Перевод: со всех языков на все языки

со всех языков на все языки

таким+путем

  • 1 таким путем

    Русско-латышский словарь > таким путем

  • 2 путь

    м.
    1) ( дорога) via f, strada f, cammino m
    проложить путь — aprire; la strada
    нам не по пути — le nostre vie divergono тж. перен.
    стоять на пути — stare; sulla strada
    сбиться с путиsmarrire il cammino / la strada; uscire dal solco / dai binari / dalla carreggiata тж. перен.; smarrirsi ( заблудиться)
    быть на пути к... — essere diretto verso... тж. перен.
    не сворачивать с пути — stare in carreggiata тж. перен.
    путь труден перен. — la strada è irta di ostacoli
    2) ( сообщение) via f
    морским путем — per / via mare
    3) ж.-д. (линия, колея) linea ferroviaria, binario m
    4) мн. пути анат. vie f pl
    трудный путь — cammino / viaggio / molto faticoso
    пуститься в путьmettersi in viaggio / in cammino; incamminarsi
    держать путь в... — dirigersi verso...; avviarsi a... / in...
    идти по чьему-л. пути — seguire le orme / la scia di qd
    идти по пути... — imboccare la strada di...; avviarsi / porsi sulla via di...; avanzare sulla via di...
    идти другим путемmuoversi su un'altra via; imboccare un'altra strada
    6) ( способ) via f, modo m, mezzo m, maniera f
    мирным путем — pacificamente, in via pacifica
    окольным путем перен. — per vie traverse
    7) ( доступ) via f, accesso m
    ••
    пут-дорога, пут-дороженька нар-поэт.lungo cammino
    забыть путь куда-л.dimenticare la strada per qc
    пробить себе путь — farsi strada, aprirsi il cammino
    совратить с пути — far uscire dai binari / dalla retta via; sviare vt
    направить / наставить на путь истины — mettere sul giusto binario / cammino; mettere sulla retta via
    стоять на чьем-л. пути — sbarrare il passo, chiudere / tagliare il cammino a qd
    стоять / находиться на ложном пути — percorrere / seguire una strada sbagliata / errata
    стоять на хорошем / на правильном пути — seguire un cammino giusto
    встать на верный путь — imboccare una strada giusta
    отрезать себе путь к отступлениюbruciare tutti i ponti / vascelli alle proprie spalle

    Большой итальяно-русский словарь > путь

  • 3 protection

    1. степень защиты (обеспечиваемая оболочкой)
    2. репарация
    3. релейная защита
    4. охрана
    5. защита (в геотекстильных материалах)
    6. защита

     

    защита
    Предотвращение или ограничение местных повреждений элемента или материала путем использования геотекстильного или геотекстилеподобного материала.
    [ ГОСТ Р 53225-2008]

    Тематики

    EN

    FR

     

    охрана
    ограждение


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

     

    защита
    Совокупность устройств, предназначенных для обнаружения повреждений или других анормальных режимов в энергосистеме, отключения повреждения, прекращения анормальных режимов и подачи команд или сигналов.
    Примечания:
    1) Термин «защита» является общим термином для устройств защиты или систем защиты.
    2) Термин «защита» может употребляться для описания защиты целой энергосистемы или защиты отдельной установки в энергосистеме, например: защита трансформатора, защита линии, защита генератора.
    3) Защита не включает в себя оборудование установки энергосистемы, предназначенное, например, для ограничения перенапряжений в энергосистеме. Однако, она включает в себя оборудование, предназначенное для управления отклонениями напряжения или частоты в энергосистеме, такое как оборудование для автоматического управления реакторами для автоматической разгрузки и т.п.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    релейная защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    релейная защита

    релейная защита электрических систем
    Совокупность устройств (или отдельное устройство), содержащая реле и способная реагировать на короткие замыкания (КЗ) в различных элементах электрической системы — автоматически выявлять и отключать поврежденный участок. В ряде случаев Р. з. может реагировать и на др. нарушения нормального режима работы системы (например, на повышение тока, напряжения) — включать сигнализацию или (реже) отключать соответствующий элемент системы. КЗ — основной вид повреждений в электрических системах как по частоте возникновения, так и по масштабам отрицательных последствий. При КЗ наступает резкое и неравномерное понижение напряжения в системе и значительное увеличение тока в отдельных её элементах, что в конечном счёте может привести к прекращению электроснабжения потребителей и разрушению оборудования. Применение Р. з. сводит вредные последствия КЗ к минимуму.

    Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.

    Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.

    Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов "распознавания" защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.

    Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).

    4608


    На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.

    4609

    В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.

    В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце "своего" и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
    Э. П. Смирнов.
    [БСЭ, 1969-1978]

    НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ

    В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
    Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
    Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.

    Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
    Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
    Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

    Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
    Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.).

    В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
    Первоначально в качестве подобной защиты применялись плавкие предохранители. Однако по мере роста мощности и напряжения электрических установок и усложнения их схем коммутации такой способ защиты стал недостаточным, в силу чего были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

    Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.
    При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

    При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.
    В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.

    К основным устройствам такой автоматики относятся:

    • автоматы повторного включения (АПВ),
    • автоматы включения резервных источников питания и оборудования (АВР),
    • автоматы частотной разгрузки (АЧР).

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

     

    репарация
    репаративный синтез

    Восстанавление нативной первичной структуры молекулы ДНК (т.е. исправление повреждений, спонтанно возникающих в процессе репликации и рекомбинации или вызванных действием внешних факторов); различают фотореактивацию, эксцизионную и пострепликативную Р.; Р. осуществляется с помощью набора специфических репаративных ферментов; дефектность Р. ДНК наблюдается при некоторых НЗЧ - пигментной ксеродерме, атаксии-телангиэктазии, анемии Фанкони, трихотиодистрофии и др.
    [Арефьев В.А., Лисовенко Л.А. Англо-русский толковый словарь генетических терминов 1995 407с.]

    Тематики

    Синонимы

    EN

     

    степень защиты
    Способ защиты, обеспечиваемый оболочкой от доступа к опасным частям, попадания внешних твердых предметов и (или) воды и проверяемый стандартными методами испытаний.
    [ ГОСТ 14254-96( МЭК 529-89)]

    степень защиты, обеспечиваемая оболочкой (IP)
    Числовые обозначения после кода IP, которые в соответствии с МЭК 60529 [12] характеризуют оболочку электрооборудования, обеспечивающую:
    - защиту персонала от прикасания или доступа к находящимся под напряжением или движущимся частям (за исключением гладких вращающихся валов и т.п.), расположенным внутри оболочки;
    - защиту электрооборудования от проникания в него твердых посторонних тел и,
    - если указано в обозначении, защиту электрооборудования от вредного проникания воды.
    [ ГОСТ Р МЭК 60050-426-2006]

    EN

    degree of protection of enclosure
    IP (abbreviation)
    numerical classification according to IEC 60529 preceded by the symbol IP applied to the enclosure of electrical apparatus to provide:
    – protection of persons against contact with, or approach to, live parts and against contact with moving parts (other than smooth rotating shafts and the like) inside the enclosure,
    – protection of the electrical apparatus against ingress of solid foreign objects, and
    – where indicated by the classification, protection of the electrical apparatus against harmful ingress of water
    [IEV number 426-04-02 ]

    FR

    degré de protection procuré par une enveloppe
    IP (abréviation)

    classification numérique selon la CEI 60529, précédée du symbole IP, appliquée à une enveloppe de matériel électrique pour apporter:
    – une protection des personnes contre tout contact ou proximité avec des parties actives et contre tout contact avec une pièce mobile (autre que les roulements en faible rotation) à l'intérieur d'une enveloppe
    – une protection du matériel électrique contre la pénétration de corps solide étrangers, et
    – selon l’indication donnée par la classification, une protection du matériel électrique contre la pénétration dangereuse de l’eau
    [IEV number 426-04-02 ]

    Элементы кода IP и их обозначения по ГОСТ 14254-96( МЭК 529-89)

     

    Цифры кода IP

    Значение для защиты оборудования от проникновения внешних твердых предметов

    Значение для защиты людей от доступа к опасным частям

    Первая характеристическая цифра

    0

    Нет защиты

    Нет защиты

     

    1

    диаметром ≥ 50 мм

    тыльной стороной руки

     

    2

    диаметром ≥ 12,5 мм

    пальцем

     

    3

    диаметром ≥ 2,5 мм

    инструментом

     

    4

    диаметром ≥ 1,0 мм

    проволокой

     

    5

    пылезащищенное

    проволокой

     

    6

    пыленепроницаемое

    проволокой

     

     

    От вредного воздействия в результате проникновения воды

     

    Вторая характеристическая цифра

    0

    Нет защиты

    -

     

    1

    Вертикальное каплепадение

     

     

    2

    Каплепадение (номинальный угол 15°)

     

     

    3

    Дождевание

     

     

    4

    Сплошное обрызгивание

     

     

    5

    Действие струи

     

     

    6

    Сильное действие струи

     

     

    7

    Временное непродолжительное погружение

     

     

    8

    Длительное погружение

     

    Дополнительная буква (при необходимости)

     

    -

    От доступа к опасным частям

     

    A

     

    тыльной стороной руки

     

    B

     

    пальцем

     

    C

     

    инструментом

     

    проволокой

    Вспомогательная буква (при необходимости)

     

    Вспомогательная информация относящаяся к:

    -

     

    H

    высоковольтным аппаратам

     

     

    M

    состоянию движения во время испытаний защиты от воды

     

     

    S

    состоянию неподвижности во время испытаний защиты от воды

     

     

    W

    Требования в части стойкости оболочек и электрооборудования в целом к климатическим, механическим внешним воздействующим факторам (ВВФ) и специальным средам (кроме проникновения внешних твердых предметов и воды) установлены вне рамок настоящего стандарта.

     

    Параллельные тексты EN-RU

    The code IP indicates the degrees of protection provided by an enclosure against access to hazardous parts, ingress of solid foreign objects and ingress of water.
    The degree of protection of an enclosure is identified, in compliance with the specifications of the Standard IEC 60529, by the code letters IP (International Protection) followed by two numerals and two additional letters.
    The first characteristic numeral indicates the degree of protection against ingress of solid foreign objects and against contact of persons with hazardous live parts inside the enclosure.
    The second characteristic numeral indicates the degree of protection against ingress of water with harmful effects.

    [ABB]

    Код IP обозначает степень защиты, обеспечиваемую оболочкой от попадания внутрь твердых посторонних предметов и воды.
    Степень защиты оболочки обозначается в соответствии со стандартом МЭК 60529 буквенным обозначением IP (International Protection, т. е. Международная защита) после которого следуют две цифры, к которым в некоторых случаях добавляются еще две буквы.
    Первая характеристическая цифра обозначает степень защиты от проникновения твердых посторонних предметов и от контакта людей с находящимися внутри оболочки опасными токоведущими частями.
    Вторая характеристическая цифра обозначает степень защиты оболочки с точки зрения вредного воздействия, оказываемого проникновением воды.

    [Перевод Интент]

     

    The protection of enclosures against ingress of dirt or against the ingress of water is defined in IEC529 (BSEN60529:1991). Conversely, an enclosure which protects equipment against ingress of particles will also protect a person from potential hazards within that enclosure, and this degree of protection is also defined as a standard.

    The degrees of protection are most commonly expressed as ‘IP’ followed by two numbers, e.g. IP65, where the numbers define the degree of protection. The first digit shows the extent to which the equipment is protected against particles, or to which persons are protected from enclosed hazards. The second digit indicates the extent of protection against water.

    The wording in the table is not exactly as used in the standards document, but the dimensions are accurate

     

    IP Degree of Protection according to EN/IEC 60529

    4472

     

    Correlations between IP (IEC) and NEMA 250 standards

    IP10 -> NEMA 1
    IP11 -> NEMA 2
    IP54 -> NEMA 3 R
    IP52 -> NEMA 5-12-12 K
    IP54 -> NEMA 3-3 S
    IP56 -> NEMA 4-4 X
    IP67 -> NEMA 6-6 P

    [ http://electrical-engineering-portal.com/ip-protection-degree-iec-60529-explained]

    Тематики

    Действия

    • степень защиты
    • степень защиты, обеспечиваемая оболочкой
    • степень защиты, обеспечиваемая оболочкой (код IP)

    EN

    DE

    • IP-Schutzgrad, m
    • Schutzart des Gehäuses, f

    FR

    2.2.8 защита (protection): Предохранение поверхности объекта от возможных повреждений.

    Источник: ОДМ 218.5.005-2010: Классификация, термины, определения геосинтетических материалов применительно к дорожному хозяйству

    Англо-русский словарь нормативно-технической терминологии > protection

  • 4 -V387

    (3) таким способом, таким путем:

    Era chiaro che per quel verso non sarebbe riuscito a sapere nulla. (F. Sacchi, «La primadonna»)

    Было ясно, что этим путем ему ничего узнать не удастся.

    Frasario italiano-russo > -V387

  • 5 RP

    1. частота ремонта
    2. удаленная точка
    3. точка, в которой пересекаются источники многоадресной передачи и члены групп
    4. релейная защита
    5. рекомендуемые технологии
    6. рекомендуемые методы
    7. реактивная мощность (вар)
    8. реактивная мощность
    9. радиологическая защита
    10. проект ядерного реактора
    11. программа обеспечения надёжности
    12. правила выполнения работ
    13. относительное (ксеноновое) отравление ядерного реактора
    14. небуферизованный отчет (функциональная связь)
    15. исполнитель маршрутизации
    16. армированный пластик

     

    армированный пластик

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    исполнитель маршрутизации
    Вычислительный объект, который связан с зоной маршрутизации и обеспечивает абстрактное представление услуги маршрутизации для зоны маршрутизации (МСЭ-T G.709/ Y.1353).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    относительное (ксеноновое) отравление ядерного реактора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    правила выполнения работ

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    программа обеспечения надёжности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    проект ядерного реактора

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    радиологическая защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    реактивная мощность
    Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника.
    [ ГОСТ Р 52002-2003]

    ПРИРОДА РЕАКТИВНОЙ МОЩНОСТИ

    Реактивная мощность возникает только в сетях переменного тока.
    Реактивная мощность имеет следующую природу.
    При прохождении по проводнику (по электричекой цепи) переменного тока возникает переменный магнитный поток, изменяющийся с частотой протекающего тока. Вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная электродвижущая сила (эдс), которую называют эдс самоиндукции.

    Эдс самоиндукции имеет реактивный характер. Это означает, что при увеличении тока в цепи эдс самоиндукции будет направлена против эдс источника питания и таким образом будет противодействовать увеличению тока. И наоборот, при уменьшении тока в цепи эдс самоиндукции будет поддерживать убывающий ток (правило Ленца).

    В цепи переменного тока непрерывно возникает эдс самоиндукции, поскольку ток в цепи непрерывно изменяется.

    Эдс самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (т. е. от индуктивности элементов этой цепи, т. е. от числа витков, наличия стальных сердечников).

    ДОПИСАТЬ

    Недопустимые, нерекомендуемые

    Тематики

    Близкие понятия

    Действия

    Синонимы

    Сопутствующие термины

    EN

     

    реактивная мощность (вар)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    рекомендуемые методы

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    рекомендуемые технологии

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    защита
    Совокупность устройств, предназначенных для обнаружения повреждений или других анормальных режимов в энергосистеме, отключения повреждения, прекращения анормальных режимов и подачи команд или сигналов.
    Примечания:
    1) Термин «защита» является общим термином для устройств защиты или систем защиты.
    2) Термин «защита» может употребляться для описания защиты целой энергосистемы или защиты отдельной установки в энергосистеме, например: защита трансформатора, защита линии, защита генератора.
    3) Защита не включает в себя оборудование установки энергосистемы, предназначенное, например, для ограничения перенапряжений в энергосистеме. Однако, она включает в себя оборудование, предназначенное для управления отклонениями напряжения или частоты в энергосистеме, такое как оборудование для автоматического управления реакторами для автоматической разгрузки и т.п.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    релейная защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    релейная защита

    релейная защита электрических систем
    Совокупность устройств (или отдельное устройство), содержащая реле и способная реагировать на короткие замыкания (КЗ) в различных элементах электрической системы — автоматически выявлять и отключать поврежденный участок. В ряде случаев Р. з. может реагировать и на др. нарушения нормального режима работы системы (например, на повышение тока, напряжения) — включать сигнализацию или (реже) отключать соответствующий элемент системы. КЗ — основной вид повреждений в электрических системах как по частоте возникновения, так и по масштабам отрицательных последствий. При КЗ наступает резкое и неравномерное понижение напряжения в системе и значительное увеличение тока в отдельных её элементах, что в конечном счёте может привести к прекращению электроснабжения потребителей и разрушению оборудования. Применение Р. з. сводит вредные последствия КЗ к минимуму.

    Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.

    Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.

    Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов "распознавания" защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.

    Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).

    4608


    На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.

    4609

    В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.

    В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце "своего" и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
    Э. П. Смирнов.
    [БСЭ, 1969-1978]

    НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ

    В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
    Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
    Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.

    Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
    Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
    Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

    Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
    Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.).

    В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
    Первоначально в качестве подобной защиты применялись плавкие предохранители. Однако по мере роста мощности и напряжения электрических установок и усложнения их схем коммутации такой способ защиты стал недостаточным, в силу чего были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

    Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.
    При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

    При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.
    В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.

    К основным устройствам такой автоматики относятся:

    • автоматы повторного включения (АПВ),
    • автоматы включения резервных источников питания и оборудования (АВР),
    • автоматы частотной разгрузки (АЧР).

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

     

    точка, в которой пересекаются источники многоадресной передачи и члены групп
    Передаваемые из источников многоадресной передачи пакеты распространяются через маршрутизатор RP в начале многоадресной передачи (МСЭ-Т J.283).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    удаленная точка
    Опорная точка, в которой выходной сигнал функции приемника завершения трассы на окончании двусторонней трассы подается на вход ее функции источника, с целью передачи информации на удаленный конец. (МСЭ-T G.806).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    частота ремонта

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > RP

  • 6 путь

    БНРС > путь

  • 7 дихотомический поиск

    1. dichotomizing search
    2. dichotomic search

     

    дихотомический поиск

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    дихотомический поиск
    1. В численных методах оптимизации - поиск оптимума путем последовательного деления пополам (дихотомии) пространства решений и проверки каждой половины на наличие в ней экстремальной точки. Оптимум отыскивается таким путем за конечное количество шагов (делений). 2. Поиск информации в любом массиве данных путем его последовательного дихотомического деления. Искомая информация находится за [log2N]+1 шагов[1], где N — число данных в исходном массиве. (Названный выше метод оптимизации — частный случай по отношению к 2). [1] Квадратные скобки означают здесь выделение наибольшего целого числа, не превышающего результат логарифмирования.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > дихотомический поиск

  • 8 dichotomizing search

    1. дихотомический поиск
    2. двоичный поиск

     

    двоичный поиск
    поиск делением пополам

    Алгоритм поиска, в котором пространство поиска делится пополам, после чего сравнение производится с элементом из середины выбранной половины. Т.о. каждый раз пространство поиска уменьшается вдвое.
    [ http://www.morepc.ru/dict/]

    двоичный поиск
    Метод поиска, в котором перечень объектов на каждом очередном шаге делятся пополам.
    Например, имеется англо-русский словарь. Необходимо найти перевод слова "root". На первом шаге в словаре берется средняя страница и анализируется ранее либо позже нее, находится искомое слово. Пусть оно находится позже. Тогда, на втором шаге, вторая половина текста словаря делится пополам и проводится анализ, где находится искомое слово... Так продолжается до тех пор, пока на очередном шаге не появится страница, содержащая нужное слово.
    Наряду с двоичным применяется и последовательный поиск. Он проще, но требует большего времени.
    [Гипертекстовый энциклопедический словарь по информатике Э. Якубайтиса]
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    дихотомический поиск

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    дихотомический поиск
    1. В численных методах оптимизации - поиск оптимума путем последовательного деления пополам (дихотомии) пространства решений и проверки каждой половины на наличие в ней экстремальной точки. Оптимум отыскивается таким путем за конечное количество шагов (делений). 2. Поиск информации в любом массиве данных путем его последовательного дихотомического деления. Искомая информация находится за [log2N]+1 шагов[1], где N — число данных в исходном массиве. (Названный выше метод оптимизации — частный случай по отношению к 2). [1] Квадратные скобки означают здесь выделение наибольшего целого числа, не превышающего результат логарифмирования.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > dichotomizing search

  • 9 dichotomic search

    1. дихотомический поиск

     

    дихотомический поиск

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    дихотомический поиск
    1. В численных методах оптимизации - поиск оптимума путем последовательного деления пополам (дихотомии) пространства решений и проверки каждой половины на наличие в ней экстремальной точки. Оптимум отыскивается таким путем за конечное количество шагов (делений). 2. Поиск информации в любом массиве данных путем его последовательного дихотомического деления. Искомая информация находится за [log2N]+1 шагов[1], где N — число данных в исходном массиве. (Названный выше метод оптимизации — частный случай по отношению к 2). [1] Квадратные скобки означают здесь выделение наибольшего целого числа, не превышающего результат логарифмирования.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > dichotomic search

  • 10 такой

    мест.
    1) определит. tale; tanto, cosi
    он действительно был таким — era effettivamente
    они все такие хорошие — sono tutti tanto / così buoni
    3) разг. (с местоимением "кто", "что", "какой")
    таким образом — in questo / tal modo, in tal guisa; dunque
    в таком случае — in tal / questo caso, se è così
    и все такое (прочее) прост. — e via di questo passo; e chi più ne ha più ne metta; e via enumerando
    что такое? — che (cosa)?; cosa vuoi dire?
    есть такое дело! — e sia!; sia così!, signorsì!

    Большой итальяно-русский словарь > такой

  • 11 релейная защита

    1. RP
    2. relaying
    3. relay protection
    4. protective relaying
    5. protection relay
    6. protection

     

    защита
    Совокупность устройств, предназначенных для обнаружения повреждений или других анормальных режимов в энергосистеме, отключения повреждения, прекращения анормальных режимов и подачи команд или сигналов.
    Примечания:
    1) Термин «защита» является общим термином для устройств защиты или систем защиты.
    2) Термин «защита» может употребляться для описания защиты целой энергосистемы или защиты отдельной установки в энергосистеме, например: защита трансформатора, защита линии, защита генератора.
    3) Защита не включает в себя оборудование установки энергосистемы, предназначенное, например, для ограничения перенапряжений в энергосистеме. Однако, она включает в себя оборудование, предназначенное для управления отклонениями напряжения или частоты в энергосистеме, такое как оборудование для автоматического управления реакторами для автоматической разгрузки и т.п.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    релейная защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    релейная защита

    релейная защита электрических систем
    Совокупность устройств (или отдельное устройство), содержащая реле и способная реагировать на короткие замыкания (КЗ) в различных элементах электрической системы — автоматически выявлять и отключать поврежденный участок. В ряде случаев Р. з. может реагировать и на др. нарушения нормального режима работы системы (например, на повышение тока, напряжения) — включать сигнализацию или (реже) отключать соответствующий элемент системы. КЗ — основной вид повреждений в электрических системах как по частоте возникновения, так и по масштабам отрицательных последствий. При КЗ наступает резкое и неравномерное понижение напряжения в системе и значительное увеличение тока в отдельных её элементах, что в конечном счёте может привести к прекращению электроснабжения потребителей и разрушению оборудования. Применение Р. з. сводит вредные последствия КЗ к минимуму.

    Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.

    Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.

    Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов "распознавания" защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.

    Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).

    4608


    На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.

    4609

    В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.

    В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце "своего" и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
    Э. П. Смирнов.
    [БСЭ, 1969-1978]

    НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ

    В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
    Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
    Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.

    Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
    Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
    Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

    Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
    Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.).

    В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
    Первоначально в качестве подобной защиты применялись плавкие предохранители. Однако по мере роста мощности и напряжения электрических установок и усложнения их схем коммутации такой способ защиты стал недостаточным, в силу чего были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

    Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.
    При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

    При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.
    В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.

    К основным устройствам такой автоматики относятся:

    • автоматы повторного включения (АПВ),
    • автоматы включения резервных источников питания и оборудования (АВР),
    • автоматы частотной разгрузки (АЧР).

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > релейная защита

  • 12 relaying

    1. релейная защита
    2. применение реле
    3. постановка релейной защиты
    4. передача эстафеты

     

    передача эстафеты
    Элемент техники эстафетного бега.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    relaying
    Element of relay race technique.

    relay
    exchange

    Another term for relaying.

    hand-over
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    постановка релейной защиты

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    применение реле
    релейное управление
    релейная защита


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    защита
    Совокупность устройств, предназначенных для обнаружения повреждений или других анормальных режимов в энергосистеме, отключения повреждения, прекращения анормальных режимов и подачи команд или сигналов.
    Примечания:
    1) Термин «защита» является общим термином для устройств защиты или систем защиты.
    2) Термин «защита» может употребляться для описания защиты целой энергосистемы или защиты отдельной установки в энергосистеме, например: защита трансформатора, защита линии, защита генератора.
    3) Защита не включает в себя оборудование установки энергосистемы, предназначенное, например, для ограничения перенапряжений в энергосистеме. Однако, она включает в себя оборудование, предназначенное для управления отклонениями напряжения или частоты в энергосистеме, такое как оборудование для автоматического управления реакторами для автоматической разгрузки и т.п.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    релейная защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    релейная защита

    релейная защита электрических систем
    Совокупность устройств (или отдельное устройство), содержащая реле и способная реагировать на короткие замыкания (КЗ) в различных элементах электрической системы — автоматически выявлять и отключать поврежденный участок. В ряде случаев Р. з. может реагировать и на др. нарушения нормального режима работы системы (например, на повышение тока, напряжения) — включать сигнализацию или (реже) отключать соответствующий элемент системы. КЗ — основной вид повреждений в электрических системах как по частоте возникновения, так и по масштабам отрицательных последствий. При КЗ наступает резкое и неравномерное понижение напряжения в системе и значительное увеличение тока в отдельных её элементах, что в конечном счёте может привести к прекращению электроснабжения потребителей и разрушению оборудования. Применение Р. з. сводит вредные последствия КЗ к минимуму.

    Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.

    Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.

    Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов "распознавания" защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.

    Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).

    4608


    На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.

    4609

    В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.

    В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце "своего" и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
    Э. П. Смирнов.
    [БСЭ, 1969-1978]

    НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ

    В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
    Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
    Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.

    Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
    Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
    Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

    Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
    Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.).

    В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
    Первоначально в качестве подобной защиты применялись плавкие предохранители. Однако по мере роста мощности и напряжения электрических установок и усложнения их схем коммутации такой способ защиты стал недостаточным, в силу чего были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

    Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.
    При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

    При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.
    В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.

    К основным устройствам такой автоматики относятся:

    • автоматы повторного включения (АПВ),
    • автоматы включения резервных источников питания и оборудования (АВР),
    • автоматы частотной разгрузки (АЧР).

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > relaying

  • 13 protection relay

    1. релейная защита
    2. реле защиты

     

    реле защиты
    -

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    реле защиты
    Измерительное реле, представляющее собой самостоятельно или в сочетании с другими реле составную часть устройства защиты.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    EN

    protection relay
    measuring relay which, either solely or in combination with other relays, is a constituent of a protection equipment
    [IEC 60050-448:1995, 448-11-02]

    Тематики

    EN

     

    защита
    Совокупность устройств, предназначенных для обнаружения повреждений или других анормальных режимов в энергосистеме, отключения повреждения, прекращения анормальных режимов и подачи команд или сигналов.
    Примечания:
    1) Термин «защита» является общим термином для устройств защиты или систем защиты.
    2) Термин «защита» может употребляться для описания защиты целой энергосистемы или защиты отдельной установки в энергосистеме, например: защита трансформатора, защита линии, защита генератора.
    3) Защита не включает в себя оборудование установки энергосистемы, предназначенное, например, для ограничения перенапряжений в энергосистеме. Однако, она включает в себя оборудование, предназначенное для управления отклонениями напряжения или частоты в энергосистеме, такое как оборудование для автоматического управления реакторами для автоматической разгрузки и т.п.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    релейная защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    релейная защита

    релейная защита электрических систем
    Совокупность устройств (или отдельное устройство), содержащая реле и способная реагировать на короткие замыкания (КЗ) в различных элементах электрической системы — автоматически выявлять и отключать поврежденный участок. В ряде случаев Р. з. может реагировать и на др. нарушения нормального режима работы системы (например, на повышение тока, напряжения) — включать сигнализацию или (реже) отключать соответствующий элемент системы. КЗ — основной вид повреждений в электрических системах как по частоте возникновения, так и по масштабам отрицательных последствий. При КЗ наступает резкое и неравномерное понижение напряжения в системе и значительное увеличение тока в отдельных её элементах, что в конечном счёте может привести к прекращению электроснабжения потребителей и разрушению оборудования. Применение Р. з. сводит вредные последствия КЗ к минимуму.

    Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.

    Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.

    Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов "распознавания" защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.

    Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).

    4608


    На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.

    4609

    В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.

    В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце "своего" и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
    Э. П. Смирнов.
    [БСЭ, 1969-1978]

    НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ

    В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
    Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
    Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.

    Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
    Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
    Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

    Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
    Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.).

    В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
    Первоначально в качестве подобной защиты применялись плавкие предохранители. Однако по мере роста мощности и напряжения электрических установок и усложнения их схем коммутации такой способ защиты стал недостаточным, в силу чего были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

    Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.
    При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

    При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.
    В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.

    К основным устройствам такой автоматики относятся:

    • автоматы повторного включения (АПВ),
    • автоматы включения резервных источников питания и оборудования (АВР),
    • автоматы частотной разгрузки (АЧР).

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > protection relay

  • 14 protective relaying

    1. релейная защита

     

    защита
    Совокупность устройств, предназначенных для обнаружения повреждений или других анормальных режимов в энергосистеме, отключения повреждения, прекращения анормальных режимов и подачи команд или сигналов.
    Примечания:
    1) Термин «защита» является общим термином для устройств защиты или систем защиты.
    2) Термин «защита» может употребляться для описания защиты целой энергосистемы или защиты отдельной установки в энергосистеме, например: защита трансформатора, защита линии, защита генератора.
    3) Защита не включает в себя оборудование установки энергосистемы, предназначенное, например, для ограничения перенапряжений в энергосистеме. Однако, она включает в себя оборудование, предназначенное для управления отклонениями напряжения или частоты в энергосистеме, такое как оборудование для автоматического управления реакторами для автоматической разгрузки и т.п.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    релейная защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    релейная защита

    релейная защита электрических систем
    Совокупность устройств (или отдельное устройство), содержащая реле и способная реагировать на короткие замыкания (КЗ) в различных элементах электрической системы — автоматически выявлять и отключать поврежденный участок. В ряде случаев Р. з. может реагировать и на др. нарушения нормального режима работы системы (например, на повышение тока, напряжения) — включать сигнализацию или (реже) отключать соответствующий элемент системы. КЗ — основной вид повреждений в электрических системах как по частоте возникновения, так и по масштабам отрицательных последствий. При КЗ наступает резкое и неравномерное понижение напряжения в системе и значительное увеличение тока в отдельных её элементах, что в конечном счёте может привести к прекращению электроснабжения потребителей и разрушению оборудования. Применение Р. з. сводит вредные последствия КЗ к минимуму.

    Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.

    Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.

    Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов "распознавания" защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.

    Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).

    4608


    На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.

    4609

    В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.

    В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце "своего" и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
    Э. П. Смирнов.
    [БСЭ, 1969-1978]

    НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ

    В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
    Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
    Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.

    Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
    Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
    Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

    Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
    Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.).

    В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
    Первоначально в качестве подобной защиты применялись плавкие предохранители. Однако по мере роста мощности и напряжения электрических установок и усложнения их схем коммутации такой способ защиты стал недостаточным, в силу чего были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

    Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.
    При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

    При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.
    В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.

    К основным устройствам такой автоматики относятся:

    • автоматы повторного включения (АПВ),
    • автоматы включения резервных источников питания и оборудования (АВР),
    • автоматы частотной разгрузки (АЧР).

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > protective relaying

  • 15 relay protection

    1. релейная защита

     

    защита
    Совокупность устройств, предназначенных для обнаружения повреждений или других анормальных режимов в энергосистеме, отключения повреждения, прекращения анормальных режимов и подачи команд или сигналов.
    Примечания:
    1) Термин «защита» является общим термином для устройств защиты или систем защиты.
    2) Термин «защита» может употребляться для описания защиты целой энергосистемы или защиты отдельной установки в энергосистеме, например: защита трансформатора, защита линии, защита генератора.
    3) Защита не включает в себя оборудование установки энергосистемы, предназначенное, например, для ограничения перенапряжений в энергосистеме. Однако, она включает в себя оборудование, предназначенное для управления отклонениями напряжения или частоты в энергосистеме, такое как оборудование для автоматического управления реакторами для автоматической разгрузки и т.п.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    релейная защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    релейная защита

    релейная защита электрических систем
    Совокупность устройств (или отдельное устройство), содержащая реле и способная реагировать на короткие замыкания (КЗ) в различных элементах электрической системы — автоматически выявлять и отключать поврежденный участок. В ряде случаев Р. з. может реагировать и на др. нарушения нормального режима работы системы (например, на повышение тока, напряжения) — включать сигнализацию или (реже) отключать соответствующий элемент системы. КЗ — основной вид повреждений в электрических системах как по частоте возникновения, так и по масштабам отрицательных последствий. При КЗ наступает резкое и неравномерное понижение напряжения в системе и значительное увеличение тока в отдельных её элементах, что в конечном счёте может привести к прекращению электроснабжения потребителей и разрушению оборудования. Применение Р. з. сводит вредные последствия КЗ к минимуму.

    Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.

    Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.

    Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов "распознавания" защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.

    Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).

    4608


    На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.

    4609

    В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.

    В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце "своего" и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
    Э. П. Смирнов.
    [БСЭ, 1969-1978]

    НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ

    В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
    Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
    Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.

    Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
    Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
    Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

    Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
    Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.).

    В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
    Первоначально в качестве подобной защиты применялись плавкие предохранители. Однако по мере роста мощности и напряжения электрических установок и усложнения их схем коммутации такой способ защиты стал недостаточным, в силу чего были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

    Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.
    При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

    При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.
    В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.

    К основным устройствам такой автоматики относятся:

    • автоматы повторного включения (АПВ),
    • автоматы включения резервных источников питания и оборудования (АВР),
    • автоматы частотной разгрузки (АЧР).

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > relay protection

  • 16 sale and leaseback

    Сделка, согласно которой продавец остается пользователем оборудования, став арендатором. Это достигается путем одновременного подписания договора об аренде (обычно на длительный срок) с покупателем в момент продажи; таким путем продавец получает наличные по сделке, а покупателю гарантированы аренда и, следовательно, постоянная прибыль на инвестиции.

    Англо-русский словарь по инвестициям > sale and leaseback

  • 17 агрегирование

    1. aggregation problem
    2. aggregation

     

    агрегирование
    Объединение, суммирование экономических показателей по какому-либо признаку для получения обобщенных совокупных показателей. При агрегировании необходим учет структуры объединяемых элементов, в ряде случаев требуется анализ возможности и определение весов агрегирования (например при расчете индекса промышленного производства).
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    агрегирование
    1. Соединение независимых частей, обычно выполняющих различные функции, в единую систему. 2. Объединение нескольких низкоскоростных потоков информации в один более высокоскоростной поток. См. channel ~.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    агрегирование
    Объединение, укрупнение показателей по какому-либо признаку для получения обобщенных, совокупных показателей агрегатов. С математической точки зрения А. рассматривается как преобразование модели в модель с меньшим числом переменных и ограничений — агрегированную модель, дающую приближенное (по сравнению с исходным) описание изучаемого процесса или объекта. Его сущность — в соединении однородных элементов в более крупные. Среди способов А.: сложение показателей, представление группы агрегируемых показателей через их среднюю, использование различных взвешивающих коэффициентов (см. Вес), баллов (см. Шкалы) и т.д. Процесс, обратный к А., называется дезагрегированием, реже — разагрегированием, разукрупнением. Некоторыми теоретиками термин «агрегирование» понимается также как переход от микроэкономического к макроэкономическому взгляду на изучаемые экономические явления. В экономико-математических моделях А. необходимо потому, что ни одна модель не в состоянии вместить всего многообразия реально существующих в экономике продуктов, ресурсов, связей. Даже крупноразмерные модели, насчитывающие десятки тысяч показателей, и то неизбежно являются продуктом агрегирования. В процессе управления при переходе от низшей ступени к высшей показатели агрегируются, а число их уменьшается. Но при этом часть информации «теряется» (при сведении воедино заказов на материалы, например, уже неизвестно, каких именно марок и размеров они нужны каждому заказчику) и приходится вести расчеты приближенно, на основании статистических закономерностей. Поэтому всегда надо сопоставлять выгоду (от сокращения расчетов) с ущербом, который наносится потерей части информации. Особенно затруднено А. в динамических моделях, поскольку с течением времени меняется соотношение элементов, входящих в укрупненную группу (возникает «структурная неоднородность«). Расхождение между результатами исходной задачи и результатами агрегированной задачи называется ошибкой А. Уменьшение ошибки А. — один из основных критериев, применяемых в теории оптимального агрегирования, разработанной Л.Гурвицем, Е.Малинво, У.Фишером и Дж.Чипмэном. А. имеет большое значение в методе межотраслевого баланса (МОБ), где оно означает объединение различных производств в отрасли, продуктов — в обобщенные продукты и укрупнение таким путем показателей балансовых расчетов. МОБ обычно оперирует «чистыми отраслями», т.е. условными отраслями, каждая из которых производит и передает другим отраслям один агрегированный продукт. Количество их ограничивается вычислительными возможностями и некоторыми обстоятельствами математического характера, однако, в принципе, чем больше детализация МОБ, тем лучше он отражает действительность, тем точнее расчеты по нему. А. в МОБ возможно двух типов — вертикальное и горизонтальное. Первое означает объединение продукции по технологической цепочке. Например, в соответствии с этим принципом в одну группу могут быть объединены железная руда, чугун, сталь, прокат (тогда отрасль дает потребителям один продукт — прокат), в другую — пряжа, суровая ткань, готовая ткань, в третью — целлюлоза, бумажное производство. При этом все показатели, прежде всего затраты, относятся на избранную единицу агрегированного продукта (в данных примерах — это тонна готового проката, 1 млн. кв. м готовой ткани, тонна бумаги). Выбрать правильное объединение сложно, поскольку та же сталь может отпускаться потребителям (для литейных производств) не в виде проката, а в виде слитков, целлюлоза может поступать не только на бумажные комбинаты, но и на заводы искусственного волокна, где из нее делают вискозную пряжу, и т.д. При горизонтальном А. в одну группу объединяются, например, продукты, сходные между собой либо по экономическому назначению (различные виды зерна, топлива), либо по техническим условиям производства. Это связано, однако, с дополнительными трудностями. Логично объединить в одну группу всю электроэнергию, но структура затрат на ее производство на тепловых и гидравлических станциях в корне различна. Любой сдвиг в соотношениях внутри такой объединенной отрасли резко скажется на ее показателях, необходимых для расчета. Наиболее рациональные способы А. отраслей и продуктов определяются путем экономико-математических расчетов. Основным инструментом агрегирования почти во всех экономических расчетах являются цены.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    3.2 агрегирование (aggregation): Процесс или результат объединения конструкций языка моделирования и других компонентов модели в единое целое.

    Примечание - Конструкции языка моделирования и другие компоненты модели могут быть агрегированы в более чем один объект.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > агрегирование

  • 18 инфляционный налог

    1. inflation tax

     

    инфляционный налог
    Потери реальных доходов населения вследствие инфляции, поскольку имеющиеся у него деньги теряют свою стоимость по мере роста цен. (Распространено иное, отсылающее в глубь истории, название этого налога: сеньораж, хотя на самом деле этот термин используется в другом смысле и сейчас, означая плату монетному двору за чеканку и типографии — за печатание денег). Дефицит бюджета вынуждает правительство печатать деньги (увеличивать денежную базу), и это, как правило, является первопричиной роста инфляции. Если уровень инфляции равен i, а начальная величина базовых денег в экономике была Н, то инфляционный налог равен iН — он в точности равняется дефициту бюджета, финансируемого путем печатания денег. Выраженный как доля от национального дохода, инфляционный налог равен iH/pY, где i — уровень инфляции, H — денежная база, p- уровень цен, Y — объем продукции. Дж.Кейнс писал: «Правительство может жить в течение длительного времени…за счет печатания бумажных денег… Это такая форма налогообложения, ускользнуть от которой наиболее трудно. Даже самое слабое правительство в состоянии ввести его в действие в ситуации, когда оно уже не способно ни на что иное»[1]. От инфляционного налога легче всего уходят сферы с быстрым оборотом капитала: торговля, банковские, экспортно-импортные организации. Кроме того, инфляция – это самый дешевый с организационной точки зрения налог для государства: не надо ни налоговой полиции, ни специального контроля – печатай деньги и получай от этого доход. Например, денежное хозяйство времен гражданской войны в России строилось на том, что никаких налогов не поступало, но деньги исправно печатались. В 1920 году 99 процентов доходов бюджета составляла эмиссия. Но доходы от такого налога быстро тают, так как люди бегут от денег (См. «Бегство от денег»). Сферы, имеющие дело с быстрыми деньгами, легко уходит от такого налога не потому, что не платят, а потому, что находятся в более выгодных экономических условиях. В результате у людей возникает ощущение несправедливости. Однако возможности реального сбора денег таким путем не беспредельны: на определенном этапе ускоренная инфляция начинает «съедать» и доходы от И.н.. Не безгранично и терпение населения. Требуется еще и еще увеличивать денежную базу. Это ведет к разрушительной гиперинфляции. [1] Цит. по кн. Фишер С. и др. Экономика. М.: «Дело», 1993, стр.648.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > инфляционный налог

  • 19 aggregation

    1. агрегирование
    2. агрегация

     

    агрегация
    Процесс организации малых групп, компаний, или бытовых потребителей в более крупные, способные более результативно вести переговоры единицы, укрепляющие их покупательную способность в связи с коммунальными предприятиями (Термины Рабочей Группы правового регулирования ЭРРА)
    [Англо-русский глосcарий энергетических терминов ERRA]

    EN

    aggregation
    The process of organizing small groups, businesses or residential customer into a larger, more effective bargaining unit that strengthens their purchasing power with utilities (ERRA Legal Regulation Working Group Terms).
    [Англо-русский глосcарий энергетических терминов ERRA]

    Тематики

    EN

     

    агрегирование
    Объединение, суммирование экономических показателей по какому-либо признаку для получения обобщенных совокупных показателей. При агрегировании необходим учет структуры объединяемых элементов, в ряде случаев требуется анализ возможности и определение весов агрегирования (например при расчете индекса промышленного производства).
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    агрегирование
    1. Соединение независимых частей, обычно выполняющих различные функции, в единую систему. 2. Объединение нескольких низкоскоростных потоков информации в один более высокоскоростной поток. См. channel ~.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    агрегирование
    Объединение, укрупнение показателей по какому-либо признаку для получения обобщенных, совокупных показателей агрегатов. С математической точки зрения А. рассматривается как преобразование модели в модель с меньшим числом переменных и ограничений — агрегированную модель, дающую приближенное (по сравнению с исходным) описание изучаемого процесса или объекта. Его сущность — в соединении однородных элементов в более крупные. Среди способов А.: сложение показателей, представление группы агрегируемых показателей через их среднюю, использование различных взвешивающих коэффициентов (см. Вес), баллов (см. Шкалы) и т.д. Процесс, обратный к А., называется дезагрегированием, реже — разагрегированием, разукрупнением. Некоторыми теоретиками термин «агрегирование» понимается также как переход от микроэкономического к макроэкономическому взгляду на изучаемые экономические явления. В экономико-математических моделях А. необходимо потому, что ни одна модель не в состоянии вместить всего многообразия реально существующих в экономике продуктов, ресурсов, связей. Даже крупноразмерные модели, насчитывающие десятки тысяч показателей, и то неизбежно являются продуктом агрегирования. В процессе управления при переходе от низшей ступени к высшей показатели агрегируются, а число их уменьшается. Но при этом часть информации «теряется» (при сведении воедино заказов на материалы, например, уже неизвестно, каких именно марок и размеров они нужны каждому заказчику) и приходится вести расчеты приближенно, на основании статистических закономерностей. Поэтому всегда надо сопоставлять выгоду (от сокращения расчетов) с ущербом, который наносится потерей части информации. Особенно затруднено А. в динамических моделях, поскольку с течением времени меняется соотношение элементов, входящих в укрупненную группу (возникает «структурная неоднородность«). Расхождение между результатами исходной задачи и результатами агрегированной задачи называется ошибкой А. Уменьшение ошибки А. — один из основных критериев, применяемых в теории оптимального агрегирования, разработанной Л.Гурвицем, Е.Малинво, У.Фишером и Дж.Чипмэном. А. имеет большое значение в методе межотраслевого баланса (МОБ), где оно означает объединение различных производств в отрасли, продуктов — в обобщенные продукты и укрупнение таким путем показателей балансовых расчетов. МОБ обычно оперирует «чистыми отраслями», т.е. условными отраслями, каждая из которых производит и передает другим отраслям один агрегированный продукт. Количество их ограничивается вычислительными возможностями и некоторыми обстоятельствами математического характера, однако, в принципе, чем больше детализация МОБ, тем лучше он отражает действительность, тем точнее расчеты по нему. А. в МОБ возможно двух типов — вертикальное и горизонтальное. Первое означает объединение продукции по технологической цепочке. Например, в соответствии с этим принципом в одну группу могут быть объединены железная руда, чугун, сталь, прокат (тогда отрасль дает потребителям один продукт — прокат), в другую — пряжа, суровая ткань, готовая ткань, в третью — целлюлоза, бумажное производство. При этом все показатели, прежде всего затраты, относятся на избранную единицу агрегированного продукта (в данных примерах — это тонна готового проката, 1 млн. кв. м готовой ткани, тонна бумаги). Выбрать правильное объединение сложно, поскольку та же сталь может отпускаться потребителям (для литейных производств) не в виде проката, а в виде слитков, целлюлоза может поступать не только на бумажные комбинаты, но и на заводы искусственного волокна, где из нее делают вискозную пряжу, и т.д. При горизонтальном А. в одну группу объединяются, например, продукты, сходные между собой либо по экономическому назначению (различные виды зерна, топлива), либо по техническим условиям производства. Это связано, однако, с дополнительными трудностями. Логично объединить в одну группу всю электроэнергию, но структура затрат на ее производство на тепловых и гидравлических станциях в корне различна. Любой сдвиг в соотношениях внутри такой объединенной отрасли резко скажется на ее показателях, необходимых для расчета. Наиболее рациональные способы А. отраслей и продуктов определяются путем экономико-математических расчетов. Основным инструментом агрегирования почти во всех экономических расчетах являются цены.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    3.2 агрегирование (aggregation): Процесс или результат объединения конструкций языка моделирования и других компонентов модели в единое целое.

    Примечание - Конструкции языка моделирования и другие компоненты модели могут быть агрегированы в более чем один объект.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Англо-русский словарь нормативно-технической терминологии > aggregation

  • 20 aggregation problem

    1. агрегирование

     

    агрегирование
    Объединение, суммирование экономических показателей по какому-либо признаку для получения обобщенных совокупных показателей. При агрегировании необходим учет структуры объединяемых элементов, в ряде случаев требуется анализ возможности и определение весов агрегирования (например при расчете индекса промышленного производства).
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    агрегирование
    1. Соединение независимых частей, обычно выполняющих различные функции, в единую систему. 2. Объединение нескольких низкоскоростных потоков информации в один более высокоскоростной поток. См. channel ~.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    агрегирование
    Объединение, укрупнение показателей по какому-либо признаку для получения обобщенных, совокупных показателей агрегатов. С математической точки зрения А. рассматривается как преобразование модели в модель с меньшим числом переменных и ограничений — агрегированную модель, дающую приближенное (по сравнению с исходным) описание изучаемого процесса или объекта. Его сущность — в соединении однородных элементов в более крупные. Среди способов А.: сложение показателей, представление группы агрегируемых показателей через их среднюю, использование различных взвешивающих коэффициентов (см. Вес), баллов (см. Шкалы) и т.д. Процесс, обратный к А., называется дезагрегированием, реже — разагрегированием, разукрупнением. Некоторыми теоретиками термин «агрегирование» понимается также как переход от микроэкономического к макроэкономическому взгляду на изучаемые экономические явления. В экономико-математических моделях А. необходимо потому, что ни одна модель не в состоянии вместить всего многообразия реально существующих в экономике продуктов, ресурсов, связей. Даже крупноразмерные модели, насчитывающие десятки тысяч показателей, и то неизбежно являются продуктом агрегирования. В процессе управления при переходе от низшей ступени к высшей показатели агрегируются, а число их уменьшается. Но при этом часть информации «теряется» (при сведении воедино заказов на материалы, например, уже неизвестно, каких именно марок и размеров они нужны каждому заказчику) и приходится вести расчеты приближенно, на основании статистических закономерностей. Поэтому всегда надо сопоставлять выгоду (от сокращения расчетов) с ущербом, который наносится потерей части информации. Особенно затруднено А. в динамических моделях, поскольку с течением времени меняется соотношение элементов, входящих в укрупненную группу (возникает «структурная неоднородность«). Расхождение между результатами исходной задачи и результатами агрегированной задачи называется ошибкой А. Уменьшение ошибки А. — один из основных критериев, применяемых в теории оптимального агрегирования, разработанной Л.Гурвицем, Е.Малинво, У.Фишером и Дж.Чипмэном. А. имеет большое значение в методе межотраслевого баланса (МОБ), где оно означает объединение различных производств в отрасли, продуктов — в обобщенные продукты и укрупнение таким путем показателей балансовых расчетов. МОБ обычно оперирует «чистыми отраслями», т.е. условными отраслями, каждая из которых производит и передает другим отраслям один агрегированный продукт. Количество их ограничивается вычислительными возможностями и некоторыми обстоятельствами математического характера, однако, в принципе, чем больше детализация МОБ, тем лучше он отражает действительность, тем точнее расчеты по нему. А. в МОБ возможно двух типов — вертикальное и горизонтальное. Первое означает объединение продукции по технологической цепочке. Например, в соответствии с этим принципом в одну группу могут быть объединены железная руда, чугун, сталь, прокат (тогда отрасль дает потребителям один продукт — прокат), в другую — пряжа, суровая ткань, готовая ткань, в третью — целлюлоза, бумажное производство. При этом все показатели, прежде всего затраты, относятся на избранную единицу агрегированного продукта (в данных примерах — это тонна готового проката, 1 млн. кв. м готовой ткани, тонна бумаги). Выбрать правильное объединение сложно, поскольку та же сталь может отпускаться потребителям (для литейных производств) не в виде проката, а в виде слитков, целлюлоза может поступать не только на бумажные комбинаты, но и на заводы искусственного волокна, где из нее делают вискозную пряжу, и т.д. При горизонтальном А. в одну группу объединяются, например, продукты, сходные между собой либо по экономическому назначению (различные виды зерна, топлива), либо по техническим условиям производства. Это связано, однако, с дополнительными трудностями. Логично объединить в одну группу всю электроэнергию, но структура затрат на ее производство на тепловых и гидравлических станциях в корне различна. Любой сдвиг в соотношениях внутри такой объединенной отрасли резко скажется на ее показателях, необходимых для расчета. Наиболее рациональные способы А. отраслей и продуктов определяются путем экономико-математических расчетов. Основным инструментом агрегирования почти во всех экономических расчетах являются цены.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > aggregation problem

См. также в других словарях:

  • Мы пойдем другим путем — Слова, которые, согласно советской традиции, произнес юный Владимир Ильич Ульянов (Ленин, 1870 1924), узнав о казни (1887) своего старшего брата, революционера народовольца Александра Ульянова, который вместе со своими товарищами был осужден за… …   Словарь крылатых слов и выражений

  • СДЕРЖИВАНИЕ ПУТЕМ УСТРАШЕНИЯ — (deterrence) Политика, подразумевающая контроль над поведением оппонентов путем угроз. Сдерживающая сторона стремится убедить сдерживаемую в том, что цена действий, которые сдерживающая сторона намерена предотвратить, значительно выше той выгоды …   Политология. Словарь.

  • ФЗ «О противодействии легализации (отмыванию) доходов, полученных преступным путем, и финансированию терроризма» — Федеральный закон «О противодействии легализации (отмыванию) доходов, полученных преступным путем, и финансированию терроризма» от 7 августа 2001 года № 115 ФЗ – основа российского законодательства по противодействию отмыванию денежных средств.… …   Банковская энциклопедия

  • Огурцы, маринованные путем самостерилизации — Тип блюда: Вторые блюда Категория: Консервирование огурцов Время приготовления (минуты): 3 Продукты: Прежде чем проделать это в третий раз, в банку с огурцами положить несколько очищенных зубчиков чеснока и 10 г. хрена. Вместо воды на этот раз… …   Энциклопедия кулинарных рецептов

  • Болезнь, Передающаяся Половым Путем (Sexually Transmitted Disease (Std)) — любое заболевание, заражение которым происходит во время полового сношения; ранее такие заболевания назывались венерическими (venereal disease). К таким заболеваниям относятся: СПИД, сифилис, гонорея, генитальный герпес и мягкий шанкр. (К… …   Медицинские термины

  • БОЛЕЗНЬ, ПЕРЕДАЮЩАЯСЯ ПОЛОВЫМ ПУТЕМ — (sexually transmitted disease (STD)) любое заболевание, заражение которым происходит во время полового сношения; ранее такие заболевания назывались венерическими (venereal disease). К таким заболеваниям относятся: СПИД, сифилис, гонорея,… …   Толковый словарь по медицине

  • Огурцы, маринованные путем самостерилизации - 2 — Тип блюда: Категория: Время приготовления (минуты): 3 Продукты …   Энциклопедия кулинарных рецептов

  • Банки — I в современном экономическом строе Б. являются высшей формой кредитного посредничества и важнейшими органами вексельного и денежного обращения. Цель банковой деятельности: во первых, создать систему кредита (см. это сл.), которая обеспечивала бы …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Крестьяне — Содержание: 1) К. в Западной Европе. 2) История К. в России до освобождения (1861). 3) Экономическое положение К. после освобождения. 4) Современное административное устройство К. I. К. в Западной Европе. Судьбы крестьянского или земледельческого …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Феодализм — Содержание [О Ф. во Франции см. соотв. ст.]. I. Сущность Ф. и его происхождение. II. Ф. в Италии. III. Ф. в Германии. IV. Ф. в Англии. V. Ф. на Пиренейском полуострове. VI. Ф. в Чехии и Моравии. VII. Ф. в Польше. VIII. Ф. в России. IX. Ф. в… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Рим город* — Содержание: I. Р. Современный; II. История города Р.; III. Римская история до падения западной Р. империи; IV. Римское право. I. Рим (Roma) столица Итальянского королевства, на реке Тибре, в так называемой Римской Кампанье, под 41°53 54 северной… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»