Перевод: с английского на все языки

со всех языков на английский

между+ними

  • 61 between

    English-Russian base dictionary > between

  • 62 air-gap clearance

    1. воздушный зазор
    2. величина искрового промежутка

     

    величина искрового промежутка

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > air-gap clearance

  • 63 air clearance

    1. воздушный зазор

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > air clearance

  • 64 air distance

    1. воздушный зазор

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > air distance

  • 65 air gap (2)

    1. воздушный зазор

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > air gap (2)

  • 66 contact gap (1)

    1. воздушный зазор

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > contact gap (1)

  • 67 contact opening distance (1)

    1. воздушный зазор

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > contact opening distance (1)

  • 68 contact separation (1)

    1. воздушный зазор

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > contact separation (1)

  • 69 flashover distance

    1. воздушный зазор

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > flashover distance

  • 70 insulation clearanse

    1. воздушный зазор

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > insulation clearanse

  • 71 insulation distance

    1. изоляционное расстояние
    2. воздушный зазор

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

     

    изоляционное расстояние

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > insulation distance

  • 72 isolating distance

    1. изоляционное расстояние
    2. воздушный зазор

     

     

    воздушный зазор
    Кратчайшее расстояние между двумя токоведущими и/или токоведущей и открытой проводящей частью.
    МЭК 60050(441-17-31).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]


    воздушный зазор
    Кратчайшее расстояние в воздухе между двумя токопроводящими1) частями вдоль линии наименьшей протяженности между этими токоведущими1) частями.
    Примечание.  Для определения воздушного зазора относительно доступных частей следует рассматривать доступную поверхность изоляционной оболочки как токопроводящую, как если бы она была покрыта металлической фольгой во всех местах, где ее можно коснуться рукой или стандартным испытательным пальцем в соответствии с рисунком 9.
    (МЭС 441-17-31)
    [ ГОСТ Р 50345-99( МЭК 60898-95)]
    1) Должно быть проводящими
    [Интент]


    изоляционный промежуток
    Расстояние между двумя токопроводящими частями вдоль нити, натянутой по кратчайшему пути между ними.
    [ ГОСТ Р 52726-2007]


    зазор
    Кратчайшее расстояние по воздуху между двумя токопроводящими1) частями оборудования.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1) Должно быть проводящими
    [Интент]

    EN

    clearance
    the distance between two conductive parts along a string stretched the shortest way between these conductive parts
    [IEV number 441-17-31]


    clearance
    shortest distance in air between two conductive parts
    NOTE – This distance applies only to parts that are exposed to the atmosphere and not to parts which are insulated parts or covered with casting compound.
    [IEV number 426-04-12]

    FR

    distance d'isolement
    distance entre deux parties conductrices le long d'un fil tendu suivant le plus court trajet possible entre ces deux parties conductrices
    [IEV number 441-17-31]


    distance d’isolement dans l’air
    plus courte distance dans l’air entre deux pièces conductrices
    NOTE – Cette distance s'applique seulement aux parties exposées à l'atmosphère et non aux parties isolées ou recouvertes par un composé de moulage.
    [IEV number 426-04-12]


    Параллельные тексты EN-RU

    Clearance distance
    Shortest distance in air between two conductive parts or between a conductive part and the accessible surface of the relay.

    [Tyco Electronics]

    Воздушный зазор
    Кратчайшее расстояние по воздуху между двумя проводящими частями или между проводящей частью и доступной для прикосновения поверхностью реле.

    [Перевод Интент]


    Наименьшее изоляционное расстояние по воздуху (в свету) от токоведущих до заземленных частей опоры
    [ПУЭ]
    2

     

    воздушный зазор
    -
    [IEV number 151-14-05]

    EN

    air gap
    short gap in the magnetic material forming a magnetic circuit
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

    FR

    entrefer, m
    coupure de faible longueur dans le matériau magnétique constituant un circuit magnétique
    Source: 221-04-13 MOD
    [IEV number 151-14-05]

     

    Тематики

    Синонимы

    EN

    Примечание(1) - воздушный зазор (изоляционное расстояние) между контактами

    DE

    FR

     

    изоляционное расстояние

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > isolating distance

  • 73 correlation analysis

    1. корреляционный анализ (в экономике)
    2. корреляционный анализ

     

    корреляционный анализ

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    корреляционный анализ (в экономике)
    Ветвь математической статистики, изучающая взаимосвязи между изменяющимися величинами (корреляция — соотношение, от латинского слова correlatio). Взаимосвязь может быть полная (т.е. функциональная) и неполная, когда зависимость связанных величин искажена влиянием посторонних, дополнительных факторов. Примером функциональной связи служит выпуск и потребление продукции, когда она дефицитна: во сколько раз больше выпуск, во столько раз больше продажа (все распродается, ничего не остается в запасе). Примером корреляционной связи может служить соотношение стажа рабочих и их производительности труда. Известно, что в среднем производительность труда рабочих тем выше, чем больше их стаж. Однако бывает, и нередко, что молодой рабочий (из-за влияния таких дополнительных факторов, как образование, здоровье и т.д.) работает лучше пожилого. Чем больше влияние этих дополнительных факторов, тем менее тесна связь между стажем и выработкой, и наоборот. В таком случае коэффициент корреляции (см. Корреляция) между двумя величинами — стажем и производительностью — занимает промежуточное положение между нулем и единицей в зависимости от силы (тесноты) взаимосвязи. Именно такие взаимосвязи изучает К.а. Он может рассматривать и более сложные корреляционные связи — не между двумя переменными (это называется парной корреляцией), как в описанном случае, а между многими. Тогда имеют дело с множественной корреляцией. При изучении экономических явлений методами К.а. необходимо тщательно выявлять причинные зависимости, лежащие в основе корреляции наблюдаемых показателей. Отсутствие причинной связи между явлениями, хотя корреляционная связь между ними установлена, называется ложной корреляцией. Она часто встречается, например, при анализе временных рядов, когда параллельно снижаются или повышаются показатели, на самом деле совершенно не зависящие друг от друга. Рассматриваемые связи математически описываются корреляционными уравнениями (другое название — уравнение регрессии). Например, простейшим корреляционным уравнением связи между двумя переменными является уравнение прямой вида y=a+bx. При функциональной связи такая прямая точно соответствовала бы действительным значениям зависимой переменной. Если представить такую связь графически, то она проходила бы через все наблюдаемые точки y. При корреляции же соответствие, как указано, соблюдается лишь приблизительно, в общем, и точки наблюдений расположены не по прямой, а в виде «облачка», более или менее вытянутого в некотором направлении. Поэтому приходится специальными приемами находить ту линию, которая наилучшим образом отражает корреляционную зависимость, т.е. направление «облачка» (рис.К.1). Распространенный способ решения этой задачи — метод наименьших квадратов отклонений наблюдаемых значений y от значений, рассчитываемых по формуле корреляционного уравнения. Особенно широко применяется К.а. в теории производственных функций, в разработке разного рода нормативов на производстве, а также в анализе спроса и потребления. Рис. К.1 Корреляционные зависимости а — переменные x и y не коррелируют; б — слабая отрицательная корреляция; в — сильная положительная линейная корреляция
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > correlation analysis

  • 74 clock synchronization

    1. синхронизация по тактам
    2. синхронизация времени

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

     

    синхронизация по тактам
    тактовая синхронизация


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > clock synchronization

  • 75 time synchronization

    1. синхронизация времени

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > time synchronization

  • 76 кошка

    I жен.;
    зоол. cat европейская дикая кошкаcatamount сибирская кошкаPersian cat бесхвостая кошка ≈ (разновидность домашней кошки) Manx cat жить как кошка с собакой ≈ to quarrel like cats and dogs как угорелая кошка ≈ разг. like a singed/scalded cat между ними кошка пробежала ≈ разг. something came between them кошки скребут на душе ≈ разг. there's a gnawing in one's heart ночью все кошки серы ≈ all cats are grey in the dark II жен.;
    тех.
    1) grapnel, drag
    2) (для лазания на столбы) climbing-irons мн.
    кошк|а - ж.
    1. cat;

    2. тех. grapnel;

    3. (плеть) cat-o`-nine-tails;
    жить как ~ с собакой live a cat-and-dog life;
    между ними пробежала чёрная ~ they have fallen out;
    у него на сердце ~и скребут he is sick at heart.

    Большой англо-русский и русско-английский словарь > кошка

  • 77 comfort letter

    комфортное письмо, письмо-подтверждение
    а) фин., ауд. (письмо независимого аудитора о том, что информация в проспекте и заявке на регистрацию ценных бумаг правильно подготовлена и нет оснований считать ее неверной; часто называется "холодным", так как аудитор не заявляет, что информация правильна, а только сообщает, что ему не удалось найти никаких ошибок и неточностей)
    Syn:
    See:
    б) эк. (письмо одной стороны договора другой стороне о том, что определенные действия, четко не оговоренные в соглашении между ними, будут или не будут предприняты)
    в) банк., фин. (письмо, направляемое банку материнской компанией, в котором она подтверждает, что знает о намерении дочерней компании взять кредит, но при этом не дает гарантии возврата кредита, а только сообщает, что дочернее предприятие в ближайшее время не будет ликвидировано)
    Syn:
    See:

    * * *
    комфортное письмо: 1) письмо независимого аудитора о том, что информация в проспекте и заявке на регистрацию ценных бумаг правильно подготовлена и нет оснований считать ее неверной; часто называется "холодное" (cold) письмо, т. к. аудитор не гарантирует правильности информации; 2) письмо одного партнера другому о том, что определенные действия, четко не оговоренные в соглашении между ними, будут или не будут предприняты.
    * * *
    * * *
    письмо с заверениями в надежности и поддержке; неофициальное поручительство (не имеющее обязательной юридической силы); письмо- поручительство; ручательство; заверение; рекомендательное письмо
    . . Словарь экономических терминов .

    Англо-русский экономический словарь > comfort letter

  • 78 end-to-end

    прил.
    1) бирж. "конец к концу" (в валютных операциях: срок сделки с последнего дня одного месяца до последнего дня другого месяца независимо от реального числа дней между ними)
    2) марк. сквозной, полного цикла (период с момента установления первого контакта с потребителем до конца периода потребления; обычно используется в контексте управления отношений с потребителем, оказания технической поддержки и т. д.)

    End-to-end customer care is pretty much unheard of in most businesses. Some large companies, such as IBM, make follow-up calls to customers about products or services they supply. — В большинстве областей поддержка потребителя в течение всего цикла потребления не существует. Некоторые большие компании, как IBM, периодически прозванивают потребителей свой продуктов и услуг.

    See:

    * * *
    "конец к концу": в валютных операциях означает срок сделки с последнего дня одного месяца до последнего дня другого месяца независимо от реального числа дней между ними (если падает на нерабочий день, то учитывается следующий рабочий); см. fixed date.

    Англо-русский экономический словарь > end-to-end

  • 79 Gresham's Law

    эк., фин. закон Грешема (любой тип денег, который становится более ценным в каком-л. ином качестве, чем деньги, постепенно исчезает из обращения; напр., в условиях золотого стандарта "плохие деньги" вытесняют из обращения "хорошие", если официальное соотношение между ними не отражает их металлического содержания; плохие деньги люди стараются потратить, а хорошие деньги тезаврируются)

    Bad money drives good money out of circulation. — Плохие деньги вытесняют из обращения хорошие.

    See:

    * * *
    Закон Грэшема: "плохие деньги вытесняют из обращения хорошие"; в условиях золотого стандарта неполноценные деньги вытесняют полноценные, если официальное соотношение между ними не отражает их металлического содержания; "плохие" деньги люди стараются потратить, а "хорошие" деньги тезаврируются; сэр Т. Грэшем был финансовым советником королевы Елизаветы I, главой монетного двора, основателем Королевской биржи в Лондоне.
    * * *
    . . Словарь экономических терминов .

    Англо-русский экономический словарь > Gresham's Law

  • 80 customs union

    таможенный союз; объединение государств с целью развития свободной торговли между ними.
    * * *
    таможенный союз; объединение государств с целью развития свободной торговли между ними.

    Англо-русский словарь по социологии > customs union

См. также в других словарях:

  • Кошка(черная) пробежала(между ними) — Кошка (черная) пробѣжала (между ними), (иноск.) разошлись по неудовольствіямъ (намекъ на повѣрье, что черная кошка, перебѣгая черезъ дорогу, приноситъ несчастье). Ср. Двухъ дочерей онъ съ женою прижилъ; но онѣ уже давно вышли замужъ, и рѣдко… …   Большой толково-фразеологический словарь Михельсона (оригинальная орфография)

  • кошка(черная) пробежала(между ними) — (иноск.) разошлись по неудовольствиям (намек на поверье, что черная кошка, перебегая через дорогу, приносит несчастье) Ср. Двух дочерей он с женою прижил; но они уже давно вышли замуж и редко посещали Суходол (имение отца); между ними и их… …   Большой толково-фразеологический словарь Михельсона

  • МЕЖДУ — МЕЖДУ, предлог с твор. п. (с двумя твор. падежами ед. или мн. ч.; если же с одним твор. п., то со словом “собой” или с твор. п. мн. ч.; с одним или двумя род. падежами мн. ч. устар., а с двумя род. падежами ед. ч. теперь совсем не употр.). 1.… …   Толковый словарь Ушакова

  • между — МЕЖДУ, предлог с твор. п. (с двумя твор. падежами ед. или мн. ч.; если же с одним твор. п., то со словом “собой” или с твор. п. мн. ч.; с одним или двумя род. падежами мн. ч. устар., а с двумя род. падежами ед. ч. теперь совсем не употр.). 1.… …   Толковый словарь Ушакова

  • МЕЖДУ — МЕЖДУ, предлог с твор. п. (с двумя твор. падежами ед. или мн. ч.; если же с одним твор. п., то со словом “собой” или с твор. п. мн. ч.; с одним или двумя род. падежами мн. ч. устар., а с двумя род. падежами ед. ч. теперь совсем не употр.). 1.… …   Толковый словарь Ушакова

  • между — МЕЖДУ, предлог с твор. п. (с двумя твор. падежами ед. или мн. ч.; если же с одним твор. п., то со словом “собой” или с твор. п. мн. ч.; с одним или двумя род. падежами мн. ч. устар., а с двумя род. падежами ед. ч. теперь совсем не употр.). 1.… …   Толковый словарь Ушакова

  • Нарушение уставных правил взаимоотношений между военнослужащими при отсутствии между ними отношений подчиненности — Дедовщина наиболее распространенная форма неуставных взаимоотношений представляющая собой нарушение уставных правил отношений между военнослужащими срочной службы, основанная на неформальном иерархическом делении солдат и сержантов по призыву и… …   Википедия

  • Растения и животные различие между ними — Это различие является количественным, а не качественным, т. е. выражается в преобладании тех или других функций и особенностей строения, а отнюдь не в исключительной свойственности их животным или растениям. Низшие животные и Р. одинаково… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Растения и животные, различие между ними — Это различие является количественным, а не качественным, т. е. выражается в преобладании тех или других функций и особенностей строения, а отнюдь не в исключительной свойственности их животным или растениям. Низшие животные и Р. одинаково… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • МЕЖДУ СЦИЛЛОЙ И ХАРИБДОЙ — оказаться, находиться; лавировать; пройти В сложном положении, из которого трудно найти выход. Имеется в виду, что лицо, группа лиц, социальная организация (Х), какая л. область общественной жизни, деятельности (Р) оказывается в ситуации,… …   Фразеологический словарь русского языка

  • между — среди — Предлоги синонимичны при обозначении каких л. лиц, предметов, в окружении которых находится лицо, предмет или происходит действие. Между ними выделялся один среди них выделялся один. Между врагами он возрос (Лермонтов). Мы, батюшка, средь хороших …   Словарь управления

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»