Перевод: с английского на английский

с английского на английский

Aberdeen

  • 1 Aberdeen

    The counts in this system are indicated by the weight in lbs. of one spindle of 14,400 yards: Thus 5-Lb. yarn means that 14,400 yards weighs 5-lb.; 10-lb. yarn, that this length weighs 10-lb. Therefore, the higher the count the coarser the yarn.

    Dictionary of the English textile terms > Aberdeen

  • 2 Aberdeen Hose

    Men's half-hose or socks made from coarse grey wools in Scotland.

    Dictionary of the English textile terms > Aberdeen Hose

  • 3 Davidson, Robert

    [br]
    b. 18 April 1804 Aberdeen, Scotland
    d. 16 November 1894 Aberdeen, Scotland
    [br]
    Scottish chemist, pioneer of electric power and builder of the first electric railway locomotives.
    [br]
    Davidson, son of an Aberdeen merchant, attended Marischal College, Aberdeen, between 1819 and 1822: his studies included mathematics, mechanics and chemistry. He subsequently joined his father's grocery business, which from time to time received enquiries for yeast: to meet these, Davidson began to manufacture yeast for sale and from that start built up a successful chemical manufacturing business with the emphasis on yeast and dyes. About 1837 he started to experiment first with electric batteries and then with motors. He invented a form of electromagnetic engine in which soft iron bars arranged on the periphery of a wooden cylinder, parallel to its axis, around which the cylinder could rotate, were attracted by fixed electromagnets. These were energized in turn by current controlled by a simple commutaring device. Electric current was produced by his batteries. His activities were brought to the attention of Michael Faraday and to the scientific world in general by a letter from Professor Forbes of King's College, Aberdeen. Davidson declined to patent his inventions, believing that all should be able freely to draw advantage from them, and in order to afford an opportunity for all interested parties to inspect them an exhibition was held at 36 Union Street, Aberdeen, in October 1840 to demonstrate his "apparatus actuated by electro-magnetic power". It included: a model locomotive carriage, large enough to carry two people, that ran on a railway; a turning lathe with tools for visitors to use; and a small printing machine. In the spring of 1842 he put on a similar exhibition in Edinburgh, this time including a sawmill. Davidson sought support from railway companies for further experiments and the construction of an electromagnetic locomotive; the Edinburgh exhibition successfully attracted the attention of the proprietors of the Edinburgh 585\& Glasgow Railway (E \& GR), whose line had been opened in February 1842. Davidson built a full-size locomotive incorporating his principle, apparently at the expense of the railway company. The locomotive weighed 7 tons: each of its two axles carried a cylinder upon which were fastened three iron bars, and four electromagnets were arranged in pairs on each side of the cylinders. The motors he used were reluctance motors, the power source being zinc-iron batteries. It was named Galvani and was demonstrated on the E \& GR that autumn, when it achieved a speed of 4 mph (6.4 km/h) while hauling a load of 6 tons over a distance of 1 1/2 miles (2.4 km); it was the first electric locomotive. Nevertheless, further support from the railway company was not forthcoming, although to some railway workers the locomotive seems to have appeared promising enough: they destroyed it in Luddite reaction. Davidson staged a further exhibition in London in 1843 without result and then, the cost of battery chemicals being high, ceased further experiments of this type. He survived long enough to see the electric railway become truly practicable in the 1880s.
    [br]
    Bibliography
    1840, letter, Mechanics Magazine, 33:53–5 (comparing his machine with that of William Hannis Taylor (2 November 1839, British patent no. 8,255)).
    Further Reading
    1891, Electrical World, 17:454.
    J.H.R.Body, 1935, "A note on electro-magnetic engines", Transactions of the Newcomen Society 14:104 (describes Davidson's locomotive).
    F.J.G.Haut, 1956, "The early history of the electric locomotive", Transactions of the Newcomen Society 27 (describes Davidson's locomotive).
    A.F.Anderson, 1974, "Unusual electric machines", Electronics \& Power 14 (November) (biographical information).
    —1975, "Robert Davidson. Father of the electric locomotive", Proceedings of the Meeting on the History of Electrical Engineering Institution of Electrical Engineers, 8/1–8/17 (the most comprehensive account of Davidson's work).
    A.C.Davidson, 1976, "Ingenious Aberdonian", Scots Magazine (January) (details of his life).
    PJGR / GW

    Biographical history of technology > Davidson, Robert

  • 4 Mitchell, Charles

    SUBJECT AREA: Ports and shipping
    [br]
    b. 20 May 1820 Aberdeen, Scotland
    d. 22 August 1895 Jesmond, Newcastle upon Tyne, England
    [br]
    Scottish industrialist whose Tyneside shipyard was an early constituent of what became the Vickers Shipbuilding Group.
    [br]
    Mitchell's early education commenced at Ledingham's Academy, Correction Wynd, Aberdeen, and from there he became a premium apprentice at the Footdee Engineering Works of Wm Simpson \& Co. Despite being employed for around twelve hours each day, Mitchell matriculated at Marischal College (now merged with King's College to form the University of Aberdeen). He did not graduate, although in 1840 he won the chemistry prize. On the completion of his apprenticeship, like Andrew Leslie (founder of Hawthorn Leslie) and other young Aberdonians he moved to Tyneside, where most of his working life was spent. From 1842 until 1844 he worked as a draughtsman for his friend Coutts, who had a shipyard at Low Walker, before moving on to the drawing offices of Maudslay Sons and Field of London, then one of the leading shipbuilding and engineering establishments in the UK. While in London he studied languages, acquiring a skill that was to stand him in good stead in later years. In 1852 he returned to the North East and set up his own iron-ship building yard at Low Walker near Newcastle. Two years later he married Anne Swan, the sister of the two young men who were to found the company now known as Swan Hunter Ltd. The Mitchell yard grew in size and reputation and by the 1850s he was building for the Russian Navy and Merchant Marine as well as advising the Russians on their shipyards in St Petersburg. In 1867 the first informal business arrangement was concluded with Armstrongs for the supply of armaments for ships; this led to increased co-operation and ultimately in 1882 to the merger of the two shipyards as Sir W.G.Armstrong Mitchell \& Co. At the time of the merger, Mitchell had launched 450 ships in twenty-nine years. In 1886 the new company built the SS Gluckauf, the world's first bulk oil tanker. After ill health in 1865 Mitchell reduced his workload and lived for a while in Surbiton, London, but returned to Tyneside to a new house at Jesmond. In his later years he was a generous benefactor to many good causes in Tyneside and Aberdeen, to the Church and to the University of Aberdeen.
    [br]
    Further Reading
    D.F.McGuire, 1988, Charles Mitchell 1820–1895, Victorian Shipbuilder, Newcastle upon Tyne: City Libraries and Arts.
    J.D.Scott, 1962, Vickers. A History, London: Weidenfeld \& Nicolson (a recommended overview of the Vickers Group).
    FMW

    Biographical history of technology > Mitchell, Charles

  • 5 Linton, Hercules

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1 January 1836 Inverbervie, Kincardineshire, Scotland
    d. 15 May 1900 Inverbervie, Kincardineshire, Scotland
    [br]
    Scottish naval architect and shipbuilder; designer of the full-rigged ship Cutty Sark.
    [br]
    Linton came from a north-east Scottish family with shipbuilding connections. After education at Arbuthnott and then Arbroath Academy, he followed his father by becoming an apprentice at the Aberdeen shipyard of Alex Hall in January 1855. Thus must have been an inspiring time for him as the shipyards of Aberdeen were at the start of their rise to world renown. Hall's had just introduced the hollow, lined Aberdeen Bow which heralded the great years of the Aberdeen Clippers. Linton stayed on with Hall's until around 1863, when he joined the Liverpool Under-writers' Register as a ship surveyor; he then worked for similar organizations in different parts of England and Scotland. Early in 1868 Linton joined in partnership with William Dundas Scott and the shipyard of Scott and Linton was opened on the banks of the River Leven, a tributary of the Clyde, at Dumbarton. The operation lasted for about three years until bankruptcy forced closure, the cause being the age-old shipbuilder's problem of high capital investment with slow cash flow. Altogether, nine ships were built, the most remarkable being the record-breaking composite-built clipper ship Cutty Sark. At the time of the closure the tea clipper was in an advanced state of outfitting and was towed across the water to Denny's shipyard for completion. Linton worked for a while with Gourlay Brothers of Dundee, and then with the shipbuilders Oswald Mordaunt, of Woolston near Southampton, before returning to the Montrose area in 1884. His wife died the following year and thereafter Linton gradually reduced his professional commitments.
    [br]
    Further Reading
    Robert E.Brettle, 1969, The Cutty Sark, Her Designer and Builder. Hercules Linton 1836–1900, Cambridge: Heffer.
    Frank C.G.Carr, "The restoration of the Cutty Sark", Transactions of the Royal Institution
    of Naval Architects 108:193–216.
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Linton, Hercules

  • 6 Kirk, Alexander Carnegie

    [br]
    b. c.1830 Barry, Angus, Scotland
    d. 5 October 1892 Glasgow, Scotland
    [br]
    Scottish marine engineer, advocate of multiple-expansion in steam reciprocating engines.
    [br]
    Kirk was a son of the manse, and after attending school at Arbroath he proceeded to Edinburgh University. Following graduation he served an apprenticeship at the Vulcan Foundry, Glasgow, before serving first as Chief Draughtsman with the Thames shipbuilders and engineers Maudslay Sons \& Field, and later as Engineer of Paraffin Young's Works at Bathgate and West Calder in Lothian. He was credited with the inventions of many ingenious appliances and techniques for improving production in these two establishments. About 1866 Kirk returned to Glasgow as Manager of the Cranstonhill Engine Works, then moved to Elder's Shipyard (later known as the Fairfield Company) as Engineering Manager. There he made history in producing the world's first triple-expansion engines for the single-screw steamship Propontis in 1874. That decade was to confirm the Clyde's leading role as shipbuilders to the world and to establish the iron ship with efficient reciprocating machinery as the workhorse of the British Merchant Marine. Upon the death of the great Clyde shipbuilder Robert Napier in 1876, Kirk and others took over as partners in the shipbuilding yard and engine shops of Robert Napier \& Sons. There in 1881 they built a ship that is acknowledged as one of the masterpieces of British shipbuilding: the SS Aberdeen for George Thompson's Aberdeen Line to the Far East. In this ship the fullest advantage was taken of high steam temperatures and pressures, which were expanded progressively in a three-cylinder configuration. The Aberdeen, in its many voyages from London to China and Japan, was to prove the efficiency of these engines that had been so carefully designed in Glasgow. In the following years Dr Kirk (he has always been known as Doctor, although his honorary LLD was only awarded by Glasgow University in 1888) persuaded the Admiralty and several shipping companies to accept not only triple-expansion machinery but also the use of mild steel in ship construction. The successful SS Parisian, built for the Allan Line of Glasgow, was one of these pioneer ships.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Society of Edinburgh.
    FMW

    Biographical history of technology > Kirk, Alexander Carnegie

  • 7 Rawcliffe, Gordon Hindle

    SUBJECT AREA: Electricity
    [br]
    b. 2 June 1910 Sheffield, England
    d. 3 September 1979 Bristol, England
    [br]
    English scientist and inventor of the multi-speed induction motor using the pole amplitude modulation principle.
    [br]
    After graduating from Keble College, Oxford, Rawcliffe joined the Metropolitan Vickers Electrical Company in 1932 as a college apprentice, and later became a design engineer. This was followed by a period as a lecturer at Liverpool University, where he was able to extend his knowledge of the principles underlying the design and operation of electrical machines. In 1941 he became Head of the Electrical Engineering Department at the Robert Gordon Technical College, Aberdeen, and Lecturer in charge of Electrical Engineering at Aberdeen University. In 1944 Rawcliffe was appointed to the Chair of Electrical Engineering at the University of Bristol, where he remained until his retirement in 1975. The reputation of his department was enhanced by the colleagues he recruited.
    After 1954 he began research into polyphase windings, the basis of alternating-current machinery, and published papers concerned with the dual problems of frequency changing and pole changing. The result of this research was the discovery in 1957 of a technique for making squirrel-cage induction motors run at more than one speed. By reversing current in one part of the winding, the pole distribution and number were changed, and with it the speed of rotation.
    Rawcliffe's name became synonymous with pole amplitude modulation, or PAM, the name given to this technique. Described by Rawcliffe as a new philosophy of windings, the technique led to a series of research papers, patents and licensing agreements in addition to consultancies to advise on application problems. Commercial exploitation of the new idea throughout Western Europe, the United Kingdom and the United States followed. In total he contributed twentyfive papers to the Proceedings of the Institution of Electrical Engineers and some sixty British patent applications were filed.
    [br]
    Principal Honours and Distinctions
    FRS 1972. Royal Society S.G.Brown Medal 1978.
    Bibliography
    21 August 1958, British patent no. 900,600 (pole amplitude modulation).
    1958, with R.F.Burbridge and W.Fong, "Induction motor speed changing by pole amplitude modulation", Proceedings of the Institution of Electrical Engineers 105 (Part A): 411–19 (the first description of pole amplitude modulation).
    Further Reading
    Biographical Memoirs of Fellows of the Royal Society, 1981, Vol. XXVII, London, pp. 479–503 (includes lists of Rawcliffe's patents and principal papers published).
    GW

    Biographical history of technology > Rawcliffe, Gordon Hindle

  • 8 Riley, James

    SUBJECT AREA: Metallurgy
    [br]
    b. 1840 Halifax, England
    d. 15 July 1910 Harrogate, England
    [br]
    English steelmaker who promoted the manufacture of low-carbon bulk steel by the open-hearth process for tin plate and shipbuilding; pioneer of nickel steels.
    [br]
    After working as a millwright in Halifax, Riley found employment at the Ormesby Ironworks in Middlesbrough until, in 1869, he became manager of the Askam Ironworks in Cumberland. Three years later, in 1872, he was appointed Blast-furnace Manager at the pioneering Siemens Steel Company's works at Landore, near Swansea in South Wales. Using Spanish ore, he produced the manganese-rich iron (spiegeleisen) required as an additive to make satisfactory steel. Riley was promoted in 1874 to be General Manager at Landore, and he worked with William Siemens to develop the use of the latter's regenerative furnace for the production of open-hearth steel. He persuaded Welsh makers of tin plate to use sheets rolled from lowcarbon (mild) steel instead of from charcoal iron and, partly by publishing some test results, he was instrumental in influencing the Admiralty to build two naval vessels of mild steel, the Mercury and the Iris.
    In 1878 Riley moved north on his appointment as General Manager of the Steel Company of Scotland, a firm closely associated with Charles Tennant that was formed in 1872 to make steel by the Siemens process. Already by 1878, fourteen Siemens melting furnaces had been erected, and in that year 42,000 long tons of ingots were produced at the company's Hallside (Newton) Works, situated 8 km (5 miles) south-east of Glasgow. Under Riley's leadership, steelmaking in open-hearth furnaces was initiated at a second plant situated at Blochairn. Plates and sections for all aspects of shipbuilding, including boilers, formed the main products; the company also supplied the greater part of the steel for the Forth (Railway) Bridge. Riley was associated with technical modifications which improved the performance of steelmaking furnaces using Siemens's principles. He built a gasfired cupola for melting pig-iron, and constructed the first British "universal" plate mill using three-high rolls (Lauth mill).
    At the request of French interests, Riley investigated the properties of steels containing various proportions of nickel; the report that he read before the Iron and Steel Institute in 1889 successfully brought to the notice of potential users the greatly enhanced strength that nickel could impart and its ability to yield alloys possessing substantially lower corrodibility.
    The Steel Company of Scotland paid dividends in the years to 1890, but then came a lean period. In 1895, at the age of 54, Riley moved once more to another employer, becoming General Manager of the Glasgow Iron and Steel Company, which had just laid out a new steelmaking plant at Wishaw, 25 km (15 miles) south-east of Glasgow, where it already had blast furnaces. Still the technical innovator, in 1900 Riley presented an account of his experiences in introducing molten blast-furnace metal as feed for the open-hearth steel furnaces. In the early 1890s it was largely through Riley's efforts that a West of Scotland Board of Conciliation and Arbitration for the Manufactured Steel Trade came into being; he was its first Chairman and then its President.
    In 1899 James Riley resigned from his Scottish employment to move back to his native Yorkshire, where he became his own master by acquiring the small Richmond Ironworks situated at Stockton-on-Tees. Although Riley's 1900 account to the Iron and Steel Institute was the last of the many of which he was author, he continued to contribute to the discussion of papers written by others.
    [br]
    Principal Honours and Distinctions
    President, West of Scotland Iron and Steel Institute 1893–5. Vice-President, Iron and Steel Institute, 1893–1910. Iron and Steel Institute (London) Bessemer Gold Medal 1887.
    Bibliography
    1876, "On steel for shipbuilding as supplied to the Royal Navy", Transactions of the Institute of Naval Architects 17:135–55.
    1884, "On recent improvements in the method of manufacture of open-hearth steel", Journal of the Iron and Steel Institute 2:43–52 plus plates 27–31.
    1887, "Some investigations as to the effects of different methods of treatment of mild steel in the manufacture of plates", Journal of the Iron and Steel Institute 1:121–30 (plus sheets II and III and plates XI and XII).
    27 February 1888, "Improvements in basichearth steel making furnaces", British patent no. 2,896.
    27 February 1888, "Improvements in regenerative furnaces for steel-making and analogous operations", British patent no. 2,899.
    1889, "Alloys of nickel and steel", Journal of the Iron and Steel Institute 1:45–55.
    Further Reading
    A.Slaven, 1986, "James Riley", in Dictionary of Scottish Business Biography 1860–1960, Volume 1: The Staple Industries (ed. A.Slaven and S. Checkland), Aberdeen: Aberdeen University Press, 136–8.
    "Men you know", The Bailie (Glasgow) 23 January 1884, series no. 588 (a brief biography, with portrait).
    J.C.Carr and W.Taplin, 1962, History of the British Steel Industry, Harvard University Press (contains an excellent summary of salient events).
    JKA

    Biographical history of technology > Riley, James

  • 9 Fingrams

    Coarse serges made at Aberdeen and Stirling during the early 18th century - made of the coarse tarred wool produced in the district.

    Dictionary of the English textile terms > Fingrams

  • 10 Hesp

    A Scottish yarn measure containing two hanks in the Aberdeen table, or the half of a spyndle.

    Dictionary of the English textile terms > Hesp

  • 11 Clement (Clemmet), Joseph

    [br]
    bapt. 13 June 1779 Great Asby, Westmoreland, England
    d. 28 February 1844 London, England
    [br]
    English machine tool builder and inventor.
    [br]
    Although known as Clement in his professional life, his baptism at Asby and his death were registered under the name of Joseph Clemmet. He worked as a slater until the age of 23, but his interest in mechanics led him to spend much of his spare time in the local blacksmith's shop. By studying books on mechanics borrowed from his cousin, a watchmaker, he taught himself and with the aid of the village blacksmith made his own lathe. By 1805 he was able to give up the slating trade and find employment as a mechanic in a small factory at Kirkby Stephen. From there he moved to Carlisle for two years, and then to Glasgow where, while working as a turner, he took lessons in drawing; he had a natural talent and soon became an expert draughtsman. From about 1809 he was employed by Leys, Mason \& Co. of Aberdeen designing and making power looms. For this work he built a screw-cutting lathe and continued his self-education. At the end of 1813, having saved about £100, he made his way to London, where he soon found employment as a mechanic and draughtsman. Within a few months he was engaged by Joseph Bramah, and after a trial period a formal agreement dated 1 April 1814 was made by which Clement was to be Chief Draughtsman and Superintendent of Bramah's Pimlico works for five years. However, Bramah died in December 1814 and after his sons took over the business it was agreed that Clement should leave before the expiry of the five-year period. He soon found employment as Chief Draughtsman with Henry Maudslay \& Co. By 1817 Clement had saved about £500, which enabled him to establish his own business at Prospect Place, Newington Butts, as a mechanical draughtsman and manufacturer of high-class machinery. For this purpose he built lathes for his own use and invented various improvements in their detailed design. In 1827 he designed and built a facing lathe which incorporated an ingenious system of infinitely variable belt gearing. He had also built his own planing machine by 1820 and another, much larger one in 1825. In 1828 Clement began making fluted taps and dies and standardized the screw threads, thus anticipating on a small scale the national standards later established by Sir Joseph Whitworth. Because of his reputation for first-class workmanship, Clement was in the 1820s engaged by Charles Babbage to carry out the construction of his first Difference Engine.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1818 (for straightline mechanism), 1827 (for facing lathe); Silver Medal 1828 (for lathe-driving device).
    Bibliography
    Further Reading
    S.Smiles, 1863, Industrial Biography, London, reprinted 1967, Newton Abbot (virtually the only source of biographical information on Clement).
    L.T.C.Rolt, 1965, Tools for the Job, London (repub. 1986); W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (both contain descriptions of his machine tools).
    RTS

    Biographical history of technology > Clement (Clemmet), Joseph

  • 12 Cruickshank, William

    SUBJECT AREA: Electricity
    [br]
    d. 1810/11 Scotland
    [br]
    Scottish chemist and surgeon, inventor of a trough battery developed from Volta's pile.
    [br]
    Cruickshank graduated MA from King's College, Aberdeen, in 1765, and later gained a Diploma of the Royal College of Surgeons. When chemistry was introduced in 1788 into the course at the Royal Military Academy in Woolwich, Cruickshank became a member of staff, serving as Assistant to Dr A.Crawford, the Lecturer in Chemistry. Upon Crawford's death in 1796 Cruickshank succeeded him as Lecturer and held the post until his retirement due to ill health in 1804. He also held the senior posts of Chemist to the Ordnance at Woolwich and Surgeon to the Ordnance Medical Department. He should not be confused with William Cumberland Cruickshank (1745–1800), who was also a surgeon and Fellow of the Royal Society. In 1801, shortly after Volta's announcement of his pile, Cruickshank built a voltaic pile to facilitate his experiments in electrochemistry. The pile had zinc and silver plates about 1½ in2 (10 cm2) with interposed papers moistened with ammonium chloride. Dissatisfied with this arrangement, Cruickshank devised a horizontal trough battery in which a wooden box was divided into cells, each holding a pair of zinc and silver or zinc and copper plates. Charged with a dilute solution of ammonium chloride, the battery, which was typically of sixty cells, was found to be more convenient to use than a pile and it, or a derivative, was generally adopted for electrochemical experiments including tose of Humphrey Davy during the early years of the nineteenth century.
    [br]
    Principal Honours and Distinctions
    FRS 1802.
    Bibliography
    1801, article in Nicholsons Journal 4:187–91 (describes Cruickshank's original pile). 1801, article in Nicholsons Journal 4:245–64 (describes his trough battery).
    Further Reading
    B.Bowers, 1982, A History of Electric Light and Power, London (a short account). A.Courts, 1959, "William Cruickshank", Annals of Science 15:121–33 GW

    Biographical history of technology > Cruickshank, William

  • 13 Ferguson, Peter Jack

    SUBJECT AREA: Ports and shipping
    [br]
    b. 21 July 1840 Partick, near Glasgow, Scotland
    d. 17 March 1911 Greenock, Scotland
    [br]
    Scottish marine engineer, pioneer of multiple-expansion steam reciprocating machinery.
    [br]
    Ferguson was educated at the High School of Glasgow before going on to serve his apprenticeship in the engineering department of Thomas Wingate's shipyard. This yard, situated at Whiteinch, then just outside the Glasgow boundary, built interesting and innovative craft and had a tradition of supplying marine engines that were at the leading edge of technology. On his appointment as Manager, Ferguson designed several new types of engines, and in 1872 he was responsible for the construction of what is claimed to be the world's first triple-expansion engine, predating the machinery on SS Propontis by two years and Napier's masterpiece, the SS Aberdeen, by nine years. In 1885, along with others, he founded the shipyard of Fleming and Ferguson, of Paisley, which in the subsequent eighty-five years was to build nearly seven hundred ships. From the outset they built advanced steam reciprocating machinery as well as dredging and other types of plant. The new shipyard was to benefit from Ferguson's experience and from the inspiration he had gained in Wingate's, where experimentation was the norm.
    [br]
    Further Reading
    F.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuiding, Cambridge: PSL.
    FMW

    Biographical history of technology > Ferguson, Peter Jack

  • 14 Goldstine, Herman H.

    [br]
    b. 13 September 1913 USA
    [br]
    American mathematician largely responsible for the development of ENIAC, an early electronic computer.
    [br]
    Goldstine studied mathematics at the University of Chicago, Illinois, gaining his PhD in 1936. After teaching mathematics there, he moved to a similar position at the University of Michigan in 1939, becoming an assistant professor. After the USA entered the Second World War, in 1942 he joined the army as a lieutenant in the Ballistic Missile Research Laboratory at the Aberdeen Proving Ground in Maryland. He was then assigned to the Moore School of Engineering at the University of Pennsylvania, where he was involved with Arthur Burks in building the valve-based Electronic Numerical Integrator and Computer (ENIAC) to compute ballistic tables. The machine was completed in 1946, but prior to this Goldstine had met John von Neumann of the Institute for Advanced Studies (IAS) at Princeton, New Jersey, and active collaboration between them had already begun. After the war he joined von Neumann as Assistant Director of the Computer Project at the Institute of Advanced Studies, Princeton, becoming its Director in 1954. There he developed the idea of computer-flow diagrams and, with von Neumann, built the first computer to use a magnetic drum for data storage. In 1958 he joined IBM as Director of the Mathematical Sciences Department, becoming Director of Development at the IBM Data Processing Headquarters in 1965. Two years later he became a Research Consultant, and in 1969 he became an IBM Research Fellow.
    [br]
    Principal Honours and Distinctions
    Goldstine's many awards include three honorary degrees for his contributions to the development of computers.
    Bibliography
    1946, with A.Goldstine, "The Electronic Numerical Integrator and Computer (ENIAC)", Mathematical Tables and Other Aids to Computation 2:97 (describes the work on ENIAC).
    1946, with A.W.Burks and J.von Neumann, "Preliminary discussions of the logical design of an electronic computing instrument", Princeton Institute for Advanced Studies.
    1972, The Computer from Pascal to von Neumann, Princeton University Press.
    1977, "A brief history of the computer", Proceedings of the American Physical Society 121:339.
    Further Reading
    M.Campbell-Kelly \& M.R.Williams (eds), 1985, The Moore School Lectures (1946), Charles Babbage Institute Report Series for the History of Computing, Vol 9. M.R.Williams, 1985, History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Goldstine, Herman H.

  • 15 Gresley, Sir Herbert Nigel

    [br]
    b. 19 June 1876 Edinburgh, Scotland
    d. 5 April 1941 Hertford, England
    [br]
    English mechanical engineer, designer of the A4-class 4–6–2 locomotive holding the world speed record for steam traction.
    [br]
    Gresley was the son of the Rector of Netherseale, Derbyshire; he was educated at Marlborough and by the age of 13 was skilled at making sketches of locomotives. In 1893 he became a pupil of F.W. Webb at Crewe works, London \& North Western Railway, and in 1898 he moved to Horwich works, Lancashire \& Yorkshire Railway, to gain drawing-office experience under J.A.F.Aspinall, subsequently becoming Foreman of the locomotive running sheds at Blackpool. In 1900 he transferred to the carriage and wagon department, and in 1904 he had risen to become its Assistant Superintendent. In 1905 he moved to the Great Northern Railway, becoming Superintendent of its carriage and wagon department at Doncaster under H.A. Ivatt. In 1906 he designed and produced a bogie luggage van with steel underframe, teak body, elliptical roof, bowed ends and buckeye couplings: this became the prototype for East Coast main-line coaches built over the next thirty-five years. In 1911 Gresley succeeded Ivatt as Locomotive, Carriage \& Wagon Superintendent. His first locomotive was a mixed-traffic 2–6–0, his next a 2–8–0 for freight. From 1915 he worked on the design of a 4–6–2 locomotive for express passenger traffic: as with Ivatt's 4 4 2s, the trailing axle would allow the wide firebox needed for Yorkshire coal. He also devised a means by which two sets of valve gear could operate the valves on a three-cylinder locomotive and applied it for the first time on a 2–8–0 built in 1918. The system was complex, but a later simplified form was used on all subsequent Gresley three-cylinder locomotives, including his first 4–6–2 which appeared in 1922. In 1921, Gresley introduced the first British restaurant car with electric cooking facilities.
    With the grouping of 1923, the Great Northern Railway was absorbed into the London \& North Eastern Railway and Gresley was appointed Chief Mechanical Engineer. More 4–6– 2s were built, the first British class of such wheel arrangement. Modifications to their valve gear, along lines developed by G.J. Churchward, reduced their coal consumption sufficiently to enable them to run non-stop between London and Edinburgh. So that enginemen might change over en route, some of the locomotives were equipped with corridor tenders from 1928. The design was steadily improved in detail, and by comparison an experimental 4–6–4 with a watertube boiler that Gresley produced in 1929 showed no overall benefit. A successful high-powered 2–8–2 was built in 1934, following the introduction of third-class sleeping cars, to haul 500-ton passenger trains between Edinburgh and Aberdeen.
    In 1932 the need to meet increasing road competition had resulted in the end of a long-standing agreement between East Coast and West Coast railways, that train journeys between London and Edinburgh by either route should be scheduled to take 8 1/4 hours. Seeking to accelerate train services, Gresley studied high-speed, diesel-electric railcars in Germany and petrol-electric railcars in France. He considered them for the London \& North Eastern Railway, but a test run by a train hauled by one of his 4–6–2s in 1934, which reached 108 mph (174 km/h), suggested that a steam train could better the railcar proposals while its accommodation would be more comfortable. To celebrate the Silver Jubilee of King George V, a high-speed, streamlined train between London and Newcastle upon Tyne was proposed, the first such train in Britain. An improved 4–6–2, the A4 class, was designed with modifications to ensure free running and an ample reserve of power up hill. Its streamlined outline included a wedge-shaped front which reduced wind resistance and helped to lift the exhaust dear of the cab windows at speed. The first locomotive of the class, named Silver Link, ran at an average speed of 100 mph (161 km/h) for 43 miles (69 km), with a maximum speed of 112 1/2 mph (181 km/h), on a seven-coach test train on 27 September 1935: the locomotive went into service hauling the Silver Jubilee express single-handed (since others of the class had still to be completed) for the first three weeks, a round trip of 536 miles (863 km) daily, much of it at 90 mph (145 km/h), without any mechanical troubles at all. Coaches for the Silver Jubilee had teak-framed, steel-panelled bodies on all-steel, welded underframes; windows were double glazed; and there was a pressure ventilation/heating system. Comparable trains were introduced between London Kings Cross and Edinburgh in 1937 and to Leeds in 1938.
    Gresley did not hesitate to incorporate outstanding features from elsewhere into his locomotive designs and was well aware of the work of André Chapelon in France. Four A4s built in 1938 were equipped with Kylchap twin blast-pipes and double chimneys to improve performance still further. The first of these to be completed, no. 4468, Mallard, on 3 July 1938 ran a test train at over 120 mph (193 km/h) for 2 miles (3.2 km) and momentarily achieved 126 mph (203 km/h), the world speed record for steam traction. J.Duddington was the driver and T.Bray the fireman. The use of high-speed trains came to an end with the Second World War. The A4s were then demonstrated to be powerful as well as fast: one was noted hauling a 730-ton, 22-coach train at an average speed exceeding 75 mph (120 km/h) over 30 miles (48 km). The war also halted electrification of the Manchester-Sheffield line, on the 1,500 volt DC overhead system; however, anticipating eventual resumption, Gresley had a prototype main-line Bo-Bo electric locomotive built in 1941. Sadly, Gresley died from a heart attack while still in office.
    [br]
    Principal Honours and Distinctions
    Knighted 1936. President, Institution of Locomotive Engineers 1927 and 1934. President, Institution of Mechanical Engineers 1936.
    Further Reading
    F.A.S.Brown, 1961, Nigel Gresley, Locomotive Engineer, Ian Allan (full-length biography).
    John Bellwood and David Jenkinson, Gresley and Stanier. A Centenary Tribute (a good comparative account).
    PJGR

    Biographical history of technology > Gresley, Sir Herbert Nigel

  • 16 Howden, James

    [br]
    b. 29 February 1832 Prestonpans, East Lothian, Scotland
    d. 21 November 1913 Glasgow, Scotland
    [br]
    Scottish engineer and boilermaker, inventor of the forced-draught system for the boiler combustion chamber.
    [br]
    Howden was educated in Prestonpans. While aged only 14 or 15, he travelled across Scotland by canal to Glasgow, where he served an engineering apprenticeship with James Gray \& Co. In 1853 he completed his time and for some months served with the civil engineers Bell and Miller, and then with Robert Griffiths, a designer of screw propellers for ships. In 1854, at the age of 22, Howden set up as a consulting engineer and designer. He designed a rivet-making machine from which he realized a fair sum by the sale of patent rights, this assisting him in converting the design business into a manufacturing one. His first contract for a marine engine came in 1859 for the compound steam engine and the watertube boilers of the Anchor Liner Ailsa Craig. This ship operated at 100 psi (approximately 7 kg/cm2), well above the norm for those days. James Howden \& Co. was formed in 1862. Despite operating in the world's most competitive market, the new company remained prosperous through the flow of inventions in marine propulsion. Shipbuilding was added to the company's list of services, but such work was subcontracted. Work was obtained from all the great shipping companies building in the Glasgow region, and with such throughput Howden's could afford research and experimentation. This led to the Howden hot-air forced-draught system, whereby furnace waste gases were used to heat the air being drawn into the combustion chambers. The first installation was on the New York City, built in 1885 for West Indian service. Howden's fertile mind brought about a fully enclosed high-speed marine steam engine in the 1900s and, shortly after, the Howden-Zoelly impulse steam turbine for land operation. Until his death, Howden worked on many technical and business problems: he was involved in the St Helena Whaling Company, marble quarrying in Greece and in the design of a recoilless gun for the Admiralty.
    [br]
    Principal Honours and Distinctions
    Howden was the last surviving member of the group who founded the Institution of Engineers and Shipbuilders in Scotland in 1857.
    Bibliography
    Howden contributed several papers to the Institution of Engineers and Shipbuilders in Scotland.
    Further Reading
    C.W.Munn, 1986, "James Howden", Dictionary of Scottish Business Biography, Vol. I, Aberdeen.
    FMW

    Biographical history of technology > Howden, James

  • 17 Maxwell, James Clerk

    [br]
    b. 13 June 1831 Edinburgh, Scotland
    d. 5 November 1879 Cambridge, England
    [br]
    Scottish physicist who formulated the unified theory of electromagnetism, the kinetic theory of gases and a theory of colour.
    [br]
    Maxwell attended school at the Edinburgh Academy and at the age of 16 went on to study at Edinburgh University. In 1850 he entered Trinity College, Cambridge, where he graduated four years later as Second Wrangler with the award of the Smith's Prize. Two years later he was appointed Professor at Marischal College, Aberdeen, where he married the Principal's daughter. In 1860 he moved to King's College London, but on the death of his father five years later, Maxwell returned to the family home in Scotland, where he continued his researches as far as the life of a gentleman farmer allowed. This rural existence was interrupted in 1874 when he was persuaded to accept the chair of Cavendish Professor of Experimental Physics at Cambridge. Unfortunately, in 1879 he contracted the cancer that brought his brilliant career to an untimely end. While at Cambridge, Maxwell founded the Cavendish Laboratory for research in physics. A succession of distinguished physicists headed the laboratory, making it one of the world's great centres for notable discoveries in physics.
    During the mid-1850s, Maxwell worked towards a theory to explain electrical and magnetic phenomena in mathematical terms, culminating in 1864 with the formulation of the fundamental equations of electromagnetism (Maxwell's equations). These equations also described the propagation of light, for he had shown that light consists of transverse electromagnetic waves in a hypothetical medium, the "ether". This great synthesis of theories uniting a wide range of phenomena is worthy to set beside those of Sir Isaac Newton and Einstein. Like all such syntheses, it led on to further discoveries. Maxwell himself had suggested that light represented only a small part of the spectrum of electromagnetic waves, and in 1888 Hertz confirmed the discovery of another small part of the spectrum, radio waves, with momentous implications for the development of telecommunication technology. Maxwell contributed to the kinetic theory of gases, which by then were viewed as consisting of a mass of randomly moving molecules colliding with each other and with the walls of the containing vessel. From 1869 Maxwell applied statistical methods to describe the molecular motion in mathematical terms. This led to a greater understanding of the behaviour of gases, with important consequences for the chemical industry.
    Of more direct technological application was Maxwell's work on colour vision, begun in 1849, showing that all colours could be derived from the three primary colours, red, yellow and blue. This enabled him in 1861 to produce the first colour photograph, of a tartan. Maxwell's discoveries about colour vision were quickly taken up and led to the development of colour printing and photography.
    [br]
    Bibliography
    Most of his technical papers are reprinted in The Scientific Papers of J.Clerk Maxwell, 1890, ed. W.D.Niven, Cambridge, 2 vols; reprinted 1952, New York.
    Maxwell published several books, including Theory of Heat, 1870, London (1894, 11th edn, with notes by Lord Rayleigh) and Theory of Electricity and Magnetism, 1873, Oxford (1891, ed. J.J.Thomson, 3rd edn).
    Further Reading
    L.Campbell and W.Garnett, 1882, The Life of James Clerk Maxwell, London (the standard biography).
    J.J.Thomson (ed.), 1931, James Clerk Maxwell 1831–1931, Cambridge. J.G.Crowther, 1932, British Scientists of the Nineteenth Century, London.
    LRD

    Biographical history of technology > Maxwell, James Clerk

  • 18 Metcalf, John

    [br]
    b. 1717 Knaresborough, Yorkshire, England d. 1810
    [br]
    English pioneer road builder.
    [br]
    The son of poor working parents, at the age of 6 an attack of smallpox left him blind; however, this did not restrict his future activities, which included swimming and riding. He learned the violin and was much employed as the fiddle-player at country parties. He saved enough money to buy a horse on which he hunted. He took part in bowls, wrestling and boxing, being a robust six foot two inches tall. He rode to Whitby and went thence by boat to London and made other trips to York, Reading and Windsor. In 1740 Colonel Liddell offered him a seat in his coach from London to Harrogate, but he declined and got there more quickly on foot. He set up a one-horse chaise and a four-wheeler for hire in Harrogate, but the local innkeepers set up in competition in the public hire business. He went into the fish business, buying at the coast and selling in Leeds and other towns, but made little profit so he took up his violin again. During the rebellion of 1745 he recruited for Colonel Thornton and served to fight at Hexham, Newcastle and Falkirk, returning home after the Battle of Culloden. He then started travelling between Yorkshire, where be bought cotton and worsted stockings, and Aberdeen, where he sold horses. He set up a twice-weekly service of stage wagons between Knaresborough and York.
    In 1765 an Act was passed for a turnpike road between Harrogate and Boroughbridge and he offered to build the Master Surveyor, a Mr Ostler, three miles (5 km) of road between Minskip and Fearnly, selling his wagons and his interest in the carrying business. The road was built satisfactorily and on time. He then quoted for a bridge at Boroughbridge and for a turnpike road between Knaresborough and Harrogate. He built many other roads, always doing the survey of the route on his own. The roads crossed bogs on a base of ling and furze. Many of his roads outside Yorkshire were in Lancashire, Cheshire and Derbyshire. In all he built some 180 miles (290 km) of road, for which he was paid some £65,000.
    He worked for thirty years on road building, retiring in old age to a cotton business in Stockport where he had six spinning jennies and a carding engine; however, he found there was little profit in this so he gave the machinery to his son-in-law. The last road he built was from Haslington to Accrington, but due to the rise in labour costs brought about by the demand from the canal boom, he only made £40 profit on a £3,000 contract; the road was completed in 1792, when he retired to his farm at Spofforth at the age of 75. There he died, leaving a wife, four children, twenty grandchildren and ninety greatgrandchildren. His wife was the daughter of the landlord of the Granby Inn, Knaresborough.
    [br]
    Further Reading
    S.Smiles, Lives of the Engineers, Metcalfe, Telford: John Murray.
    IMcN

    Biographical history of technology > Metcalf, John

  • 19 Waymouth, Bernard

    SUBJECT AREA: Ports and shipping
    [br]
    b. unknown
    d. 25 November 1890 London, England
    [br]
    English naval architect, ship surveyor and designer of the clipper ship Thermopylae.
    [br]
    Waymouth had initial training in shipbuilding at one of the Royal Dockyards before going on to work at a privately owned shipyard. With this all-round experience he was accepted in 1854 by Lloyd's Register of Shipping as a surveyor, and was to serve the Society well during a period of great change in ship design. In 1864 he was charged with the task of framing the Rules for the Construction of Composite Built Vessels, i.e. ships with main structural members such as keel, frames and deck beams of iron and with the hull sheathing or planking of timber. Although long superseded, these rules were of considerable consequence at the time and they were accompanied by beautiful drawings executed by Harry J.Cornish, who became Chief Ship Surveyor of Lloyd's from 1900 until 1909. In 1870 revolutionary proposals were made for iron ships that led to the adoption of a new form of rules where the scantlings or size of individual parts were related to the overall dimensions of the vessel. The symbol 100A1 was then adopted for the first time.
    Waymouth was more than a theoretical naval architect: in the late 1860s he was commissioned by the shipbuilders Walter Hood to design the famous Aberdeen Clipper Thermopylae. This was one of the fastest sailing ships of the nineteenth century and, along with its Clyde-built counterpart Cutty Sark, proved the efficacy of composite construction for these specialist vessels.
    Waymouth was appointed Principal Surveyor of Lloyd's in 1870 and was Secretary of the Society from 1872 until his death at work in 1890. He was a member of the Royal Commission on Tonnage and of the Enquiry into the loss of HMS Atlanta, and at the time of his death was Vice-President of the Institution of Naval Architects.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Naval Architects.
    Further Reading
    Annals of Lloyd's Register, 1934, London.
    FMW

    Biographical history of technology > Waymouth, Bernard

  • 20 Yarrow, Sir Alfred Fernandez

    SUBJECT AREA: Ports and shipping
    [br]
    b. 13 January 1842 London, England
    d. 24 January 1932 London, England
    [br]
    English shipbuilder, naval architect, engineer and philanthropist.
    [br]
    At the conclusion of his schooling in the South of England, Yarrow became an indentured apprentice to the Thames engine-builder Ravenhill. During this five-year period various incidents and meetings sharpened his interest in scientific matters and he showed the skills that in later years were to be so beneficial to shipbuilding. For two years he acted as London representative for Ravenhill before joining up with a Mr Hedley to form a shipyard on the Isle of Dogs. The company lasted from 1868 until 1875 and in that period produced 350 small launches and other craft. This massive output enabled Yarrow to gain confidence in many aspects of ship design. Within two years of setting out on his own he built his first ship for the Royal Navy: a torpedo boat, then at the cutting edge of technology.
    In the early 1890s the company was building watertube boilers and producing destroyers with speeds in excess of 27 knots (50 km/h); it built the Russian destroyer Sokol, did pioneering work with aluminium and with high-tensile steels and worked on shipboard equipment to nullify vibrational effects. With the closure of most of the Thames shipyards and the run-down in skilled labour, Yarrow decided that the shipyard must move to some other part of the United Kingdom. After careful deliberation a green field site to the west of Glasgow was chosen, and in 1908 their first Clyde-built destroyer was launched. The company expanded, more building berths were arranged, boiler construction was developed and over the years they became recognized as specialists in smaller highspeed craft and in "knock down" ships for other parts of the world.
    Yarrow retired in 1913, but at the commencement of the First World War he returned to help the yard produce, in four years, twenty-nine destroyers with speeds of up to 40 knots (74 km/h). At the end of hostilities he gave of his time and money to many charities, including those for ex-servicemen. He left a remarkable industrial organization which remains to this day the most prolific builder of surface craft for the Royal Navy.
    [br]
    Principal Honours and Distinctions
    Created Baronet 1916. FRS 1922. Vice-President, Institution of Naval Architects 1896.
    Further Reading
    Lady Yarrow, 1924, Alfred Yarrow, His Life and Work, London: Edward Arnold. A.Borthwick, 1965, Yarrow and Company Limited, The First Hundred Years 1865–
    1965, Glasgow.
    B.Baxter, 1986, "Alfred Fernandez Yarrow", Dictionary of Scottish Business Biography, Vol. I, pp. 245–7, Slaven \& Checkland and Aberdeen University Press.
    FMW

    Biographical history of technology > Yarrow, Sir Alfred Fernandez

См. также в других словарях:

  • Aberdeen — City redirects here. For other uses see Aberdeen (disambiguation) and Aberdeen City (disambiguation). Coordinates: 57°09′09″N 2°06′36″W / 57.1526°N 2.1100°W …   Wikipedia

  • Aberdeen — Aberdeen …   Deutsch Wikipedia

  • Aberdeen —    ABERDEEN, a city, and sea port town, the seat of a university, the capital of the county of Aberdeen, and the metropolis of the North of Scotland, 109 miles (N. N. E.) from Edinburgh, and 425 (N. by W.) from London; containing, with parts of… …   A Topographical dictionary of Scotland

  • Aberdeen — Aberdeen, NC U.S. town in North Carolina Population (2000): 3400 Housing Units (2000): 1655 Land area (2000): 6.164109 sq. miles (15.964968 sq. km) Water area (2000): 0.009019 sq. miles (0.023358 sq. km) Total area (2000): 6.173128 sq. miles… …   StarDict's U.S. Gazetteer Places

  • Aberdeen F.C. — Aberdeen Football Club Aberdeen F.C. Généralités Surnom(s) The …   Wikipédia en Français

  • Aberdeen FC — Aberdeen Football Club Aberdeen F.C. Généralités Surnom(s) The …   Wikipédia en Français

  • ABERDEEN — ABERDEEN, Scottish seaport, northeast of Edinburgh. In 1665 it was reported that a ship with sails of white satin had put into harbor with a large party of Jews, presumably on the way to join the pseudo Messiah Shabbetai Ẓevi in the Levant (A New …   Encyclopedia of Judaism

  • Aberdeen — es una ciudad de la costa este de Escocia en el Reino Unido. Tiene aproximadamente 200.000 habitantes. * * * Lago del N de Canadá, en el distrito de Keewatin (Territorio del Noroeste). C. de Gran Bretaña, en Escocia, cap. del ant. condado… …   Enciclopedia Universal

  • ABERDEEN — ABERDEE Située sur la mer du Nord, à l’embouchure (aber ) de la Dee, Aberdeen, troisième ville d’Écosse (201 100 hab. en 1991), est la grande ville la plus septentrionale de Grande Bretagne (570 de latitude nord). Premier port de pêche écossais,… …   Encyclopédie Universelle

  • Aberdeen F.C. — Aberdeen F.C. Saltar a navegación, búsqueda Aberdeen Football Club Obtenido de Aberdeen F.C …   Wikipedia Español

  • Aberdeen FC — Saltar a navegación, búsqueda Aberdeen Football Club Obtenido de Aberdeen FC …   Wikipedia Español

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»