Перевод: с английского на все языки

со всех языков на английский

member+of+the+institution+of+electrical+engineers

  • 1 M.I.E.E.

    English-Slovenian dictionary > M.I.E.E.

  • 2 Donkin, Bryan IV

    [br]
    b. 29 April 1903 London, England
    d. 17 October 1964 Albury, Surrey, England
    [br]
    English electrical engineer.
    [br]
    Bryan Donkin IV was the son of S.B.Donkin (1871–1952) and the great-great-grandson of Bryan Donkin I (1768–1855). He was educated at Gresham's School in Holt, and at Pembroke College, Cambridge. He served a three-year apprenticeship with the English Electric Company Ltd, followed by a special one-year course with the General Electric Company of America. He became a partner in the consulting firm of Kennedy \& Donkin in 1933 (see Donkin, Bryan III) and was associated with the construction of 132 kV and 275 kV overhead-transmission lines in Britain and with many electricity generating schemes. He was responsible for the design of the Pimlico district heating scheme, and was a member of the Institution of Civil Engineers, the Institution of Electrical Engineers and the American Institute of Electrical Engineers.
    [br]
    Principal Honours and Distinctions
    President, Association of Supervising Electrical Engineers 1954–6. President, Engineer's Guild 1954–6. President, Junior Institution of Engineers 1956–7. Vice-President, Institution of Electrical Engineers 1960–4.
    RTS

    Biographical history of technology > Donkin, Bryan IV

  • 3 Paul, Robert William

    [br]
    b. 3 October 1869 Highbury, London, England
    d. 28 March 1943 London, England
    [br]
    English scientific instrument maker, inventor of the Unipivot electrical measuring instrument, and pioneer of cinematography.
    [br]
    Paul was educated at the City of London School and Finsbury Technical College. He worked first for a short time in the Bell Telephone Works in Antwerp, Belgium, and then in the electrical instrument shop of Elliott Brothers in the Strand until 1891, when he opened an instrument-making business at 44 Hatton Garden, London. He specialized in the design and manufacture of electrical instruments, including the Ayrton Mather galvanometer. In 1902, with a purpose-built factory, he began large batch production of his instruments. He also opened a factory in New York, where uncalibrated instruments from England were calibrated for American customers. In 1903 Paul introduced the Unipivot galvanometer, in which the coil was supported at the centre of gravity of the moving system on a single pivot. The pivotal friction was less than in a conventional instrument and could be used without accurate levelling, the sensitivity being far beyond that of any pivoted galvanometer then in existence.
    In 1894 Paul was asked by two entrepreneurs to make copies of Edison's kinetoscope, the pioneering peep-show moving-picture viewer, which had just arrived in London. Discovering that Edison had omitted to patent the machine in England, and observing that there was considerable demand for the machine from show-people, he began production, making six before the end of the year. Altogether, he made about sixty-six units, some of which were exported. Although Edison's machine was not patented, his films were certainly copyrighted, so Paul now needed a cinematographic camera to make new subjects for his customers. Early in 1895 he came into contact with Birt Acres, who was also working on the design of a movie camera. Acres's design was somewhat impractical, but Paul constructed a working model with which Acres filmed the Oxford and Cambridge Boat Race on 30 March, and the Derby at Epsom on 29 May. Paul was unhappy with the inefficient design, and developed a new intermittent mechanism based on the principle of the Maltese cross. Despite having signed a ten-year agreement with Paul, Acres split with him on 12 July 1895, after having unilaterally patented their original camera design on 27 May. By the early weeks of 1896, Paul had developed a projector mechanism that also used the Maltese cross and which he demonstrated at the Finsbury Technical College on 20 February 1896. His Theatrograph was intended for sale, and was shown in a number of venues in London during March, notably at the Alhambra Theatre in Leicester Square. There the renamed Animatographe was used to show, among other subjects, the Derby of 1896, which was won by the Prince of Wales's horse "Persimmon" and the film of which was shown the next day to enthusiastic crowds. The production of films turned out to be quite profitable: in the first year of the business, from March 1896, Paul made a net profit of £12,838 on a capital outlay of about £1,000. By the end of the year there were at least five shows running in London that were using Paul's projectors and screening films made by him or his staff.
    Paul played a major part in establishing the film business in England through his readiness to sell apparatus at a time when most of his rivals reserved their equipment for sole exploitation. He went on to become a leading producer of films, specializing in trick effects, many of which he pioneered. He was affectionately known in the trade as "Daddy Paul", truly considered to be the "father" of the British film industry. He continued to appreciate fully the possibilities of cinematography for scientific work, and in collaboration with Professor Silvanus P.Thompson films were made to illustrate various phenomena to students.
    Paul ended his involvement with film making in 1910 to concentrate on his instrument business; on his retirement in 1920, this was amalgamated with the Cambridge Instrument Company. In his will he left shares valued at over £100,000 to form the R.W.Paul Instrument Fund, to be administered by the Institution of Electrical Engineers, of which he had been a member since 1887. The fund was to provide instruments of an unusual nature to assist physical research.
    [br]
    Principal Honours and Distinctions
    Fellow of the Physical Society 1920. Institution of Electrical Engineers Duddell Medal 1938.
    Bibliography
    17 March 1903, British patent no. 6,113 (the Unipivot instrument).
    1931, "Some electrical instruments at the Faraday Centenary Exhibition 1931", Journal of Scientific Instruments 8:337–48.
    Further Reading
    Obituary, 1943, Journal of the Institution of Electrical Engineers 90(1):540–1. P.Dunsheath, 1962, A History of Electrical Engineering, London: Faber \& Faber, pp.
    308–9 (for a brief account of the Unipivot instrument).
    John Barnes, 1976, The Beginnings of Cinema in Britain, London. Brian Coe, 1981, The History of Movie Photography, London.
    BC / GW

    Biographical history of technology > Paul, Robert William

  • 4 Kennedy, Sir Alexander Blackie William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 17 March 1847 Stepney, London, England d. 1928
    [br]
    English marine engineer and educator.
    [br]
    Sir Alexander Kennedy was trained as a marine engineer. The son of a Congregational minister, he was educated at the City of London School and the School of Mines, Jermyn Street. He was then apprenticed to J. \& W.Dudgeon of Millwall, marine engineers, and went on to become a draughtsman to Sir Charles Marsh Palmer of Jarrow (with whom he took part in the development of the compound steam-engine for marine use) and T.M.Tennant \& Co. of Leith. In 1874 he was appointed Professor of Engineering at University College, London. He built up an influential School of Engineering, being the first in England to integrate laboratory work as a regular feature of instruction. The engineering laboratory that he established in 1878 has been described as "the first of its kind in England" (Proceedings of the Institution of Civil Engineers). He and his students conducted important experiments on the strength and elasticity of materials, boiler testing and related subjects. He followed the teaching of Franz Reuleaux, whose Kinematics of Machinery he translated from the German.
    While thus breaking new educational ground at University College, Kennedy concurrently established a very thriving private practice as a consulting engineer in partnership with Bernard Maxwell Jenkin (the son of Fleeming Jenkin), to pursue which he relinquished his academic posts in 1889. He planned and installed the whole electricity system for the Westminster Electric Supply Corporation, and other electricity companies. He was also heavily involved in the development of electrically powered transport systems. During the First World War he served on a panel of the Munitions Invention Department, and after the war he undertook to record photographically the scenes of desolation in his book From Ypres to Verdun (1921). Towards the end of his life, he pursued his interest in archaeology with the exploration of Petra, recorded in a monograph: Petra. Its History and Monuments (1925). He also joined the Institution of Mechanical Engineers in 1879, becoming the President of that body in 1894, and he joined the Institution of Electrical Engineers in 1890. Kennedy was thus something of an engineering polymath, as well as being an outstanding engineering educationalist.
    [br]
    Principal Honours and Distinctions
    FRS 1887. Knighted 1905. Member, Institution of Civil Engineers 1879; President, 1906. President, Institution of Mechanical Engineers 1894.
    Bibliography
    1921, From Ypresto Verdum.
    1925, Petra. Its History and Monuments.
    Further Reading
    DNB supplement.
    AB

    Biographical history of technology > Kennedy, Sir Alexander Blackie William

  • 5 Taylor, William

    [br]
    b. 11 June 1865 London, England
    d. 28 February 1937 Laughton, Leicestershire, England
    [br]
    English mechanical engineer and metrologist, originator of standard screw threads for lens mountings and inventor of "Dimple" golf balls.
    [br]
    William Taylor served an apprenticeship from 1880 to 1885 in London with Paterson and Cooper, electrical engineers and instrument makers. He studied at the Finsbury Technical College under Professors W.E.Ayrton (1847–1908) and John Perry (1850–1920). He remained with Paterson and Cooper until 1887, when he joined his elder brother, who had set up in Leicester as a manufacturer of optical instruments. The firm was then styled T.S. \& W.Taylor and a few months later, when H.W.Hobson joined them as a partner, it became Taylor, Taylor and Hobson, as it was known for many years.
    William Taylor was mainly responsible for technical developments in the firm and he designed the special machine tools required for making lenses and their mountings. However, his most notable work was in originating methods of measuring and gauging screw threads. He proposed a standard screw-thread for lens mountings that was adopted by the Royal Photographic Society, and he served on screw thread committees of the British Standards Institution and the British Association. His interest in golf led him to study the flight of the golf ball, and he designed and patented the "Dimple" golf ball and a mechanical driving machine for testing golf balls.
    He was an active member of the Institution of Mechanical Engineers, being elected Associate Member in 1894, Member in 1901 and Honorary Life Member in 1936. He served on the Council from 1918 and was President in 1932. He took a keen interest in engineering education and advocated the scientific study of materials, processes and machine tools, and of management. His death occurred suddenly while he was helping to rescue his son's car from a snowdrift.
    [br]
    Principal Honours and Distinctions
    OBE 1918. FRS 1934. President, Institution of Mechanical Engineers 1932.
    Further Reading
    K.J.Hume, 1980, A History of Engineering Metrology, London, 110–21 (a short account of William Taylor and of Taylor, Taylor and Hobson).
    RTS

    Biographical history of technology > Taylor, William

  • 6 Guest, James John

    [br]
    b. 24 July 1866 Handsworth, Birmingham, England
    d. 11 June 1956 Virginia Water, Surrey, England
    [br]
    English mechanical engineer, engineering teacher and researcher.
    [br]
    James John Guest was educated at Marlborough in 1880–4 and at Trinity College, Cambridge, graduating as fifth wrangler in 1888. He received practical training in several workshops and spent two years in postgraduate work at the Engineering Department of Cambridge University. After working as a draughtsman in the machine-tool, hydraulic and crane departments of Tangyes Ltd at Birmingham, he was appointed in 1896 Assistant Professor of Engineering at McGill University in Canada. After a short time he moved to the Polytechnic Institute at Worcester, Massachusetts, where he was for three years Professor of Mechanical Engineering and Head of the Engineering Department. In 1899 he returned to Britain and set up as a consulting engineer in Birmingham, being a partner in James J.Guest \& Co. For the next fifteen years he combined this work with research on grinding phenomena. He also developed a theory of grinding which he first published in a paper at the British Association for the Advancement of Science in 1914 and elaborated in a paper to the Institution of Mechanical Engineers and in his book Grinding Machinery (1915). During the First World War, in 1916–17, he was in charge of inspection in the Staffordshire and Shropshire Area, Ministry of Munitions. In 1917 he returned to teaching as Reader in Graphics and Structural Engineering at University College London. His final appointment was about 1923 as Professor of Mechanical and Electrical Engineering, Artillery College, Woolwich, which later became the Military College of Science.
    He carried out research on the strength of materials and contributed many articles on the subject to the technical press. He originated Guest's Law for a criterion of failure of materials under combined stresses, first published in 1900. He was a Member of the Institution of Mechanical Engineers in 1900–6 and from 1919 and contributed to their proceedings in many discussions and two major papers.
    [br]
    Bibliography
    Of many publications by Guest, the most important are: 1900, "Ductile materials under combined stress", Proceedings of the Physical Society 17:202.
    1915, Grinding Machinery, London.
    1915, "Theory of grinding, with reference to the selection of speeds in plain and internal work", Proceedings of the Institution of Mechanical Engineers 89:543.
    1917. "Torsional hysteresis of mild steel", Proceedings of the Royal Society A93:313.
    1918. with F.C.Lea, "Curved beams", Proceedings of the Royal Society A95:1. 1930, "Effects of rapidly acting stress", Proceedings of the Institution of Mechanical
    Engineers 119:1,273.
    RTS

    Biographical history of technology > Guest, James John

  • 7 Duddell, William du Bois

    SUBJECT AREA: Electricity
    [br]
    b. 1872 Kensington, London, England
    d. 4 November 1917 London, England
    [br]
    English engineer, inventor of the first practical oscillograph.
    [br]
    After an education at the College of Stanislas, Cannes, Duddell served an apprenticeship with Davy Paxman of Colchester. Studying under Ayrton and Mather at the Central Technical College in South Kensington, he found the facilities for experimental work of exceptional value to him and remained there for some years. In 1897 Duddell produced a galvanometer which was sufficiently responsive to display an alternating-current wave-form. This instrument, with a coil carrying a mirror in the air gap of a powerful electromagnet, had a small periodic time. An oscillating mirror driven by a synchronous motor spread out the deflection on a time-scale. This development became the first commercial oscillograph and brought Duddell into prominence as a first-rate designer of special instruments. The Duddell oscillograph remained in use until after the Second World War, examples being used for recording short-circuit tests on high-power switchgear and other rapidly varying or transient phenomena. His next important work was to collaborate with Professor Marchant at Liverpool University to investigate the characteristics of the electric arc. This led to the suggestion that, coupled to a resonant circuit, the electric arc could form a generator of high-frequency currents. This arrangement was later developed by Poulson for wireless telegraphy. Duddell spent the last years of his life on government research as a member of the Admiralty Board of Inventions and Research and also of the Inventions Board of the Ministry of Munitions.
    [br]
    Principal Honours and Distinctions
    CBE 1916. FRS 1907. Royal Society Hughes Medal 1912. President, Institution of Electrical Engineers 1912 and 1913.
    Bibliography
    1897, Electrician, 39:636–8 (describes his oscillograph). 5 March 1898, British patent no. 5,449 (the oscillograph).
    1899, with E.W.Marchant, "Experiments on alternate current arcs by aid of oscillograph", Journal of the Institution of Electrical Engineers 28: 1–107.
    Further Reading
    V.J.Phillips, 1987, Waveforms, Bristol (a comprehensive account).
    1945, "50 years of scientific instrument manufacture", Engineering, 159:461.
    GW

    Biographical history of technology > Duddell, William du Bois

  • 8 Smith, Willoughby

    [br]
    b. 16 April 1828 Great Yarmouth, England
    d. 17 July 1891 Eastbourne, England
    [br]
    English engineer of submarine telegraph cables who observed that light reduced the resistance of selenium.
    [br]
    Smith joined the Gutta Percha Company, London, in 1848 and successfully experimented with the use of gutta-percha, a natural form of latex, for the insulation of conducting wires. As a result, he was made responsible for the laying of the first cross-Channel cable between Dover and Calais in 1850. Four years later he laid the first Mediterranean cable between Spezia, Italy, and Corsica and Sardinia, later extending it to Algeria. On its completion he became Manager of the Gutta Percha works, which in 1864 became the Telegraph and Construction Company. In 1865 he assisted on board the Great Eastern with the laying of the transatlantic cable by Bright.
    Clearly his management responsibilities did not stop him from experimenting practically. In 1866 he discovered that the resistance of a selenium rod was reduced by the action of incident light, an early discovery of the photoelectric effect more explicitly observed by Hertz and subsequently explained by Einstein. In 1883 he read a paper to the Society of Telegraph Engineers (later the Institution of Electrical Engineers), suggesting the possibility of wireless communication with moving trains, an idea that was later successfully taken up by others, and in 1888 he demonstrated the use of water as a practical means of communication with a lighthouse. Four years later, after his death, the system was tried between Alum Bay and the Needles in the Isle of Wight, and it was used subsequently for the Fastnet Rock lighthouse some 10 miles (16 km) off the south-west coast of Ireland.
    [br]
    Principal Honours and Distinctions
    Founder and Council Member of the Society of Telegraph Engineers 1871; President 1873.
    Bibliography
    The effect of light on the resistance of selenium was reported in a letter to the Vice- Chairman of the Society of Telegraph Engineers on 4 February 1873.
    7 June 1897, British patent no. 8,159 (the use of water, instead of cable, as a conductor).
    November 1888, article in Electrician (describes his idea of using water as a conductor, rather than cable).
    Further Reading
    E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    C.T.Bright, 1898, Submarine Cables, Their History, Construction and Working.
    KF

    Biographical history of technology > Smith, Willoughby

  • 9 Clarke, Arthur Charles

    [br]
    b. 16 December 1917 Minehead, Somerset, England
    [br]
    English writer of science fiction who correctly predicted the use of geo-stationary earth satellites for worldwide communications.
    [br]
    Whilst still at Huish's Grammar School, Taunton, Clarke became interested in both space science and science fiction. Unable to afford a scientific education at the time (he later obtained a BSc at King's College, London), he pursued both interests in his spare time while working in the Government Exchequer and Audit Department between 1936 and 1941. He was a founder member of the British Interplanetary Society, subsequently serving as its Chairman in 1946–7 and 1950–3. From 1941 to 1945 he served in the Royal Air Force, becoming a technical officer in the first GCA (Ground Controlled Approach) radar unit. There he began to produce the first of many science-fiction stories. In 1949–50 he was an assistant editor of Science Abstracts at the Institution of Electrical Engineers.
    As a result of his two interests, he realized during the Second World War that an artificial earth satellite in an equatorial orbital with a radius of 35,000 km (22,000 miles) would appear to be stationary, and that three such geo-stationary, or synchronous, satellites could be used for worldwide broadcast or communications. He described these ideas in a paper published in Wireless World in 1945. Initially there was little response, but within a few years the idea was taken up by the US National Aeronautics and Space Administration and in 1965 the first synchronous satellite, Early Bird, was launched into orbit.
    In the 1950s he moved to Ceylon (now Sri Lanka) to pursue an interest in underwater exploration, but he continued to write science fiction, being known in particular for his contribution to the making of the classic Stanley Kubrick science-fiction film 2001: A Space Odyssey, based on his book of the same title.
    [br]
    Principal Honours and Distinctions
    Clarke received many honours for both his scientific and science-fiction writings. For his satellite communication ideas his awards include the Franklin Institute Gold Medal 1963 and Honorary Fellowship of the American Institute of Aeronautics and Astronautics 1976. For his science-fiction writing he received the UNESCO Kalinga Prize (1961) and many others. In 1979 he became Chancellor of Moratuwa University in Sri Lanka and in 1980 Vikran Scrabhai Professor at the Physical Research Laboratory of the University of Ahmedabad.
    Bibliography
    1945. "Extra-terrestrial relays: can rocket stations give world wide coverage?", Wireless World L1: 305 (puts forward his ideas for geo-stationary communication satellites).
    1946. "Astronomical radar: some future possibilities", Wireless World 52:321.
    1948, "Electronics and space flight", Journal of the British Interplanetary Society 7:49. Other publications, mainly science-fiction novels, include: 1955, Earthlight, 1956, The
    Coast of Coral; 1958, Voice Across the Sea; 1961, Fall of Moondust; 1965, Voices
    from the Sky, 1977, The View from Serendip; 1979, Fountain of Paradise; 1984, Ascent to Orbit: A Scientific Autobiography, and 1984, 2010: Odyssey Two (a sequel to 2001: A Space Odyssey that was also made into a film).
    Further Reading
    1986, Encyclopaedia Britannica.
    1991, Who's Who, London: A. \& C.Black.
    KF

    Biographical history of technology > Clarke, Arthur Charles

  • 10 accredit

    [ə'kredɪt]
    гл.

    Our envoy was accredited to their new government. — Наш посланник был уполномочен вести переговоры с их новым правительством.

    2) аккредитовать, принять в качестве аккредитованного лица ( дипломатического представителя)

    Journalists can be accredited to a state body or a public association. — Журналисты могут быть аккредитованы в государственном органе или общественном объединении.

    Any member of the media who wishes to be accredited for the coverage of the 6th Global Forum must observe the following guidelines. —Любой представитель СМИ, который желает быть аккредитованный на Шестом всемирном форуме, должен познакомиться со следующими указаниями.

    3) приписывать (что-л.)

    He was accredited with having said that. — Ему приписывали это высказывание.

    The discovery of distillation is usually accredited to the Arabs of the eleventh century AD. — Считается, что дистилляцию придумали арабы в одиннадцатом веке.

    4) доверять; (по)верить

    I accredited his story. — Я поверил его рассказу.

    Syn:
    5) аккредитовать (учебное заведение) ( признать правомочным выдавать дипломы и присваивать учёные степени); аккредитовать (учреждение; признать соответствующим официальным стандартам), сертифицировать, гарантировать качество

    This programme is fully accredited by the Institution of Electrical Engineers. — Эта программа полностью соответствует стандартам Института инженеров-электриков.

    Англо-русский современный словарь > accredit

  • 11 Herbert, Edward Geisler

    [br]
    b. 23 March 1869 Dedham, near Colchester, Essex, England
    d. 9 February 1938 West Didsbury, Manchester, England
    [br]
    English engineer, inventor of the Rapidor saw and the Pendulum Hardness Tester, and pioneer of cutting tool research.
    [br]
    Edward Geisler Herbert was educated at Nottingham High School in 1876–87, and at University College, London, in 1887–90, graduating with a BSc in Physics in 1889 and remaining for a further year to take an engineering course. He began his career as a premium apprentice at the Nottingham works of Messrs James Hill \& Co, manufacturers of lace machinery. In 1892 he became a partner with Charles Richardson in the firm of Richardson \& Herbert, electrical engineers in Manchester, and when this partnership was dissolved in 1895 he carried on the business in his own name and began to produce machine tools. He remained as Managing Director of this firm, reconstituted in 1902 as a limited liability company styled Edward G.Herbert Ltd, until his retirement in 1928. He was joined by Charles Fletcher (1868–1930), who as joint Managing Director contributed greatly to the commercial success of the firm, which specialized in the manufacture of small machine tools and testing machinery.
    Around 1900 Herbert had discovered that hacksaw machines cut very much quicker when only a few teeth are in operation, and in 1902 he patented a machine which utilized this concept by automatically changing the angle of incidence of the blade as cutting proceeded. These saws were commercially successful, but by 1912, when his original patents were approaching expiry, Herbert and Fletcher began to develop improved methods of applying the rapid-saw concept. From this work the well-known Rapidor and Manchester saws emerged soon after the First World War. A file-testing machine invented by Herbert before the war made an autographic record of the life and performance of the file and brought him into close contact with the file and tool steel manufacturers of Sheffield. A tool-steel testing machine, working like a lathe, was introduced when high-speed steel had just come into general use, and Herbert became a prominent member of the Cutting Tools Research Committee of the Institution of Mechanical Engineers in 1919, carrying out many investigations for that body and compiling four of its Reports published between 1927 and 1933. He was the first to conceive the idea of the "tool-work" thermocouple which allowed cutting tool temperatures to be accurately measured. For this advance he was awarded the Thomas Hawksley Gold Medal of the Institution in 1926.
    His best-known invention was the Pendulum Hardness Tester, introduced in 1923. This used a spherical indentor, which was rolled over, rather than being pushed into, the surface being examined, by a small, heavy, inverted pendulum. The period of oscillation of this pendulum provided a sensitive measurement of the specimen's hardness. Following this work Herbert introduced his "Cloudburst" surface hardening process, in which hardened steel engineering components were bombarded by steel balls moving at random in all directions at very high velocities like gaseous molecules. This treatment superhardened the surface of the components, improved their resistance to abrasion, and revealed any surface defects. After bombardment the hardness of the superficially hardened layers increased slowly and spontaneously by a room-temperature ageing process. After his retirement in 1928 Herbert devoted himself to a detailed study of the influence of intense magnetic fields on the hardening of steels.
    Herbert was a member of several learned societies, including the Manchester Association of Engineers, the Institute of Metals, the American Society of Mechanical Engineers and the Institution of Mechanical Engineers. He retained a seat on the Board of his company from his retirement until the end of his life.
    [br]
    Principal Honours and Distinctions
    Manchester Association of Engineers Butterworth Gold Medal 1923. Institution of Mechanical Engineers Thomas Hawksley Gold Medal 1926.
    Bibliography
    E.G.Herbert obtained several British and American patents and was the author of many papers, which are listed in T.M.Herbert (ed.), 1939, "The inventions of Edward Geisler Herbert: an autobiographical note", Proceedings of the Institution of Mechanical Engineers 141: 59–67.
    ASD / RTS

    Biographical history of technology > Herbert, Edward Geisler

  • 12 Kapp, Gisbert Johann Eduard Karl

    SUBJECT AREA: Electricity
    [br]
    b. 2 September 1852 Mauer, Vienna, Austria
    d. 10 August 1922 Birmingham, England
    [br]
    Austrian (naturalized British in 1881) engineer and a pioneer of dynamo design, being particularly associated with the concept of the magnetic circuit.
    [br]
    Kapp entered the Polytechnic School in Zurich in 1869 and gained a mechanical engineering diploma. He became a member of the engineering staff at the Vienna International Exhibition of 1873, and then spent some time in the Austrian navy before entering the service of Gwynne \& Co. of London, where he designed centrifugal pumps and gas exhausters. Kapp resolved to become an electrical engineer after a visit to the Paris Electrical Exhibition of 1881 and in the following year was appointed Manager of the Crompton Co. works at Chelmsford. There he developed and patented the dynamo with compound field winding. Also at that time, with Crompton, he patented electrical measuring instruments with over-saturated electromagnets. He became a naturalized British subject in 1881.
    In 1886 Kapp's most influential paper was published. This described his concept of the magnetic circuit, providing for the first time a sound theoretical basis for dynamo design. The theory was also developed independently by J. Hopkinson. After commencing practice as a consulting engineer in 1884 he carried out design work on dynamos and also electricity-supply and -traction schemes in Germany, Italy, Norway, Russia and Switzerland. From 1891 to 1894 much of his time was spent designing a new generating station in Bristol, officially as Assistant to W.H. Preece. There followed an appointment in Germany as General Secretary of the Verband Deutscher Electrotechniker. For some years he edited the Electrotechnische Zeitschrift and was also a part-time lecturer at the Charlottenberg Technical High School in Berlin. In 1904 Kapp was invited to accept the new Chair of Electrical Engineering at the University of Birmingham, which he occupied until 1919. He was the author of several books on electrical machine and transformer design.
    [br]
    Principal Honours and Distinctions
    Institution of Civil Engineers Telford Medal 1886 and 1888. President, Institution of Electrical Engineers 1909.
    Bibliography
    10 October 1882, with R.E.B.Crompton, British patent no. 4,810; (the compound wound dynamo).
    1886, "Modern continuous current dynamo electric machines and their engines", Proceedings of the Institution of Civil Engineers 83: 123–54.
    Further Reading
    D.G.Tucker, 1989, "A new archive of Gisbert Kapp papers", Proceedings of the Meeting on History of Electrical Engineering, IEE 4/1–4/11 (a transcript of an autobiography for his family).
    D.G.Tucker, 1973, Gisbert Kapp 1852–1922, Birmingham: Birmingham University (includes a bibliography of his most important publications).
    GW

    Biographical history of technology > Kapp, Gisbert Johann Eduard Karl

  • 13 Campbell-Swinton, Alan Archibald

    [br]
    b. 18 October 1863 Kimmerghame, Berwickshire, Scotland
    d. 19 February 1930 London, England
    [br]
    Scottish electrical engineer who correctly predicted the development of electronic television.
    [br]
    After a time at Cargilfield Trinity School, Campbell-Swinton went to Fettes College in Edinburgh from 1878 to 1881 and then spent a year abroad in France. From 1882 until 1887 he was employed at Sir W.G.Armstrong's works in Elswick, Newcastle, following which he set up his own electrical contracting business in London. This he gave up in 1904 to become a consultant. Subsequently he was an engineer with many industrial companies, including the W.T.Henley Telegraph Works Company, Parson Marine Steam Turbine Company and Crompton Parkinson Ltd, of which he became a director. During this time he was involved in electrical and scientific research, being particularly associated with the development of the Parson turbine.
    In 1903 he tried to realize distant electric vision by using a Braun oscilloscope tube for the. image display, a second tube being modified to form a synchronously scanned camera, by replacing the fluorescent display screen with a photoconductive target. Although this first attempt at what was, in fact, a vidicon camera proved unsuccessful, he was clearly on the right lines and in 1908 he wrote a letter to Nature with a fairly accurate description of the principles of an all-electronic television system using magnetically deflected cathode ray tubes at the camera and receiver, with the camera target consisting of a mosaic of photoconductive elements that were scanned and discharged line by line by an electron beam. He expanded on his ideas in a lecture to the Roentgen Society, London, in 1911, but it was over twenty years before the required technology had advanced sufficiently for Shoenberg's team at EMI to produce a working system.
    [br]
    Principal Honours and Distinctions
    FRS (Member of Council 1927 and 1929). Freeman of the City of London. Liveryman of Goldsmiths' Company. First President, Wireless Society 1920–1. Vice-President, Royal Society of Arts, and Chairman of Council 1917–19,1920–2. Chairman, British Scientific Research Association. Vice-President, British Photographic Research Association. Member of the Broadcasting Board 1924. Vice-President, Roentgen Society 1911–12. Vice-President, Institution of Electrical Engineers 1921–5. President, Radio Society of Great Britain 1913–21. Manager, Royal Institution 1912–15.
    Bibliography
    1908, Nature 78:151; 1912, Journal of the Roentgen Society 8:1 (both describe his original ideas for electronic television).
    1924, "The possibilities of television", Wireless World 14:51 (gives a detailed description of his proposals, including the use of a threestage valve video amplifier).
    1926, Nature 118:590 (describes his early experiments of 1903).
    Further Reading
    The Proceedings of the International Conference on the History of Television. From Early Days to the Present, November 1986, Institution of Electrical Engineers Publication No. 271 (a report of some of the early developments in television). A.A.Campbell-Swinton FRS 1863–1930, Royal Television Society Monograph, 1982, London (a biography).
    KF

    Biographical history of technology > Campbell-Swinton, Alan Archibald

  • 14 Thomson, Sir William, Lord Kelvin

    [br]
    b. 26 June 1824 Belfast, Ireland (now Northern Ireland)
    d. 17 December 1907 Largs, Scotland
    [br]
    Irish physicist and inventor who contributed to submarine telegraphy and instrumentation.
    [br]
    After education at Glasgow University and Peterhouse, Cambridge, a period of study in France gave Thomson an interest in experimental work and instrumentation. He became Professor of Natural Philosophy at Glasgow in 1846 and retained the position for the rest of his career, establishing the first teaching laboratory in Britain.
    Among his many contributions to science and engineering was his concept, introduced in 1848, of an "absolute" zero of temperature. Following on from the work of Joule, his investigations into the nature of heat led to the first successful liquefaction of gases such as hydrogen and helium, and later to the science of low-temperature physics.
    Cable telegraphy gave an impetus to the scientific measurement of electrical quantities, and for many years Thomson was a member of the British Association Committee formed in 1861 to consider electrical standards and to develop units; these are still in use. Thomson first became Scientific Adviser to the Atlantic Telegraph Company in 1857, sailing on the Agamemnon and Great Eastern during the cable-laying expeditions. He invented a mirror galvanometer and more importantly the siphon recorder, which, used as a very sensitive telegraph receiver, provided a permanent record of signals. He also laid down the design parameters of long submarine cables and discovered that the conductivity of copper was greatly affected by its purity. A major part of the success of the Atlantic cable in 1866 was due to Thomson, who received a knighthood for his contribution.
    Other instruments he designed included a quadrant electrostatic voltmeter to measure high voltages, and his "multi-cellular" instrument for low voltages. They could be used on alternating or direct current and were free from temperature errors. His balances for precision current measurement were widely used in standardizing laboratories.
    Thomson was a prolific writer of scientific papers on subjects across the whole spectrum of physics; between 1855 and 1866 he published some 110 papers, with a total during his life of over 600. In 1892 he was raised to the peerage as Baron Kelvin of Largs. By the time of his death he was looked upon as the "father" of British physics, but despite his outstanding achievements his later years were spent resisting change and progress.
    [br]
    Principal Honours and Distinctions
    Knighted 1866. Created Lord Kelvin of Largs 1892. FRS 1851. President, Royal Society 1890–4. An original member of the Order of Merit 1902. President, Society of Telegraph Engineers 1874. President, Institution of Electrical Engineers 1889 and 1907. Royal Society Royal Medal 1856, Copley Medal 1883.
    Bibliography
    1872, Reprints of Papers on Electrostatics and Magnetism, London; 1911, Mathematical and Physical Papers, 6 vols, Cambridge (collections of Thomson's papers).
    Further Reading
    Silvanus P.Thompson, 1910, The Life of William Thomson, Baron Kelvin of Largs, 2 vols, London (an uncritical biography).
    D.B.Wilson, 1987, Kelvin and Stokes: A Comparative Study in Victorian Physics, Bristol (provides a present-day commentary on all aspects of Thomson's work).
    J.G.Crowther, 1962, British Scientists of the 19th Century, London, pp. 199–257 (a short critical biography).
    GW

    Biographical history of technology > Thomson, Sir William, Lord Kelvin

  • 15 Heaviside, Oliver

    [br]
    b. 18 May 1850 London, England
    d. 2 February 1925 Torquay, Devon, England
    [br]
    English physicist who correctly predicted the existence of the ionosphere and its ability to reflect radio waves.
    [br]
    Brought up in poor, almost Dickensian, circumstances, at the age of 13 years Heaviside, a nephew by marriage of Sir Charles Wheatstone, went to Camden House Grammar School. There he won a medal for science, but he was forced to leave because his parents could not afford the fees. After a year of private study, he began his working life in Newcastle in 1870 as a telegraph operator for an Anglo-Dutch cable company, but he had to give up after only four years because of increasing deafness. He therefore proceeded to spend his time studying theoretical aspects of electrical transmission and communication, and moved to Devon with his parents in 1889. Because the operation of many electrical circuits involves transient phenomena, he found it necessary to develop what he called operational calculus (which was essentially a form of the Laplace transform calculus) in order to determine the response to sudden voltage and current changes. In 1893 he suggested that the distortion that occurred on long-distance telephone lines could be reduced by adding loading coils at regular intervals, thus creating a matched-transmission line. Between 1893 and 1912 he produced a series of writings on electromagnetic theory, in one of which, anticipating a conclusion of Einstein's special theory of relativity, he put forward the idea that the mass of an electric charge increases with its velocity. When it was found that despite the curvature of the earth it was possible to communicate over very great distances using radio signals in the so-called "short" wavebands, Heaviside suggested the presence of a conducting layer in the ionosphere that reflected the waves back to earth. Since a similar suggestion had been made almost at the same time by Arthur Kennelly of Harvard, this layer became known as the Kennelly-Heaviside layer.
    [br]
    Principal Honours and Distinctions
    FRS 1891. Institution of Electrical Engineers Faraday Medal 1924. Honorary PhD Gottingen. Honorary Member of the American Association for the Advancement of Science.
    Bibliography
    1872. "A method for comparing electro-motive forces", English Mechanic (July).
    1873. Philosophical Magazine (February) (a paper on the use of the Wheatstone Bridge). 1889, Electromagnetic Waves.
    Further Reading
    I.Catt (ed.), 1987, Oliver Heaviside, The Man, St Albans: CAM Publishing.
    P.J.Nahin, 1988, Oliver Heaviside, Sage in Solitude: The Life and Works of an Electrical Genius of the Victorian Age, Institute of Electrical and Electronics Engineers, New York.
    J.B.Hunt, The Maxwellians, Ithaca: Cornell University Press.
    KF

    Biographical history of technology > Heaviside, Oliver

  • 16 Hopkinson, John

    [br]
    b. 27 July 1849 Manchester, England
    d. 27 August 1898 Petite Dent de Veisivi, Switzerland
    [br]
    English mathematician and electrical engineer who laid the foundations of electrical machine design.
    [br]
    After attending Owens College, Manchester, Hopkinson was admitted to Trinity College, Cambridge, in 1867 to read for the Mathematical Tripos. An appointment in 1872 with the lighthouse department of the Chance Optical Works in Birmingham directed his attention to electrical engineering. His most noteworthy contribution to lighthouse engineering was an optical system to produce flashing lights that distinguished between individual beacons. His extensive researches on the dielectric properties of glass were recognized when he was elected to a Fellowship of the Royal Society at the age of 29. Moving to London in 1877 he became established as a consulting engineer at a time when electricity supply was about to begin on a commercial scale. During the remainder of his life, Hopkinson's researches resulted in fundamental contributions to electrical engineering practice, dynamo design and alternating current machine theory. In making a critical study of the Edison dynamo he developed the principle of the magnetic circuit, a concept also arrived at by Gisbert Kapp around the same time. Hopkinson's improvement of the Edison dynamo by reducing the length of the field magnets almost doubled its output. In 1890, in addition to-his consulting practice, Hopkinson accepted a post as the first Professor of Electrical Engineering and Head of the Siemens laboratory recently established at King's College, London. Although he was not involved in lecturing, the position gave him the necessary facilities and staff and student assistance to continue his researches. Hopkinson was consulted on many proposals for electric traction and electricity supply, including schemes in London, Manchester, Liverpool and Leeds. He also advised Mather and Platt when they were acting as contractors for the locomotives and generating plant for the City and South London tube railway. As early as 1882 he considered that an ideal method of charging for the supply of electricity should be based on a two-part tariff, with a charge related to maximum demand together with a charge for energy supplied. Hopkinson was one the foremost expert witnesses of his day in patent actions and was himself the patentee of over forty inventions, of which the three-wire system of distribution and the series-parallel connection of traction motors were his most successful. Jointly with his brother Edward, John Hopkinson communicated the outcome of his investigations to the Royal Society in a paper entitled "Dynamo Electric Machinery" in 1886. In this he also described the later widely used "back to back" test for determining the characteristics of two identical machines. His interest in electrical machines led him to more fundamental research on magnetic materials, including the phenomenon of recalescence and the disappearance of magnetism at a well-defined temperature. For his work on the magnetic properties of iron, in 1890 he was awarded the Royal Society Royal Medal. He was a member of the Alpine Club and a pioneer of rock climbing in Britain; he died, together with three of his children, in a climbing accident.
    [br]
    Principal Honours and Distinctions
    FRS 1878. Royal Society Royal Medal 1890. President, Institution of Electrical Engineers 1890 and 1896.
    Bibliography
    7 July 1881, British patent no. 2,989 (series-parallel control of traction motors). 27 July 1882, British patent no. 3,576 (three-wire distribution).
    1901, Original Papers by the Late J.Hopkinson, with a Memoir, ed. B.Hopkinson, 2 vols, Cambridge.
    Further Reading
    J.Greig, 1970, John Hopkinson Electrical Engineer, London: Science Museum and HMSO (an authoritative account).
    —1950, "John Hopkinson 1849–1898", Engineering 169:34–7, 62–4.
    GW

    Biographical history of technology > Hopkinson, John

  • 17 Lodge, Sir Oliver Joseph

    [br]
    b. 12 June 1851 Penkhull, Staffordshire, England
    d. 22 August 1940 Lake, near Salisbury, Wiltshire, England
    [br]
    English physicist who perfected Branly's coherer; said to have given the first public demonstration of wireless telegraphy.
    [br]
    At the age of 8 Lodge entered Newport Grammar School, and in 1863–5 received private education at Coombs in Suffolk. He then returned to Staffordshire, where he assisted his father in the potteries by working as a book-keeper. Whilst staying with an aunt in London in 1866–7, he attended scientific lectures and became interested in physics. As a result of this and of reading copies of English Mechanic magazine, when he was back home in Hanley he began to do experiments and attended the Wedgewood Institute. Returning to London c. 1870, he studied initially at the Royal College of Science and then, from 1874, at University College, London (UCL), at the same time attending lectures at the Royal Institution.
    In 1875 he obtained his BSc, read a paper to the British Association on "Nodes and loops in chemical formulae" and became a physics demonstrator at UCL. The following year he was appointed a physics lecturer at Bedford College, completing his DSc in 1877. Three years later he became Assistant Professor of Mathematics at UCL, but in 1881, after only two years, he accepted the Chair of Experimental Physics at the new University College of Liverpool. There began a period of fruitful studies of electricity and radio transmission and reception, including development of the lightning conductor, discovery of the "coherent" effect of sparks and improvement of Branly's coherer, and, in 1894, what is said to be the first public demonstration of the transmission and reception (using a coherer) of wireless telegraphy, from Lewis's department store to the clock tower of Liverpool University's Victoria Building. On 10 May 1897 he filed a patent for selective tuning by self-in-ductance; this was before Marconi's first patent was actually published and its priority was subsequently upheld.
    In 1900 he became the first Principal of the new University of Birmingham, where he remained until his retirement in 1919. In his later years he was increasingly interested in psychical research.
    [br]
    Principal Honours and Distinctions
    Knighted 1902. FRS 1887. Royal Society Council Member 1893. President, Society for Psychical Research 1901–4, 1932. President, British Association 1913. Royal Society Rumford Medal 1898. Royal Society of Arts Albert Medal 1919. Institution of Electrical Engineers Faraday Medal 1932. Fourteen honorary degrees from British and other universities.
    Bibliography
    1875, "The flow of electricity in a plane", Philosophical Magazine (May, June and December).
    1876, "Thermo-electric phenomena", Philosophical Magazine (December). 1888, "Lightning conductors", Philosophical Magazine (August).
    1889, Modern Views of Electricity (lectures at the Royal Institution).
    10 May 1897, "Improvements in syntonized telegraphy without line wires", British patent no. 11,575, US patent no. 609,154.
    1898, "Radio waves", Philosophical Magazine (August): 227.
    1931, Past Years, An Autobiography, London: Hodder \& Stoughton.
    Further Reading
    W.P.Jolly, 1974, Sir Oliver Lodge, Psychical Resear cher and Scientist, London: Constable.
    E.Hawks, 1927, Pioneers of Wireless, London: Methuen.
    KF

    Biographical history of technology > Lodge, Sir Oliver Joseph

  • 18 Baumann, Karl

    [br]
    b. 18 April 1884 Switzerland
    d. 14 July 1971 Ilkley, Yorkshire
    [br]
    Swiss/British mechanical engineer, designer and developer of steam and gas turbine plant.
    [br]
    After leaving school in 1902, he went to the Ecole Polytechnique, Zurich, leaving in 1906 with an engineering diploma. He then spent a year with Professor A.Stodola, working on steam engines, turbines and internal combustion engines. He also conducted research in the strength of materials. After this, he spent two years as Research and Design Engineer at the Nuremberg works of Maschinenfabrik Augsburg-Nürnberg. He came to England in 1909 to join the British Westinghouse Co. Ltd in Manchester, and by 1912 was Chief Engineer of the Engine Department of that firm. The firm later became the Metropolitan-Vickers Electrical Co. Ltd (MV), and Baumann rose from Chief Mechanical Engineer through to, by 1929, Special Director and Member of the Executive Management Board; he remained a director until his retirement in 1949.
    For much of his career, Baumann was in the forefront of power station steam-cycle development, pioneering increased turbine entry pressures and temperatures, in 1916 introducing multi-stage regenerative feed-water heating and the Baumann turbine multi-exhaust. His 105 MW set for Battersea "A" station (1933) was for many years the largest single-axis unit in Europe. From 1938 on, he and his team were responsible for the first axial-flow aircraft propulsion gas turbines to fly in England, and jet engines in the 1990s owe much to the "Beryl" and "Sapphire" engines produced by MV. In particular, the design of the compressor for the Sapphire engine later became the basis for Rolls-Royce units, after an exchange of information between that company and Armstrong-Siddeley, who had previously taken over the aircraft engine work of MV.Further, the Beryl engine formed the basis of "Gatric", the first marine gas turbine propulsion engine.
    Baumann was elected to full membership for the Institution of Mechanical Engineers in 1929 and a year later was awarded the Thomas Hawksley Gold Medal by that body, followed by their James Clayton Prize in 1948: in the same year he became the thirty-fifth Thomas Hawksley lecturer. Many of his ideas and introductions have stood the test of time, being based on his deep and wide understanding of fundamentals.
    JB

    Biographical history of technology > Baumann, Karl

  • 19 Abel, Sir Frederick August

    [br]
    b. 17 July 1827 Woolwich, London, England
    d. 6 September 1902 Westminster, London, England
    [br]
    English chemist, co-inventor of cordite find explosives expert.
    [br]
    His family came from Germany and he was the son of a music master. He first became interested in science at the age of 14, when visiting his mineralogist uncle in Hamburg, and studied chemistry at the Royal Polytechnic Institution in London. In 1845 he became one of the twenty-six founding students, under A.W.von Hofmann, of the Royal College of Chemistry. Such was his aptitude for the subject that within two years he became von Hermann's assistant and demonstrator. In 1851 Abel was appointed Lecturer in Chemistry, succeeding Michael Faraday, at the Royal Military Academy, Woolwich, and it was while there that he wrote his Handbook of Chemistry, which was co-authored by his assistant, Charles Bloxam.
    Abel's four years at the Royal Military Academy served to foster his interest in explosives, but it was during his thirty-four years, beginning in 1854, as Ordnance Chemist at the Royal Arsenal and at Woolwich that he consolidated and developed his reputation as one of the international leaders in his field. In 1860 he was elected a Fellow of the Royal Society, but it was his studies during the 1870s into the chemical changes that occur during explosions, and which were the subject of numerous papers, that formed the backbone of his work. It was he who established the means of storing gun-cotton without the danger of spontaneous explosion, but he also developed devices (the Abel Open Test and Close Test) for measuring the flashpoint of petroleum. He also became interested in metal alloys, carrying out much useful work on their composition. A further avenue of research occurred in 1881 when he was appointed a member of the Royal Commission set up to investigate safety in mines after the explosion that year in the Sealham Colliery. His resultant study on dangerous dusts did much to further understanding on the use of explosives underground and to improve the safety record of the coal-mining industry. The achievement for which he is most remembered, however, came in 1889, when, in conjunction with Sir James Dewar, he invented cordite. This stable explosive, made of wood fibre, nitric acid and glycerine, had the vital advantage of being a "smokeless powder", which meant that, unlike the traditional ammunition propellant, gunpowder ("black powder"), the firer's position was not given away when the weapon was discharged. Although much of the preliminary work had been done by the Frenchman Paul Vieille, it was Abel who perfected it, with the result that cordite quickly became the British Army's standard explosive.
    Abel married, and was widowed, twice. He had no children, but died heaped in both scientific honours and those from a grateful country.
    [br]
    Principal Honours and Distinctions
    Grand Commander of the Royal Victorian Order 1901. Knight Commander of the Most Honourable Order of the Bath 1891 (Commander 1877). Knighted 1883. Created Baronet 1893. FRS 1860. President, Chemical Society 1875–7. President, Institute of Chemistry 1881–2. President, Institute of Electrical Engineers 1883. President, Iron and Steel Institute 1891. Chairman, Society of Arts 1883–4. Telford Medal 1878, Royal Society Royal Medal 1887, Albert Medal (Society of Arts) 1891, Bessemer Gold Medal 1897. Hon. DCL (Oxon.) 1883, Hon. DSc (Cantab.) 1888.
    Bibliography
    1854, with C.L.Bloxam, Handbook of Chemistry: Theoretical, Practical and Technical, London: John Churchill; 2nd edn 1858.
    Besides writing numerous scientific papers, he also contributed several articles to The Encyclopaedia Britannica, 1875–89, 9th edn.
    Further Reading
    Dictionary of National Biography, 1912, Vol. 1, Suppl. 2, London: Smith, Elder.
    CM

    Biographical history of technology > Abel, Sir Frederick August

См. также в других словарях:

  • Institution of Mechanical Engineers — Founder George Stephenson Professional title Chartered Mechanical Engineer Founded 27 January 1847 (1847 01 27) …   Wikipedia

  • Institution of Engineering and Technology — Infobox Non profit Non profit name = Institution of Engineering and Technology Non profit Non profit type = Professional Organization founded date = 1871 [Engineering Council UK. [http://www.engc.org.uk/institutions/institutions.aspx ECUK… …   Wikipedia

  • Society of Engineers UK — The Society of Engineers was a learned society that was integrated with the Institution of Incorporated Engineers (IIE) in 2005, [cite book|title=Engineering Technology|date=2005 04 29] with both societies later beingincorporated into the… …   Wikipedia

  • Institution of Engineers of Ireland — Infobox Non profit Non profit name = The Institution of Engineers of Ireland Cumann na nInnealtóirí Non profit Non profit type = engineering society and professional body founded date = 1835 as the Civil Engineers Society of Ireland founder =… …   Wikipedia

  • Professional qualifications in the United Kingdom — are generally awarded by professional bodies in line with their charters. These qualifications are subject to the European directives on professional qualifications. Most, but not all, professional qualifications are Chartered qualifications, and …   Wikipedia

  • The Canadian Crown and the Canadian Forces — The Canadian Crown is the controlling authority of the Canadian Forces, evidenced in the command structure, symbols and history of the armed forces of Canada. The monarch is the supreme commander of the forces, though she, her Canadian viceroys,… …   Wikipedia

  • Royal Engineers — British Army Arms and Services Combat Arms Royal Armoured Corps Infantry Guards Division Scottish Division …   Wikipedia

  • List of civil engineers — This list of civil engineers is a list of notable people who have been trained in or have practised civil engineering. Contents: Top · 0–9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A …   Wikipedia

  • Culture of the United Kingdom — The Proms is an eight week summer season of daily orchestral classical music concerts, on the last night with some traditional patriotic music of the United Kingdom.[1][2] …   Wikipedia

  • Alexander Kennedy — Infobox Engineer image width = caption = name = Alexander Kennedy nationality = English birth date = 17 March, 1847 birth place = death date = Death date and age|1928|11|1|1847|3|17 death place = education = City of London School and the Royal… …   Wikipedia

  • List of post-nominal letters — Post nominal letters are letters placed after the name of a person to indicate that the individual holds a position, office, or honour.An individual may use several different sets of post nominal letters. Honours are listed first in descending… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»