Перевод: со всех языков на немецкий

с немецкого на все языки

à+la+mémoire+de

  • 1 mémoire

    I memwaʀ f
    2) ( souvenir) Andenken n
    3) ( de données) INFORM Speicher m

    II memwaʀ
    ( petite thèse) Denkschrift f, Aufsatz m
    mémoire1
    mémoire1 [memwaʀ]
    1 (faculté de se souvenir) Gedächtnis neutre, Erinnerungsvermögen neutre; Beispiel: ne plus avoir de mémoire vergesslich werden; Beispiel: avoir la mémoire des chiffres/dates ein gutes Zahlengedächtnis/Gedächtnis für Daten haben; Beispiel: si j'ai bonne mémoire wenn mich mein Gedächtnis nicht täuscht; Beispiel: perdre la mémoire; (en raison de l'âge) vergesslich werden; (en raison d'un accident) das Gedächtnis verlieren; Beispiel: se remettre quelque chose en mémoire sich datif etwas ins Gedächtnis zurückrufen
    2 (souvenir) Beispiel: mémoire de quelqu'un/quelque chose Erinnerung féminin an jemanden/etwas; Beispiel: pour mémoire informationshalber; Beispiel: faire quelque chose à la mémoire de quelqu'un etw zum Andenken an jemanden tun
    3 informatique Speicher masculin; Beispiel: mémoire interne interner Speicher; Beispiel: mémoire vive Arbeitsspeicher, RAM masculin; Beispiel: mettre quelque chose en mémoire etw [ab]speichern
    ————————
    mémoire2
    mémoire2 [memwaʀ]
    2 (dissertation) [wissenschaftliche] Arbeit
    3 (exposé) Bericht masculin

    Dictionnaire Français-Allemand > mémoire

  • 2 aide-mémoire

    <pl aides-memoires or aides-memoire>
    [ˌeɪdmemˈwɑ:, AM ˈwɑ:r]
    n Gedächtnisstütze f, Merkhilfe f, Eselsbrücke f SCHWEIZ, ÖSTERR
    * * *
    ['eɪdmem'wAː(r)]
    n
    Gedächtnisstütze f; (= official memorandum) Aide-memoire nt
    * * *
    aide-mémoire [ˌeıdmemˈwɑː(r); US -meım-] pl aides-mémoire [ˌeıdz-] s Aide-mémoire n (Niederschrift von mündlich getroffenen Vereinbarungen)

    English-german dictionary > aide-mémoire

  • 3 aide-mémoire

    ɛdmemwar
    m
    Merkblatt n, kurze Zusammenfassung f
    aide-mémoire
    aide-mémoire [εdmemwaʀ]
    1 (mémento) kurzer Abriss
    2 (feuille) Merkzettel masculin

    Dictionnaire Français-Allemand > aide-mémoire

  • 4 sa mémoire est une vraie passoire!

    sa mémoire est une vraie passoire!
    er/sie hat ein Gedächtnis wie ein Sieb!

    Dictionnaire Français-Allemand > sa mémoire est une vraie passoire!

  • 5 séquentiel à mémoire

    séquentiel à mémoire FH SECAM-System n, SECAM-Farbfernsehsystem n

    English-German dictionary of Electrical Engineering and Electronics > séquentiel à mémoire

  • 6 memoar

    Memoire n (-s, -s) Denkschrift f (-, -en) m-i (pl) Memoi'ren (pl), Lebenserinnerungen (pl)

    Hrvatski-Njemački rječnik > memoar

  • 7 graver

    gʀave
    v
    1) ( tracer) einritzen, eingravieren, einschneiden
    2) ( artisanat) gravieren, einritzen
    3) (fig) verewigen, eingravieren
    graver
    graver [gʀave] <1>
    1 (tracer en creux) (ein)gravieren; Beispiel: graver quelque chose sur/dans quelque chose etw in etwas Accusatif [ein]ritzen
    2 (à l'eau-forte) radieren; Beispiel: graver quelque chose sur cuivre/sur bois etw in Kupfer Accusatif stechen/in Holz Accusatif schneiden
    3 (fixer) Beispiel: graver quelque chose dans sa mémoire [oder son esprit] sich datif etwas fest einprägen
    Beispiel: se graver dans la mémoire de quelqu'un sich jemandem fest einprägen

    Dictionnaire Français-Allemand > graver

  • 8 памятная записка

    adj
    2) law. Aide-memoire, Aidememoire, Promemoria
    3) econ. Merkzettel
    4) diplom. Aide-mémoire

    Универсальный русско-немецкий словарь > памятная записка

  • 9 capacité

    Dictionnaire Français-Allemand > capacité

  • 10 défaillant

    defajɑ̃
    adj
    1) JUR säumig
    2) ( faible) schwach, nachlassend, schwindend

    Il murmura un compliment d'une voix défaillante d'émotion. — Er murmelte ein Kompliment mit einer vor Rührung zittrigen Stimme.

    défaillant
    défaillant (e) [defajã, jãt]
    1 (insuffisant) schwach; forces geschwächt; mémoire nachlassend
    2 personne geschwächt; voix zitternd; main unsicher
    3 (absent) nicht erschienen

    Dictionnaire Français-Allemand > défaillant

  • 11 perte

    pɛʀt
    1. f
    1) ( chute) Untergang m
    2) ( déperdition) Verlust m, Einbuße f
    3) MED Abgang m
    4) ECO Ausfall m, Verlust m
    5)
    6)
    7)

    en pure perte — ergebnislos, nutzlos


    2. f/pl

    pertes de sangMED Blutverlust m

    perte
    perte [pεʀt]
    1 (privation) Verlust masculin; de facultés physiques Nachlassen neutre; Beispiel: en cas de perte im Verlustfall; Beispiel: perte du sommeil Schlaflosigkeit féminin; Beispiel: perte de mémoire Gedächtnisverlust; Beispiel: perte de temps/d'argent Zeit-/Geldverschwendung féminin; Beispiel: perte d'autorité/de prestige Autoritäts-/Prestigeverlust
    2 commerce Verlust masculin
    3 (ruine) Verderben neutre; (financière) Ruin masculin
    4 (déchet) Abfall masculin
    5 pluriel (morts) Verluste Pluriel
    Wendungen: renvoyer avec perte et fracas hochkantig rauswerfen familier; à perte de vue (très loin) so weit das Auge reicht; (interminablement) endlos; en pure perte vergeblich; courir à sa perte in sein Verderben rennen; à perte mit Verlust

    Dictionnaire Français-Allemand > perte

  • 12 trou

    tʀu
    m
    1) Loch n
    2) ( fossé) Grube f
    3) (fig) Knast m
    4)
    5)
    6)

    trou noir ASTR Schwarzes Loch — n

    trou
    trou [tʀu]
    1 (cavité) Loch neutre; d'une aiguille Öhr neutre; Beispiel: trou de la serrure Schlüsselloch
    2 (moment de libre) freier Augenblick
    3 (déficit) Loch neutre; Beispiel: trou [dans la couche] d'ozone Ozonloch neutre
    4 d'un témoignage, d'une œ uvre Lücke féminin; Beispiel: trou de mémoire Black-out masculin o neutre
    Wendungen: rester dans son trou familier zu Hause herumhocken

    Dictionnaire Français-Allemand > trou

  • 13 visuel

    vizɥɛl
    adj
    visuell, optisch, Blick..., Gesichts...
    visuel
    visuel [vizɥεl]
    ————————
    visuel
    visuel (le) [vizɥεl]
    mémoire visuell; panneau anschaulich

    Dictionnaire Français-Allemand > visuel

  • 14 запоминающий осциллоскоп

    1. Speicheroszilloskop

     

    запоминающий осциллоскоп
    -
    [IEV number 313-05-04]

    EN

    storage oscilloscope
    oscilloscope which retains information using means other than the normal persistence of the screen
    [IEV number 313-05-04]

    FR

    oscilloscope à mémoire
    oscilloscope qui conserve la représentation de l'information au moyen d'un procédé autre que la persistance normale de l'écran
    [IEV number 313-05-04]

    Тематики

    • измерение электр. величин в целом

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > запоминающий осциллоскоп

  • 15 логический запоминающий импульсный сигнальный трансформатор

    1. Speichernder Logikimpulsübertrager

     

    логический запоминающий импульсный сигнальный трансформатор
    Запоминающий импульсный сигнальный трансформатор, использующий два устойчивых состояния намагниченности магнитопровода
    [ ГОСТ 20938-75]

    Тематики

    Классификация

    >>>

    Синонимы

    EN

    DE

    FR

    37. Логический запоминающий импульсный сигнальный трансформатор

    Логический запоминающий трансформатор

    D. Speichernder Logikimpulsübertrager

    E. Logic memory transformer

    F. Transformateur logique de mémoire

    Запоминающий импульсный сигнальный трансформатор, использующий два устойчивых состояния намагниченности магнитопровода

    Источник: ГОСТ 20938-75: Трансформаторы малой мощности. Термины и определения оригинал документа

    Русско-немецкий словарь нормативно-технической терминологии > логический запоминающий импульсный сигнальный трансформатор

  • 16 максимальное время памяти запоминающей электронно-лучевой трубки

    1. Abfragenerzögerungszeit einer Speicherröhre

     

    максимальное время памяти запоминающей электронно-лучевой трубки
    Время с момента записи накопленной информации до определенного уровня затухания запоминающей электронно-лучевой трубки, в течение которого она сохраняется без считывания.
    [ ГОСТ 17791-82

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > максимальное время памяти запоминающей электронно-лучевой трубки

  • 17 многоустойчивый запоминающий импульсный сигнальный трансформатор

    1. Mehrbestandiger Speicherimpulssignalübertrager

     

    многоустойчивый запоминающий импульсный сигнальный трансформатор
    Запоминающий импульсный сигнальный трансформатор, использующий несколько устойчивых состояний намагниченности магнитопровода
    [ ГОСТ 20938-75]

    Тематики

    Классификация

    >>>

    Синонимы

    EN

    DE

    FR

    38. Многоустойчивый запоминающий импульсный сигнальный трансформатор

    Многоустойчивый запоминающий трансформатор

    D. Mehrbestandiger Speicherimpulssignalübertrager

    E. Multistable memory transformer

    F. Transformateur de mémoire de plusieurs états stables

    Запоминающий импульсный сигнальный трансформатор, использующий несколько устойчивых состояний намагниченности магнитопровода

    Источник: ГОСТ 20938-75: Трансформаторы малой мощности. Термины и определения оригинал документа

    Русско-немецкий словарь нормативно-технической терминологии > многоустойчивый запоминающий импульсный сигнальный трансформатор

  • 18 память (для статических счетчиков)

    1. Speicher (für statische Zähler)

     

    память (для статических счетчиков)
    -
    [IEV number 314-07-10]

    EN

    memory (for static meters)
    element which stores the digital information representing the measured energy
    [IEV number 314-07-10]

    FR

    mémoire (pour les compteurs statiques)
    élément qui emmagasine les informations numériques représentant l’énergie mesurée
    [IEV number 314-07-10]

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > память (для статических счетчиков)

  • 19 программируемый логический контроллер

    1. speicherprogrammierbare Steuerung, f

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-немецкий словарь нормативно-технической терминологии > программируемый логический контроллер

  • 20 памятная запись

    adj

    Универсальный русско-немецкий словарь > памятная запись

См. также в других словарях:

  • MÉMOIRE — La mémoire est la propriété de conserver et de restituer des informations. Cette propriété n’est pas exclusivement propre à l’homme. Celui ci la partage avec les organismes vivants et certaines machines, de sorte qu’il est nécessaire de préciser… …   Encyclopédie Universelle

  • mémoire — 1. (mé moi r ) s. f. 1°   Faculté de rappeler les idées et la notion des objets qui ont produit des sensations. •   En mémoire aussitôt me tomba la Gascogne, RÉGNIER Sat. X.. •   Mais, ou vous n avez pas la mémoire fort bonne, Ou vous n y mettez… …   Dictionnaire de la Langue Française d'Émile Littré

  • Memoire (psychologie) — Mémoire (psychologie) Pour les articles homonymes, voir Mémoire. En psychologie, la mémoire est la faculté de l esprit permettant de stocker, conserver et rappeler des expériences passées et des informations. Sommaire 1 La mémoire en psychologie… …   Wikipédia en Français

  • Memoire cache — Mémoire cache Pour les articles homonymes, voir Mémoire cache (homonymie). Une mémoire cache ou antémémoire est, en informatique, une mémoire relativement petite et rapide qui stocke les informations les plus utilisées d une autre mémoire plus… …   Wikipédia en Français

  • Mémoire Cache — Pour les articles homonymes, voir Mémoire cache (homonymie). Une mémoire cache ou antémémoire est, en informatique, une mémoire relativement petite et rapide qui stocke les informations les plus utilisées d une autre mémoire plus grande et plus… …   Wikipédia en Français

  • Mémoire explicite — Mémoire (psychologie) Pour les articles homonymes, voir Mémoire. En psychologie, la mémoire est la faculté de l esprit permettant de stocker, conserver et rappeler des expériences passées et des informations. Sommaire 1 La mémoire en psychologie… …   Wikipédia en Français

  • Mémoire implicite — Mémoire (psychologie) Pour les articles homonymes, voir Mémoire. En psychologie, la mémoire est la faculté de l esprit permettant de stocker, conserver et rappeler des expériences passées et des informations. Sommaire 1 La mémoire en psychologie… …   Wikipédia en Français

  • memoire — Memoire, Memoria. Memoire qu on fait, et propos qu on tient de quelque chose, Mentio mentionis. Ancienne memoire, Senex memoria. Memoire escrite, Consignata literis memoria. Memoire ostée par ensorcellemens, Venenis erepta memoria. Memoire… …   Thresor de la langue françoyse

  • Memoire (sciences humaines) — Mémoire (sciences humaines) Pour les articles homonymes, voir mémoire. La mémoire désigne à la fois la capacité d un individu ou d un groupe humain de se souvenir de faits passés et de se souvenir lui même. Sommaire 1 Mémoire en psychologie 2 …   Wikipédia en Français

  • Memoire a court terme — Mémoire à court terme La mémoire à court terme (MCT) permet de retenir et de réutiliser une quantité limitée d informations pendant quelques secondes. Un grand nombre de recherches en psychologie cognitive ont cherché à déterminer les… …   Wikipédia en Français

  • Memoire virtuelle — Mémoire virtuelle En informatique, le mécanisme de mémoire virtuelle a été mis au point dans les années 1960. Il est basé sur l utilisation d une mémoire de masse (type disque dur ou anciennement un tambour), pour le but, entre autres, de… …   Wikipédia en Français

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»