Перевод: с английского на все языки

со всех языков на английский

w+for+william

  • 1 (William) Wordsworth

    имя собст. Robert Frost — Роберт Фрост (1875 — 1963), крупнейший из современных американских поэтов, продолжатель традиций английского поэта «озерной школы» Вордсворта (William Wordsworth, 1770 — 1850), американского философа и поэта Эмерсона (Ralph Waldo Emerson, 1803 — 1882), американской поэтессы Эмили Дикинсон (Emily Dickinson, 1830 — 1886). Широко известно стихотворение Роберта Фроста «Пламя и Лед».
    Some say the world will end in fire,
    Some say in ice. From what I've tasted of desire
    I hold with those who favor fire.
    But if it had to perish twice,
    I think I know enough of hate
    To say that for destruction ice
    Is also great
    And would suffice.

    Англо-русский универсальный дополнительный практический переводческий словарь И. Мостицкого > (William) Wordsworth

  • 2 (William) Wordsworth

    имя собст. Robert Frost — Роберт Фрост (1875 — 1963), крупнейший из современных американских поэтов, продолжатель традиций английского поэта «озерной школы» Вордсворта (William Wordsworth, 1770 — 1850), американского философа и поэта Эмерсона (Ralph Waldo Emerson, 1803 — 1882), американской поэтессы Эмили Дикинсон (Emily Dickinson, 1830 — 1886). Широко известно стихотворение Роберта Фроста «Пламя и Лед».
    Some say the world will end in fire,
    Some say in ice. From what I've tasted of desire
    I hold with those who favor fire.
    But if it had to perish twice,
    I think I know enough of hate
    To say that for destruction ice
    Is also great
    And would suffice.

    Англо-русский универсальный дополнительный практический переводческий словарь И. Мостицкого > (William) Wordsworth

  • 3 Denny, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 25 May 1847 Dumbarton, Scotland
    d. 17 March 1887 Buenos Aires, Argentina
    [br]
    Scottish naval architect and partner in the leading British scientific shipbuilding company.
    [br]
    From 1844 until 1962, the Clyde shipyard of William Denny and Brothers, Dumbarton, produced over 1,500 ships, trained innumerable students of all nationalities in shipbuilding and marine engineering, and for the seventy-plus years of their existence were accepted worldwide as the leaders in the application of science to ship design and construction. Until the closure of the yard members of the Denny family were among the partners and later directors of the firm: they included men as distinguished as Dr Peter Denny (1821(?)–95), Sir Archibald Denny (1860–1936) and Sir Maurice Denny (1886– 1955), the main collaborator in the design of the Denny-Brown ship stabilizer.
    One of the most influential of this shipbuilding family was William Denny, now referred to as William 3! His early education was at Dumbarton, then on Jersey and finally at the Royal High School, Edinburgh, before he commenced an apprenticeship at his father's shipyard. From the outset he not only showed great aptitude for learning and hard work but also displayed an ability to create good relationships with all he came into contact with. At the early age of 21 he was admitted a partner of the shipbuilding business of William Denny and Brothers, and some years later also of the associated engineering firm of Denny \& Co. His deep-felt interest in what is now known as industrial relations led him in 1871 to set up a piecework system of payment in the shipyard. In this he was helped by the Yard Manager, Richard Ramage, who later was to found the Leith shipyard, which produced the world's most elegant steam yachts. This research was published later as a pamphlet called The Worth of Wages, an unusual and forward-looking action for the 1860s, when Denny maintained that an absentee employer should earn as much contempt and disapproval as an absentee landlord! In 1880 he initiated an awards scheme for all company employees, with grants and awards for inventions and production improvements. William Denny was not slow to impose new methods and to research naval architecture, a special interest being progressive ship trials with a view to predicting effective horsepower. In time this led to his proposal to the partners to build a ship model testing tank beside the Dumbarton shipyard; this scheme was completed in 1883 and was to the third in the world (after the Admiralty tank at Torquay, managed by William Froude and the Royal Netherlands Navy facility at Amsterdam, under B.J. Tideman. In 1876 the Denny Shipyard started work with mild-quality shipbuilding steel on hulls for the Irrawaddy Flotilla Company, and in 1879 the world's first two ships of any size using this weight-saving material were produced: they were the Rotomahana for the Union Steamship Company of New Zealand and the Buenos Ayrean for the Allan Line of Glasgow. On the naval-architecture side he was involved in Denny's proposals for standard cross curves of stability for all ships, which had far-reaching effects and are now accepted worldwide. He served on the committee working on improvements to the Load Line regulations and many other similar public bodies. After a severe bout of typhoid and an almost unacceptable burden of work, he left the United Kingdom for South America in June 1886 to attend to business with La Platense Flotilla Company, an associate company of William Denny and Brothers. In March the following year, while in Buenos Aires, he died by his own hand, a death that caused great and genuine sadness in the West of Scotland and elsewhere.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1886. FRS Edinburgh 1879.
    Bibliography
    William Denny presented many papers to various bodies, the most important being to the Institution of Naval Architects and to the Institution of Engineers and Shipbuilders in Scotland. The subjects include: trials results, the relation of ship speed to power, Lloyd's Numerals, tonnage measurement, layout of shipyards, steel in shipbuilding, cross curves of stability, etc.
    Further Reading
    A.B.Bruce, 1889, The Life of William Denny, Shipbuilder, London: Hodder \& Stoughton.
    Denny Dumbarton 1844–1932 (a souvenir hard-back produced for private circulation by the shipyard).
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Denny, William

  • 4 Lee, Revd William

    SUBJECT AREA: Textiles
    [br]
    d. c. 1615
    [br]
    English inventor of the first knitting machine, called the stocking frame.
    [br]
    It would seem that most of the stories about Lee's invention of the stocking frame cannot be verified by any contemporary evidence, and the first written accounts do not appear until the second half of the seventeenth century. The claim that he was Master of Arts from St John's College, Cambridge, was first made in 1607 but cannot be checked because the records have not survived. The date for the invention of the knitting machine as being 1589 was made at the same time, but again there is no supporting evidence. There is no evidence that Lee was Vicar of Calverton, nor that he was in Holy Orders at all. Likewise there is no evidence for the existence of the woman, whether she was girlfriend, fiancée or wife, who is said to have inspired the invention, and claims regarding the involvement of Queen Elizabeth I and her refusal to grant a patent because the stockings were wool and not silk are also without contemporary foundation. Yet the first known reference shows that Lee was the inventor of the knitting machine, for the partnership agreement between him and George Brooke dated 6 June 1600 states that "William Lee hath invented a very speedy manner of making works usually wrought by knitting needles as stockings, waistcoats and such like". This agreement was to last for twenty-two years, but terminated prematurely when Brooke was executed for high treason in 1603. Lee continued to try and exploit his invention, for in 1605 he described himself as "Master of Arts" when he petitioned the Court of Aldermen of the City of London as the first inventor of an engine to make silk stockings. In 1609 the Weavers' Company of London recorded Lee as "a weaver of silk stockings by engine". These petitions suggest that he was having difficulty in establishing his invention, which may be why in 1612 there is a record of him in Rouen, France, where he hoped to have better fortune. If he had been invited there by Henry IV, his hopes were dashed by the assassination of the king soon afterwards. He was to supply four knitting machines, and there is further evidence that he was in France in 1615, but it is thought that he died in that country soon afterwards.
    The machine Lee invented was probably the most complex of its day, partly because the need to use silk meant that the needles were very fine. Henson (1970) in 1831 took five pages in his book to describe knitting on a stocking frame which had over 2,066 pieces. To knit a row of stitches took eleven separate stages, and great care and watchfulness were required to ensure that all the loops were equal and regular. This shows how complex the machines were and points to Lee's great achievement in actually making one. The basic principles of its operation remained unaltered throughout its extraordinarily long life, and a few still remained in use commercially in the early 1990s.
    [br]
    Further Reading
    J.T.Millington and S.D.Chapman (eds), 1989, Four Centuries of Machine Knitting, Commemorating William Lee's Invention of the Stocking Frame in 1589, Leicester (N.Harte examines the surviving evidence for the life of William Lee and this must be considered as the most up-to-date biographical information).
    Dictionary of National Biography (this contains only the old stories).
    Earlier important books covering Lee's life and invention are G.Henson, 1970, History of the Framework Knitters, reprint, Newton Abbot (orig. pub. 1831); and W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867).
    M.Palmer, 1984, Framework Knitting, Aylesbury (a simple account of the mechanism of the stocking frame).
    R.L.Hills, "William Lee and his knitting machine", Journal of the Textile Institute 80(2) (a more detailed account).
    M.Grass and A.Grass, 1967, Stockings for a Queen. The Life of William Lee, the Elizabethan Inventor, London.
    RLH

    Biographical history of technology > Lee, Revd William

  • 5 Buckle, William

    [br]
    b. 29 July 1794 Alnwick, Northumberland, England
    d. 30 September 1863 London, England
    [br]
    English mechanical engineer who introduced the first large screw-cutting lathe to Boulton, Watt \& Co.
    [br]
    William Buckle was the son of Thomas Buckle (1759–1849), a millwright who later assisted the 9th Earl of Dundonald (1749–1831) in his various inventions, principally machines for the manufacture of rope. Soon after the birth of William, the family moved from Alnwick to Hull, Yorkshire, where he received his education. The family again moved c.1808 to London, and William was apprenticed to Messrs Woolf \& Edwards, millwrights and engineers of Lambeth. During his apprenticeship he attended evening classes at a mechanical drawing school in Finsbury, which was then the only place of its kind in London.
    After completing his apprenticeship, he was sent by Messrs Humphrys to Memel in Prussia to establish steamboats on the rivers and lakes there under the patronage of the Prince of Hardenburg. After about four years he returned to Britain and was employed by Boulton, Watt \& Co. to install the engines in the first steam mail packet for the service between Dublin and Holyhead. He was responsible for the engines of the steamship Lightning when it was used on the visit of George IV to Ireland.
    About 1824 Buckle was engaged by Boulton, Watt \& Co. as Manager of the Soho Foundry, where he is credited with introducing the first large screw-cutting lathe. At Soho about 700 or 800 men were employed on a wide variety of engineering manufacture, including coining machinery for mints in many parts of the world, with some in 1826 for the Mint at the Soho Manufactory. In 1851, following the recommendations of a Royal Commission, the Royal Mint in London was reorganized and Buckle was asked to take the post of Assistant Coiner, the senior executive officer under the Deputy Master. This he accepted, retaining the post until the end of his life.
    At Soho, Buckle helped to establish a literary and scientific institution to provide evening classes for the apprentices and took part in the teaching. He was an original member of the Institution of Mechanical Engineers, which was founded in Birmingham in January 1847, and a member of their Council from then until 1855. He contributed a number of papers in the early years, including a memoir of William Murdock whom he had known at Soho; he resigned from the Institution in 1856 after his move to London. He was an honorary member of the London Association of Foreman Engineers.
    [br]
    Bibliography
    1850, "Inventions and life of William Murdock", Proceedings of the Institution of Mechanical Engineers 2 (October): 16–26.
    RTS

    Biographical history of technology > Buckle, William

  • 6 Priestman, William Dent

    [br]
    b. 23 August 1847 Sutton, Hull, England
    d. 7 September 1936 Hull, England
    [br]
    English oil engine pioneer.
    [br]
    William was the second son and one of eleven children of Samuel Priestman, who had moved to Hull after retiring as a corn miller in Kirkstall, Leeds, and who in retirement had become a director of the North Eastern Railway Company. The family were strict Quakers, so William was sent to the Quaker School in Bootham, York. He left school at the age of 17 to start an engineering apprenticeship at the Humber Iron Works, but this company failed so the apprenticeship was continued with the North Eastern Railway, Gateshead. In 1869 he joined the hydraulics department of Sir William Armstrong \& Company, Newcastle upon Tyne, but after a year there his father financed him in business at a small, run down works, the Holderness Foundry, Hull. He was soon joined by his brother, Samuel, their main business being the manufacture of dredging equipment (grabs), cranes and winches. In the late 1870s William became interested in internal combustion engines. He took a sublicence to manufacture petrol engines to the patents of Eugène Etève of Paris from the British licensees, Moll and Dando. These engines operated in a similar manner to the non-compression gas engines of Lenoir. Failure to make the two-stroke version of this engine work satisfactorily forced him to pay royalties to Crossley Bros, the British licensees of the Otto four-stroke patents.
    Fear of the dangers of petrol as a fuel, reflected by the associated very high insurance premiums, led William to experiment with the use of lamp oil as an engine fuel. His first of many patents was for a vaporizer. This was in 1885, well before Ackroyd Stuart. What distinguished the Priestman engine was the provision of an air pump which pressurized the fuel tank, outlets at the top and bottom of which led to a fuel atomizer injecting continuously into a vaporizing chamber heated by the exhaust gases. A spring-loaded inlet valve connected the chamber to the atmosphere, with the inlet valve proper between the chamber and the working cylinder being camoperated. A plug valve in the fuel line and a butterfly valve at the inlet to the chamber were operated, via a linkage, by the speed governor; this is believed to be the first use of this method of control. It was found that vaporization was only partly achieved, the higher fractions of the fuel condensing on the cylinder walls. A virtue was made of this as it provided vital lubrication. A starting system had to be provided, this comprising a lamp for preheating the vaporizing chamber and a hand pump for pressurizing the fuel tank.
    Engines of 2–10 hp (1.5–7.5 kW) were exhibited to the press in 1886; of these, a vertical engine was installed in a tram car and one of the horizontals in a motor dray. In 1888, engines were shown publicly at the Royal Agricultural Show, while in 1890 two-cylinder vertical marine engines were introduced in sizes from 2 to 10 hp (1.5–7.5 kW), and later double-acting ones up to some 60 hp (45 kW). First, clutch and gearbox reversing was used, but reversing propellers were fitted later (Priestman patent of 1892). In the same year a factory was established in Philadelphia, USA, where engines in the range 5–20 hp (3.7–15 kW) were made. Construction was radically different from that of the previous ones, the bosses of the twin flywheels acting as crank discs with the main bearings on the outside.
    On independent test in 1892, a Priestman engine achieved a full-load brake thermal efficiency of some 14 per cent, a very creditable figure for a compression ratio limited to under 3:1 by detonation problems. However, efficiency at low loads fell off seriously owing to the throttle governing, and the engines were heavy, complex and expensive compared with the competition.
    Decline in sales of dredging equipment and bad debts forced the firm into insolvency in 1895 and receivers took over. A new company was formed, the brothers being excluded. However, they were able to attend board meetings, but to exert no influence. Engine activities ceased in about 1904 after over 1,000 engines had been made. It is probable that the Quaker ethics of the brothers were out of place in a business that was becoming increasingly cut-throat. William spent the rest of his long life serving others.
    [br]
    Further Reading
    C.Lyle Cummins, 1976, Internal Fire, Carnot Press.
    C.Lyle Cummins and J.D.Priestman, 1985, "William Dent Priestman, oil engine pioneer and inventor: his engine patents 1885–1901", Proceedings of the Institution of
    Mechanical Engineers 199:133.
    Anthony Harcombe, 1977, "Priestman's oil engine", Stationary Engine Magazine 42 (August).
    JB

    Biographical history of technology > Priestman, William Dent

  • 7 Siemens, Sir Charles William

    [br]
    b. 4 April 1823 Lenthe, Germany
    d. 19 November 1883 London, England
    [br]
    German/British metallurgist and inventory pioneer of the regenerative principle and open-hearth steelmaking.
    [br]
    Born Carl Wilhelm, he attended craft schools in Lübeck and Magdeburg, followed by an intensive course in natural science at Göttingen as a pupil of Weber. At the age of 19 Siemens travelled to England and sold an electroplating process developed by his brother Werner Siemens to Richard Elkington, who was already established in the plating business. From 1843 to 1844 he obtained practical experience in the Magdeburg works of Count Stolburg. He settled in England in 1844 and later assumed British nationality, but maintained close contact with his brother Werner, who in 1847 had co-founded the firm Siemens \& Halske in Berlin to manufacture telegraphic equipment. William began to develop his regenerative principle of waste-heat recovery and in 1856 his brother Frederick (1826–1904) took out a British patent for heat regeneration, by which hot waste gases were passed through a honeycomb of fire-bricks. When they became hot, the gases were switched to a second mass of fire-bricks and incoming air and fuel gas were led through the hot bricks. By alternating the two gas flows, high temperatures could be reached and considerable fuel economies achieved. By 1861 the two brothers had incorporated producer gas fuel, made by gasifying low-grade coal.
    Heat regeneration was first applied in ironmaking by Cowper in 1857 for heating the air blast in blast furnaces. The first regenerative furnace was set up in Birmingham in 1860 for glassmaking. The first such furnace for making steel was developed in France by Pierre Martin and his father, Emile, in 1863. Siemens found British steelmakers reluctant to adopt the principle so in 1866 he rented a small works in Birmingham to develop his open-hearth steelmaking furnace, which he patented the following year. The process gradually made headway; as well as achieving high temperatures and saving fuel, it was slower than Bessemer's process, permitting greater control over the content of the steel. By 1900 the tonnage of open-hearth steel exceeded that produced by the Bessemer process.
    In 1872 Siemens played a major part in founding the Society of Telegraph Engineers (from which the Institution of Electrical Engineers evolved), serving as its first President. He became President for the second time in 1878. He built a cable works at Charlton, London, where the cable could be loaded directly into the holds of ships moored on the Thames. In 1873, together with William Froude, a British shipbuilder, he designed the Faraday, the first specialized vessel for Atlantic cable laying. The successful laying of a cable from Europe to the United States was completed in 1875, and a further five transatlantic cables were laid by the Faraday over the following decade.
    The Siemens factory in Charlton also supplied equipment for some of the earliest electric-lighting installations in London, including the British Museum in 1879 and the Savoy Theatre in 1882, the first theatre in Britain to be fully illuminated by electricity. The pioneer electric-tramway system of 1883 at Portrush, Northern Ireland, was an opportunity for the Siemens company to demonstrate its equipment.
    [br]
    Principal Honours and Distinctions
    Knighted 1883. FRS 1862. Institution of Civil Engineers Telford Medal 1853. President, Institution of Mechanical Engineers 1872. President, Society of Telegraph Engineers 1872 and 1878. President, British Association 1882.
    Bibliography
    27 May 1879, British patent no. 2,110 (electricarc furnace).
    1889, The Scientific Works of C.William Siemens, ed. E.F.Bamber, 3 vols, London.
    Further Reading
    W.Poles, 1888, Life of Sir William Siemens, London; repub. 1986 (compiled from material supplied by the family).
    S.von Weiher, 1972–3, "The Siemens brothers. Pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45:1–11 (a short, authoritative biography). S.von Weihr and H.Goetler, 1983, The Siemens Company. Its Historical Role in the
    Progress of Electrical Engineering 1847–1980, English edn, Berlin (a scholarly account with emphasis on technology).
    GW

    Biographical history of technology > Siemens, Sir Charles William

  • 8 Sellers, William

    [br]
    b. 19 September 1824 Upper Darby, Pennsylvania, USA
    d. 24 January 1905 Philadelphia, Pennsylvania, USA
    [br]
    American mechanical engineer and inventor.
    [br]
    William Sellers was educated at a private school that had been established by his father and other relatives for their children, and at the age of 14 he was apprenticed for seven years to the machinist's trade with his uncle. At the end of his apprenticeship in 1845 he took charge of the machine shop of Fairbanks, Bancroft \& Co. in Providence, Rhode Island. In 1848 he established his own factory manufacturing machine tools and mill gearing in Philadelphia, where he was soon joined by Edward Bancroft, the firm becoming Bancroft \& Sellers. After Bancroft's death the name was changed in 1856 to William Sellers \& Co. and Sellers served as President until the end of his life. His machine tools were characterized by their robust construction and absence of decorative embellishments. In 1868 he formed the Edgemoor Iron Company, of which he was President. This company supplied the structural ironwork for the Centennial Exhibition buildings and much of the material for the Brooklyn Bridge. In 1873 he reorganized the William Butcher Steel Works, renaming it the Midvale Steel Company, and under his presidency it became a leader in the production of heavy ordnance. It was at the Midvale Steel Company that Frederick W. Taylor began, with the encouragement of Sellers, his experiments on cutting tools.
    In 1860 Sellers obtained the American rights of the patent for the Giffard injector for feeding steam boilers. He later invented his own improvements to the injector, which numbered among his many other patents, most of which related to machine tools. Probably Sellers's most important contribution to the engineering industry was his proposal for a system of screw threads made in 1864 and later adopted as the American national standard.
    Sellers was a founder member in 1880 of the American Society of Mechanical Engineers and was also a member of many other learned societies in America and other countries, including, in Britain, the Institution of Mechanical Engineers and the Iron and Steel Institute.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'honneur 1889. President, Franklin Institute 1864–7.
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (describes Sellers's work on machine tools).
    Bruce Sinclair, 1969, "At the turn of a screw: William Sellers, the Franklin Institute, and a standard American thread", Technology and Culture 10:20–34 (describes his work on screw threads).
    RTS

    Biographical history of technology > Sellers, William

  • 9 Cockerill, William

    SUBJECT AREA: Textiles
    [br]
    b. 1759 Lancashire, England
    d. 1832 near Aix-la-Chapelle, France (now Aachen, Germany)
    [br]
    English (naturalized Belgian c. 1810) engineer, inventor and an important figure in the European textile machinery industry.
    [br]
    William Cockerill began his career in Lancashire by making "roving billies" and flying shuttles. He was reputed to have an extraordinary mechanical genius and it is said that he could make models of almost any machine. He followed in the footsteps of many other enterprising British engineers when in 1794 he went to St Petersburg in Russia, having been recommended as a skilful artisan to the Empress Catherine II. After her death two years later, her successor Paul sent Cockerill to prison because he failed to finish a model within a certain time. Cockerill, however, escaped to Sweden where he was commissioned to construct the locks on a public canal. He attempted to introduce textile machinery of his own invention but was unsuccessful and so in 1799 he removed to Verviers, Belgium, where he established himself as a manufacturer of textile machinery. In 1802 he was joined by James Holden, who before long set up his own machine-building business. In 1807 Cockerill moved to Liège where, with his three sons (William Jnr, Charles James and John), he set up factories for the construction of carding machines, spinning frames and looms for the woollen industry. He secured for Verviers supremacy in the woollen trade and introduced at Liège an industry of which England had so far possessed the monopoly. His products were noted for their fine craftsmanship, and in the heyday of the Napoleonic regime about half of his output was sold in France. In 1813 he imported a model of a Watt steam-engine from England and so added another range of products to his firm. Cockerill became a naturalized Belgian subject c. 1810, and a few years later he retired from the business in favour of his two younger sons, Charles James and John (b. 30 April 1790 Haslingden, Lancashire, England; d. 19 June 1840 Warsaw, Poland), but in 1830 at Andenne he converted a vast factory formerly used for calico printing into a paper mill. Little is known of his eldest son William, but the other two sons expanded the enterprise, setting up a woollen factory at Berlin after 1815 and establishing at Seraing-on-the-Meuse in 1817 blast furnaces, an iron foundry and a machine workshop which became the largest on the European continent. William Cockerill senior died in 1832 at the Château du Behrensberg, the residence of his son Charles James, near Aix-la-Chapelle.
    [br]
    Further Reading
    W.O.Henderson, 1961, The Industrial Revolution on the Continent, Manchester (a good account of the spread of the Industrial Revolution in Germany, France and Russia).
    RTS / RLH

    Biographical history of technology > Cockerill, William

  • 10 Champion, William

    SUBJECT AREA: Metallurgy
    [br]
    b. 1710 Bristol, England
    d. 1789 England
    [br]
    English metallurgist, the first to produce metallic zinc in England on an industrial scale.
    [br]
    William, the youngest of the three sons of Nehemiah Champion, stemmed from a West Country Quaker family long associated with the metal trades. His grandfather, also called Nehemiah, had been one of Abraham Darby's close Quaker friends when the brassworks at Baptist Mills was being established in 1702 and 1703. Nehemiah II took over the management of these works soon after Darby went to Coalbrookdale, and in 1719, as one of a group of Bristol copper smelters, he negotiated an agreement with Lord Falmouth to develop copper mines in the Redruth area in Cornwall. In 1723 he was granted a patent for a cementation brass-making process using finely granulated copper rather than the broken fragments of massive copper hitherto employed.
    In 1730 he returned to Bristol after a tour of European metallurgical centres, and he began to develop an industrial process for the manufacture of pure zinc ingots in England. Metallic zinc or spelter was then imported at great expense from the Far East, largely for the manufacture of copper alloys of golden colour used for cheap jewellery. The process William developed, after six years of experimentation, reduced zinc oxide with charcoal at temperatures well above the boiling point of zinc. The zinc vapour obtained was condensed rapidly to prevent reoxidation and finally collected under water. This process, patented in 1738, was operated in secret until 1766 when Watson described it in his Chemical Essays. After encountering much opposition from the Bristol merchants and zinc importers, William decided to establish his own integrated brassworks at Warmley, five meals east of Bristol. The Warmley plant began to produce in 1748 and expanded rapidly. By 1767, when Warmley employed about 2,000 men, women and children, more capital was needed, requiring a Royal Charter of Incorporation. A consortium of Champion's competitors opposed this and secured its refusal. After this defeat William lost the confidence of his fellow directors, who dismissed him. He was declared bankrupt in 1769 and his works were sold to the British Brass Company, which never operated Warmley at full capacity, although it produced zinc on that site until 1784.
    [br]
    Bibliography
    1723, British patent no. 454 (cementation brass-making process).
    1738, British patent no. 564 (zinc ingot production process).
    1767, British patent no. 867 (brass manufacture wing zinc blende).
    Further Reading
    J.Day, 1973, Bristol Brass: The History of the Industry, Newton Abbot: David \& Charles.
    A.Raistrick, 1970, Dynasty of Ironfounders: The Darbys and Coalbrookdale, Newton Abbot: David \& Charles.
    J.R.Harris, 1964, The Copper King, Liverpool University Press.
    ASD

    Biographical history of technology > Champion, William

  • 11 Cobbett, William

    [br]
    b. 9 March 1762 Farnham, Surrey, England
    d. 17 June 1835 Guildford, Surrey, England
    [br]
    English political writer and activist; writer on rural affairs, with a particular concern for the conditions of the agricultural worker; a keen experimental farmer who claimed responsibility for the import of Indian maize to Britain.
    [br]
    The son of a smallholder farmer and self-taught surveyor, William Cobbett was brought up to farm work from an early age. In 1783 he took employment as an attorney's clerk in London, but not finding this to his liking he travelled to Chatham with the intention of joining the Navy. A mistake in "taking the King's shilling" found him in an infantry regiment. After a year's training he was sent out to Nova Scotia and quickly gained the rank of sergeant major. On leaving the Army he brought corruption charges against three officers in his regiment, but did not press with the prosecution. England was not to his taste, and he returned to North America with his wife.
    In America Cobbett taught English to the growing French community displaced by the French Revolution. He found American criticism of Britain ill-balanced and in 1796 began to publish a daily newspaper under the title Porcupine's Gazetteer, in which he wrote editorials in defence of Britain. His writings won him little support from the Americans. However, on returning to London in 1800 he was offered, but turned down, the management of a Government newspaper. Instead he began to produce a daily paper called the Porcupine, which was superseded in 1802 by Cobbett's Political Register, this publication continued on a weekly basis until after his death. In 1803 he also began the Parliamentary Debates, which later merged into Hansard, the official report of parliamentary proceedings.
    In 1805 Cobbett took a house and 300-acre (120-hectare) farm in Hampshire, from which he continued to write, but at the same time followed the pursuits he most enjoyed. In 1809 his criticism of the punishment given to mutineers in the militia at Ely resulted in his own imprisonment. On his release in 1812 he decided that the only way to remain an independent publisher was to move back to the USA. He bought a farm at Hampstead, Long Island, New York, and published A Year's Residence in America, which contains, amongst other things, an interesting account of a farmer's year.
    Returning to Britain in the easier political climate of the 1820s, Cobbett bought a small seed farm in Kensington, then outside London. From there he made a number of journeys around the country, publishing accounts of them in his famous Rural Rides. His experiments and advice on the sowing and cultivation of crops, particularly turnips and swedes, and on forestry, were an important mechanism for the spread of ideas within the UK. He also claimed that he was the first to introduce the acacia and Indian maize to Britain. Much of his writing expresses a concern for the rural poor and he was firmly convinced that only parliamentary reform would achieve the changes needed. His political work and writing led to his election as Member of Parlaiment for Oldham in the 1835 election, which followed the Reform Act of 1832. However, by this time his energy was failing rapidly and he died peacefully at Normandy Farm, near Guildford, at the age of 73.
    [br]
    Bibliography
    Cobbett's Observations on Priestley's Emigration, published in 1794, was the first of his pro-British tracts written in America. On the basis of his stay in that country he wrote A Year's Residence in America. His books on agricultural practice included Woodlands (1825) and Treatise on Cobbett's Corn (1828). Dealing with more social problems he wrote an English Grammar for the use of Apprentices, Plough Boys, Soldiers and Sailors in 1818, and Cottage Economy in 1821.
    Further Reading
    Albert Pell, 1902, article in Journal of the Royal Agricultural Society of England 63:1–26 (describes the life and writings of William Cobbett).
    James Sambrook, 1973, William Cobbett, London: Routledge (a more detailed study).
    AP

    Biographical history of technology > Cobbett, William

  • 12 Taylor, William

    [br]
    b. 11 June 1865 London, England
    d. 28 February 1937 Laughton, Leicestershire, England
    [br]
    English mechanical engineer and metrologist, originator of standard screw threads for lens mountings and inventor of "Dimple" golf balls.
    [br]
    William Taylor served an apprenticeship from 1880 to 1885 in London with Paterson and Cooper, electrical engineers and instrument makers. He studied at the Finsbury Technical College under Professors W.E.Ayrton (1847–1908) and John Perry (1850–1920). He remained with Paterson and Cooper until 1887, when he joined his elder brother, who had set up in Leicester as a manufacturer of optical instruments. The firm was then styled T.S. \& W.Taylor and a few months later, when H.W.Hobson joined them as a partner, it became Taylor, Taylor and Hobson, as it was known for many years.
    William Taylor was mainly responsible for technical developments in the firm and he designed the special machine tools required for making lenses and their mountings. However, his most notable work was in originating methods of measuring and gauging screw threads. He proposed a standard screw-thread for lens mountings that was adopted by the Royal Photographic Society, and he served on screw thread committees of the British Standards Institution and the British Association. His interest in golf led him to study the flight of the golf ball, and he designed and patented the "Dimple" golf ball and a mechanical driving machine for testing golf balls.
    He was an active member of the Institution of Mechanical Engineers, being elected Associate Member in 1894, Member in 1901 and Honorary Life Member in 1936. He served on the Council from 1918 and was President in 1932. He took a keen interest in engineering education and advocated the scientific study of materials, processes and machine tools, and of management. His death occurred suddenly while he was helping to rescue his son's car from a snowdrift.
    [br]
    Principal Honours and Distinctions
    OBE 1918. FRS 1934. President, Institution of Mechanical Engineers 1932.
    Further Reading
    K.J.Hume, 1980, A History of Engineering Metrology, London, 110–21 (a short account of William Taylor and of Taylor, Taylor and Hobson).
    RTS

    Biographical history of technology > Taylor, William

  • 13 Murdock (Murdoch), William

    [br]
    b. 21 August 1754 Cumnock, Ayrshire, Scotland
    d. 15 November 1839 Handsworth, Birmingham, England
    [br]
    Scottish engineer and inventor, pioneer in coal-gas production.
    [br]
    He was the third child and the eldest of three boys born to John Murdoch and Anna Bruce. His father, a millwright and joiner, spelled his name Murdock on moving to England. He was educated for some years at Old Cumnock Parish School and in 1777, with his father, he built a "wooden horse", supposed to have been a form of cycle. In 1777 he set out for the Soho manufactory of Boulton \& Watt, where he quickly found employment, Boulton supposedly being impressed by the lad's hat. This was oval and made of wood, and young William had turned it himself on a lathe of his own manufacture. Murdock quickly became Boulton \& Watt's representative in Cornwall, where there was a flourishing demand for steam-engines. He lived at Redruth during this period.
    It is said that a number of the inventions generally ascribed to James Watt are in fact as much due to Murdock as to Watt. Examples are the piston and slide valve and the sun-and-planet gearing. A number of other inventions are attributed to Murdock alone: typical of these is the oscillating cylinder engine which obviated the need for an overhead beam.
    In about 1784 he planned a steam-driven road carriage of which he made a working model. He also planned a high-pressure non-condensing engine. The model carriage was demonstrated before Murdock's friends and travelled at a speed of 6–8 mph (10–13 km/h). Boulton and Watt were both antagonistic to their employees' developing independent inventions, and when in 1786 Murdock set out with his model for the Patent Office, having received no reply to a letter he had sent to Watt, Boulton intercepted him on the open road near Exeter and dissuaded him from going any further.
    In 1785 he married Mary Painter, daughter of a mine captain. She bore him four children, two of whom died in infancy, those surviving eventually joining their father at the Soho Works. Murdock was a great believer in pneumatic power: he had a pneumatic bell-push at Sycamore House, his home near Soho. The pattern-makers lathe at the Soho Works worked for thirty-five years from an air motor. He also conceived the idea of a vacuum piston engine to exhaust a pipe, later developed by the London Pneumatic Despatch Company's railway and the forerunner of the atmospheric railway.
    Another field in which Murdock was a pioneer was the gas industry. In 1791, in Redruth, he was experimenting with different feedstocks in his home-cum-office in Cross Street: of wood, peat and coal, he preferred the last. He designed and built in the backyard of his house a prototype generator, washer, storage and distribution plant, and publicized the efficiency of coal gas as an illuminant by using it to light his own home. In 1794 or 1795 he informed Boulton and Watt of his experimental work and of its success, suggesting that a patent should be applied for. James Watt Junior was now in the firm and was against patenting the idea since they had had so much trouble with previous patents and had been involved in so much litigation. He refused Murdock's request and for a short time Murdock left the firm to go home to his father's mill. Boulton \& Watt soon recognized the loss of a valuable servant and, in a short time, he was again employed at Soho, now as Engineer and Superintendent at the increased salary of £300 per year plus a 1 per cent commission. From this income, he left £14,000 when he died in 1839.
    In 1798 the workshops of Boulton and Watt were permanently lit by gas, starting with the foundry building. The 180 ft (55 m) façade of the Soho works was illuminated by gas for the Peace of Paris in June 1814. By 1804, Murdock had brought his apparatus to a point where Boulton \& Watt were able to canvas for orders. Murdock continued with the company after the death of James Watt in 1819, but retired in 1830 and continued to live at Sycamore House, Handsworth, near Birmingham.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Gold Medal 1808.
    Further Reading
    S.Smiles, 1861, Lives of the Engineers, Vol. IV: Boulton and Watt, London: John Murray.
    H.W.Dickinson and R.Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    J.A.McCash, 1966, "William Murdoch. Faithful servant" in E.G.Semler (ed.), The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Murdock (Murdoch), William

  • 14 Jessop, William

    [br]
    b. 23 January 1745 Plymouth, England
    d. 18 November 1814
    [br]
    English engineer engaged in river, canal and dock construction.
    [br]
    William Jessop inherited from his father a natural ability in engineering, and because of his father's association with John Smeaton in the construction of Eddystone Lighthouse he was accepted by Smeaton as a pupil in 1759 at the age of 14. Smeaton was so impressed with his ability that Jessop was retained as an assistant after completion of his pupilage in 1767. As such he carried out field-work, making surveys on his own, but in 1772 he was recommended to the Aire and Calder Committee as an independent engineer and his first personally prepared report was made on the Haddlesey Cut, Selby Canal. It was in this report that he gave his first evidence before a Parliamentary Committee. He later became Resident Engineer on the Selby Canal, and soon after he was elected to the Smeatonian Society of Engineers, of which he later became Secretary for twenty years. Meanwhile he accompanied Smeaton to Ireland to advise on the Grand Canal, ultimately becoming Consulting Engineer until 1802, and was responsible for Ringsend Docks, which connected the canal to the Liffey and were opened in 1796. From 1783 to 1787 he advised on improvements to the River Trent, and his ability was so recognized that it made his reputation. From then on he was consulted on the Cromford Canal (1789–93), the Leicester Navigation (1791–4) and the Grantham Canal (1793–7); at the same time he was Chief Engineer of the Grand Junction Canal from 1793 to 1797 and then Consulting Engineer until 1805. He also engineered the Barnsley and Rochdale Canals. In fact, there were few canals during this period on which he was not consulted. It has now been established that Jessop carried the responsibility for the Pont-Cysyllte Aqueduct in Wales and also prepared the estimates for the Caledonian Canal in 1804. In 1792 he became a partner in the Butterley ironworks and thus became interested in railways. He proposed the Surrey Iron Railway in 1799 and prepared for the estimates; the line was built and opened in 1805. He was also the Engineer for the 10 mile (16 km) long Kilmarnock \& Troon Railway, the Act for which was obtained in 1808 and was the first Act for a public railway in Scotland. Jessop's advice was sought on drainage works between 1785 and 1802 in the lowlands of the Isle of Axholme, Holderness, the Norfolk Marshlands, and the Axe and Brue area of the Somerset Levels. He was also consulted on harbour and dock improvements. These included Hull (1793), Portsmouth (1796), Folkestone (1806) and Sunderland (1807), but his greatest dock works were the West India Docks in London and the Floating Harbour at Bristol. He was Consulting Engineer to the City of London Corporation from 1796to 1799, drawing up plans for docks on the Isle of Dogs in 1796; in February 1800 he was appointed Engineer, and three years later, in September 1803, he was appointed Engineer to the Bristol Floating Harbour. Jessop was regarded as the leading civil engineer in the country from 1785 until 1806. He died following a stroke in 1814.
    [br]
    Further Reading
    C.Hadfield and A.W.Skempton, 1979, William Jessop. Engineer, Newton Abbot: David \& Charles.
    JHB

    Biographical history of technology > Jessop, William

  • 15 Caxton, William

    SUBJECT AREA: Paper and printing
    [br]
    b. c.1422 Kent, England
    d. 1491 Westminster, England
    [br]
    English printer who produced the first book to be printed in English.
    [br]
    According to his own account, Caxton was born in Kent and received a schooling before entering the Mercers' Company, one of the most influential of the London guilds and engaged in the wholesale export trade in woollen goods and other wares, principally with the Low Countries. Around 1445, Caxton moved to Bruges, where he engaged in trade with such success that in 1462 he was appointed Governor of the English Nation in Bruges. He was entrusted with diplomatic missions, and his dealings with the court of Burgundy brought him into contact with the Duchess, Margaret of York, sister of the English King Edward IV. Caxton embarked on the production of fine manuscripts, making his own translations from the French for the Duchess and other noble patrons with a taste for this kind of literature. This trend became more marked after 1470–1 when Caxton lost his post in Bruges, probably due to the temporary overthrow of King Edward. Perhaps to satisfy an increasing demand for his texts, Caxton travelled to Cologne in 1471 to learn the art of printing. He set up a printing business in Bruges, in partnership with the copyist and bookseller Colard Mansion. There, late in 1474 or early the following year, Caxton produced the first book to be printed in English, and the first by an English printer, The Recuyell of the Histories of Troy, which he had translated from the French.
    In 1476 Caxton returned to England and set up his printing and publishing business "at the sign of the Red Pale" within the precincts of Westminster Abbey. This was more conveniently placed than the City of London for the likely customers among the court and Members of Parliament for the courtly romances and devotional works he aimed to produce. Other printers followed but survived only a few years, whereas Caxton remained successful for fifteen years and then bequeathed a flourishing concern to his assistant Wynkyn de Worde. During that time, 107 printed works, including seventy-four books, issued from Caxton's press. Of these, some twenty were his own translations. As printer and publisher, he did much to promote English literature, above all by producing the first editions of the literary masterpieces of the Middle Ages, such as the works of Chaucer, Gower and Lydgate and Malory's Morte d'Arthur. Among the various dialects of spoken English in use at the time, Caxton adopted the language of London and the court and so did much to fix a permanent standard for written English.
    [br]
    Further Reading
    W.Blades, 1877, The Biography and Typography of William Caxton, England's First Printer, London; reprinted 1971 (the classic life of Caxton, superseded in detail by modern scholarship but still indispensable).
    G.D.Painter, 1976, William Caxton: A Quincentenary Biography of England's First
    Printer, London: Chatto \& Windus (the most thorough recent biography, describing every known Caxton document and edition, with corrected and new interpretations based on the latest scholarship).
    N.F.Blake, 1969, Caxton and His World, London (a reliable account, set against the background of English late-medieval life).
    LRD

    Biographical history of technology > Caxton, William

  • 16 Pole, William

    SUBJECT AREA: Civil engineering
    [br]
    b. 22 April 1814 Birmingham, England
    d. 1900
    [br]
    English engineer and educator.
    [br]
    Although primarily an engineer, William Pole was a man of many and varied talents, being amongst other things an accomplished musician (his doctorate was in music) and an authority on whist. He served an apprenticeship at the Horsley Company in Birmingham, and moved to London in 1836, when he was employed first as Manager to a gasworks. In 1844 he published a study of the Cornish pumping engine, and he also accepted an appointment as the first Professor of Engineering in the Elphinstone College at Bombay. He spent three pioneering years in this post, and undertook the survey work for the Great Indian Peninsular Railway. Before returning to London in 1848 he married Matilda Gauntlett, the daughter of a clergyman.
    Back in Britain, Pole was employed by James Simpson, J.M.Rendel and Robert Stephenson, the latter engaging him to assist with calculations on the Britannia Bridge. In 1858 he set up his own practice. He kept a very small office, choosing not to delegate work to subordinates but taking on a bewildering variety of commissions for government and private companies. In the first category, he made calculations for government officials of the main drainage of the metropolis and for its water supply. He lectured on engineering to the Royal Engineers' institution at Chatham, and served on a Select Committee to enquire into the armour of warships and fortifications. He became a member of the Royal Commission on the Railways of Great Britain and Ireland (the Devonshire Commission, 1867) and reported to the War Office on the MartiniHenry rifle. He also advised the India Office about examinations for engineering students. The drafting and writing up of reports was frequently left to Pole, who also made distinguished contributions to the official Lives of Robert Stephenson (1864), I.K. Brunel (1870) and William Fairbairn (1877). For other bodies, he acted as Consulting Engineer in England to the Japanese government, and he assisted W.H.Barlow in calculations for a bridge at Queensferry on the Firth of Forth (1873). He was consulted about many urban water supplies.
    Pole joined the Institution of Civil Engineers as an Associate in 1840 and became a Member in 1856. He became a Member of Council, Honorary Secretary (succeeding Manby in 1885–96) and Honorary Member of the Institution. He was interested in astronomy and photography, he was fluent in several languages, was an expert on music, and became the world authority on whist. In 1859 he was appointed Professor of Civil Engineering at University College London, serving in this office until 1867. Pole, whose dates coincided closely with those of Queen Victoria, was one of the great Victorian engineers: he was a polymath, able to apply his great abilities to an amazing range of different tasks. In engineering history, he deserves to be remembered as an outstanding communicator and popularizer.
    [br]
    Bibliography
    1843, "Comparative loss by friction in beam and direct-action engines", Proceedings of the Institution of Civil Engineers 2:69.
    Further Reading
    Dictionary of National Biography, London.
    Proceedings of the Institution of Civil Engineers 143:301–9.
    AB

    Biographical history of technology > Pole, William

  • 17 Fife, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 15 June 1857 Fairlie, Scotland
    d. 11 August 1944 Fairlie, Scotland
    [br]
    Scottish naval architect and designer of sailing yachts of legendary beauty and performance.
    [br]
    Following his education at Brisbane Academy in Largs, William Fife (the third generation of the name) became apprenticed at the age of 14 to the already famous yacht-building yard owned by his family at Fairlie in Ayrshire. On completion of his apprenticeship, he joined the Paisley shipbuilders John Fullerton \& Co. to gain experience in iron shipbuilding before going on as Manager to the Marquis of Ailsa's Culzean Steam Launch and Yacht Works. Initially the works was sited below the famous castle at Culzean, but some years later it moved a few miles along the Ayrshire Coast to Maidens. The Culzean Company was wound up in 1887 and Fife then returned to the family yard, where he remained for the rest of his working life. Many outstanding yachts were the product of his hours on the drawing board, including auxiliary sailing cruisers, motor yachts and well-known racing craft. The most outstanding designs were for two of Sir Thomas Lipton's challengers for the America's Cup: Shamrock I and Shamrock III. The latter yacht was tested at the Ship Model Experiment Tank owned by Denny of Dumbarton before being built at their Leven Shipyard in 1903. Shamrock III may have been one of the earliest America's Cup yachts to have been designed with a high level of scientific input. The hull construction was unusual for the early years of the twentieth century, being of alloy steel with decks of aluminium.
    William Fife was decorated for his service to shipbuilding during the First World War. With the onset of the Great Depression the shipyard's output slowed, and in the 1930s it was sold to other interests; this was the end of the 120-year Fife dynasty.
    [br]
    Principal Honours and Distinctions
    OBE c.1919.
    FMW

    Biographical history of technology > Fife, William

  • 18 Froude, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1810 Dartington, Devon, England
    d. 4 May 1879 Simonstown, South Africa
    [br]
    English naval architect; pioneer of experimental ship-model research.
    [br]
    Froude was educated at a preparatory school at Buckfastleigh, and then at Westminster School, London, before entering Oriel College, Oxford, to read mathematics and classics. Between 1836 and 1838 he served as a pupil civil engineer, and then he joined the staff of Isambard Kingdom Brunel on various railway engineering projects in southern England, including the South Devon Atmospheric Railway. He retired from professional work in 1846 and lived with his invalid father at Dartington Parsonage. The next twenty years, while apparently unproductive, were important to Froude as he concentrated his mind on difficult mathematical and scientific problems. Froude married in 1839 and had five children, one of whom, Robert Edmund Froude (1846–1924), was to succeed him in later years in his research work for the Admiralty. Following the death of his father, Froude moved to Paignton, and there commenced his studies on the resistance of solid bodies moving through fluids. Initially these were with hulls towed through a house roof storage tank by wires taken over a pulley and attached to falling weights, but the work became more sophisticated and was conducted on ponds and the open water of a creek near Dartmouth. Froude published work on the rolling of ships in the second volume of the Transactions of the then new Institution of Naval Architects and through this became acquainted with Sir Edward Reed. This led in 1870 to the Admiralty's offer of £2,000 towards the cost of an experimental tank for ship models at Torquay. The tank was completed in 1872 and tests were carried out on the model of HMS Greyhound following full-scale towing trials which had commenced on the actual ship the previous year. From this Froude enunciated his Law of Comparisons, which defines the rules concerning the relationship of the power required to move geometrically similar floating bodies across fluids. It enabled naval architects to predict, from a study of a much less expensive and smaller model, the resistance to motion and the power required to move a full-size ship. The work in the tank led Froude to design a model-cutting machine, dynamometers and machinery for the accurate ruling of graph paper. Froude's work, and later that of his son, was prodigious and covered many fields of ship design, including powering, propulsion, rolling, steering and stability. In only six years he had stamped his academic authority on the new science of hydrodynamics, served on many national committees and corresponded with fellow researchers throughout the world. His health suffered and he sailed for South Africa to recuperate, but he contracted dysentery and died at Simonstown. He will be remembered for all time as one of the greatest "fathers" of naval architecture.
    [br]
    Principal Honours and Distinctions
    FRS. Honorary LLD Glasgow University.
    Bibliography
    1955, The Papers of William Froude, London: Institution of Naval Architects (the Institution also published a memoir by Sir Westcott Abell and an evaluation of his work by Dr R.W.L. Gawn of the Royal Corps of Naval Constructors; this volume reprints all Froude's papers from the Institution of Naval Architects and other sources as diverse as the British Association, the Royal Society of Edinburgh and the Institution of Civil Engineers.
    Further Reading
    A.T.Crichton, 1990, "William and Robert Edmund Froude and the evolution of the ship model experimental tank", Transactions of the Newcomen Society 61:33–49.
    FMW

    Biographical history of technology > Froude, William

  • 19 Marshall, William

    [br]
    b. baptized 28 July 1745 Yorkshire, England
    d. 1818 Pickering, Yorkshire, England
    [br]
    English commentator and writer on agriculture who established the first agricultural college in Britain.
    [br]
    Little is known for certain about William Marshall's early life, other than that he was baptized at Sinnington in the West Riding of Yorkshire. On his own account he was involved in trade in the West Indies from the age of 15 for a period of fourteen years. It is assumed that he was financially successful in this, for on his return to England in 1774 he was able to purchase Addisham Farm in Surrey. Having sacked his bailiff he determined to keep a minute book relating to all transactions on the farm, which he was now managing for himself. On these entries he made additional comments. The publication of these writings was the beginning of a substantial review of agriculture in Britain and a criticism of existing practices. From 1779 he acted as agent on a Norfolk estate, and his five years in that position resulted in The Rural Economy of Norfolk, the first of a series of county reviews that he was to write, intending the somewhat ambitious task of surveying the whole country. By 1808 Marshall had accumulated sufficient capital to be able to purchase a substantial property in the Vale of Cleveland, where he lived for the rest of his life. At the time of his death he was engaged in the erection of a building to serve as an agricultural college; the same building is now a rural-life museum.
    [br]
    Bibliography
    Scotland in 1794, and Planting and Rural Ornament in 1796. He also wrote On the Enclosure of Commonable and Intermixed Lands in 1801, On the Landed Property of England, an Elementary Practical Treatise in 1804, and On the Management of Landed Estates in 1806. He was not asked to write any of the County Surveys produced by the Board of Agriculture, despite his own claims to the origin of the idea. Instead in 1817 he wrote A Review and Complete Abstract of the Reports of the Board of Agriculture as his own criticism of them.
    Further Reading
    Joan Thirsk, 1989, The Agrarian History of England and Wales, Vol. VI (deals with the years 1750 to 1850, the period associated with Marshall).
    Pamela Horn, 1982, William Marshall (1745–1818) and the Georgian Countryside, Beacon (gives a more specific account).
    AP

    Biographical history of technology > Marshall, William

  • 20 Preece, Sir William Henry

    [br]
    b. 15 February 1834 Bryn Helen, Gwynedd, Wales
    d. 6 November 1913 Penrhos, Gwynedd, Wales
    [br]
    Welsh electrical engineer who greatly furthered the development and use of wireless telegraphy and the telephone in Britain, dominating British Post Office engineering during the last two decades of the nineteenth century.
    [br]
    After education at King's College, London, in 1852 Preece entered the office of Edwin Clark with the intention of becoming a civil engineer, but graduate studies at the Royal Institution under Faraday fired his enthusiasm for things electrical. His earliest work, as connected with telegraphy and in particular its application for securing the safe working of railways; in 1853 he obtained an appointment with the Electric and National Telegraph Company. In 1856 he became Superintendent of that company's southern district, but four years later he moved to telegraph work with the London and South West Railway. From 1858 to 1862 he was also Engineer to the Channel Islands Telegraph Company. When the various telegraph companies in Britain were transferred to the State in 1870, Preece became a Divisional Engineer in the General Post Office (GPO). Promotion followed in 1877, when he was appointed Chief Electrician to the Post Office. One of the first specimens of Bell's telephone was brought to England by Preece and exhibited at the British Association meeting in 1877. From 1892 to 1899 he served as Engineer-in-Chief to the Post Office. During this time he made a number of important contributions to telegraphy, including the use of water as part of telegraph circuits across the Solent (1882) and the Bristol Channel (1888). He also discovered the existence of inductive effects between parallel wires, and with Fleming showed that a current (thermionic) flowed between the hot filament and a cold conductor in an incandescent lamp.
    Preece was distinguished by his administrative ability, some scientific insight, considerable engineering intuition and immense energy. He held erroneous views about telephone transmission and, not accepting the work of Oliver Heaviside, made many errors when planning trunk circuits. Prior to the successful use of Hertzian waves for wireless communication Preece carried out experiments, often on a large scale, in attempts at wireless communication by inductive methods. These became of historic interest only when the work of Maxwell and Hertz was developed by Guglielmo Marconi. It is to Preece that credit should be given for encouraging Marconi in 1896 and collaborating with him in his early experimental work on radio telegraphy.
    While still employed by the Post Office, Preece contributed to the development of numerous early public electricity schemes, acting as Consultant and often supervising their construction. At Worcester he was responsible for Britain's largest nineteenth-century public hydro-electric station. He received a knighthood on his retirement in 1899, after which he continued his consulting practice in association with his two sons and Major Philip Cardew. Preece contributed some 136 papers and printed lectures to scientific journals, ninety-nine during the period 1877 to 1894.
    [br]
    Principal Honours and Distinctions
    CB 1894. Knighted (KCB) 1899. FRS 1881. President, Society of Telegraph Engineers, 1880. President, Institution of Electrical Engineers 1880, 1893. President, Institution of Civil Engineers 1898–9. Chairman, Royal Society of Arts 1901–2.
    Bibliography
    Preece produced numerous papers on telegraphy and telephony that were presented as Royal Institution Lectures (see Royal Institution Library of Science, 1974) or as British Association reports.
    1862–3, "Railway telegraphs and the application of electricity to the signaling and working of trains", Proceedings of the ICE 22:167–93.
    Eleven editions of Telegraphy (with J.Sivewright), London, 1870, were published by 1895.
    1883, "Molecular radiation in incandescent lamps", Proceedings of the Physical Society 5: 283.
    1885. "Molecular shadows in incandescent lamps". Proceedings of the Physical Society 7: 178.
    1886. "Electric induction between wires and wires", British Association Report. 1889, with J.Maier, The Telephone.
    1894, "Electric signalling without wires", RSA Journal.
    Further Reading
    J.J.Fahie, 1899, History of Wireless Telegraphy 1838–1899, Edinburgh: Blackwood. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    E.C.Baker, 1976, Sir William Preece, F.R.S. Victorian Engineer Extraordinary, London (a detailed biography with an appended list of his patents, principal lectures and publications).
    D.G.Tucker, 1981–2, "Sir William Preece (1834–1913)", Transactions of the Newcomen Society 53:119–36 (a critical review with a summary of his consultancies).
    GW / KF

    Biographical history of technology > Preece, Sir William Henry

См. также в других словарях:

  • William III of England — William III II William III by Sir Godfrey Kneller Prince of Orange Reign 4 November 1650 …   Wikipedia

  • William the Silent — William I, Prince of Orange Key, Adriaen Thomas (ca. 1570–84), William of Orange …   Wikipedia

  • William Penn — For other uses, see William Penn (disambiguation). William Penn Portrait of William Penn Born October 14, 1644(1644 10 14) London, England …   Wikipedia

  • William Henry Harrison — For other people named William Harrison, see William Harrison (disambiguation). William Henry Harrison Harrison in a copy of an 1841 daguerreotype portrait by Moore and Ward the first photograph ever taken of a U.S. President …   Wikipedia

  • William II of England — William Rufus redirects here. See also William Rufus Day. William II Rufus William II, from the Stowe Manuscript King of England (more...) …   Wikipedia

  • William Jennings Bryan — For other persons of the same name, see William Bryan and William Jennings. Infobox Congressman name=William Jennings Bryan office=United States Secretary of State order= 41st term start=March 5, 1913 term end=June 9, 1915 president=Woodrow… …   Wikipedia

  • William Adams (sailor) — For other uses, see William Adams (disambiguation). William Adams Born September 24, 1564(1564 09 24) Gillingham, Kent, England Died …   Wikipedia

  • William Nelson Page — (January 6, 1854 ndash;March 7, 1932), was a United States civil engineer, entrepreneur, capitalist, businessman, and industrialist. Born into an old Virginia family about seven years before the American Civil War (1861 1865), William Nelson Page …   Wikipedia

  • William the Conqueror — The Duke of Normandy in the Bayeux Tapestry King of England Reign 25 December 1066 9 September 1087 Coronation 25 December 106 …   Wikipedia

  • William Hosking — FSA (November 26, 1800 August 2, 1861) was a writer, lecturer, and architect who had an important influence on the growth and development of London in Victorian times. He became the first Professor of Architecture at King s College London, and… …   Wikipedia

  • William III — (William III of Orange) 1650 1702, stadholder of the United Provinces of the Netherlands 1672 1702; king of England 1689 1702, joint ruler with his wife, Mary II. * * * I Dutch Willem Alexander Paul Frederik Lodewijk born Feb. 19, 1817, Brussels …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»