Перевод: со всех языков на все языки

со всех языков на все языки

furnace+area

  • 101 Outram, Benjamin

    [br]
    b. 1 April 1764 Alfreton, England
    d. 22 May 1805 London, England
    [br]
    English ironmaster and engineer of canals and tramroads, protagonist of angled plate rails in place of edge rails.
    [br]
    Outram's father was one of the principal promoters of the Cromford Canal, Derbyshire, and Benjamin Outram became Assistant to the canal's Engineer, William Jessop. In 1789 Outram was appointed Superintendent in charge of construction, and his responsibilities included the 2,978 yd (2,723 m) Butterley Tunnel; while the tunnel was being driven, coal and iron ore were encountered. Outram and a partner purchased the Butterley Hall estate above the tunnel and formed Outram \& Co. to exploit the coal and iron: a wide length of the tunnel beneath the company's furnace was linked to the surface by shafts to become in effect an underground wharf. Jessop soon joined the company, which grew and prospered to eventually become the long-lived Butterley Company.
    As a canal engineer, Outram's subsequent projects included the Derby, Huddersfield Narrow and Peak Forest Canals. On the Derby Canal he built a small iron aqueduct, which though designed later than the Longdon Aqueduct of Thomas Telford was opened earlier, in 1796, to become the first iron aqueduct.
    It is as a tramroad engineer that Outram is best known. In 1793 he completed a mile-long (1.6 km) tramroad from Outram \& Co.'s limestone quarry at Crich to the Cromford Canal, for which he used plate rails of the type recently developed by John Curr. He was, however, able to use a wider gauge—3 ft 6 in. (1.07 m) between the flanges—and larger wagons than Curr had been able to use underground in mines. It appears to have been Outram's idea to mount the rails on stone blocks, rather than wooden sleepers.
    Outram then engineered tramroads to extend the lines of the Derby and Peak Forest Canals. He encouraged construction of such tramroads in many parts of Britain, often as feeders of traffic to canals. He acted as Engineer, and his company often provided the rails and sometimes undertook the entire construction of a line. Foreseeing that lines would be linked together, he recommended a gauge of 4 ft 2 in. (1.27 m) between the flanges as standard, and for twenty years or so Outram's plateways, with horses or gravity as motive power, became the usual form of construction for new railways. However, experience then showed that edge rails, weight for weight, could carry greater load, and were indeed almost essential for the introduction of steam locomotives.
    [br]
    Further Reading
    R.B.Schofield, 1986, "The design and construction of the Cromford Canal, 1788–1794", Transactions of the Newcomen Society 57 (provides good coverage of Outram's early career).
    P.J.Riden, 1973, The Butterley Company and railway construction, 1790–1830', Transport History 6(1) (covers Outram's development of tramroads).
    R.A.Mott, 1969, Tramroads of the eighteenth century and their originator: John Curr', Transactions of the Newcomen Society 42.
    "Dowie" (A.R.Cowlishaw, J.H.Price and R.G.P. Tebb), 1971, The Crich Mineral Railways, Crich: Tramway Publications.
    PJGR

    Biographical history of technology > Outram, Benjamin

  • 102 Owens, Michael Joseph

    [br]
    b. 1 January 1859 Mason County, Virginia, USA
    d. 27 December 1923 Toledo, Ohio, USA
    [br]
    American inventor of the automatic glass bottle making machine.
    [br]
    To assist the finances of a coal miner's family, Owens entered a glassworks at Wheeling, Virginia, at the tender age of 10, stoking coal into the "glory hole" or furnace where glass was resoftened at various stages of the hand-forming process. By the age of 15 he had become a glassblower.
    In 1888 Owens moved to the glassworks of Edward Drummond Libbey at Toledo, Ohio, where within three months he was appointed Superintendent and, not long after, a branch manager. In 1893 Owens supervised the company's famous exhibit at the World's Columbian Exposition at Chicago. He had by then begun experiments that were to lead to the first automatic bottle-blowing machine. He first used a piston pump to suck molten glass into a mould, and then transferred the gathered glass over another mould into which the bottle was blown by reversing the pump. The first patents were taken out in 1895, followed by others incorporating improvements and culminating in the patent of 8 November 1904 for an essentially perfected machine. Eventually it was capable of producing four bottles a second, thus effecting a revolution in bottle making. Owens, with Libbey and others, set up the Owens Bottle Machine Company in 1903, which Owens himself managed from 1915 to 1919, becoming Vice-President from 1915 until his death. A plant was also established in Manchester in 1905.
    Besides this, Owens and Libbey first assisted Irving W.Colburn with his experiments on the continuous drawing of flat sheet glass and then in 1912 bought the patents, forming the Owens-Libbey Sheet Glass Company. In all, Owens was granted forty-five US patents, mainly relating to the manufacture and processing of glass. Owens's undoubted inventive genius was hampered by a lack of scientific knowledge, which he made good by judicious consultation.
    [br]
    Further Reading
    1923, Michael J.Owens (privately printed) (a series of memorial articles reprinted from various sources).
    G.S.Duncan, 1960, Bibliography of Glass, Sheffield: Society of Glass Manufacturers (cites references to Owens's papers and patents).
    LRD

    Biographical history of technology > Owens, Michael Joseph

  • 103 Percy, John

    SUBJECT AREA: Metallurgy
    [br]
    b. 23 March 1817 Nottingham, England
    d. 19 June 1889 London, England
    [br]
    English metallurgist, first Professor of Metallurgy at the School of Mines, London.
    [br]
    After a private education, Percy went to Paris in 1834 to study medicine and to attend lectures on chemistry by Gay-Lussac and Thenard. After 1838 he studied medicine at Edinburgh, obtaining his MD in 1839. In that year he was appointed Professor of Chemistry at Queen's College, Birmingham, moving to Queen's Hospital at Birmingham in 1843. During his time at Birmingham, Percy became well known for his analysis of blast furnace slags, and was involved in the manufacture of optical glass. On 7 June 1851 Percy was appointed Metallurgical Professor and Teacher at the Museum of Practical Geology established in Jermyn Street, London, and opened in May 1851. In November of 1851, when the Museum became the Government (later Royal) School of Mines, Percy was appointed Lecturer in Metallurgy. In addition to his work at Jermyn Street, Percy lectured on metallurgy to the Advanced Class of Artillery at Woolwich from 1864 until his death, and from 1866 he was Superintendent of Ventilation at the Houses of Parliament. He served from 1861 to 1864 on the Special Committee on Iron set up to examine the performance of armour-plate in relation to its purity, composition and structure.
    Percy is best known for his metallurgical text books, published by John Murray. Volume I of Metallurgy, published in 1861, dealt with fuels, fireclays, copper, zinc and brass; Volume II, in 1864, dealt with iron and steel; a volume on lead appeared in 1870, followed by one on fuels and refractories in 1875, and the first volume on gold and silver in 1880. Further projected volumes on iron and steel, noble metals, and on copper, did not materialize. In 1879 Percy resigned from his School of Mines appointment in protest at the proposed move from Jermyn Street to South Kensington. The rapid growth of Percy's metallurgical collection, started in 1839, eventually forced him to move to a larger house. After his death, the collection was bought by the South Kensington (later Science) Museum. Now comprising 3,709 items, it provides a comprehensive if unselective record of nineteenth-century metallurgy, the most interesting specimens being those of the first sodium-reduced aluminium made in Britain and some of the first steel produced by Bessemer in Baxter House. Metallurgy for Percy was a technique of chemical extraction, and he has been criticized for basing his system of metallurgical instruction on this assumption. He stood strangely aloof from new processes of steel making such as that of Gilchrist and Thomas, and tended to neglect early developments in physical metallurgy, but he was the first in Britain to teach metallurgy as a discipline in its own right.
    [br]
    Principal Honours and Distinctions
    FRS 1847. President, Iron and Steel Institute 1885, 1886.
    Bibliography
    1861–80, Metallurgy, 5 vols, London: John Murray.
    Further Reading
    S.J.Cackett, 1989, "Dr Percy and his metallurgical collection", Journal of the Hist. Met. Society 23(2):92–8.
    RLH

    Biographical history of technology > Percy, John

  • 104 Ransome, Frederick

    [br]
    b. 18 June 1818 Rushmere, Suffolk, England
    d. 19 April 1893 London, England
    [br]
    English engineer and inventor of a type of artificial stone.
    [br]
    Frederick Ransome was the son of James Ransome (1782–1849) and grandson of Robert Ransome, founder of the well-known Ipswich firm of engineers. He did not become a partner in the family firm, but devoted his life to experiments to develop an artificial stone. These experiments were recorded in a paper which he presented to the Institution of Civil Engineers in 1848 and in a long series of over thirty patents dating from 1844. The material so formed was a sandstone, the particles of which were bonded together by a silicate of lime. It could be moulded into any required form while in its initial soft state, and when hard was suitable for surface-dressing or carving. It was used for many public buildings, but time proved it unsuitable for outside work. Ransome also used his artificial stone to make grinding wheels by incorporating emery powder in the mixture. These were found to be much superior to those made of natural stone. Another use of the artificial stone was in a porous form which could be used as a filter. In later years Ransome turned his attention to the manufacture of Portland cement and of a cheaper substitute incorporating blast-furnace slag. He also invented a rotary kiln for burning the cement, the first of these being built in 1887. It was 26 ft (7.9 m) long and 5 ft (1.5 m) in diameter; although reasonably successful, the development of such kilns of much greater length was carried out in America rather than England. Ransome was elected an Associate of the Institution of Civil Engineers in 1848 and served as an Associate of
    [br]
    Bibliography
    1848, "On the manufacture of artificial stone with a silica base", Minutes of the Proceedings of the Institution of Civil Engineers 7:57.
    RTS

    Biographical history of technology > Ransome, Frederick

  • 105 Reynolds, Richard

    [br]
    b. 1 November 1735 Bristol, England
    d. 10 September 1816 Cheltenham, Gloucestershire, England
    [br]
    English ironmaster who invented iron rails.
    [br]
    Reynolds was born into a Quaker family, his father being an iron merchant and a considerable customer for the products of the Darbys (see Abraham Darby) of Coalbrookdale in Shropshire. After education at a Quaker boarding school in Pickwick, Wiltshire, Reynolds was apprenticed to William Fry, a grocer of Bristol, from whom he would have learned business methods. The year before the expiry of his apprenticeship in 1757, Reynolds was being sent on business errands to Coalbrookdale. In that year he met and married Hannah Darby, the daughter of Abraham Darby II. At the same time, he acquired a half-share in the Ketley ironworks, established not long before, in 1755. There he supervised not only the furnaces at Ketley and Horsehay and the foundry, but also the extension of the railway, linking this site to Coalbrookdale itself.
    On the death of Abraham Darby II in 1763, Reynolds took charge of the whole works during the minority of Abraham Darby III. During this period, the most notable development was the introduction by the Cranage brothers of a new way of converting pig-iron to wrought iron, a process patented in 1766 that used coal in a reverberatory furnace. This, with other processes for the same purpose, remained in use until superseded by the puddling process patented by Henry Cort in 1783 and 1784. Reynolds's most important innovation was the introduction of cast-iron rails in 1767 on the railway around Coalbrookdale. A useful network had been in operation for some time with wooden rails, but these wore out quickly and were expensive to maintain. Reynolds's iron rails were an immediate improvement, and some 20 miles (32 km) were laid within a short time. In 1768 Abraham Darby III was able to assume control of the Coalbrookdale works, but Reynolds had been extending his own interest in other ironworks and various other concerns, earning himself considerable wealth. When Darby was oppressed with loan repayments, Reynolds bought the Manor of Madely, which made him Landlord of the Coalbrookdale Company; by 1780 he was virtually banker to the company.
    [br]
    Further Reading
    A.Raistrick, 1989, Dynasty of Iron Founders, 2nd edn, Ironbridge Gorge Museum Trust (contains many details of Reynolds's life).
    LRD

    Biographical history of technology > Reynolds, Richard

  • 106 Seguin, Marc

    [br]
    b. 20 April 1786 Annonay, Ardèche, France
    d. 24 February 1875 Annonay, Ardèche, France
    [br]
    French engineer, inventor of multi-tubular firetube boiler.
    [br]
    Seguin trained under Joseph Montgolfier, one of the inventors of the hot-air balloon, and became a pioneer of suspension bridges. In 1825 he was involved in an attempt to introduce steam navigation to the River Rhône using a tug fitted with a winding drum to wind itself upstream along a cable attached to a point on the bank, with a separate boat to transfer the cable from point to point. The attempt proved unsuccessful and was short-lived, but in 1825 Seguin had decided also to seek a government concession for a railway from Saint-Etienne to Lyons as a feeder of traffic to the river. He inspected the Stockton \& Darlington Railway and met George Stephenson; the concession was granted in 1826 to Seguin Frères \& Ed. Biot and two steam locomotives were built to their order by Robert Stephenson \& Co. The locomotives were shipped to France in the spring of 1828 for evaluation prior to construction of others there; each had two vertical cylinders, one each side between front and rear wheels, and a boiler with a single large-diameter furnace tube, with a watertube grate. Meanwhile, in 1827 Seguin, who was still attempting to produce a steamboat powerful enough to navigate the fast-flowing Rhône, had conceived the idea of increasing the heating surface of a boiler by causing the hot gases from combustion to pass through a series of tubes immersed in the water. He was soon considering application of this type of boiler to a locomotive. He applied for a patent for a multi-tubular boiler on 12 December 1827 and carried out numerous experiments with various means of producing a forced draught to overcome the perceived obstruction caused by the small tubes. By May 1829 the steam-navigation venture had collapsed, but Seguin had a locomotive under construction in the workshops of the Lyons-Sain t- Etienne Railway: he retained the cylinder layout of its Stephenson locomotives, but incorporated a boiler of his own design. The fire was beneath the barrel, surrounded by a water-jacket: a single large flue ran towards the front of the boiler, whence hot gases returned via many small tubes through the boiler barrel to a chimney above the firedoor. Draught was provided by axle-driven fans on the tender.
    Seguin was not aware of the contemporary construction of Rocket, with a multi-tubular boiler, by Robert Stephenson; Rocket had its first trial run on 5 September 1829, but the precise date on which Seguin's locomotive first ran appears to be unknown, although by 20 October many experiments had been carried out upon it. Seguin's concept of a multi-tubular locomotive boiler therefore considerably antedated that of Henry Booth, and his first locomotive was completed about the same date as Rocket. It was from Rocket's boiler, however, rather than from that of Seguin's locomotive, that the conventional locomotive boiler was descended.
    [br]
    Bibliography
    February 1828, French patent no. 3,744 (multi-tubular boiler).
    1839, De l'Influence des chemins de fer et de l'art de les tracer et de les construire, Paris.
    Further Reading
    F.Achard and L.Seguin, 1928, "Marc Seguin and the invention of the tubular boiler", Transactions of the Newcomen Society 7 (traces the chronology of Seguin's boilers).
    ——1928, "British railways of 1825 as seen by Marc Seguin", Transactions of the Newcomen Society 7.
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson.
    J.-M.Combe and B.Escudié, 1991, Vapeurs sur le Rhône, Lyons: Presses Universitaires de Lyon.
    PJGR

    Biographical history of technology > Seguin, Marc

  • 107 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 108 Theophilus Presbyter

    [br]
    fl. late eleventh/early twelfth century
    [br]
    German author of the most detailed medieval treatise relating to technology.
    [br]
    The little that is known of Theophilus is what can be inferred from his great work, De diversis artibus. He was a Benedictine monk and priest living in north-west Germany, probably near an important art centre. He was an educated man, conversant with scholastic philosophy and at the same time a skilled, practising craftsman. Even his identity is obscure: Theophilus is a pseudonym, possibly for Roger of Helmarshausen, for the little that is known of both is in agreement.
    Evidence in De diversis suggests that it was probably composed during 1110 to 1140. White (see Further Reading) goes on to suggest late 1122 or early 1123, on the grounds that Theophilus only learned of St Bernard of Clairvaulx's diatribe against lavish church ornamentation during the writing of the work, for it is only in the preface to Book 3 that Theophilus seeks to justify his craft. St Bernard's Apologia can be dated late 1122. No other medieval work on art combines the comprehensive range, orderly presentation and attention to detail as does De diversis. It has been described as an encyclopedia of medieval skills and crafts. It also offers the best and often the only description of medieval technology, including the first direct reference to papermaking in the West, the earliest medieval account of bell-founding and the most complete account of organ building. Many metallurgical techniques are described in detail, such as the making of a crucible furnace and bloomery hearth.
    The treatise is divided into three books, the first on the materials and art of painting, the second on glassmaking, including stained glass, glass vessels and the blown-cylinder method for flat glass, and the final and longest book on metalwork, including working in iron, copper, gold and silver for church use, such as chalices and censers. The main texts are no mere compilations, but reveal the firsthand knowledge that can only be gained by a skilled craftsman. The prefaces to each book present perhaps the only medieval expression of an artist's ideals and how he sees his art in relation to the general scheme of things. For Theophilus, his art is a gift from God and every skill an act of praise and piety. Theophilus is thus an indispensable source for medieval crafts and technology, but there are indications that the work was also well known at the time of its composition and afterwards.
    [br]
    Bibliography
    The Wolfenbuttel and Vienna manuscripts of De diversis are the earliest, both dating from the first half of the twelfth century, while the British Library copy, in an early thirteenth-century hand, is the most complete. Two incomplete copies from the thirteenth century held at Cambridge and Leipzig offer help in arriving at a definitive edition.
    There are several references to De diversis in sixteenth-century printed works, such as Cornelius Agrippa (1530) and Josias Simmler (1585). The earliest printed edition of
    De diversis was prepared by G.H.Lessing in 1781 with the title, much used since, Diversarium artium schedula.
    There are two good recent editions: Theophilus: De diversis artibus. The Various Arts, 1964, trans. with introd. by C.R.Dodwell, London: Thomas Nelson, and On Diverse Arts. The Treatise of Theophilus, 1963, trans. with introd. and notes by J.G.Harthorne and C.S.Smith, Chicago University Press.
    Further Reading
    Lynn White, 1962, "Theophilus redivivus", Technology and Culture 5:224–33 (a comparative review of Theophilus (op. cit.) and On Diverse Arts (op. cit.)).
    LRD

    Biographical history of technology > Theophilus Presbyter

  • 109 Trevithick, Richard

    [br]
    b. 13 April 1771 Illogan, Cornwall, England
    d. 22 April 1833 Dartford, Kent, England
    [br]
    English engineer, pioneer of non-condensing steam-engines; designed and built the first locomotives.
    [br]
    Trevithick's father was a tin-mine manager, and Trevithick himself, after limited formal education, developed his immense engineering talent among local mining machinery and steam-engines and found employment as a mining engineer. Tall, strong and high-spirited, he was the eternal optimist.
    About 1797 it occurred to him that the separate condenser patent of James Watt could be avoided by employing "strong steam", that is steam at pressures substantially greater than atmospheric, to drive steam-engines: after use, steam could be exhausted to the atmosphere and the condenser eliminated. His first winding engine on this principle came into use in 1799, and subsequently such engines were widely used. To produce high-pressure steam, a stronger boiler was needed than the boilers then in use, in which the pressure vessel was mounted upon masonry above the fire: Trevithick designed the cylindrical boiler, with furnace tube within, from which the Cornish and later the Lancashire boilers evolved.
    Simultaneously he realized that high-pressure steam enabled a compact steam-engine/boiler unit to be built: typically, the Trevithick engine comprised a cylindrical boiler with return firetube, and a cylinder recessed into the boiler. No beam intervened between connecting rod and crank. A master patent was taken out.
    Such an engine was well suited to driving vehicles. Trevithick built his first steam-carriage in 1801, but after a few days' use it overturned on a rough Cornish road and was damaged beyond repair by fire. Nevertheless, it had been the first self-propelled vehicle successfully to carry passengers. His second steam-carriage was driven about the streets of London in 1803, even more successfully; however, it aroused no commercial interest. Meanwhile the Coalbrookdale Company had started to build a locomotive incorporating a Trevithick engine for its tramroads, though little is known of the outcome; however, Samuel Homfray's ironworks at Penydarren, South Wales, was already building engines to Trevithick's design, and in 1804 Trevithick built one there as a locomotive for the Penydarren Tramroad. In this, and in the London steam-carriage, exhaust steam was turned up the chimney to draw the fire. On 21 February the locomotive hauled five wagons with 10 tons of iron and seventy men for 9 miles (14 km): it was the first successful railway locomotive.
    Again, there was no commercial interest, although Trevithick now had nearly fifty stationary engines completed or being built to his design under licence. He experimented with one to power a barge on the Severn and used one to power a dredger on the Thames. He became Engineer to a project to drive a tunnel beneath the Thames at Rotherhithe and was only narrowly defeated, by quicksands. Trevithick then set up, in 1808, a circular tramroad track in London and upon it demonstrated to the admission-fee-paying public the locomotive Catch me who can, built to his design by John Hazledine and J.U. Rastrick.
    In 1809, by which date Trevithick had sold all his interest in the steam-engine patent, he and Robert Dickinson, in partnership, obtained a patent for iron tanks to hold liquid cargo in ships, replacing the wooden casks then used, and started to manufacture them. In 1810, however, he was taken seriously ill with typhus for six months and had to return to Cornwall, and early in 1811 the partners were bankrupt; Trevithick was discharged from bankruptcy only in 1814.
    In the meantime he continued as a steam engineer and produced a single-acting steam engine in which the cut-off could be varied to work the engine expansively by way of a three-way cock actuated by a cam. Then, in 1813, Trevithick was approached by a representative of a company set up to drain the rich but flooded silver-mines at Cerro de Pasco, Peru, at an altitude of 14,000 ft (4,300 m). Low-pressure steam engines, dependent largely upon atmospheric pressure, would not work at such an altitude, but Trevithick's high-pressure engines would. Nine engines and much other mining plant were built by Hazledine and Rastrick and despatched to Peru in 1814, and Trevithick himself followed two years later. However, the war of independence was taking place in Peru, then a Spanish colony, and no sooner had Trevithick, after immense difficulties, put everything in order at the mines then rebels arrived and broke up the machinery, for they saw the mines as a source of supply for the Spanish forces. It was only after innumerable further adventures, during which he encountered and was assisted financially by Robert Stephenson, that Trevithick eventually arrived home in Cornwall in 1827, penniless.
    He petitioned Parliament for a grant in recognition of his improvements to steam-engines and boilers, without success. He was as inventive as ever though: he proposed a hydraulic power transmission system; he was consulted over steam engines for land drainage in Holland; and he suggested a 1,000 ft (305 m) high tower of gilded cast iron to commemorate the Reform Act of 1832. While working on steam propulsion of ships in 1833, he caught pneumonia, from which he died.
    [br]
    Bibliography
    Trevithick took out fourteen patents, solely or in partnership, of which the most important are: 1802, Construction of Steam Engines, British patent no. 2,599. 1808, Stowing Ships' Cargoes, British patent no. 3,172.
    Further Reading
    H.W.Dickinson and A.Titley, 1934, Richard Trevithick. The Engineer and the Man, Cambridge; F.Trevithick, 1872, Life of Richard Trevithick, London (these two are the principal biographies).
    E.A.Forward, 1952, "Links in the history of the locomotive", The Engineer (22 February), 226 (considers the case for the Coalbrookdale locomotive of 1802).
    PJGR

    Biographical history of technology > Trevithick, Richard

  • 110 Wedgwood, Josiah

    [br]
    baptized 12 July 1730 Burslem, Staffordshire, England
    d. 3 January 1795 Etruria Hall, Staffordshire, England
    [br]
    English potter and man of science.
    [br]
    Wedgwood came from prolific farming stock who, in the seventeenth century, had turned to pot-making. At the age of 9 his education was brought to an end by his father's death and he was set to work in one of the family potteries. Two years later an attack of smallpox left him with a weakness in his right knee which prevented him from working the potter's wheel. This forced his attention to other aspects of the process, such as design and modelling. He was apprenticed to his brother Thomas in 1744, and in 1752 was in partnership with Thomas Whieldon, a leading Staffordshire potter, until probably the first half of 1759, when he became a master potter and set up in business on his own account at Ivy House Works in Burslem.
    Wedgwood was then able to exercise to the full his determination to improve the quality of his ware. This he achieved by careful attention to all aspects of the work: artistic judgement of form and decoration; chemical study of the materials; and intelligent management of manufacturing processes. For example, to achieve greater control over firing conditions, he invented a pyrometer, a temperature-measuring device by which the shrinkage of prepared clay cylinders in the furnace gave an indication of the temperature. Wedgwood was the first potter to employ steam power, installing a Boulton \& Watt engine for crushing and other operations in 1782. Beyond the confines of his works, Wedgwood concerned himself in local issues such as improvements to the road and canal systems to facilitate transport of raw materials and products.
    During the first ten years, Wedgwood steadily improved the quality of his cream ware, known as "Queen's ware" after a set of ware was presented to Queen Charlotte in 1762. The business prospered and his reputation grew. In 1766 he was able to purchase an estate on which he built new works, a mansion and a village to which he gave the name Etruria. Four years after the Etruria works were opened in 1769, Wedgwood began experimenting with a barium compound combined in a fine-textured base allied to a true porcelain. The result was Wedgwood's most original and distinctive ware similar to jasper, made in a wide variety of forms.
    Wedgwood had many followers and imitators but the merit of initiating and carrying through a large-scale technical and artistic development of English pottery belongs to Wedgwood.
    [br]
    Principal Honours and Distinctions
    FRS 1783.
    Bibliography
    Wedgwood contributed five papers to the Philosophical Transactions of the Royal Society, two in 1783 and 1790 on chemical subjects and three in 1782, 1784 and 1786 on his pyrometer.
    Further Reading
    Meteyard, 1865, Life of Josiah Wedgwood, London (biography).
    A.Burton, 1976, Josiah Wedgwood: Biography, London: André Deutsch (a very readable account).
    LRD

    Biographical history of technology > Wedgwood, Josiah

  • 111 спекание

    Русско-английский научный словарь > спекание

  • 112 высокоскоростное спекание

    Русско-английский новый политехнический словарь > высокоскоростное спекание

  • 113 высокотемпературное спекание

    Русско-английский новый политехнический словарь > высокотемпературное спекание

  • 114 жидкофазное спекание

    Русско-английский новый политехнический словарь > жидкофазное спекание

  • 115 зона спекания

    Русско-английский новый политехнический словарь > зона спекания

  • 116 окончательное спекание

    Русско-английский новый политехнический словарь > окончательное спекание

  • 117 операция спекания

    Русско-английский новый политехнический словарь > операция спекания

  • 118 печь для спекания

    Русско-английский новый политехнический словарь > печь для спекания

  • 119 pilot

    English-Russian big medical dictionary > pilot

  • 120 fuel charge

    1.издержки на потребление топлива

    charge area — зона загрузки (ЯР); загрузочная площадка

    2.топливная загрузка

    once-through charge — разовая загрузка; одноразовая загрузка

    fuel charge pool — загрузочный бассейн; бассейн загрузки

    fuel charge pond — загрузочный бассейн; бассейн загрузки

    English-Russian dictionary on nuclear energy > fuel charge

См. также в других словарях:

  • Furnace, Carmarthenshire — Furnace (or Welsh Ffwrnes) is a village and an area of the town of Llanelli in the county of Carmarthenshire, Wales [http://www.carmarthenshire.gov.uk/eng/index.asp?locID=3865 docID= 1 Carmarthenshire County Council: Area and density of Community …   Wikipedia

  • Furnace, Argyll and Bute — Furnace (formerly Inverleacainn) is a village in Argyll, on the west coast of Scotland, on the north shore of Loch Fyne, the longest sea loch in the United Kingdom. Furnace is around eight miles southwest of Inveraray on the A83 road road.It is… …   Wikipedia

  • Furnace Creek — Furnace Creek, CA U.S. Census Designated Place in California Population (2000): 31 Housing Units (2000): 18 Land area (2000): 30.908335 sq. miles (80.052218 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000):… …   StarDict's U.S. Gazetteer Places

  • Furnace Creek, CA — U.S. Census Designated Place in California Population (2000): 31 Housing Units (2000): 18 Land area (2000): 30.908335 sq. miles (80.052218 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 30.908335 sq. miles… …   StarDict's U.S. Gazetteer Places

  • Furnace Creek — Lugar designado por el censo de los Estados Unidos Entrada al rancho de Furnace Creek …   Wikipedia Español

  • Area code 760 — Area code 916rect 220 242 245 256 Area code 909rect 243 274 265 287 Area code 951rect 136 323 160 338 Area code 858rect 171 332 196 345 Area code 619poly 19 20 12 70 28 122 42 138 76 138 78 129 72 129 68 108 48 63 55 60 41 55 24 31 40 32 41 20… …   Wikipedia

  • Furnace — For other uses, see Furnace (disambiguation). Industrial Furnace from 1907 A furnace is a device used for heating. The name derives from Latin fornax, oven. In American English and Canadian English, the term furnace on its own is generally used… …   Wikipedia

  • Furnace Green — infobox UK place country = England latitude= 51.0998 longitude= 0.159 official name= Furnace Green population = shire district= Crawley shire county = West Sussex region= South East England constituency westminster= Crawley post town= Crawley… …   Wikipedia

  • Furnace Creek, California — Infobox Settlement official name = Furnace Creek, California settlement type = CDP imagesize = image caption = image imagesize = image caption = image mapsize = 250x200px map caption = Location in Inyo County and the state of California mapsize1 …   Wikipedia

  • Furnace Town Living Heritage Museum — Infobox Museum name= Furnace Town Living Heritage Museum imagesize= map type= latitude= longitude= established= location= 3816 Old Furnace Town Snow Hill, Maryland type= History visitors= director= curator= publictransit= website=… …   Wikipedia

  • furnace — furnacelike, adj. /ferr nis/, n., v., furnaced, furnacing. n. 1. a structure or apparatus in which heat may be generated, as for heating houses, smelting ores, or producing steam. 2. a place characterized by intense heat: The volcano was a… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»