-
21 patent
1) патент (охранный документ на изобретение, удостоверяющий признание предложения изобретением, его приоритет и исключительное право на него патентообладателя)2) патентовать; патентованный; патентный•- patent applied for
- patent in force
- patent being in force
- patent for a design
- patent for an invention
- patent for a plant
- patent for improvement
- patent in dispute
- patent on a design
- patent pending
- patent referred to
- patent abroad
- patent of addition
- patent of confirmation
- patent of importation
- patent of improvement
- patent of revalidation
- abandoned patent
- additional patent
- adjudicated patent
- AEC-owned patent
- anticipating patent
- apparatus patent
- art patent
- article patent
- assailable patent
- assigned patent
- atomic energy patent
- attackable patent
- attacked patent
- basic patent
- biological patent
- blocking patent
- blocking-off patent
- borderline patent
- British Letters patent
- broad patent
- business method patent
- cancelled patent
- ceased patent
- chemical patent
- cited patent
- collateral patent
- colonial patent
- combination patent
- Commission-owned patent
- communicated patent
- competing patent
- complementary patent
- composition-of-matter patent
- confirmation patent
- conflicting patent
- contestable patent
- copending patents
- corresponding patents
- deadwood patent
- dead-wood patent
- defective patent
- dependent patent
- design letters patent
- device patent
- disputed patent
- divisional patent
- domestic patent
- dominant patent
- dormant patent
- double patent
- dragnet patent
- drug patent
- duplicate patents
- earlier patent
- economic patent
- electrical patent
- European patent
- exclusive patent
- exercisable patent
- existing patent
- expired patent
- exploitable patent
- extended patent
- extinct patent
- fencing-off patent
- final patent
- foreign patent
- forfeited patent
- fortifying patent
- freed patent
- free-lance patent
- French pharmaceutical patent
- granted patent
- home patent
- importation patent
- improvement patent
- incipient patent
- incontestable patent
- independent patent
- indigenous patent
- industrial patent
- industrial development patent
- infringed patent
- infringing patent
- infringing patents
- inoperative patent
- interdependent patents
- intervening patent
- invalid patent
- issued patent
- joint patent
- key patent
- land patent
- lapsed patent
- later patent
- later-dated patent
- legally effective patent
- letters patent
- licensed patent
- litigious patent
- live patent
- machine patent
- main patent
- manufacture patent
- master patent
- material patent
- mechanical patent
- medical patent
- metallurgical patent
- method patent
- minor patent
- modification patent
- more recent patent
- narrow patent
- national patent
- national patent under the PCT
- native's patent
- new use patent
- non-convention patent
- Nordic patent
- not infringed patent
- nuisance patent
- objected patent
- obstructive patent
- old patent
- operative patent
- original patent
- ornamental design patent
- overlapping patents
- paper patent
- parallel patent
- parent patent
- pending patent
- petty patent
- pharmaceutical patent
- pioneer patent
- plant patent
- pooled patent
- posthumous patent
- practicable patent
- printed patent
- prior patent
- process patent
- product patent
- provisional European patent
- questionable patent
- reference patent
- regional patent
- reinstated patent
- reissue patent
- reissued patent
- related patent
- revoked patent
- scarecrow patent
- secret patent
- senior patent
- shot gun patent
- simultaneous patent
- small patent
- software patent
- standard patent
- strain patent
- strong patent
- structure patent
- subordinate patent
- subsequent patent
- subservient patent
- subsidiary patent
- sued upon patent
- suppressed patent
- transfer of technology patent
- unenforceable patent
- unexpired patent
- universal patent
- unjustified patent
- unused patent
- U. S. patent
- useful model patent
- utility patent
- valid patent
- valuable patent
- void patent
- voidable patent
- weak patent
- withheld patent
- world-wide patent
- worthless patent
- X-series patent
- younger patent
- youngest patent* * *патент (охранный документ, представляющий исключительнее право на осуществление, использование и продажу изобретения в течение определенного срока и на определенно» территории) -
22 control
1) управление; регулирование || управлять; регулировать2) контроль || контролировать3) управляющее устройство; устройство управления; регулятор4) профессиональное мастерство, квалификация, техническая квалификация5) pl органы управления•"in control" — "в поле допуска" ( о результатах измерения)
to control closed loop — управлять в замкнутой системе; регулировать в замкнутой системе
- 2-handed controlsto control open loop — управлять в разомкнутой системе; регулировать в разомкнутой системе
- 32-bit CPU control
- acceptance control
- access control
- acknowledge control
- active process control
- adaptable control
- adaptive constraint control
- adaptive control for optimization
- adaptive control
- adaptive feed rate control
- adaptive quality control
- adjustable feed control
- adjustable rotary control
- adjustable speed control
- adjusting control
- adjustment control
- AI control
- air logic control
- analog data distribution and control
- analogical control
- analytical control
- application control
- arrows-on-curves control
- autodepth control
- autofeed control
- automated control of a document management system
- automated technical control
- automatic backlash control
- automatic control
- automatic editing control
- automatic gain control
- automatic gripper control
- automatic level control
- automatic process closed loop control
- automatic remote control
- automatic sensitivity control
- automatic sequence control
- automatic speed control
- automatic stability controls
- auxiliaries control
- balanced controls
- band width control
- bang-bang control
- bang-bang-off control
- basic CNC control
- batch control
- bibliographic control
- bin level control
- boost control
- built-in control
- button control
- cam control
- cam throttle control
- camshaft control
- carriage control
- Cartesian path control
- Cartesian space control
- cascade control
- C-axis spindle control
- cell control
- center control
- central control
- central supervisory control
- centralized control
- centralized electronic control
- central-station control
- changeover control
- chip control
- circumferential register control
- close control
- closed cycle control
- closed loop control
- closed loop machine control
- closed loop manual control
- closed loop numerical control
- closed loop position control
- clutch control
- CNC control
- CNC indexer control
- CNC programmable control
- CNC symbolic conversational control
- CNC/CRT control
- CNC/MDI control
- coarse control
- coded current control
- coded current remote control
- color control
- combination control
- command-line control
- compensatory control
- composition control
- compound control
- computed-current control
- computed-torque control
- computer control
- computer numerical control
- computer process control
- computer-aided measurement and control
- computer-integrated manufacturing control
- computerized control
- computerized numerical control
- computerized process control
- constant surface speed control
- constant value control
- contactless control
- contact-sensing control
- contamination control
- continuous control
- continuous path control
- continuous process control
- contour profile control
- contouring control
- conventional hardware control
- conventional numerical control
- conventional tape control
- convergent control
- conversational control
- conversational MDI control
- coordinate positioning control
- coordinate programmable control
- copymill control
- counter control
- crossed controls
- current control
- cycle control
- dash control
- data link control
- data storage control
- deadman's handle controls
- depth control
- derivative control
- dial-in control
- differential control
- differential gaging control
- differential gain control
- differential temperature control
- digital brushless servo control
- digital control
- digital position control
- digital readout controls
- dimensional control
- direct computer control
- direct control
- direct digital control
- direct numerical control
- direction control
- directional control
- dirt control
- discontinuous control
- discrete control
- discrete event control
- discrete logic controls
- dispatching control
- displacement control
- distance control
- distant control
- distributed control
- distributed numerical control
- distributed zone control
- distribution control
- dog control
- drum control
- dual control
- dual-mode control
- duplex control
- dust control
- dynamic control
- eccentric control
- edge position control
- EDP control
- electrical control
- electrofluidic control
- electromagnetic control
- electronic control
- electronic level control
- electronic speed control
- electronic swivel control
- elevating control
- emergency control
- end-point control
- engineering change control
- engineering control
- entity control
- environmental control
- error control
- error plus error-rate control
- error-free control
- external beam control
- factory-floor control
- false control
- feed control
- feed drive controls
- feedback control
- feed-forward control
- field control
- fine control
- finger-tip control
- firm-wired numerical control
- fixed control
- fixed-feature control
- fixture-and-tool control
- flexible-body control
- floating control
- flow control
- fluid flow control
- follow-up control
- foot pedal control
- force adaptive control
- forecasting compensatory control
- fork control
- four quadrant control
- freely programmable CNC control
- frequency control
- FROG control
- full computer control
- full order control
- full spindle control
- gage measurement control
- gain control
- ganged control
- gap control
- gear control
- generative numerical control
- generic path control
- geometric adaptive control
- graphic numerical control
- group control
- grouped control
- guidance control
- hairbreath control
- hand control
- hand feed control
- hand wheel control
- hand-held controls
- handle-type control
- hand-operated controls
- hardened computer control
- hardwared control
- hardwared numerical control
- heating control
- heterarchical control
- hierarchical control
- high-integrity control
- high-level robot control
- high-low control
- high-low level control
- high-technology control
- horizontal directional control
- humidity control
- hybrid control
- hydraulic control
- I/O control
- immediate postprocess control
- inching control
- in-cycle control
- independent control
- indexer control
- indirect control
- individual control
- industrial processing control
- industrial-style controls
- infinite control
- infinite speed control
- in-process control
- in-process size control
- in-process size diameters control
- input/output control
- integral CNC control
- integral control
- integrated control
- intelligent control
- interacting control
- interconnected controls
- interlinking control
- inventory control
- job control
- jogging control
- joint control
- joystick control
- just-in-time control
- language-based control
- laser health hazards control
- latching control
- lead control
- learning control
- lever control
- lever-operated control
- line motion control
- linear control
- linear path control
- linearity control
- load control
- load-frequency control
- local control
- local-area control
- logic control
- lubricating oil level control
- machine control
- machine programming control
- machine shop control
- macro control
- magnetic control
- magnetic tape control
- main computer control
- malfunction control
- management control
- manual control
- manual data input control
- manual stop control
- manually actuatable controls
- manufacturing change control
- manufacturing control
- master control
- material flow control
- MDI control
- measured response control
- mechanical control
- memory NC control
- memory-type control
- metering control
- metrological control of production field
- microbased control
- microcomputer CNC control
- microcomputer numerical control
- microcomputer-based sequence control
- microprocessor control
- microprocessor numerical control
- microprogrammed control
- microprogramming control
- milling control
- model reference adaptive control
- model-based control
- moisture control
- motion control
- motor control
- motor speed control
- mouse-driven control
- movable control
- multicircuit control
- multidiameter control
- multilevel control
- multimachine tool control
- multiple control
- multiple-processor control
- multiposition control
- multistep control
- multivariable control
- narrow-band proportional control
- navigation control
- NC control
- neural network adaptive control
- noise control
- noncorresponding control
- noninteracting control
- noninterfacing control
- nonreversable control
- nonsimultaneous control
- numerical contouring control
- numerical control
- numerical program control
- odd control
- off-line control
- oligarchical control
- on-board control
- one-axis point-to-point control
- one-dimensional point-to-point control
- on-line control
- on-off control
- open loop control
- open loop manual control
- open loop numerical control
- open-architecture control
- operating control
- operational control
- operator control
- optical pattern tracing control
- optimal control
- optimalizing control
- optimizing control
- oral numerical control
- organoleptic control
- overall control
- overheat control
- override control
- p. b. control
- palm control
- parameter adaptive control
- parameter adjustment control
- partial d.o.f. control
- path control
- pattern control
- pattern tracing control
- PC control
- PC-based control
- peg board control
- pendant control
- pendant-actuated control
- pendant-mounted control
- performance control
- photoelectric control
- physical alignment control
- PIC control
- PID control
- plugboard control
- plug-in control
- pneumatic control
- point-to-point control
- pose-to-pose control
- position/contouring numerical control
- position/force control
- positional control
- positioning control
- positive control
- postprocess quality control
- power adaptive control
- power control
- power feed control
- power-assisted control
- powered control
- power-operated control
- precision control
- predictor control
- preselective control
- preset control
- presetting control
- pressbutton control
- pressure control
- preview control
- process control
- process quality control
- production activity control
- production control
- production result control
- programmable adaptive control
- programmable cam control
- programmable control
- programmable logic adaptive control
- programmable logic control
- programmable machine control
- programmable microprocessor control
- programmable numerical control
- programmable sequence control
- proportional plus derivative control
- proportional plus floating control
- proportional plus integral control
- prototype control
- pulse control
- pulse duration control
- punched-tape control
- purpose-built control
- pushbutton control
- quality control
- radio remote control
- radium control
- rail-elevating control
- ram stroke control
- ram-positioning control
- rapid-traverse controls for the heads
- rate control
- ratio control
- reactive control
- real-time control
- reduced-order control
- register control
- registration control
- relay control
- relay-contactor control
- remote control
- remote program control
- remote switching control
- remote valve control
- remote-dispatch control
- resistance control
- resolved motion rate control
- retarded control
- reversal control
- revolution control
- rigid-body control
- robot control
- robot perimeter control
- robot teach control
- rod control
- safety control
- sampled-data control
- sampling control
- schedule control
- SCR's control
- second derivative control
- selective control
- selectivity control
- self-acting control
- self-adaptive control
- self-adjusting control
- self-aligning control
- self-operated control
- self-optimizing control
- self-programming microprocessor control
- semi-automatic control
- sensitivity control
- sensor-based control
- sequence control
- sequence-type control
- sequential control
- series-parallel control
- servo control
- servo speed control
- servomotor control
- servo-operated control
- set value control
- shaft speed control
- shape control
- shift control
- shop control
- shower and high-pressure oil temperature control
- shut off control
- sight control
- sign control
- single variable control
- single-flank control
- single-lever control
- size control
- slide control
- smooth control
- software-based NC control
- softwared numerical control
- solid-state logic control
- space-follow-up control
- speed control
- stabilizing control
- stable control
- standalone control
- start controls
- static control
- station control
- statistical quality control
- steering control
- step-by-step control
- stepless control
- stepped control
- stick control
- stock control
- stop controls
- stop-point control
- storage assignment control
- straight cut control
- straight line control
- stroke control
- stroke length control
- supervisor production control
- supervisory control
- swarf control
- switch control
- symbolic control
- synchronous data link control
- table control
- tap-depth controls
- tape control
- tape loop control
- teach controls
- temperature control
- temperature-humidity air control
- template control
- tension control
- test control
- thermal control
- thermostatic control
- three-axis contouring control
- three-axis point-to-point control
- three-axis tape control
- three-mode control
- three-position control
- throttle control
- thumbwheel control
- time control
- time cycle control
- time optimal control
- time variable control
- time-critical control
- time-proportional control
- timing control
- token-passing access control
- tool life control
- tool run-time control
- torque control
- total quality control
- touch-panel NC control
- touch-screen control
- tracer control
- tracer numerical control
- trajectory control
- triac control
- trip-dog control
- TRS/rate control
- tuning control
- turnstile control
- two-axis contouring control
- two-axis point-to-point control
- two-dimension control
- two-hand controls
- two-position control
- two-position differential gap control
- two-step control
- undamped control
- user-adjustable override controls
- user-programmable NC control
- variable flow control
- variable speed control
- variety control
- varying voltage control
- velocity-based look-ahead control
- vise control
- vision responsive control
- visual control
- vocabulary control
- vocal CNC control
- vocal numerical control
- voltage control
- warehouse control
- washdown control
- water-supply control
- welding control
- wheel control
- wide-band control
- zero set control
- zoned track controlEnglish-Russian dictionary of mechanical engineering and automation > control
-
23 copy
1) (издательский) оригинал2) копия || копировать3) оттиск; репродукция || получать оттиски4) лист бумаги формата 40,6x50,8 см5) строка текста (в фотонаборной машине)6) тетрадь7) экземплярАнгло-русский словарь по полиграфии и издательскому делу > copy
-
24 framework
рамки имя существительное: -
25 exercise book
1. тетрадьbook section — книжная тетрадь, тетрадь книжного блока
2. сборник упражнений3. абонементная книгаСинонимический ряд:guidebook (noun) compendium; guide; guidebook; handbook; manual; primer; reference book; text; textbook -
26 ROM-based software
1. программные средства хранящиеся в ПЗУ2. программные средства; хранящиеся в ПЗУ -
27 dimension
1. измерение2. размер; величина; измерять; рассчитывать размеры; устанавливать размеры3. размерностьdimensions of image — формат снимка, размер изображения
4. размеры печатной формы5. формат иллюстрации -
28 Theophilus Presbyter
[br]fl. late eleventh/early twelfth century[br]German author of the most detailed medieval treatise relating to technology.[br]The little that is known of Theophilus is what can be inferred from his great work, De diversis artibus. He was a Benedictine monk and priest living in north-west Germany, probably near an important art centre. He was an educated man, conversant with scholastic philosophy and at the same time a skilled, practising craftsman. Even his identity is obscure: Theophilus is a pseudonym, possibly for Roger of Helmarshausen, for the little that is known of both is in agreement.Evidence in De diversis suggests that it was probably composed during 1110 to 1140. White (see Further Reading) goes on to suggest late 1122 or early 1123, on the grounds that Theophilus only learned of St Bernard of Clairvaulx's diatribe against lavish church ornamentation during the writing of the work, for it is only in the preface to Book 3 that Theophilus seeks to justify his craft. St Bernard's Apologia can be dated late 1122. No other medieval work on art combines the comprehensive range, orderly presentation and attention to detail as does De diversis. It has been described as an encyclopedia of medieval skills and crafts. It also offers the best and often the only description of medieval technology, including the first direct reference to papermaking in the West, the earliest medieval account of bell-founding and the most complete account of organ building. Many metallurgical techniques are described in detail, such as the making of a crucible furnace and bloomery hearth.The treatise is divided into three books, the first on the materials and art of painting, the second on glassmaking, including stained glass, glass vessels and the blown-cylinder method for flat glass, and the final and longest book on metalwork, including working in iron, copper, gold and silver for church use, such as chalices and censers. The main texts are no mere compilations, but reveal the firsthand knowledge that can only be gained by a skilled craftsman. The prefaces to each book present perhaps the only medieval expression of an artist's ideals and how he sees his art in relation to the general scheme of things. For Theophilus, his art is a gift from God and every skill an act of praise and piety. Theophilus is thus an indispensable source for medieval crafts and technology, but there are indications that the work was also well known at the time of its composition and afterwards.[br]BibliographyThe Wolfenbuttel and Vienna manuscripts of De diversis are the earliest, both dating from the first half of the twelfth century, while the British Library copy, in an early thirteenth-century hand, is the most complete. Two incomplete copies from the thirteenth century held at Cambridge and Leipzig offer help in arriving at a definitive edition.There are several references to De diversis in sixteenth-century printed works, such as Cornelius Agrippa (1530) and Josias Simmler (1585). The earliest printed edition ofDe diversis was prepared by G.H.Lessing in 1781 with the title, much used since, Diversarium artium schedula.There are two good recent editions: Theophilus: De diversis artibus. The Various Arts, 1964, trans. with introd. by C.R.Dodwell, London: Thomas Nelson, and On Diverse Arts. The Treatise of Theophilus, 1963, trans. with introd. and notes by J.G.Harthorne and C.S.Smith, Chicago University Press.Further ReadingLynn White, 1962, "Theophilus redivivus", Technology and Culture 5:224–33 (a comparative review of Theophilus (op. cit.) and On Diverse Arts (op. cit.)).LRD -
29 Creativity
Put in this bald way, these aims sound utopian. How utopian they areor rather, how imminent their realization-depends on how broadly or narrowly we interpret the term "creative." If we are willing to regard all human complex problem solving as creative, then-as we will point out-successful programs for problem solving mechanisms that simulate human problem solvers already exist, and a number of their general characteristics are known. If we reserve the term "creative" for activities like discovery of the special theory of relativity or the composition of Beethoven's Seventh Symphony, then no example of a creative mechanism exists at the present time. (Simon, 1979, pp. 144-145)Among the questions that can now be given preliminary answers in computational terms are the following: how can ideas from very different sources be spontaneously thought of together? how can two ideas be merged to produce a new structure, which shows the influence of both ancestor ideas without being a mere "cut-and-paste" combination? how can the mind be "primed," so that one will more easily notice serendipitous ideas? why may someone notice-and remember-something fairly uninteresting, if it occurs in an interesting context? how can a brief phrase conjure up an entire melody from memory? and how can we accept two ideas as similar ("love" and "prove" as rhyming, for instance) in respect of a feature not identical in both? The features of connectionist AI models that suggest answers to these questions are their powers of pattern completion, graceful degradation, sensitization, multiple constraint satisfaction, and "best-fit" equilibration.... Here, the important point is that the unconscious, "insightful," associative aspects of creativity can be explained-in outline, at least-by AI methods. (Boden, 1996, p. 273)There thus appears to be an underlying similarity in the process involved in creative innovation and social independence, with common traits and postures required for expression of both behaviors. The difference is one of product-literary, musical, artistic, theoretical products on the one hand, opinions on the other-rather than one of process. In both instances the individual must believe that his perceptions are meaningful and valid and be willing to rely upon his own interpretations. He must trust himself sufficiently that even when persons express opinions counter to his own he can proceed on the basis of his own perceptions and convictions. (Coopersmith, 1967, p. 58)he average level of ego strength and emotional stability is noticeably higher among creative geniuses than among the general population, though it is possibly lower than among men of comparable intelligence and education who go into administrative and similar positions. High anxiety and excitability appear common (e.g. Priestley, Darwin, Kepler) but full-blown neurosis is quite rare. (Cattell & Butcher, 1970, p. 315)he insight that is supposed to be required for such work as discovery turns out to be synonymous with the familiar process of recognition; and other terms commonly used in the discussion of creative work-such terms as "judgment," "creativity," or even "genius"-appear to be wholly dispensable or to be definable, as insight is, in terms of mundane and well-understood concepts. (Simon, 1989, p. 376)From the sketch material still in existence, from the condition of the fragments, and from the autographs themselves we can draw definite conclusions about Mozart's creative process. To invent musical ideas he did not need any stimulation; they came to his mind "ready-made" and in polished form. In contrast to Beethoven, who made numerous attempts at shaping his musical ideas until he found the definitive formulation of a theme, Mozart's first inspiration has the stamp of finality. Any Mozart theme has completeness and unity; as a phenomenon it is a Gestalt. (Herzmann, 1964, p. 28)Great artists enlarge the limits of one's perception. Looking at the world through the eyes of Rembrandt or Tolstoy makes one able to perceive aspects of truth about the world which one could not have achieved without their aid. Freud believed that science was adaptive because it facilitated mastery of the external world; but was it not the case that many scientific theories, like works of art, also originated in phantasy? Certainly, reading accounts of scientific discovery by men of the calibre of Einstein compelled me to conclude that phantasy was not merely escapist, but a way of reaching new insights concerning the nature of reality. Scientific hypotheses require proof; works of art do not. Both are concerned with creating order, with making sense out of the world and our experience of it. (Storr, 1993, p. xii)The importance of self-esteem for creative expression appears to be almost beyond disproof. Without a high regard for himself the individual who is working in the frontiers of his field cannot trust himself to discriminate between the trivial and the significant. Without trust in his own powers the person seeking improved solutions or alternative theories has no basis for distinguishing the significant and profound innovation from the one that is merely different.... An essential component of the creative process, whether it be analysis, synthesis, or the development of a new perspective or more comprehensive theory, is the conviction that one's judgment in interpreting the events is to be trusted. (Coopersmith, 1967, p. 59)In the daily stream of thought these four different stages [preparation; incubation; illumination or inspiration; and verification] constantly overlap each other as we explore different problems. An economist reading a Blue Book, a physiologist watching an experiment, or a business man going through his morning's letters, may at the same time be "incubating" on a problem which he proposed to himself a few days ago, be accumulating knowledge in "preparation" for a second problem, and be "verifying" his conclusions to a third problem. Even in exploring the same problem, the mind may be unconsciously incubating on one aspect of it, while it is consciously employed in preparing for or verifying another aspect. (Wallas, 1926, p. 81)he basic, bisociative pattern of the creative synthesis [is] the sudden interlocking of two previously unrelated skills, or matrices of thought. (Koestler, 1964, p. 121)11) The Earliest Stages in the Creative Process Involve a Commerce with DisorderEven to the creator himself, the earliest effort may seem to involve a commerce with disorder. For the creative order, which is an extension of life, is not an elaboration of the established, but a movement beyond the established, or at least a reorganization of it and often of elements not included in it. The first need is therefore to transcend the old order. Before any new order can be defined, the absolute power of the established, the hold upon us of what we know and are, must be broken. New life comes always from outside our world, as we commonly conceive that world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." (Ghiselin, 1985, p. 4)New life comes always from outside our world, as we commonly conceive our world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." Chaos and disorder are perhaps the wrong terms for that indeterminate fullness and activity of the inner life. For it is organic, dynamic, full of tension and tendency. What is absent from it, except in the decisive act of creation, is determination, fixity, and commitment to one resolution or another of the whole complex of its tensions. (Ghiselin, 1952, p. 13)[P]sychoanalysts have principally been concerned with the content of creative products, and with explaining content in terms of the artist's infantile past. They have paid less attention to examining why the artist chooses his particular activity to express, abreact or sublimate his emotions. In short, they have not made much distinction between art and neurosis; and, since the former is one of the blessings of mankind, whereas the latter is one of the curses, it seems a pity that they should not be better differentiated....Psychoanalysis, being fundamentally concerned with drive and motive, might have been expected to throw more light upon what impels the creative person that in fact it has. (Storr, 1993, pp. xvii, 3)A number of theoretical approaches were considered. Associative theory, as developed by Mednick (1962), gained some empirical support from the apparent validity of the Remote Associates Test, which was constructed on the basis of the theory.... Koestler's (1964) bisociative theory allows more complexity to mental organization than Mednick's associative theory, and postulates "associative contexts" or "frames of reference." He proposed that normal, non-creative, thought proceeds within particular contexts or frames and that the creative act involves linking together previously unconnected frames.... Simonton (1988) has developed associative notions further and explored the mathematical consequences of chance permutation of ideas....Like Koestler, Gruber (1980; Gruber and Davis, 1988) has based his analysis on case studies. He has focused especially on Darwin's development of the theory of evolution. Using piagetian notions, such as assimilation and accommodation, Gruber shows how Darwin's system of ideas changed very slowly over a period of many years. "Moments of insight," in Gruber's analysis, were the culminations of slow long-term processes.... Finally, the information-processing approach, as represented by Simon (1966) and Langley et al. (1987), was considered.... [Simon] points out the importance of good problem representations, both to ensure search is in an appropriate problem space and to aid in developing heuristic evaluations of possible research directions.... The work of Langley et al. (1987) demonstrates how such search processes, realized in computer programs, can indeed discover many basic laws of science from tables of raw data.... Boden (1990a, 1994) has stressed the importance of restructuring the problem space in creative work to develop new genres and paradigms in the arts and sciences. (Gilhooly, 1996, pp. 243-244; emphasis in original)Historical dictionary of quotations in cognitive science > Creativity
- 1
- 2
См. также в других словарях:
COMPOSITION MUSICALE — Dans son Dictionnaire de musique , Jean Jacques Rousseau définit la composition musicale comme «l’art d’inventer et d’écrire des chants, de les accompagner d’une harmonie convenable, de faire, en un mot, une pièce complète de musique avec toutes… … Encyclopédie Universelle
Composition — may refer to: Composition (logical fallacy), in which one assumes that a whole has a property solely because its various parts have that property Compounding is also known as composition in linguistic literature in computer science Object… … Wikipedia
Reference electrode — Reference electrodeis an electrode which has a stable and well known electrode potential.The high stability of the electrode potential is usually reached by employing a redox system with constant (buffered or saturated) concentrations of each… … Wikipedia
Composition over inheritance — in object oriented programming is a technique by which classes may achieve polymorphic behavior and code reuse by containing other classes which implement the desired functionality instead of through inheritance.[1] This technique is also… … Wikipedia
Composition B — La composition B est un explosif militaire, composé d un mélange de RDX et de TNT. Elle est utilisée comme explosif principal dans les obus d artillerie, les roquettes, les mines terrestres, les grenades[1]. Elle a été également utilisée dans les … Wikipédia en Français
Composition du convoi PQ 17 — Le convoi PQ 17 est un convoi de l Arctique chargé de ravitailler l URSS en 1942. Sommaire 1 Les navires marchands 1.1 Les navires américains 1.2 Les navires britanniques 1.3 … Wikipédia en Français
Composition d'un appel — Appel Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Pour l’article homophone, voir Appelle … Wikipédia en Français
Composition de l'eau — Molécule d eau Pour les articles homonymes, voir eau (homonymie). Article principal : eau. Eau … Wikipédia en Français
Algèbre de composition — En mathématiques, les algèbres de composition sur un corps commutatif sont des structures algébriques qui généralisent simultanément le corps des nombres complexes, le corps des quaternions de Hamilton et l algèbre des octonions de Cayley. Dans… … Wikipédia en Français
Object composition — In computer science, object composition (not to be confused with function composition) is a way to combine simple objects or data types into more complex ones. Compositions are a critical building block of many basic data structures, including… … Wikipedia
musical composition — Introduction the act of conceiving a piece of music, the art of creating music, or the finished product. These meanings are interdependent and presume a tradition in which musical works exist as repeatable entities. In this sense,… … Universalium