводами пьезоэлектрического резонатора.
    [ ГОСТ 18669-73]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    провод
    -
    [IEV number 151-12-28]

    EN

    wire
    flexible cylindrical conductor, with or without an insulating covering, the length of which is large with respect to its cross-sectional dimensions
    NOTE – The cross-section of a wire may have any shape, but the term "wire" is not generally used for ribbons or tapes.
    [IEV number 151-12-28]

    FR

    fil, m
    conducteur cylindrique flexible, avec ou sans revêtement isolant, dont la longueur est grande par rapport aux dimensions de la section droite
    NOTE – La section droite d'un fil peut avoir une forme quelconque, mais le terme "fil" n'est généralement pas employé pour une bande ou un ruban.
    [IEV number 151-12-28]

    Тематики

    • кабели, провода...

    Действия

    EN

    DE

    FR

     

    проволочное соединение

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    шина
    Проводник с низким сопротивлением, к которому можно подсоединить несколько отдельных электрических цепей.
    Примечание — Термин «шина» не включает в себя геометрическую форму, габариты или размеры проводника.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]
    [ ГОСТ Р МЭК 61439.1-2013]

    шина
    Конструктивный элемент низковольтного комплектного устройства (НКУ).
    Такой конструктивный элемент предназначен для того, чтобы к нему можно было легко присоединить отдельные электрические цепи (другие шины, отдельные проводники). Такие шины могут иметь различную конструкцию, геометрическую форму и размеры.
    [Интент]

    шинопровод шина
    Медная, алюминиевая, реже стальная полоса, служащая для присоединения кабелей электрогенераторов, трансформаторов и т.д. к проводам питающей сети
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    общая шина
    -
    [IEV number 151-12-30]

    шина
    -
    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    busbar
    low-impedance conductor to which several electric circuits can be connected at separate points
    NOTE – In many cases, the busbar consists of a bar.
    [IEV number 151-12-30]

    busbar
    An electrical conductor that makes a common connection between several circuits. Sometimes, electrical wire cannot accommodate high-current applications, and electricity must be conducted using a more substantial busbar — a thick bar of solid metal (usually copper or aluminum). Busbars are uninsulated, but are physically supported by insulators. They are used in electrical substations to connect incoming and outgoing transmission lines and transformers; in a power plant to connect the generator and the main transformers; in industry, to feed large amounts of electricity to equipment used in the aluminum smelting process, for example, or to distribute electricity in large buildings
    [ABB. Glossary of technical terms. 2010]

    FR

    barre omnibus, f
    conducteur de faible impédance auquel peuvent être reliés plusieurs circuits électriques en des points séparés
    NOTE – Dans de nombreux cas, une barre omnibus est constituée d’une barre.
    [IEV number 151-12-30]

     

    0079_1

    1. Сборные шины
    2. Распределительные шины

      2. Проводник прямоугольного сечения из меди, предназначенный для электротехнических целей
    (см. ГОСТ 434-78).

    Поставляется в бухтах, а также в полосах длиной не менее 2,5 м; По существу, это просто проволока прямоугольного сечения. В указанном ГОСТе и в технической документации, в которой она применяется, обязательно указываются размеры этой проволоки. Например, "Шина ШММ 8,00х40,00 ГОСТ 434-78" 0308
     

     

    шина
    Пруток прямоугольного сечения, применяемый в электротехнике в качестве проводника тока, изготовляемый прессованием или волочением.
    [ ГОСТ 25501-82]

    Тематики

    Действия

    • расположение шин «на ребро» [ПУЭ]
    • расположение шин «плашмя» [ПУЭ]

    Сопутствующие термины

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > wire

  • 64 long log

    1. длинномерный сортимент

     

    длинномерный сортимент
    Круглый сортимент длиной более 6,5 м.
    [ ГОСТ 17462-84]

    Тематики

    • продукц. лесозаготовит. промышленности

    EN

    DE

    26. Длинномерный сортимент

    D. Langholzsortiment

    E. Long log

    Круглый сортимент длиной более 6,5 м

    Источник: ГОСТ 17462-84: Продукция лесозаготовительной промышленности. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > long log

  • 65 retroviruses

    ретровирусы, лейковирусы
    Группа РНК-содержащих вирусов диаметром 70-120 нм, капсид заключен в липопротеиновую оболочку, каждая частица включает по 2 идентичные молекулы РНК и связанные с ними молекулы обратной транскриптазы reverse transcriptase; многие Р. опухолеродны (вирус саркомы Рауса Rous sarcoma virus, вирусы лейкозов и саркомы мышей, вирус Биттнера и др.); в настоящее время Р. широко используются в качестве векторов vector в генной инженерии для введения чужеродных генов в клетки животных; впервые Р. были описаны В.Эллерманном и Д.Бангом в 1908.
    * * *
    Ретровирусы — класс однонитчатых РНКовых вирусов, инфицирующих клетки эукариот, в которых РНК-геном транскрибируется в ДНК-копию (кДНК) с помощью РНК-зависимой ДНК-полимеразы (обратной транскриптазы, см.). Эта двунитчатая кДНК затем закольцовывается (см. ДНК-кольцевание), проникает в ядро клетки и интегрирует в геном с помощью механизма, сходного с механизмом транспозиции. Интегрированный вирусный геном называется провирусом. Длинные концевые повторы содержат энхансер и промотор, а также кодирующие области, несущие gag-ген (кодирует вирусные капсидные белки), pol-ген (кодирует обратную транскриптазу) и env-ген (кодирует гликопротеины вирусной липидной оболочки). Концы вирусного генома несут R-сегменты — прямые повторы длиной 10-80 п. о., фланкируемые последовательностями U5 на 5'-конце длиной 80 -100 нуклеотидов и U3 на 3'-конце длиной от 170 до 1000 и более нуклеотидов. Инфекционный цикл начинается с освобождения вирусной РНК из капсида. Затем происходит обратная транскрипция и интеграция образовавшейся ДНК в геном реципиента. Транскрипция эндогенного ретровирусного генома ведет к накоплению транскриптов, которые транслируются в капсидные белки. В результате соединения вирусной РНК с белками образуются новые вирусные частицы, покидающие затем клетку путем почкования (budding).

    Англо-русский толковый словарь генетических терминов > retroviruses

  • 66 long

    1. n долгий срок; длительный период; большой промежуток времени

    for long — надолго, на большой срок

    before long — скоро, в ближайшее время

    it is long since we saw him — мы уже давно его не видели, прошло много времени с тех пор, как мы его видели

    he may not endure long — он, вероятно, долго не продержится

    2. n стих. долгий слог

    long term — долгий срок; долгосрочный

    long memory — долгая память, хорошая память

    3. n фон. долгий гласный
    4. n муз. лонга
    5. n бирж. покупатель ценных бумаг

    long elephant — ширина рулона обойной бумаги,8

    foolscap long folio — формат писчей бумаги,5Х40,6 см

    6. n бирж. спекулянт, играющий на повышение
    7. n бирж. брюки
    8. n бирж. большие роста
    9. a длинный

    at long range — на большом расстоянии; с большого расстояния

    a long way about — крюк, объезд

    10. a редк. высокий, долговязый
    11. a долгий, продолжительный, длительный

    Long Service and Good Conduct Medal — медаль «За долголетнюю и безупречную службу»

    for a long time — долго, давно; надолго

    a long time ago — много времени тому назад; давным-давно

    12. a имеющий такую-то длину; длиной в …
    13. a имеющий такую-то продолжительность; продолжительностью в …

    an hour long — продолжающийся один час, часовой

    as long as life endures — пока есть жизнь, пока человек жив

    long swing hip beat — с большого маха вис лежа на н.ж.

    14. a отдалённый
    15. a фин. долгосрочный
    16. a медленный, медлительный
    17. a томительный, скучный

    the long hours dragged slowly by — долгие, томительные часы тянулись так медленно

    long, unlively debate — длинные, скучные дебаты

    18. a разг. большой

    long drink — «большой стакан»

    19. a разг. удлинённый, продолговатый
    20. a разг. грам. полный
    21. a разг. целый

    long mile — добрая миля, не меньше мили

    22. a разг. богатый; сильный

    he is long on common sense — здравый смысл — его сильная сторона

    long ears — глупость;

    a long dozen — тринадцать;

    long head — проницательность; предусмотрительность

    to take long views — проявлять предусмотрительность, быть дальновидным

    in the long run — в конечном счёте; в результате

    23. adv долго; длительно
    24. adv давно; долгое время

    long ago — давно; давным-давно

    25. adv усил. полностью; с начала до конца

    all day long — целый день; день-деньской

    long house — длинный вигвам; общий дом нескольких семейств

    26. adv бирж. на повышение

    so long as — если только, при условии, что

    long mark — знак долготы,

    27. v страстно желать; стремиться
    Синонимический ряд:
    1. boring (adj.) boring; long-winded; prolix; tedious; verbose; wordy
    2. lengthy (adj.) attenuated; dragging; drawn out; drawn-out; elongate; elongated; extended; extensive; interminable; lengthy; long-drawn-out; longsome; overlong; prolonged; protracted; unending
    3. age (noun) aeon; aeons; age; ages; blue moon; coon's age; dog's age; donkey's years; eternity
    4. ache (verb) ache; covet; crave; desire; dream; hanker; hanker for; hunger; itch; long for; lust; pant; pine; pine for; sigh; suspire; thirst; wish; yearn; yearn for; yen
    Антонимический ряд:
    brief; compact; compressed; concise; condensed; curt; disdain; ephemeral; evanescent; fleeting; forgo; interesting; laconic; pithy; short

    English-Russian base dictionary > long

  • 67 прокатный стан

    1. rolling mill
    2. mill

     

    прокатный стан
    В металлургии машина или система машин для осуществления прокатки. Оборудование прокатного стана для деформирования металла называется основным, а для прочих операций — вспомогательным (транспортные рольганги, пилы, ножницы, моталки и т.п.) или отделочным (правильные машины, зачистные устройства и др.). По назначению прокататные станы делят на 5 основных видов, которые, в свою очередь, можно подразделить на несколько типов: обжимные и заготовочные (блюминги, слябинги, заготовительные сортовые, трубозаготовительные); сортовые (рельсобалочочные, крупно-, средне- и мелкосортные, проволочные); листовые — горячей прокатки (широкополосные, толсто- и тонколистистовые) и холодной прокатки (листовые, ленто-, фольгопрокатные, плющильные); трубопрокатные; специальные (колесо-, шаро-, бандажепрокатные, для зубчатых колес и др.). Обжимные, заготовочные и сортовые прокатные станы характеризуются диаметром рабочих валков, листовые — длиной бочки валков, трубопрокатые — наружным диаметром труб. По числу валков прокатные станы классифицируют на двух-, трех-, четырех-, шести- и многовалковые (в т. ч. планетарные); по числу рабочих клетей на одно-, двухклетевые и т.д.; по расположению клетей на линейные (клети расположены в одну или несколько линий), непрерывные (клети располагаются одна за другой) и полунепрерывные; по направлению вращения рабочих валков на: нереверсивные и реверсивные. Число и расположение рабочих клетей прокатных станов определяется его назначением, требующим числом проходов металла между валками для получения данного профиля и заданной производительностью. По этому признаку станы подразделяются на 8 типов. К одноклетевым станам относят большинство блюмингов, слябинги, шаропрокатные станы, станы для холодной прокатки листов, ленты и труб. Если в одной рабочей клети не удается расположить необходимое число калибров или требуется высокая производительность, применяют станы с несколькими рабочими клетями. Наиболее совершенны многоклетевые непрерывные станы, в которых металл одновременно прокатывается в нескольких клетях. Непрерывные станы служат для горячей прокатки заготовки, полос, сортового проката, проволоки, труб, а также для холодной прокатки листов, жести, ленты и др. профилей. Скорость прокатки на станах весьма различна. У обжимных, заготовительных, толстолистовых, крупносортных станов скорость прокатки составляет 2-8 м/с. Наибольшие скорости прокатки характерны для непрерывной прокатки: сортового проката — 10-20 м/с; полосового — 25-35 м/с; проволоки — 50-70 м/с; холодной прокатки жести — около 40 м/с. Заготовительные станы могут быть двух типов в зависимости от исходного металла — слитков, отлитых в изложницах, или непрерывнолитых заготовок. В первом случае заготовительный стан является также обжимным. Типичные представители таких станов — слябинг, когда требуется плоская заготовка крупных размеров (слябы) и блюминг с установленным за ним собствственно заготовочным непрерывным станом, если требуется прокатные заготовки квадратного или круглого сечения для сортовых, проволочных и трубопрокатных станов. За последней клетью этих станов располагаются летучие ножницы для разрезки заготовки на части требуемой длины или пилы и стеллажи для резки, охлаждения и осмотра заготовки. Заготовительный стан может иметь две непрерывных группы клетей с горизонтальными и вертикальными (для исключения кантовки металла) валками. В этом случае заготовительный стан для выпуска заготовок больших размеров имеет в разрыве между группами клетей летучие ножницы и шлеппер для передачи металла на обводной рольганг. В России заготовительные станы обозначают по диаметру прокатных (шестеренчатых) валков в группах клетей, например — 900/700/500. При использования непрерывнолитой заготовки заготовительные станы устанавливают рядом с МНЛЗ в целях использовования тепла неостывшего металла. Листовые и полосовые станы горячей прокатки предназначены для производства плит толщиной 50-350 мм, листов толщиной 3-50 мм и полос (сматываются в рулон) толщиной 1,2-20 мм. Толстолистовые станы состоят из 1-2 двух и четырехвалковых — клетей с длиной бочки валков 2,8-5,5 м, иногда с установленными перед ними дополнительными клетями с вертикальными валками для обжатия боковых кромок. Для прокатки полос наибольшее применение получили широкополосные непрерывные или полунепрерывные станы, состоящие из 10-15 четырехвалковых клетей с длиной бочки валков 1,5-2,5 м и нескольких клетей с вертикальными валками. Весь прокатываемый металл сматывается в 15-50-т рулоны. Эти станы значительно более производительны, чем толстолистовые, поэтому они используются также и для прокатки толстых (4-20-мм) листов, которые изготавливаются при разматывании рулонов и их разрезке. Со стороны выхода металла из валков устанавливаются выходные рольганги и большое количество вспомогательного оборудования для обработки и транспортиртировки проката; у толстолистовых станов — правильные машины, ножницы, печи для термической обработки и т.д., а у широкополосных станов — моталки для сматывания полос в рулоны, конвейер для транспортировки рулонов и оборудование для разматывания рулонов, их правки и разрезки на листы.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > прокатный стан

  • 68 РСМ-эквивалентная структура

    1. PCM-equivalent structure

    4.32 РСМ-эквивалентная структура (PCM-equivalent structure): Волокнистая структура с характеристическим соотношением не менее 3:1, длиной 5 мкм, толщиной от 0,2 до 3,0 мкм.

    Примечание - РСМ-эквивалентная структура не обязательно включает какие-либо волокна длиной более 5 мкм и может состоять из групп параллельных волокон асбеста длиной менее 5 мкм.

    Источник: ГОСТ Р ИСО 16000-7-2011: Воздух замкнутых помещений. Часть 7. Отбор проб при определении содержания волокон асбеста оригинал документа

    Русско-английский словарь нормативно-технической терминологии > РСМ-эквивалентная структура

  • 69 rolling mill

    1. прокатный стан

     

    прокатный стан
    В металлургии машина или система машин для осуществления прокатки. Оборудование прокатного стана для деформирования металла называется основным, а для прочих операций — вспомогательным (транспортные рольганги, пилы, ножницы, моталки и т.п.) или отделочным (правильные машины, зачистные устройства и др.). По назначению прокататные станы делят на 5 основных видов, которые, в свою очередь, можно подразделить на несколько типов: обжимные и заготовочные (блюминги, слябинги, заготовительные сортовые, трубозаготовительные); сортовые (рельсобалочочные, крупно-, средне- и мелкосортные, проволочные); листовые — горячей прокатки (широкополосные, толсто- и тонколистистовые) и холодной прокатки (листовые, ленто-, фольгопрокатные, плющильные); трубопрокатные; специальные (колесо-, шаро-, бандажепрокатные, для зубчатых колес и др.). Обжимные, заготовочные и сортовые прокатные станы характеризуются диаметром рабочих валков, листовые — длиной бочки валков, трубопрокатые — наружным диаметром труб. По числу валков прокатные станы классифицируют на двух-, трех-, четырех-, шести- и многовалковые (в т. ч. планетарные); по числу рабочих клетей на одно-, двухклетевые и т.д.; по расположению клетей на линейные (клети расположены в одну или несколько линий), непрерывные (клети располагаются одна за другой) и полунепрерывные; по направлению вращения рабочих валков на: нереверсивные и реверсивные. Число и расположение рабочих клетей прокатных станов определяется его назначением, требующим числом проходов металла между валками для получения данного профиля и заданной производительностью. По этому признаку станы подразделяются на 8 типов. К одноклетевым станам относят большинство блюмингов, слябинги, шаропрокатные станы, станы для холодной прокатки листов, ленты и труб. Если в одной рабочей клети не удается расположить необходимое число калибров или требуется высокая производительность, применяют станы с несколькими рабочими клетями. Наиболее совершенны многоклетевые непрерывные станы, в которых металл одновременно прокатывается в нескольких клетях. Непрерывные станы служат для горячей прокатки заготовки, полос, сортового проката, проволоки, труб, а также для холодной прокатки листов, жести, ленты и др. профилей. Скорость прокатки на станах весьма различна. У обжимных, заготовительных, толстолистовых, крупносортных станов скорость прокатки составляет 2-8 м/с. Наибольшие скорости прокатки характерны для непрерывной прокатки: сортового проката — 10-20 м/с; полосового — 25-35 м/с; проволоки — 50-70 м/с; холодной прокатки жести — около 40 м/с. Заготовительные станы могут быть двух типов в зависимости от исходного металла — слитков, отлитых в изложницах, или непрерывнолитых заготовок. В первом случае заготовительный стан является также обжимным. Типичные представители таких станов — слябинг, когда требуется плоская заготовка крупных размеров (слябы) и блюминг с установленным за ним собствственно заготовочным непрерывным станом, если требуется прокатные заготовки квадратного или круглого сечения для сортовых, проволочных и трубопрокатных станов. За последней клетью этих станов располагаются летучие ножницы для разрезки заготовки на части требуемой длины или пилы и стеллажи для резки, охлаждения и осмотра заготовки. Заготовительный стан может иметь две непрерывных группы клетей с горизонтальными и вертикальными (для исключения кантовки металла) валками. В этом случае заготовительный стан для выпуска заготовок больших размеров имеет в разрыве между группами клетей летучие ножницы и шлеппер для передачи металла на обводной рольганг. В России заготовительные станы обозначают по диаметру прокатных (шестеренчатых) валков в группах клетей, например — 900/700/500. При использования непрерывнолитой заготовки заготовительные станы устанавливают рядом с МНЛЗ в целях использовования тепла неостывшего металла. Листовые и полосовые станы горячей прокатки предназначены для производства плит толщиной 50-350 мм, листов толщиной 3-50 мм и полос (сматываются в рулон) толщиной 1,2-20 мм. Толстолистовые станы состоят из 1-2 двух и четырехвалковых — клетей с длиной бочки валков 2,8-5,5 м, иногда с установленными перед ними дополнительными клетями с вертикальными валками для обжатия боковых кромок. Для прокатки полос наибольшее применение получили широкополосные непрерывные или полунепрерывные станы, состоящие из 10-15 четырехвалковых клетей с длиной бочки валков 1,5-2,5 м и нескольких клетей с вертикальными валками. Весь прокатываемый металл сматывается в 15-50-т рулоны. Эти станы значительно более производительны, чем толстолистовые, поэтому они используются также и для прокатки толстых (4-20-мм) листов, которые изготавливаются при разматывании рулонов и их разрезке. Со стороны выхода металла из валков устанавливаются выходные рольганги и большое количество вспомогательного оборудования для обработки и транспортиртировки проката; у толстолистовых станов — правильные машины, ножницы, печи для термической обработки и т.д., а у широкополосных станов — моталки для сматывания полос в рулоны, конвейер для транспортировки рулонов и оборудование для разматывания рулонов, их правки и разрезки на листы.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > rolling mill

  • 70 busbar

    1. шинопровод
    2. шина (в электротехнике)
    3. система шин
    4. сборная шина

     

    сборная шина
    Шина, к которой могут быть присоединены одна или несколько распределительных шин и/или блоков ввода или вывода.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]
    [ ГОСТ Р МЭК 61439.1-2013]

    сборные шины
    Система проводников, соединяемых с блоком ввода и предназначенных для присоединения к ним фазных, нулевых защитных РЕ и нулевых рабочих N проводников нескольких распределительных и групповых электрических цепей.
    Примечание — Термин «шина» не определяет ее конструкцию
    [ ГОСТ Р 51732-2001]

    главная шина

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    EN

    main busbar
    busbar to which one or several distribution busbars and/or incoming and outgoing units can be connected
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    jeu de barres principal
    jeu de barres auquel un ou plusieurs jeux de barres de distribution et/ou des unités d'arrivée et de départ peuvent être raccordés
    [IEC 61439-1, ed. 2.0 (2011-08)]

    0079_1
    Рис. Legrand

    1 - Сборная шина
    2 - Распределительные шины


    5487
    Рис. Schneider Electric:

    Main busbar - Сборная шина
    Distribution busbars - Распределительные шины
    A: Incoming device - А: Аппарат ввода
    D: Outgoing device - D: Аппарат вывода

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

    FR

     

    система шин
    Комплект элементов, связывающих между собой все присоединения электрического распределительного устройства.
    [ ГОСТ 24291-90]

    EN

    busbars (commonly called busbar)
    in a substation, the busbar assembly necessary to make a common connection for several circuits
    Example: three busbars for a three-phase system.
    [IEV number 605-02-02]

    FR

    jeu de barres (omnibus)
    dans un poste, ensemble des barres omnibus nécessaires pour connecter des circuits
    Exemple: trois barres pour un réseau triphasé.
    [IEV number 605-02-02]

    КЛАССИФИКАЦИЯ

    Различают следующие системы:

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

    DE

    FR

     

    шина
    Проводник с низким сопротивлением, к которому можно подсоединить несколько отдельных электрических цепей.
    Примечание — Термин «шина» не включает в себя геометрическую форму, габариты или размеры проводника.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]
    [ ГОСТ Р МЭК 61439.1-2013]

    шина
    Конструктивный элемент низковольтного комплектного устройства (НКУ).
    Такой конструктивный элемент предназначен для того, чтобы к нему можно было легко присоединить отдельные электрические цепи (другие шины, отдельные проводники). Такие шины могут иметь различную конструкцию, геометрическую форму и размеры.
    [Интент]

    шинопровод шина
    Медная, алюминиевая, реже стальная полоса, служащая для присоединения кабелей электрогенераторов, трансформаторов и т.д. к проводам питающей сети
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    общая шина
    -
    [IEV number 151-12-30]

    шина
    -
    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    busbar
    low-impedance conductor to which several electric circuits can be connected at separate points
    NOTE – In many cases, the busbar consists of a bar.
    [IEV number 151-12-30]

    busbar
    An electrical conductor that makes a common connection between several circuits. Sometimes, electrical wire cannot accommodate high-current applications, and electricity must be conducted using a more substantial busbar — a thick bar of solid metal (usually copper or aluminum). Busbars are uninsulated, but are physically supported by insulators. They are used in electrical substations to connect incoming and outgoing transmission lines and transformers; in a power plant to connect the generator and the main transformers; in industry, to feed large amounts of electricity to equipment used in the aluminum smelting process, for example, or to distribute electricity in large buildings
    [ABB. Glossary of technical terms. 2010]

    FR

    barre omnibus, f
    conducteur de faible impédance auquel peuvent être reliés plusieurs circuits électriques en des points séparés
    NOTE – Dans de nombreux cas, une barre omnibus est constituée d’une barre.
    [IEV number 151-12-30]

     

    0079_1

    1. Сборные шины
    2. Распределительные шины

      2. Проводник прямоугольного сечения из меди, предназначенный для электротехнических целей
    (см. ГОСТ 434-78).

    Поставляется в бухтах, а также в полосах длиной не менее 2,5 м; По существу, это просто проволока прямоугольного сечения. В указанном ГОСТе и в технической документации, в которой она применяется, обязательно указываются размеры этой проволоки. Например, "Шина ШММ 8,00х40,00 ГОСТ 434-78" 0308
     

     

    шина
    Пруток прямоугольного сечения, применяемый в электротехнике в качестве проводника тока, изготовляемый прессованием или волочением.
    [ ГОСТ 25501-82]

    Тематики

    Действия

    • расположение шин «на ребро» [ПУЭ]
    • расположение шин «плашмя» [ПУЭ]

    Сопутствующие термины

    EN

    DE

    FR

     

    система сборных шин
    шинопровод
    Устройство, представляющее собой систему проводников, состоящее из шин, установленных на опорах из изоляционного материала или в каналах, коробах или подобных оболочках, и прошедшее типовые испытания.
    Устройство может состоять из следующих элементов:
    - прямые секции с узлами ответвления или без них;
    - секции для изменения положения фаз, разветвления, поворота, а также вводные и переходные;
    - секции ответвленные.
    Примечание — Термин «шинопровод» не определяет геометрическую форму, габариты и размеры проводников.
    (МЭС 441-12-07, с изменением)
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    шинопровод
    Жесткий токопровод до 1 кВ заводского изготовления, поставляемый комплектными секциями.
    [ПУЭ]

    шинопровод
    Жесткий токопровод напряжением до 1000 В заводского изготовления, поставляемый комплектными секциями.
    [ОСТ 36-115-85]

    шинопровод
    Жесткий токопровод напряжением до 1 кВ, предназначенный для передачи и распределения электроэнергии, состоящий из неизолированных или изолированных проводников (шин) и относящихся к ним изоляторов, защитных оболочек, ответвительных устройств, поддерживающих и опорных конструкций.
    [ ГОСТ Р 53310-2012]

    EN

    busway
    A prefabricated assembly of standard lengths of busbars rigidly supported by solid insulation and enclosed in a sheet-metal housing.
    [ http://www.answers.com/topic/busway]

    busway
    Busway is defined by the National Electrical Manufacturers Association (NEMA) as a prefabricated electrical distribution system consisting of bus bars in a protective enclosure, including straight lengths, fittings, devices, and accessories. Busway includes bus bars, an insulating and/or support material, and a housing.
    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]

    КЛАССИФИКАЦИЯ [ ГОСТ 6815-79]

    1.1. Шинопроводы по назначению подразделяются на:

    • распределительные, предназначенные для распределения электрической энергии;
    • магистральные, предназначенные для передачи электрической энергии от источника к месту распределения (распределительным пунктам, распределительным шинопроводам) или мощным приемникам электрической энергии.

    1.2. По конструктивному исполнению шинопроводы подразделяются на:

    • трехфазные;
    • трехфазные с нулевым рабочим проводником;
    • трехфазные с нулевым рабочим и нулевым защитным проводником.

    2. Основные параметры и размеры

    2.1. Основные элементы шинопроводов

    2.1.1. Основными элементами распределительных шинопроводов являются:

    а) прямые секции - для прямолинейных участков линии, имеющие места для присоединения одного или двух ответвительных устройств для секций длиной до 2 м включительно, двух, трех, четырех или более - для секций длиной 3 м;
    б) прямые прогоночные секции - для прямолинейных участков линий, где присоединение ответвительных устройств не требуется;
    в) угловые секции - для поворотов линии на 90° в горизонтальной и вертикальной плоскостях;
    г) вводные секции или вводные коробки с коммутационной, защитной и коммутационной аппаратурой или без нее - для подвода питания к шинопроводам кабелем, проводами или шинопроводом;
    д) переходные секции или устройства - для соединения двух шинопроводов на различные номинальные токи или шинопроводов разных конструкций;
    е) ответвительные устройства (коробки, штепсели) - для разъемного присоединения приемников электрической энергии. Коробки должны выпускаться с разъединителем, с разъединителем и с предохранителями или с автоматическим выключателем;
    з) присоединительные фланцы - для сочленения оболочек шинопроводов с оболочками щитов или шкафов;
    и) торцовые крышки (заглушки) - для закрытия торцов крайних секций шинопровода;
    к) устройства для крепления шинопроводов к элементам строительных конструкций зданий и сооружений;

    2.1.2. Основными элементами магистральных шинопроводов являются:

    а) прямые секции - для прямолинейных участков линий;
    б) угловые секции - для поворотов линий на 90° в горизонтальной и вертикальной плоскостях;
    в) тройниковые секции - для разветвления в трех направлениях под углом 90° в горизонтальной и вертикальной плоскостях;
    г) подгоночные секции - для подгонки линии шинопроводов до необходимой длины;
    д) разделительные секции с разъединителем - для секционирования магистральных линий шинопроводов;
    е) компенсационные секции - для компенсации температурных изменений длины линии шинопроводов;
    ж) переходные секции - для соединения шинопроводов на разные номинальные токи;
    з) ответвительные устройства (секции, коробки) - для неразборного, разборного или разъемного присоединения распределительных пунктов, распределительных шинопроводов или приемников электрической энергии. Коробки должны выпускаться с разъединителем, с разъединителем и предохранителями или с автоматическим выключателем; секции могут выпускаться без указанных аппаратов;
    и) присоединительные секции - для присоединения шинопроводов к комплектным трансформаторным подстанциям;
    к) проходные секции - для прохода через стены и перекрытия;
    л) набор деталей и материалов для изолирования мест соединения секций шинопроводов с изолированными шинами;
    м) устройства для крепления шинопроводов к элементам строительных конструкций зданий и сооружений;
    н) крышки (заглушки) торцовые и угловые для закрытия торцов концевых секций шинопровода и углов.


    2.2.3. В зависимости от вида проводников токопроводы подразделяются на гибкие (при использовании проводов) и жесткие (при использовании жестких шин).
    Жесткий токопровод до 1 кВ заводского изготовления, поставляемый комплектными секциями, называется шинопроводом.

    В зависимости от назначения шинопроводы подразделяются на:

    1. магистральные, предназначенные в основном для присоединения к ним распределительных шинопроводов и силовых распределительных пунктов, щитов и отдельных мощных электроприемников;
    2. распределительные, предназначенные в основном для присоединения к ним электроприемников;
    3. троллейные, предназначенные для питания передвижных электроприемников;
    4. осветительные, предназначенные для питания светильников и электроприемников небольшой мощности.

    [ПУЭ, часть 2]


     


    4468
    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]


    4470


    4471
    [ http://electrical-engineering-portal.com/standards-and-applications-of-medium-voltage-bus-duct]
    Конструкция шинопровода на среднее напряжение

    Параллельные тексты EN-RU

    A major advantage of busway is the ease in which busway sections are connected together.

    Electrical power can be supplied to any area of a building by connecting standard lengths of busway.

    It typically takes fewer man-hours to install or change a busway system than cable and conduit assemblies.

    Основное преимущество шинопровода заключается в легкости соединения его секций.

    Соединяя эти стандартные секции можно легко снабдить электроэнергией любую часть здания.

    Как правило, установить или изменить систему шинопроводов занимает гораздо меньше времени, чем выполнить аналогичные работы, применяя разводку кабелем в защитных трубах.

    4504

    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]

    The total distribution system frequently consists of a combination of busway and cable and conduit.

    In this example power from the utility company is metered and enters the plant through a distribution switchboard.

    The switchboard serves as the main disconnecting means.

    Как правило, распределение электроэнергии производится как через шинопроводы, так и через проложенные в защитных трубах кабели.

    В данном примере поступающая от питающей сети электроэнергия измеряется на вводе в главное распределительный щит (ГРЩ).

    ГРЩ является главным коммутационным устройством.

    The feeder on the left feeds a distribution switchboard, which in turn feeds a panelboard and a 480 volt, three-phase, three-wire (3Ø3W) motor.

    Распределительная цепь, изображенная слева, питает распределительный щит, который в свою очередь питает групповой щиток и электродвигатель.
    Электродвигатель получает питание через трехфазную трехпроводную линию напряжением 480 В.

    The middle feeder feeds another switchboard, which divides the power into three, three-phase, three-wire circuits. Each circuit feeds a busway run to 480 volt motors.

    Средняя (на чертеже) распределительная цепь питает другой распределительный щит, от которого электроэнергия распределяется через три трехфазные трехпроводные линии на шинопроводы.
    Каждый шинопровод используется для питания электродвигателей напряжением 480 В.

    The feeder on the right supplies 120/208 volt power, through a step-down transformer, to lighting and receptacle panelboards.

    Распределительная цепь, изображенная справа, питает напряжением 120/208 В через понижающий трансформатор щитки для отдельных групп светильников и штепсельных розеток.

    Branch circuits from the lighting and receptacle panelboards supply power for lighting and outlets throughout the plant.
    [ http://electrical-engineering-portal.com/siemens-busway-purpose-and-definition]

    Групповые электрические цепи, идущие от групповых щитков, предназначены для питания всех светильников и штепсельных розеток предприятия.

    [Перевод Интент]

     

    Selection of the busbar trunking system based on voltage drop.
    [Legrand]

    Выбор шинопровода по падению напряжения.
    [Перевод Интент]


     

    Недопустимые, нерекомендуемые

    Примечание(1)- Мнение автора карточки

    Тематики

    Обобщающие термины

    Близкие понятия

    • электропроводки, выполненные шинопроводами

    Действия

    Сопутствующие термины

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > busbar

  • 71 PCM-equivalent structure

    1. РСМ-эквивалентная структура

    4.32 РСМ-эквивалентная структура (PCM-equivalent structure): Волокнистая структура с характеристическим соотношением не менее 3:1, длиной 5 мкм, толщиной от 0,2 до 3,0 мкм.

    Примечание - РСМ-эквивалентная структура не обязательно включает какие-либо волокна длиной более 5 мкм и может состоять из групп параллельных волокон асбеста длиной менее 5 мкм.

    Источник: ГОСТ Р ИСО 16000-7-2011: Воздух замкнутых помещений. Часть 7. Отбор проб при определении содержания волокон асбеста оригинал документа

    Англо-русский словарь нормативно-технической терминологии > PCM-equivalent structure

  • 72 Metropolis

       1927 – Германия (4189 м)
         Произв. UFA
         Реж. ФРИЦ ЛАНГ
         Сцен. Tea фон Харбоу
         Опер. Карл Фройнд, Гюнтер Риттау
         Спецэффекты Ойген Шюффтан
         Дек. Отто Хюнте, Эрих Кеттельхут, Карл Фолбрехт (скульптуры: Вальтер Шульце-Миттендорф)
         Кост. Анна Вилькомм
         В ролях Бригитта Хельм (Мария), Густав Фрёлих (Фредер Фредерсен), Альфред Абель (Джо Фредерсен), Рудольф Кляйн-Рогге (Ротванг), Фриц Расп (худой человек), Теодор Лоос (Йозафат), Эрвин Бисвангер (№ 11 811), Гейнрих Георге (Грот), Олаф Сторм (Ян), Ганс Лео Райх (Маринус).
       Резюме копии, восстановленной «Мюнхенской синематекой».
       I) УВЕРТЮРА (или Прелюдия). 2026 г. Метрополис – это мегаполис, живущий на 2 уровнях. В подземном городе, где много тоннелей и лифтов, армия рабочих, похожих на роботов, трудится над изготовлением машин. В это время в верхнем городе, купающемся в свете, привилегированная элита занимается спортом или бродит по чудесным «вечным садам», пребывая будто в раю. Фредер, сын хозяина Метрополиса, Джо Фредерсена, однажды видит девушку Марию, одетую в лохмотья: она показывает группе детей, что такое сады. Этот мимолетный образ так поражает его, что он бросается на поиски Марии. Спустившись в подземный город, он с удивлением открывает для себя целый незнакомый мир. 1 машина взрывается. Фредеру является видение: завод кажется ему чем-то вроде Молоха, пожирающего людей. В реальности после несчастного случая погибших уносят прочь.
       Фредер отправляется на машине к отцу и спрашивает у него, почему с рабочими обращаются так плохо. Фредерсена это мало заботит. Он больше обеспокоен планами восстания, найденными в карманах погибших. Фредерсен упрекает ближайшего помощника Йозафата, не осведомленного об этих планах, и увольняет его. Фредер следит за Йозафатом и не дает ему застрелиться. Вернувшись на подземный завод, Фредер надевает одежду техника механических часов и занимает его место. Этот человек только что упал от усталости. Фредер узнает на себе, что такое всего лишь день каторжного труда.
       Отец Фредера приходит к Ротвангу, полубезумному ученому, живущему вдали от обоих уровней Метрополиса в доме старинной постройки. Когда-то давно Ротванг любил мать Фредера Хель, умершую при родах. Хель ушла от Ротванга и вышла замуж за Фредерсена. Ротванг создал робота с внешностью Хель. По замыслу Фредерсена, если изготовить тысячи подобных роботов, они заменят собою рабочих. Ротванг в ответ на его расспросы говорит, что в карманах погибших найдены планы катакомб. Ротванг отводит туда хозяина Метрополиса. Там они незаметно присутствуют на тайном собрании рабочих. Мария обращается с речью к собравшимся и рассказывает им легенду о Вавилонской башне: тысячи рабочих строили эту башню, ничего не зная о замыслах тех, кто ее придумал. Мария говорит: «Сердце должно быть посредником между мозгом и руками».
       Среди рабочих стоит и Фредер. Мария видит в нем посредника, которого призывала всем сердцем. Она целует его, и они назначают друг другу свидание в церкви. Фредерсен просит Ротванга сделать робот похожим на Марию. Мария не сможет прийти на свидание, потому что Ротванг хватает и гипнотизирует ее.
       II) ИНТЕРМЕДИЯ. Фредер видит в церкви, как оживают статуи Семи Грехов и Смерти. Он говорит Смерти, чтобы та отошла от него подальше. Ротванг запер Марию у себя. Фредер отправляется искать ее. Услышав крики Марии, он проникает в дом Ротванга и вскоре сам оказывается под замком. Ротванг приступает к трансформации робота в существо, внешне точь-в-точь похожее на Марию. Освобожденный Ротвангом Фредер видит, как его отец обнимает робота (которого Фредер принимает за Марию). Это зрелище потрясает Фредера, вызывает головокружение и галлюцинации. Лихорадка приковывает его к кровати. В бреду он видит Смерть с косой в руках. В это время в кабаре «Ёсивара» Ротванг представляет гостям своего робота – фальшивую Марию.
       III) ФУРИОЗО. Она танцует для них соблазнительный танец. Все принимают ее за настоящую женщину. Мужчины дерутся за нее. Позднее в катакомбах она призывает рабочих к бунту и разрушению: «Смерть машинам!» Фредерсен хочет, чтобы рабочие восстали: тогда он сможет применить против них силу и окончательно их приструнить. На самом же деле робот подчиняется воле не Фредерсена, а Ротванга, который обманул хозяина Метрополиса, желая ему отомстить. Вскоре робот начинает подчиняться только собственной воле. Рабочие отказываются верить Фредеру, когда он говорит им, что перед ними не настоящая Мария. Между тем Йозафат раскрыл ему правду. Рабочие даже хотят линчевать Фредера. Человека, пытавшегося защитить его, убивают ножом.
       Старший мастер Грот предупреждает рабочих, что разрушение центральной машины приведет к затоплению подземного города. Это их не останавливает. Настоящая Мария, которой удалось вырваться из дома Ротванга, спасает детей. Фредер наконец-то находит ее. Вместе с ней и Гротом он спасает множество человеческих жизней. Фредерсен с горечью узнает, что его сын был в подземном городе. Грот настраивает толпу против фальшивой Марии. Люди приходят за ней в кабаре «Ёсивара» и сжигают ее на костре. Когда пламя охватывает «Марию», она приобретает черты металлического робота.
       Ротванг, совершенно обезумев, теперь путает в своем сознании Хель и Марию. Он гонится за Марией в церкви и после драки с Фредером уносит ее на крышу. В новой стычке с Фредером Ротванг падает и разбивается насмерть. Подавленный Фредерсен опускается на колени. Мария, живая и здоровая, обнимает Фредера. На улице рабочие встречаются лицом к лицу с Фредерсеном. Мария предлагает Фредеру встать между Гротом и своим отцом: «Будь между ними посредником», – говорит она ему. Грот и Фредерсен пожимают друг другу руки. Рождается новый общественный договор.
         Метрополис – не только один из самых удивительных образцов немецкого экспрессионизма в кино (его бюджет был самым крупным за всю историю студии «СТА» – 5 млн марок), но и один из редчайших немых фильмов и по сей день представляющих некий интерес для людей, не интересующихся кинематографом пристально, и для широкой публики. Этот интерес связан с пессимистическим взглядом Ланга на архитектурное и социальное будущее человека. Этот взгляд выражается, прежде всего, пластическими средствами, и, к слову, именно пластическая, изобразительная сторона фильма производит незабываемое впечатление. Метрополис – редкий случай несовершенного фильма Ланга именно из-за того, что пластическая сторона преобладает в нем над драматургической. Драматургия фильма, за которую в большей степени следует винить сценаристку Tea фон Харбоу, с самого начала не выглядела убедительной, особенно в развязке. Посыл сюжета (рождение нового общественного договора между Капиталом и Трудом после драматических эпизодов, богатых событиями и конфликтами) и посыл изображения никогда не достигают совершенного симбиоза. И именно изображение несет в себе подлинную мысль Ланга. Эти образы, чаще всего порожденные каким-либо архитектурным концептом (Ланг говорил, что идея фильма пришла к нему при созерцании небоскребов Манхэттена), всегда сводятся к хореографии масс – при этом понятие «массы» в данном случае применимо не только к толпам и группам людей, но и к объемам и объектам.
       На уровне формы главный вывод, к которому приводит Метрополис, таков: в кинематографе каждый пластический элемент, достойный этого звания, неминуемо преображается в динамику. Поскольку в данном случае эта динамика по природе своей музыкальна, Метрополис – один из очень редких немых фильмов, которые теряют что-то жизненно важное, если показывать их без аккомпанемента. 1984 г. был отмечен своеобразным апофеозом Метрополиса: в этот год вышла новая версия фильма, после долгих поисков собранная композитором Джорджо Мородером, написавшим для фильма рок-саундтрек. Этому апофеозу поспособствовала и полемика, возникшая между защитниками этой версии и сторонниками другого варианта, восстановленного приблизительно в то же время «Мюнхенской синематекой» и ее хранителем Энно Паталасом. Это немного длинная и запутанная история, которую придется пересказать лишь в общих чертах.
       В январе 1927 г. в Берлине вышла на экраны оригинальная – и недолговечная – версия Метрополиса (4189 м). Американцы, сопродюсеры фильма по договору между немецкой фирмой «UFA» и американскими «Paramount» и «Metro-Goldwyn», строго раскритиковали фильм сразу с 3 точек зрения: драматургической, психологической и политической (в частности, в титрах они разглядели коммунистическую крамолу). Еще до январской премьеры они принялись за перемонтаж фильма. В августе того же 1927 года фильм вновь вышел на экраны в Германии, на этот раз – в версии длиной 3241 м. Американцы выпустили в свой прокат еще более короткую версию – приблизительно в 2800 м. Как это часто случалось в эпоху немого кино, копии, предназначенные для проката в разных странах, различались между собой. В результате до самого недавнего времени никто (кроме посетителей берлинских кинотеатров в первые месяцы 1927 г.) не мог быть уверен в том, что видел оригинальную версию Метрополиса. Поклонники Ланга долгие годы видели копии, в большей или меньшей степени изуродованные и, как правило, содержащие довольно заметные пробелы.
       Более полувека спустя композитор Джорджо Мородер, подыскивая какой-нибудь известный немой фильм для музыкальных экспериментов, остановил выбор на Метрополисе. Он погрузился в настоящую архивную работу, которой воздает должное сам Энно Паталас (в котором многие хотят видеть противника Мородера): «Операция „Мородер“, – говорит он, – принесла большую пользу архивной работе. Пользу прямую, поскольку без его денег Музей современного искусства в Нью-Йорке не смог бы перенести старый целлулоидный негатив – вполне вероятно, лучший из сохранившихся материалов по качеству изображения – на безопасную (= невоспламеняемую) пленку. Пользу косвенную, поскольку его затея привлекла всеобщее внимание к реконструкциям кинофильмов» (интервью, опубликованное в журнале «Positif», (см. БИБЛИОГРАФИЮ). Обе версии – и Мородера, и Паталаса – полезны каждая по-своему. Мородер открыл для широкой публики доступ к облегченной версии, укороченной на несколько планов или фрагментов планов, которая благодаря продолжительности (80 мин), ритму и музыке смотрится так же актуально и вызывает такое же восхищение, какое могли испытывать 1-е зрители фильма. (Упрекнуть Мородера можно в том, что некоторые сцены в его версии тонированы – лишнее нововведение, которое к тому же кажется по-детски наивным.) Версия Паталаса – попытка восстановления оригинального монтажа Метрополиса в том виде, в каком он предстает в 4 важнейших документальных свидетельствах о фильме (титры, найденные в органах цензуры; оригинальная партитура Готтфрида Хупперца, содержащая точные указания касательно титров и всего, что происходит на экране; режиссерский сценарий Ланга; фотоальбомы, подаренные Лангом «Французской синематеке»). Мородер пытается воссоздать эффект, произведенный фильмом на 1-х зрителей; Паталас – сам кинематографический материал, который произвел этот эффект. Обе версии пользуются материалом сохранившихся копий, добытых из самых разнообразных источников – не только из Германии и США, но и из России, Англии, Австралии и т. д. Более длинный хронометраж версии Паталаса (147 мин) достигается не столько за счет добавлений (число которых относительно мало), сколько за счет скорости движения пленки и наличия настоящих титров, преобразованных Мородером в субтитры (начинание, которое нельзя назвать необоснованным).
       Использование Мородером современной музыки подчеркивает в высшей степени динамичную и хореографическую природу фильма и притягивает к нему неожиданно широкую аудиторию. Приведем лишь один пример: сцены в кабаре «Ёсивара» кажутся испорченными (и даже, по мнению некоторых, превращаются в посмешище), если показывать их без музыкального сопровождения. Мородер частично возвращает им первоначальную силу воздействия и позволяет заново прочувствовать их гениальность. Несомненно, пройдет несколько десятилетий, и его музыка обветшает, и кому-то придется повторить его начинание в новом контексте. Именно музыка быстрее всего стареет в звуковой картине; именно она сильнее всего старит фильм. В немом фильме первоначальный музыкальный ряд является внешним элементом, чаще всего необязательным (что, впрочем, не относится к данному случаю). Музыка не требует к себе беспрекословного уважения, поскольку не является неотъемлемой частью фильма. Вследствие этого довольно смешно выглядят попытки поднять скандал вокруг ее переложения на современный лад.
       Главный вклад обеих версий в наше знакомство с фильмом связан с линией отношений между Фредерсеном и Ротвангом, полностью смазанной во всех версиях, сменивших оригинальную. Ученый любил когда-то женщину, ставшую женой Фредерсена и матерью Фредера. Эта женщина носит имя Хель. Новые титры, кадры из утраченной сцены (где двое мужчин обращены лицом к мавзолею Хель) открывают нам, что Ротванг создал женщину-робота, руководствуясь не только научными интересами, но и более неприкрытыми, чувственными и даже фанатичными. Теперь сюжет становится не таким механическим и банальным, как можно было подумать сначала; прежде всего, он гораздо более характерен для Ланга. Ротванг становится похож на индусского принца из Эшнапурского тигра, Der Tiger von Eschnapur, который хочет увековечить свою утраченную любовь в гробнице. В отношениях Ротванга с Фредерсеном содержится немалая доза агрессивности, коварства и отчаяния, желания расквитаться; драматургически это роднит его персонаж со всем творчеством Ланга. Благодаря этой связи Ланг, как и в других своих фильмах (напр., Ярость, Fury; Живёшь только раз, You Only Live Once), затрагивает социальную тематику через индивидуальную, частную трагедию. Единственными искусственными элементами интриги остаются покаяние Фредерсена, социально утопичная развязка и тот факт, что конфликт между Фредерсеном и Ротвангом, хоть и вновь обретает чувственный характер, остается слишком далеко в стороне от социального посыла.
       В довольно обстоятельном исследовании, посвященном Хель (персонажу, довлеющему над фильмом, ни разу в нем не появляясь), Георг Штурм (см. БИБЛИОГРАФИЮ) называет одно из возможных толкований этого имени, найденное в мифологии северных народов: Хель – богиня Смерти и подземного мира. Выходит, сам факт существования Хель располагает Метрополис под знаком Смерти – не Усталой Смерти, Der Müde Tod, а Смерти отсутствующей, хоть и неотвязной настолько, что ее отсутствие не мешает ей давить всей своей массой на живых. Таков один из аспектов, связывающих фильм с самыми чистыми источниками экспрессионизма (даже при том, что Ланг всегда отказывался причислять себя к этому направлению). Но если есть в его творчестве фильм, помимо Усталой Смерти, достойный зваться экспрессионистской картиной, то это именно Метрополис. Есть еще 4 аспекта, которые связывают фильм с этим направлением:
       1) отсутствие Природы. Если роботизированный подземный мир по определению лишен всяких элементов природы, то мир наземный представляет собою дорогостоящее подражание Природе, что ничуть не лучше. Отметим, не углубляясь в комментарии, что наземный мир в Метрополисе служит карикатурой на рай, своим элитизмом и искусственностью почти так же давящей на психику, как и подземный мир;
       2) тема двойника, невероятно зрелищно и многозначно выраженная в образе двух Марий. Эта тема связывает фильм с самыми характерными опосредованиями экспрессионизма;
       3) безумие, в тот или иной момент охватывающее почти всех персонажей. Являясь крайним (но распространенным повсеместно) выражением их чувственности и субъективности, оно убивает в зародыше возможность, что когда-нибудь все-таки сформируется разумный взгляд на окружающий мир;
       4) наконец, во всем фильме действует очевидный закон, согласно которому на отношения между большинством персонажей сильно влияют гипнотическое воздействие и колдовские чары: Ротванг околдован Хель, Мария околдована Ротвангом (см. гениальную сцену, где ученый преследует Марию в катакомбах), Фредер околдован Марией, толпа рабочих и гуляк из «Ёсивары» околдована фальшивой Марией и т. д. Этот аспект экспрессионизма (самый модернистский, поскольку он был сохранен и обновлен в лучших образцах голливудского кинематографа 40-х и 50-х гг.) предстает здесь перед нами с такой блистательной силой и в таком живом стиле, что они легко выметают прочь мусор, оставшийся в фильме от спорного сценария.
       БИБЛИОГРАФИЯ: роман Tea фон Харбоу «Метрополис» (писавшийся, как и в случае со Шпионами, Spione, и Женщиной на Луне, Die Frau im Mond, параллельно работе над сценарием) выпущен издательством «Auguste Sherl», Берлин, 1926. Он постоянно переиздавался и переводился на разные языки. Упомянем американское карманное издание: Асе Books, New York, 1963. Сценарий опубликован в серии «Классические киносценарии» (Classic Film Scripts, Lorrimer, London, 1973 и 1981) с предисловием (Paul M.Jensen, Metropolis: the Film and the Book) – это издание, естественно, не включает добавления, появившиеся в копиях Мородера и Паталаса. Роскошный альбом кадров из фильма и фотографий со съемочной площадки (отобранных из альбомов, предоставленных Лангом «Французской синематеке») издан в 1984 г. (Metropolis, images d'un tournage, Centre National de la Photographie La Cinémathèque Française). Эти фотографии сделаны Хорстом фон Харбоу, братом сценаристки. В издание также включены статьи Энно Паталаса и Бернарда Айзеншитца. Интервью, данное Энно Паталасом Лоренцо Коделли, включено в № 285 (1984) журнала «Positif». Рекомендуем также работу Георга Штурма «Для памятника Хель нет места. Мечта из камня» (Bulletin CICIM, München, октябрь 1984 г.). Наконец, в беседе, записанной Германом и Гретхен Вайнбергами и опубликованной в журнале «Cahiers du cinéma», № 169 (1965) и № 176 (1966), под названием «Венская ночь» (Herman Weinberg, Gretchen Weinberg, La nuit viennoise), Ланг говорит о Метрополисе и, в частности, о некоторых оптических эффектах, разработанных Шюффтаном.

    Авторская энциклопедия фильмов Жака Лурселля > Metropolis

  • 73 Balken

    1. брус
    2. бревно
    3. балка

     

    балка
    Стержень, работающий главным образом на изгиб.
    [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    балка

    1. в сопротивлении материалов - горизонтальный или слегка наклонный прямолинейный брус, работающий, в основном, на изгиб
    2. элемент конструкции в форме бруса
    3. вид проката, как правило двутаврового профиля
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    EN

    DE

    FR

     

    бревно
    Круглый лесоматериал диаметром в верхнем отрубе более 14 см и длиной не менее 3 м
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    бревно
    Круглый сортимент для использования в круглом виде, за исключением тонкомерной рудничной стойки, жердей и кольев, или в качестве сырья для выработки пиломатериалов общего назначения и специальных видов лесопродукции
    [ ГОСТ 17462-84]

    бревно

    Часть круглого лесоматериала, полученная поперечным делением.
    http://www.wood.ru/ru/slterm.html

    Тематики

    EN

    DE

    FR

     

    брус
    Пиломатериал толщиной и шириной 100 мм и более.
    [ ГОСТ 18288-87]

    брус

    1. Конструкционное тело, один из размеров которого более двух других на один или несколько порядков измерения
    2. Пиломатериал шириной и толщиной более 100 мм
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    брус
    Определение 1.
    Бревно, пропиленное с двух или четырех сторон для последующей распиловки на обрезные пиломатериалы.
    Определение 2. Пиломатериал толщиной 100 мм и более.
    http://www.wood.ru/ru/slterm.html

    Тематики

    Синонимы

    • 1. стержень

    EN

    • 1. squaresawn timber
    • 1. squared timber
    • 2. bar
    • cant

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Balken

  • 74 инфракрасное излучение

    1. ultrarote Strahlung
    2. infrarote Strahlung

     

    инфракрасное излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне 7,6•10-7-10-3 м
    [ ГОСТ 21934-83

    инфракрасное излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне от 0,76 мкм до 1 см.
    Примечания.
    Указанные границы диапазонов длин волн условны, а сами длины волн даны для вакуума.
    Наряду с термином «излучение» пользуются также термином «радиация».
    Под термином «излучение» понимается также процесс его возникновения.
    [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    инфракрасное излучение
    Оптическое излучение, длины волн монохроматических составляющих которого больше длин волн видимого излучения, но не более 1 мм.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    инфракрасное излучение

    Инфракрасное излучение — это излучение с длиной волны большей, чем у видимого излучения, поэтому его нельзя увидеть невооруженным глазом. Поскольку инфракрасное излучение можно зафиксировать как тепловое излучение, его можно отобразить на экране или заснять с помощью цифровой видеокамеры, при этом более теплые объекты будут отличаться своей яркостью от более темного холодного окружения (например, человеческое тело на фоне более холодных объектов).
    Поскольку цветные камеры способны фиксировать инфракрасное излучение, они оснащены специальным фильтром, ограничивающим пропускание инфракрасных лучей, чтобы избежать заметного глазу нарушения цветовой гаммы. При использовании камеры в очень темных местах или ночью этот фильтр можно снять. Это обеспечит попадание инфракрасных лучей на датчик с последующим преобразованием в видимое изображение.
    Инфракрасная лампа может служить источником дополнительного освещения во время ночной съемки, не излучая при этом видимого света.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    Тематики

    Обобщающие термины

    EN

    DE

    Русско-немецкий словарь нормативно-технической терминологии > инфракрасное излучение

  • 75 расходомер жидкости (газа)

    1. Durchflußmeßgerät

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-немецкий словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 76 Определение размеров воздушных зазоров и путей утечки токов

    1. 4.4. Методы измерения путей утечки и воздушных зазоров приведены по
    2. 4.3. Пути утечки ребра высотой менее 2 мм не учитывают. Ребра высотой 2 мм и более измеряют:
    3. 4.2. Пути утечки тока ребра глубиной и шириной более 2 мм следует измерять вдоль их контуров. Ребра, один из размеров которых меньше указанного значен
    4. 4.1. Если на воздушный зазор или пути утечки влияют одна или несколько металлических деталей, необходимо, чтобы либо длина одного из сегментов, заключ

    D.4. Определение размеров воздушных зазоров и путей утечки

    Для определения размеров воздушных зазоров и путей утечки токов должно учитываться следующее.

    D.4.1. Если на воздушный зазор или пути утечки влияют одна или несколько металлических деталей, необходимо, чтобы либо длина одного из сегментов, заключенных между этими деталями, была, по крайней мере, равна минимальному требуемому значению, либо чтобы сумма длин наиболее длинных сегментов была, по крайней мере, в 1,25 раза больше минимального требуемого значения. Сегменты длиной менее 2 мм не должны учитываться при определении полной длины воздушных зазоров и путей утечки.

    D.4.2. Пути утечки тока ребра глубиной и шириной более 2 мм следует измерять вдоль их контуров. Ребра, один из размеров которых меньше указанного значения, а также те, которые могут быть покрыты пылью при работе, не учитывают при измерениях.

    D.4.3. Пути утечки ребра высотой менее 2 мм не учитывают. Ребра высотой 2 мм и более измеряют:

    - вдоль контура, если они составляют единое целое с деталью из изолирующего материала (например литые или сварные);

    - по наиболее короткой из двух траекторий - длине шва или профилю ребра, если они не являются продолжением изолирующей детали.

    D.4.4. Методы измерения путей утечки и воздушных зазоров приведены по ГОСТ Р 50030.1( примеры 1 - 11 приложения G).

    Источник: ГОСТ Р 50030.5.1-2005: Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления оригинал документа

    Русско-немецкий словарь нормативно-технической терминологии > Определение размеров воздушных зазоров и путей утечки токов

  • 77 débitmètre

    1. расходомер жидкости (газа)
    2. расходомер (в медицине)
    3. дозиметр мощности поглощенной (эквивалентной) дозы излучения

     

    дозиметр мощности поглощенной (эквивалентной) дозы излучения
    -
    [ ГОСТ 14337-78]

    Тематики

    • средства измерений ионизир. излучений

    EN

    FR

     

    расходомер
    Устройство, которое показывает объемный расход определенного газа или газовой смеси
    [ ГОСТ Р 52423-2005]

    Тематики

    • ингаляц. анестезия, искусств. вентиляц. легких

    EN

    DE

    FR

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Франко-русский словарь нормативно-технической терминологии > débitmètre

  • 78 infrarote Strahlung

    1. инфракрасное излучение

     

    инфракрасное излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне 7,6•10-7-10-3 м
    [ ГОСТ 21934-83

    инфракрасное излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне от 0,76 мкм до 1 см.
    Примечания.
    Указанные границы диапазонов длин волн условны, а сами длины волн даны для вакуума.
    Наряду с термином «излучение» пользуются также термином «радиация».
    Под термином «излучение» понимается также процесс его возникновения.
    [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    инфракрасное излучение
    Оптическое излучение, длины волн монохроматических составляющих которого больше длин волн видимого излучения, но не более 1 мм.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    инфракрасное излучение

    Инфракрасное излучение — это излучение с длиной волны большей, чем у видимого излучения, поэтому его нельзя увидеть невооруженным глазом. Поскольку инфракрасное излучение можно зафиксировать как тепловое излучение, его можно отобразить на экране или заснять с помощью цифровой видеокамеры, при этом более теплые объекты будут отличаться своей яркостью от более темного холодного окружения (например, человеческое тело на фоне более холодных объектов).
    Поскольку цветные камеры способны фиксировать инфракрасное излучение, они оснащены специальным фильтром, ограничивающим пропускание инфракрасных лучей, чтобы избежать заметного глазу нарушения цветовой гаммы. При использовании камеры в очень темных местах или ночью этот фильтр можно снять. Это обеспечит попадание инфракрасных лучей на датчик с последующим преобразованием в видимое изображение.
    Инфракрасная лампа может служить источником дополнительного освещения во время ночной съемки, не излучая при этом видимого света.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    Тематики

    Обобщающие термины

    EN

    DE

    Немецко-русский словарь нормативно-технической терминологии > infrarote Strahlung

  • 79 ultrarote Strahlung

    1. инфракрасное излучение

     

    инфракрасное излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне 7,6•10-7-10-3 м
    [ ГОСТ 21934-83

    инфракрасное излучение
    Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне от 0,76 мкм до 1 см.
    Примечания.
    Указанные границы диапазонов длин волн условны, а сами длины волн даны для вакуума.
    Наряду с термином «излучение» пользуются также термином «радиация».
    Под термином «излучение» понимается также процесс его возникновения.
    [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    инфракрасное излучение
    Оптическое излучение, длины волн монохроматических составляющих которого больше длин волн видимого излучения, но не более 1 мм.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    инфракрасное излучение

    Инфракрасное излучение — это излучение с длиной волны большей, чем у видимого излучения, поэтому его нельзя увидеть невооруженным глазом. Поскольку инфракрасное излучение можно зафиксировать как тепловое излучение, его можно отобразить на экране или заснять с помощью цифровой видеокамеры, при этом более теплые объекты будут отличаться своей яркостью от более темного холодного окружения (например, человеческое тело на фоне более холодных объектов).
    Поскольку цветные камеры способны фиксировать инфракрасное излучение, они оснащены специальным фильтром, ограничивающим пропускание инфракрасных лучей, чтобы избежать заметного глазу нарушения цветовой гаммы. При использовании камеры в очень темных местах или ночью этот фильтр можно снять. Это обеспечит попадание инфракрасных лучей на датчик с последующим преобразованием в видимое изображение.
    Инфракрасная лампа может служить источником дополнительного освещения во время ночной съемки, не излучая при этом видимого света.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    Тематики

    Обобщающие термины

    EN

    DE

    Немецко-русский словарь нормативно-технической терминологии > ultrarote Strahlung

  • 80 Durchflußmeßgerät

    1. расходомер жидкости (газа)
    2. расходомер (в медицине)

     

    расходомер
    Устройство, которое показывает объемный расход определенного газа или газовой смеси
    [ ГОСТ Р 52423-2005]

    Тематики

    • ингаляц. анестезия, искусств. вентиляц. легких

    EN

    DE

    FR

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Немецко-русский словарь нормативно-технической терминологии > Durchflußmeßgerät

См. также в других словарях:

  • 343-мм береговая пушка

    — 343 мм береговая пушка 13,5 дм береговая пушка длиной 35 клб 1889 В 1886 г. ГАУ заказало заводу Круппа одно 13,5/35 дм береговое орудие с лафетом. Орудие было изготовлено, испытано у Круппа и в 1889 г. доставлено в Россию. Конструкция ствола… …   Военная энциклопедия

  • герметичная смонтированная кабельная линия местной телефонной сети длиной свыше 2 км — Сдаваемая в эксплуатацию смонтированная кабельная линия местной телефонной сети длиной свыше 2 км, наполненная сжатым воздухом до давления 50 кПа, снижение избыточного давления в которой через 240 ч после наполнения составляет не более 5 кПа.… …   Справочник технического переводчика

  • герметичная смонтированная кабельная линия местной телефонной сети длиной свыше 2 км — 147 герметичная смонтированная кабельная линия местной телефонной сети длиной свыше 2 км: Сдаваемая в эксплуатацию смонтированная кабельная линия местной телефонной сети длиной свыше 2 км, наполненная сжатым воздухом до давления 50 кПа, снижение… …   Словарь-справочник терминов нормативно-технической документации

  • Герметичная смонтированная кабельная линия местной телефонной сети длиной свыше 2 км — 1. Сдаваемая в эксплуатацию смонтированная кабельная линия местной телефонной сети длиной свыше 2 км, наполненная сжатым воздухом до давления 50 кПа, снижение избыточного давления в которой через 240 ч после наполнения составляет не более 5 кПа… …   Телекоммуникационный словарь

  • Земляника хранится в холодильнике не более пяти суток при — Тип блюда: Категория: Рецепт приготовления: В текущей ка …   Энциклопедия кулинарных рецептов

  • Отряд Настоящие пластинчатожаберные (Eulamellibranchia) —          К отряду настоящих пластинчатожаберных моллюсков относится наибольшее число видов, которые обитают как в морских, так и в пресных и солоноватых водах. Встречаются во всех морях и в океанах на самых различных глубинах от приливо отливной… …   Биологическая энциклопедия

  • Бесстыковой путь — (или Бархатный)  условное наименование железнодорожного пути, расстояние между рельсовыми стыками которого знач …   Википедия

  • Глисты — (Entozoa s. Helminthes) животные, составлявшие в прежнее время особый класс (Кювье, фон Зибольд и др.). ГЛИСТЫ I. ГЛИСТЫ II. В настоящее время термин Г. имеет исключительно биологическое, а не систематическое значение. Под названием Г.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Arisaema schimperianum — Научная классификация промежуточные ранги Домен:  …   Википедия

  • Семейство Тушканчиковые (Dipodidae) —          Семейство тушканчиковых объединяет небольшую группу грызунов, населяющих степи, полупустыни и пустыни юга Палеарктики и приспособившихся к специфическим и суровым условиям обитания в этих ландшафтах. Тушканчики грызуны от средних до… …   Биологическая энциклопедия

  • Род агатис (Agathis) —         Этому роду араукариевых долгое время уделяли значительно меньше места и внимания в ботанической и популярной литературе, чем араукарии. Однако постепенно накапливался материал, и оказалось, что число реально существующих видов агатиса по… …   Биологическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»