Перевод: с русского на все языки

со всех языков на русский

(для+ис+в+корпусе)

  • 101 лента (клапан) перепуска воздуха

    1. interstage air bleed tape (valve)

     

    лента (клапан) перепуска воздуха
    Управляемое устройство с лентой (клапаном), прикрывающее отверстие в корпусе компрессора ГТД, предназначенное для выпуска части воздуха из проточной части многоступенчатого компрессора с целью увеличения запаса его газодинамической устойчивости.
    [ ГОСТ 23851-79

    Тематики

    EN

    DE

    FR

    84. Лента (клапан) перепуска воздуха

    D. Uberlaufband (Uberlaufventil)

    E. Interstage air bleed tape (valve)

    F. Bande (valve) de décharge d’air

    Управляемое устройство с лентой (клапаном), прикрывающее отверстие в корпусе компрессора ГТД, предназначенное для выпуска части воздуха из проточной части многоступенчатого компрессора с целью увеличения запаса его газодинамической устойчивости

    Источник: ГОСТ 23851-79: Двигатели газотурбинные авиационные. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > лента (клапан) перепуска воздуха

  • 102 лента (клапан) перепуска воздуха

    1. Bande (valve) de décharge d’air
    2. bande (valve) de décharge d'air

     

    лента (клапан) перепуска воздуха
    Управляемое устройство с лентой (клапаном), прикрывающее отверстие в корпусе компрессора ГТД, предназначенное для выпуска части воздуха из проточной части многоступенчатого компрессора с целью увеличения запаса его газодинамической устойчивости.
    [ ГОСТ 23851-79

    Тематики

    EN

    DE

    FR

    84. Лента (клапан) перепуска воздуха

    D. Uberlaufband (Uberlaufventil)

    E. Interstage air bleed tape (valve)

    F. Bande (valve) de décharge d’air

    Управляемое устройство с лентой (клапаном), прикрывающее отверстие в корпусе компрессора ГТД, предназначенное для выпуска части воздуха из проточной части многоступенчатого компрессора с целью увеличения запаса его газодинамической устойчивости

    Источник: ГОСТ 23851-79: Двигатели газотурбинные авиационные. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > лента (клапан) перепуска воздуха

  • 103 щелевое устройство

    1. dispositif à fentes

     

    щелевое устройство
    Ндп. перфорированная проставка
    Система ориентированных щелей в корпусе компрессора ГТД над рабочим колесом или (и) перед ним, через которые проточная часть компрессора сообщается с кольцевой замкнутой полостью для расширения диапазона газодинамической устойчивости компрессора и безвибрационной работы его лопаток.
    [ ГОСТ 23851-79

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

    85. Щелевое устройство

    Ндп. Перфорированная проставка

    D. Schlitze

    Е. Slot casing treatment

    F. Dispositif à fentes

    Система ориентированных щелей в корпусе компрессора ГТД над рабочим колесом или (и) перед ним, через которые проточная часть компрессора сообщается с кольцевой замкнутой полостью для расширения диапазона газодинамической устойчивости компрессора и безвибрационной работы его лопаток

    Источник: ГОСТ 23851-79: Двигатели газотурбинные авиационные. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > щелевое устройство

  • 104 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 105 интеллектуальный учет электроэнергии

    1. smart metering

     

    интеллектуальный учет электроэнергии
    -
    [Интент]

    Учет электроэнергии

    Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
    Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.

    SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ

    Определения и задачи
    По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
    • «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
    • основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
    • эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
    • средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
    Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
    В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
    • различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
    • расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
    • двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.

    ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?

    Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
    «…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
    Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
    …Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
    1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
    2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
    3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
    4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
    5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
    6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
    Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
    На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
    Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
    1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
    2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
    3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
    Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.

    БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»

    В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
    1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
    2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
    Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
    в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
    в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».

    ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»

    Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
    • дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
    • расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
    • контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
    • обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
    • применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
    • анализ технического состояния и отказов приборов учета;
    • подготовка отчетных документов об электропотреблении;
    • интеграция с биллинговыми системами.

    «ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»

    Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
    Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
    Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
    • коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
    • коммерческий учет на РРЭ (технические средства – АСКУЭ).
    Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
    Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
    Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
    Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
    Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
    При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
    В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
    Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
    1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
    2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
    3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
    Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
    Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
    Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
    По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
    Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
    Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.

    ПРЕИМУЩЕСТВА ИСУЭ

    Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
    Для самой компании:
    1. Повышение эффективности существующего бизнеса.
    2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
    3. Обеспечение внедрения технологий Smart grid.
    4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
    Для энергосбытовой деятельности:
    1. Автоматический мониторинг потребления.
    2. Легкое определение превышения фактических показателей над планируемыми.
    3. Определение неэффективных производств и процессов.
    4. Биллинг.
    5. Мониторинг коэффициента мощности.
    6. Мониторинг показателей качества (напряжение и частота).
    Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
    1. Готовый вариант на все случаи жизни.
    2. Надежность.
    3. Гарантия качества услуг.
    4. Оптимальная и прозрачная стоимость услуг сетевой компании.
    5. Постоянное внедрение инноваций.
    6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
    7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
    8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
    Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.

    ЛИТЕРАТУРА

    1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
    2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.

    [ http://www.news.elteh.ru/arh/2011/71/14.php]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > интеллектуальный учет электроэнергии

  • 106 колокейшн

    1. colocation
    2. collocation
    3. co-location

     

    колокейшн
    размещение сервера
    Услуга по размещению вашего серверного оборудования на телекоммуникационном узле, имеющем высокоскростное подключение к сети Интернет, обеспечению технических условий функционирования оборудования, таких как стабильное электропитание, оптимальная температура и влажность, круглосуточный мониторинг состояния.
    [ http://your-hosting.ru/terms/c/colloc/]

    размещение физических серверов
    со-размещение

    Размещение оборудования Заказчика на площадях Провайдера, а также предоставление последним сервисных услуг по инсталляции, настройке, управлению и обеспечению безопасности установленного оборудования на базе фиксированной арендной платы.
    [ http://www.outsourcing.ru/content/glossary/A/page-1.asp]

    совместное размещение
    Размещение оборудования электросвязи принадлежащего разным компаниям-операторам в одном помещении или здании (МСЭ-Т K.58).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Что такое "колокейшн"? И чем отличаются друг от друга colocation, co-location и collocation?

    Вообще, все эти слова означают одно — размещение сервера клиента на технической площадке провайдера. Техническая площадка — это специализированное помещение с гарантированным электропитанием, поддержанием достаточно низкого уровня температуры, с охраной, системой пожаротушения и так далее. По сути, это узел связи. Разница в написании слова «colocation» возникла очень давно, причем по вполне естественным причинам. В оригинале, по-английски, верны все три написания этого слова. Поэтому все пишут его так, как привыкли. Вот и все.

    Чем же отличается колокейшн от хостинга?


    Colocation — это размещение своего оборудования (сервера) на технической площадке провайдера. Это действительно похоже на хостинг, когда вы размещаете свой веб-ресурс у провайдера. Однако виртуальный хостинг — это когда на провайдерской машине находятся сотни сайтов его клиентов, а colocation — когда клиент устанавливает своей сервер у провайдера и использует все его ресурсы только для размещения своего собственного сайта.

    Как правило, для colocation применяются специализированные серверы, которые собираются в промышленных корпусах шириной 19 дюймов, предназначенных для монтажа в специальную стойку. Еще одна характеристика габаритов корпуса — высота. Она измеряется в юнитах (unit). Это порядка 45 миллиметров. Сервера бывают размером в 1 юнит (1U), 2 юнита (2U), 4 юнита (4U) и так далее. Как правило, сейчас клиенты размещают серверы в 1U-корпусах, так как с пользователей взимается плата за размер сервера пропорционально количеству юнитов. Например, 1U стоит одно количество денег, а 2U — в два раза большее. На деле, в 1U корпусе можно собрать как очень мощный двухпроцессорный сервер с двумя-тремя дисками, так и "слабенький" недорогой сервер, которого, тем не менее, хватит для размещения большинства проектов.

    Серверы для colocation отличаются от обычных компьютеров, кроме необычного корпуса, материнской платой. Существуют специальные серверные материнские платы, которые содержат прямо на себе весь необходимый набор комплектующих — сетевые карты, видеокарты, контроллеры жестких дисков SCSI/ATA/SATA и так далее. Кроме того, к производству таких материнских плат предъявляются повышенные требования по качеству.

    Вообще, сервер можно как собрать "руками" самостоятельно, так и купить готовый. Однако нужно помнить о том, что сервер отличается от обычного компьютера тем, что он постоянно работает, причем с серьезной нагрузкой. Работает без перерывов годами. Соответственно, нужно думать о необходимом количестве специальных вентиляторов, продумать прохождение воздушных потоков внутри сервера и так далее. Все эти моменты уже учтены в готовых серверах. Это очень важно.

    Как правило, для colocation применяются специализированные серверы, которые собираются в специальных промышленных корпусах шириной 19 дюймов, и предназначены такие корпуса для монтажа в специальную стойку

    В какой ситуации для клиента имеет смысл переходить на колокейшн?


    Основных причин для перехода с виртуального хостинга на colocation две:

    1. Ваш веб-проект настолько вырос, что потребляет столько ресурсов, сколько ему не могут предоставить на хостинговой машине провайдера. Мы помним, что на каждой хостинговой машине, кроме вас, "живет" еще несколько сотен серверов. Если проект большой, посещаемый, требует много вычислительных ресурсов, рано или поздно он начинает "тормозить" на "общем" хостинге. Да, возможно, что хостинг-провайдер просто поместил на физический сервер слишком много виртуальных веб-серверов, но зачастую это все же не так. Как только сервер начинает "тормозить" на хостинге, нужно заняться оптимизацией скриптов и запросов к базе данных. Если это не помогает, то нужно задумываться о colocation, изучать эту возможность, не пора ли действительно брать отдельный сервер.

    2. Проекту нужно много дискового пространства. Сейчас на хостинге предлагают 500 мегабайт места или даже 1 Гб. Есть провайдеры, которые предлагают и больше. Однако разместить хотя бы 5 Гб на виртуальном хостинге уже просто нереально. Кстати, как правило, проекты, которым нужно много места, сталкиваются и с проблемами производительности, ведь эти данные не просто лежат на диске — с ними работают посетители. Много данных, надо полагать, предполагает наличие большого количества посещений. Ведь эти данные размещаются, чтобы люди их смотрели, а не просто так. На colocation же в вашем распоряжении окажется весь жесткий диск сервера или даже несколько дисков — сколько пожелаете и купите. Диски емкостью 100-150 Гб, выполненные по технологии SATA, стоят чуть более ста долларов. Более быстрые SCSI-диски подороже. Все это делает colocation очевидной возможностью для развития проектов, которые требуют много места. В конце концов, аренда многих гигабайт места на сервере у хостинг-провайдера по затратам делает услугу виртуального хостинга очень похожей на colocation или хотя бы сравнимой.

    Насколько колокейшн дороже обычного хостинга?


    Как правило, за пользование виртуальным хостингом взимается некая фиксированная плата, которая составляет несколько долларов в месяц. Кроме того, пользователь может приобрести дополнительные услуги. Например, больше дискового пространства, больше почтовых ящиков и так далее. Структура платежей в пользу хостинг-провайдера проста и понятна.

    В случае с colocation все несколько сложнее. Пользователи colocation, во-первых, должны приобрести сервер. Как уже говорилось, цены на серверы начинаются от $800-1000. То есть цена "входного билета" значительно выше, чем в случае с виртуальным хостингом. Однако есть варианты — можно не покупать сервер, а недорого взять его в аренду у провайдера — об этом ниже.

    Также пользователи colocation платят за размещение сервера. Как правило, цена этой услуги должна составлять порядка $50 — такова рыночная цена на сегодняшний день, середину лета 2004 года. Стоимость размещения сервера плавно снижалась с годами. Так, пять лет назад размещение colocation сервера стоило не менее $200-300 в месяц. Тогда такая цена обуславливалась крайне скудным предложением и эксклюзивностью услуг, так как клиентов были единицы. Сейчас цены находятся на уровне себестоимости, и снижение цены до $20, скажем, маловероятно. Впрочем, возможны варианты, и время все расставит по местам.

    Пользователь colocation платит за трафик, который генерируется его сервером
    Также пользователь colocation платит за трафик, который генерируется его сервером. В данный момент ситуация на рынке такова, что многие провайдеры предлагают неограниченный трафик за фиксированную сумму, которая, как правило, включена в стоимость размещения оборудования, о которой писалось выше. Однако есть один момент — провайдерам выгодно, чтобы трафик, генерируемый клиентом, был российским. То есть предназначался для пользователей, которые находятся в России. Провайдеры просят, чтобы трафик, создаваемый сервером, был как минимум наполовину российским. Таково предложение компании.masterhost, например. На практике практически все пользователи легко укладываются в такое ограничение, и проблем тут нет.

    Если сравнивать стоимость размещения сайта на виртуальном хостинге и на colocation в цифрах, то хостинг для серьезного сайта в виртуальной среде стоит от $20 в месяц, а размещение собственного сервера — от $50 в месяц. Вполне сравнимые цифры, тем более что во втором случае ваш веб-сервер получает в десятки раз больше ресурсов. То есть colocation — это естественный путь развития для серьезных проектов.

    Какие особые возможности колокейшн предоставляет по сравнению с хостингом?

    Две главные возможности colocation — это несравнимо большее количество ресурсов (диска, памяти, процессорного времени) и гибкость настройки и конфигурации. На виртуальном хостинге ваш сайт находится на одной машине с еще несколькими сотнями похожих сайтов. Конечно, ресурсов вы получаете немного, но вполне достаточно для работы даже довольно серьезного ресурса. Однако, как только на сервер возникает повышенная нагрузка — например в часы пик или при резком увеличении количества посетителей по какой-то причине, — у пользователя возникают риски. Например, риск нехватки каких-то ресурсов. Риски, в общем, небольшие, но если ваш сайт — это, например, интернет-магазин, то каждая ошибка на сайте — это несделанный посетителем заказ. Стоит подумать, нужно ли рисковать в том случае, если за сравнимые деньги можно получить в пользование целый отдельный сервер.

    Гибкость. Очень часто программистам, которые работают над сайтом, нужно поставить какие-нибудь дополнительные модули или использовать нестандартное программное обеспечение. Не всегда есть возможность установить на сервер нужное ПО и настроить его так, как нужно. В случае же с colocation этой проблемы не существует в принципе, так как администратор сервера может устанавливать что угодно и настраивать ПО любым образом.

    Можно сказать, что виртуальный хостинг — это "детство" серьезных проектов, а colocation — их "зрелость". Переход на colocation — это естественный путь развития любого большого проекта, и таким веб-ресурсам однозначно нечего делать на виртуальном хостинге.

    Бывает ли колокейшн на собственных компьютерах клиентов, и есть ли в этом смысл? Как в этом случае эти компьютеры обслуживаются?

    Как правило, colocation — это именно установка собственного компьютера-сервера пользователя на площадку хостинг-провайдера. В этом случае клиент сам занимается администрированием сервера, его настройкой, а также принимает на себя риски, связанные с поломкой комплектующих. Это классический вариант. Однако в последнее время активно развивается направление аренды сервера у провайдера. Клиенту не нужно платить тысячу-полторы-две долларов за сервер. Можно его за небольшую плату арендовать у провайдера. Это интересный вариант для только запускающихся проектов, когда денег на покупку сервера еще нет. Впоследствии, как правило, можно выкупить сервер у провайдера или приобрести свой сервер независимо. Да, при аренде риски, связанные с поломкой сервера, берет на себя провайдер. То есть если провайдер сдает вам в аренду сервер, он отвечает за его работоспособность и за оперативную замену вышедших из строя комплектующих, если, не дай Бог, такое случится. Это интересный вариант, так как ехать в три ночи на другой конец города, чтобы поменять "полетевшую" память — не очень интересное занятие. А если пользователь живет в другом городе...

    Насколько часто сейчас используется колокейшн?

    Услуга многие годы развивалась. Пять лет назад клиентов colocation у провайдеров были единицы. Года три назад — десятки. Сейчас у серьезных провайдеров, занимающихся размещением серверов как отдельным бизнесом, уже сотни клиентов. Colocation используют интернет-магазины, сетевые СМИ, игровые порталы, баннерные сети, различные контент-проекты. Также многие компании выносят на colocation из своих офисов почтовые сервера и другие службы. Есть много вариантов использования colocation, и их становится все больше. Наблюдается четкая тенденция к "переезду" на colocation "выросших" из виртуального хостинга проектов, так как провайдеры предлагают не просто взять и поставить машину, а предоставляют полный комплекс услуг с администрированием клиентского сервера.

    Какие сложности возникают перед клиентом при использовании колокейшн?

    Главная проблема — необходимость наличия системного администратора, который установит и настроит операционную и хостинговую среду, а также будет потом заниматься поддержкой и администрированием системы. С одной стороны — да, это проблема. Но с другой — найти администратора несложно, и стоит это недорого. Нет необходимости, например, брать на работу "выделенного" человека. Вполне можно пользоваться и разовыми услугами по необходимости.

    Однако хостинг-провайдеры предлагают и свои собственные услуги по администрированию. Те же специалисты, которые занимаются администрированием хостинговых серверов провайдера, вполне могут заниматься и сервером клиента. Стоить это будет значительно дешевле, чем привлечение клиентом стороннего специалиста.

    Также есть проблема с "железом", которое потенциально может ломаться. Нужно брать сервер с серьезной гарантией или не покупать его, а брать в аренду у провайдера.

    Какие существуют виды оплаты при колокейшн?


    .masterhost предлагает клиентам colocation платить им за генерируемый исходящий трафик
    Те же самые, как и в случае с оплатой хостинга. По сути, система приема платежей одна и та же — как для клиентов хостинга, так и для colocation. Кстати, тут есть одна интересная возможность. Наша компания, например, предлагает клиентам colocation платить им за генерируемый исходящий трафик. То есть если у проекта много исходящего трафика, мы вполне готовы даже заплатить за него клиенту. Возможно, что и не очень много, однако это вполне позволяет снизить плату за colocation или же вообще избавиться от нее. Проекты с довольно большим трафиком могут даже заработать.

    В заключение хочу добавить несколько слов о неочевидных выгодах использования именно colocation, а не виртуального хостинга. Переходя на использование выделенного сервера для хостинга своих ресурсов, владелец сайта автоматически увеличивает посещаемость своего ресурса — просто потому что его сервер может просто физически принять и обслужить больше посетителей. Больше посетителей — это возможность показать больше рекламы, к примеру.

    Используя colocation, можно значительно наращивать ресурсы сервера. Например, если понадобилось дополнительное дисковое пространство, покупаете за $100 диск на 120 Гб, и проблема решена. Стало больше посетителей, и сервер не справляется с работой скриптов — меняем процессор на более мощный, и проблем тоже нет.

    [ http://hostinfo.ru/articles/358]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > колокейшн

  • 107 источник электропитания радиоэлектронной аппаратуры

    1. supply unit
    2. supply equipment
    3. supply apparatus
    4. supply
    5. source of power
    6. PSU
    7. power unit
    8. power supply unit
    9. power supply device
    10. power supply
    11. power source
    12. power pack
    13. power module
    14. power device
    15. power box
    16. feeding unit
    17. feed source
    18. electric power supply

     

    источник электропитания радиоэлектронной аппаратуры
    источник электропитания РЭА

    Нерекомендуемый термин - источник питания
    Устройство силовой электроники, входящее в состав радиоэлектронной аппаратуры и преобразующее входную электроэнергию для согласования ее параметров с входными параметрами составных частей радиоэлектронной аппаратуры.
    [< size="2"> ГОСТ Р 52907-2008]

    источник питания
    Часть устройства, обеспечивающая электропитание остальных модулей устройства. 
    [ http://www.lexikon.ru/dict/net/index.html]

    EN

    power supply
    An electronic module that converts power from some power source to a form which is needed by the equipment to which power is being supplied.
    [Comprehensive dictionary of electrical engineering / editor-in-chief Phillip A. Laplante.-- 2nd ed.]

    0494
    Рис. ABB
    Структурная схема источника электропитания

    The input side and the output side are electrically isolated against each other

    Вход и выход гальванически развязаны

    Терминология относящая к входу

    Primary side

    Первичная сторона

    Input voltage

    Входное напряжение

    Primary grounding

     

    Current consumption

    Потребляемый ток

    Inrush current

    Пусковой ток

    Input fuse

    Предохранитель входной цепи

    Frequency

    Частота

    Power failure buffering

     

    Power factor correction (PFC)

    Коррекция коэффициента мощности

    Терминология относящая к выходу

    Secondary side

    Вторичная сторона

    Output voltage

    Выходное напряжение

    Secondary grounding

     

    Short-circuit current

    То короткого замыкания

    Residual ripple

     

    Output characteristics

    Выходные характеристики

    Output current

    Выходной ток

    Различают первичные и вторичные источники питания.
    К первичным относят преобразователи различных видов энергии в электрическую, например:
    - аккумулятор (преобразует химическую энергию.
    Вторичные источники не генерируют электроэнергию, а служат лишь для её преобразования с целью обеспечения требуемых параметров (напряжения, тока, пульсаций напряжения и т. п.)

    Задачи вторичного источника питания

    • Обеспечение передачи мощности — источник питания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.
    • Преобразование формы напряжения — преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.
    • Преобразование величины напряжения — как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины для питания различных цепей.
    • Стабилизация — напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и т. д. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например для зарядки аккумуляторов) необходима стабилизация тока.
    • Защита — напряжение или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.
    • Гальваническая развязка цепей — одна из мер защиты от протекания тока по неверному пути.
    • Регулировка — в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.
    • Управление — может включать регулировку, включение/отключение каких-либо цепей или источника питания в целом. Может быть как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).
    • Контроль — отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

    Трансформаторный (сетевой) источник питания

    Чаще всего состоит из следующих частей:

    • Сетевого трансформатора, преобразующего величину напряжения, а также осуществляющего гальваническую развязку;
    • Выпрямителя, преобразующего переменное напряжение в пульсирующее;
    • Фильтра для снижения уровня пульсаций;
    • Стабилизатора напряжения для приведения выходного напряжения в соответствие с номиналом, также выполняющего функцию сглаживания пульсаций за счёт их «срезания».

    В сетевых источниках питания применяются чаще всего линейные стабилизаторы напряжения, а в некоторых случаях и вовсе отказываются от стабилизации. 
    Достоинства такой схемы:

    Недостатки:

    • Большой вес и габариты, особенно при большой мощности: по большей части за счёт габаритов трансформатора и сглаживающего фильтра
    • Металлоёмкость
    • Применение линейных стабилизаторов напряжения вводит компромисс между стабильностью выходного напряжения и КПД: чем больше диапазон изменения напряжения, тем больше потери мощности.
    • При отсутствии стабилизатора на выход источника питания проникают пульсации с частотой 100Гц.

    В целом ничто не мешает применить в трансформаторном источнике питания импульсный стабилизатор напряжения, однако большее распространение получила схема с полностью импульсным преобразованием напряжения.

    Импульсный источник питания
    Широко распространённая схема импульсного источника питания состоит из следующих частей:

    • Входного фильтра, призванного предотвращать распространение импульсных помех в питающей сети
    • Входного выпрямителя, преобразующего переменное напряжение в пульсирующее
    • Фильтра, сглаживающего пульсации выпрямленного напряжения
    • Прерывателя (обычно мощного транзистора, работающего в ключевом режиме)
    • Цепей управления прерывателем (генератора импульсов, широтно-импульсного модулятора)
    • Импульсного трансформатора, который служит накопителем энергии импульсного преобразователя, формирования нескольких номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга)
    • Выходного выпрямителя
    • Выходных фильтров, сглаживающих высокочастотные пульсации и импульсные помехи.

    Достоинства такого блока питания:

    • Можно достичь высокого коэффициента стабилизации
    • Высокий КПД. Основные потери приходятся на переходные процессы, которые длятся значительно меньшее время, чем устойчивое состояние.
    • Малые габариты и масса, обусловленные как меньшим выделением тепла на регулирующем элементе, так и меньшими габаритами трансформатора, благодаря тому, что последний работает на более высокой частоте.
    • Меньшая металлоёмкость, благодаря чему мощные импульсные источники питания стоят дешевле трансформаторных, несмотря на бо́льшую сложность
    • Возможность включения в сети широкого диапазона напряжений и частот, или даже постоянного тока. Благодаря этому возможна унификация техники, производимой для различных стран мира, а значит и её удешевление при массовом производстве.

    Однако имеют такие источники питания и недостатки, ограничивающие их применение:

    • Импульсные помехи. В связи с этим часто недопустимо применение импульсных источников питания для некоторых видов аппаратуры.
    • Невысокий cosφ, что требует включения компенсаторов коэффициента мощности.
    • Работа большей части схемы без гальванической развязки, что затрудняет обслуживание и ремонт.
    • Во многих импульсных источниках питания входной фильтр помех часто соединён с корпусом, а значит такие устройства требуют заземления.

    [Википедия]
     

    Недопустимые, нерекомендуемые

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > источник электропитания радиоэлектронной аппаратуры

  • 108 насос


    pump
    -, аварийный — emergency pump
    -, аварийный ручной — emergency hand pump
    -, вакуумный — vacuum pump
    насос для создания разрежения в линии или системе, — а pump which maintains а vacuum in а line or system.
    -, включенный — operating pump
    - впрыска топливаfuel injection pump
    - высокого давления (топлива) — high pressure fuel (main) pump, hp pump
    для повышения давления топлива, поступающего к форсункам.
    -, гидравлический — hydraulic pump
    -, главный топливный — main fuel pump
    - (-) датчик (плунжерный топливный насос высокого давления переменной производительности) (нд) — variable-delivery high pressure (hp) fuel pump
    -, двухступенчатый (с двумя ступенями повышения давления) — two-stage pump
    -, двухступенчатый (с двумя камерами подачи к или откачки масла от двух разных элементов двигателя) — two-section /-element/ pump
    -, диафрагменный — diaphragm-type pump
    - для впрыска топливаfuel injection pump
    -, дозирующий (масляный) — (oil) metering pump
    -, дополнительный (топливный, всу) — auxiliary pump
    -, заливочный (пд) — fuel priming /primer/ pump
    -, коловратный — rotary pump
    -, лопаточный — vane pump

    a pump which utilizes eccentrically mounted rotating vanes to entrap and force fluid.
    -, масляный — oil pump
    -, масляный нагнетающий — oil pressure pump
    -, масляный (подпитки) — oil replenishment pump
    -, многокамерный — multi-section pump
    -, многоступенчатый (с несколькими ступенями повышения давления) — multi-stage pump
    -, многоступенчатый (многокамерный, обслуживающий несколько автономных линий) — multi-section pump
    -, нагнетательный — pressure pump
    -, нагнетающий (масляный) — (oil) pressure pump
    - (смонтированный) на двигателеengine pump
    - непосредственного впрыска (нв)direct-injection pump
    дозирующий насос для впрыска топлива в цилиндры поршневого двигателя, — а fuel-metering pump which injects the fuel direct to the individual engine cylinders.
    - низкого давления (топливный)low pressure (lp) pump
    насос на двигателе в топливной магистрали за подкачивающим насосом топливного бака. — an engine-driven pump асting as а back-up pump for а tank booster pump.
    -, объемный (объемного типа, напр., плунжерный) — displacement pump
    -, объемный (нагнетающий) — positive displacement pump
    -, одноступенчатый — single-stage pump
    -, одноступенчатый (однокамерный) — single-section (-element) pump
    - (передней) опоры (масляный), нагнетающий — (front) bearing (oil) pressure pump
    - (передней) опоры (масляный), откачивающий — (front) bearing (oil) scavenge pump
    -, основной масляный (омн) — main oil pump
    -, основной топливный — main fuel pump
    -, откачивающий (в маслосистеме двигателя) (mho) — oil scavenge pump
    откачивает масло из опор двигателя в маслобак, — prevents oil accumulation in engine bearings and returns it to oil tank.
    -, откачивающий (в линию слива) — return (oil) pump
    -, откачивающий (для удаления воздуха из чехла упакованного изделия) — vacuum /suction/ pump
    -, отсасывающий — suction pump
    - охлаждающий жидкостиcoolant pump
    -, перекачивающий — transfer pump
    -, перекачивающий топливный (i -ой, 2-ой очереди) — (first, second) fuel consumed tank transfer pump
    - перекачкиtransfer pump
    - перекачки топлива — fuel transfer pump, fuel tank
    для перекачки топлива из одной группы баков в другуюfeed pump
    - перекаки топлива в основной (расходный) бакmain tank fuel feed pump
    - переменной производительностиvariable-delivery pump
    -, плунжерный — plunger (type) pump
    -, подкачивающий (в топливном баке) — boost(er) pump
    -, подкачивающий самолетный (в топливном расходном баке) — boost(er) pump а pump in а fuel system, used to provide additional or auxiliary pressure when needed.
    - (подкачивающий) непокрытый топливом — uncovered (boost) pump sustained nose high attitudes could cause boost pumps to be uncovered.
    -, подкачивающий топливный (на двигателе для создания давления топлива на входе в насос регулятор) — fuel back-up /boost/ pump
    -, подкачивающий топливный (низкого давления) — low pressure fuel pump acts as back-up pump for wing tank boost pump.
    - подкачки (в топливном баке)boost(er) pump
    - подпитки (подкачивающий масло)(oil) replenishment pump
    для подпитки маслосистемы двигателя путем подачи маcла на вход нагнетающего наcoca. — delivers oil at а suitable pressure from the oil tank for replenishing the engine lubricating system.
    -, поршневой — piston pump
    - постоянной производительности — constant /fixed/-delivery pump
    - приемистостиaccelerating pump
    насос в карбюраторе поршневого двигателя для кратковременного обогащения топливной смеси при даче газа — a pump on the carburetor which enriches the mixture momentarily while the engine is accelerating.
    -, пусковой топливный — fuel starting pump
    (-) регулятор (включает качающий и топливодозирующий узлы) — fuel (flow) control unit (fcu), fuel flow regulator (f.f.r.) the fcu receives various signals from the engine, compares to the throttle position and controls the hp pump fuel flow output.
    -, ручной топливный — hand fuel pump
    - смыва (унитаза)(closet pan) flushing pump
    -, струйный (эжекторный) — jet pump
    -, топливоподкачивающий (на двигателе) — (engine-driven) fuel back-up /boost/ pump
    - (-) ускоритель (приемистостиaccelerating pump
    - утопленного типа, подкачивающий — immersion boost(er) pump
    - флюгирования винтаpropeller feathering pump
    - форсажной камеры, топливный — afterburner fuel pump
    -, форсажный — afterburner /thrust augmentor/ fuel pump
    -, центробежный — centrifugal pump
    -, шестеренчатый — gear pump
    объемный насос, в котором перемещение жидкости совершается впадинами помещенных в корпусе шестерен. — a pump, which utilizes the rotary action of a set of gears to force fluid thru a system or to build up fluid pressure.
    -, эжекторный (маслорадиатоpa) — (oil cooler) jet pump for ground operation, cooling air is circulated through the oil cooler exit by a jet pump.
    -, эжекторный (струйный) — jet pump

    creates aspirator action, drawing in ventilating and cooling air.
    вход h. — pump inlet
    выход h. — pump outlet
    на входе н. — at pump inlet, in inlet to pump
    на выходе из н. — at pump outlet, in outlet from pump
    перегрузка h. — pump overload
    производительность h. — pump delivery (rate)
    включать h. — start the pump
    выключать h. — stop the pump
    проверять герметичность н. — test the pump for leakage

    Русско-английский сборник авиационно-технических терминов > насос

  • 109 вентилятор

    1. Lüfter

     

    вентилятор
    Вращающаяся лопаточная машина, передающая механическую энергию газа в одном или нескольких рабочих колесах, вызывая таким образом непрерывное течение газа при его относительном максимальном сжатии 1,3.
    [ ГОСТ 22270-76]

    вентилятор
    Нагнетательная машина для создания избыточного (до 0,015 МПа) давления воздуха (газа) и его перемещения.
    Примечание
    Создаваемый вентилятором напор расходуется в основном для преодоления сопротивления сети, по которой транспортируется газ. По принципу действия различают центробежные (радиальные), осевые и вихревые вентиляторы. Центробежные вентиляторы подразделяются на прямоточные, дисковые, смерчевые и диаметральные. Давление в вентиляторах, являющихся объемными нагнетателями, повышается при закручивании потока газа.
    [РД 01.120.00-КТН-228-06]

    КЛАССИФИКАЦИЯ

     

    <> ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ <> ВЕНТИЛЯТОРА

    • <>Установленная мощность, кВт
    • <>Частота вращения, мин -1
    • <>Производительность, тыс. м3/час
    • <>Полное давление, Па
    • <>Динамическое давление, Па
    • <>Окружная скорость рабочего колеса, м/с
    • <>Огнестойкость

    <>  ШУМОВЫЕ ХАРАКТЕРИТСТИКИ

    • <>Уровень звуковой мощности шума во всасывающем воздуховоде вентилятора
    • <>Уровень звуковой мощности шума в нагнетательном воздуховоде вентилятора
    • <>Уровень звуковой мощности шума всасывания вентилятора
    • <>Уровень звуковой мощности шума нагнетания вентилятора
    • <>Уровень звуковой мощности шума вентилятора в окружающем пространстве
    • <>Уровень звуковой мощности шума вентилятора, установленного в стене

    <> АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЕНТИЛЯТОРА (примеры)

    • <>Аэродинамические характеристики приведены для нормальных условий (плотность 1,2 кг/м3, барометрическое давление 101,34 кПа, температура +200 °С и относительная влажность 50%)
    • <>Для вентиляторов, перемещающих воздух и газ, который имеет плотность, отличающуюся от 1,2 кг/м3, аэродинамические характеристики должны пересчитываться по ГОСТ 10616-90
    • <>При пересчете аэродинамических характеристик в интервале температур от минус 40 до 80 °С применять следующие зависимости:
    • <>а) плотность воздуха при температуре t °C:<> Р = Рн 293/(273+t) кг/м3, где Рн = 1,2 кг/м3 - плотность воздуха для нормальных условий при t = 20 °С,
    • <>б) давление Рv и Рdv пропорциональны плотности воздуха

    Тематики

    Обобщающие термины

    EN

    DE

    Русско-немецкий словарь нормативно-технической терминологии > вентилятор

  • 110 вентилятор

    1. ventilating fan
    2. fan

     

    вентилятор
    Вращающаяся лопаточная машина, передающая механическую энергию газа в одном или нескольких рабочих колесах, вызывая таким образом непрерывное течение газа при его относительном максимальном сжатии 1,3.
    [ ГОСТ 22270-76]

    вентилятор
    Нагнетательная машина для создания избыточного (до 0,015 МПа) давления воздуха (газа) и его перемещения.
    Примечание
    Создаваемый вентилятором напор расходуется в основном для преодоления сопротивления сети, по которой транспортируется газ. По принципу действия различают центробежные (радиальные), осевые и вихревые вентиляторы. Центробежные вентиляторы подразделяются на прямоточные, дисковые, смерчевые и диаметральные. Давление в вентиляторах, являющихся объемными нагнетателями, повышается при закручивании потока газа.
    [РД 01.120.00-КТН-228-06]

    КЛАССИФИКАЦИЯ

     

    <> ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ <> ВЕНТИЛЯТОРА

    • <>Установленная мощность, кВт
    • <>Частота вращения, мин -1
    • <>Производительность, тыс. м3/час
    • <>Полное давление, Па
    • <>Динамическое давление, Па
    • <>Окружная скорость рабочего колеса, м/с
    • <>Огнестойкость

    <>  ШУМОВЫЕ ХАРАКТЕРИТСТИКИ

    • <>Уровень звуковой мощности шума во всасывающем воздуховоде вентилятора
    • <>Уровень звуковой мощности шума в нагнетательном воздуховоде вентилятора
    • <>Уровень звуковой мощности шума всасывания вентилятора
    • <>Уровень звуковой мощности шума нагнетания вентилятора
    • <>Уровень звуковой мощности шума вентилятора в окружающем пространстве
    • <>Уровень звуковой мощности шума вентилятора, установленного в стене

    <> АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЕНТИЛЯТОРА (примеры)

    • <>Аэродинамические характеристики приведены для нормальных условий (плотность 1,2 кг/м3, барометрическое давление 101,34 кПа, температура +200 °С и относительная влажность 50%)
    • <>Для вентиляторов, перемещающих воздух и газ, который имеет плотность, отличающуюся от 1,2 кг/м3, аэродинамические характеристики должны пересчитываться по ГОСТ 10616-90
    • <>При пересчете аэродинамических характеристик в интервале температур от минус 40 до 80 °С применять следующие зависимости:
    • <>а) плотность воздуха при температуре t °C:<> Р = Рн 293/(273+t) кг/м3, где Рн = 1,2 кг/м3 - плотность воздуха для нормальных условий при t = 20 °С,
    • <>б) давление Рv и Рdv пропорциональны плотности воздуха

    Тематики

    Обобщающие термины

    EN

    DE

    Русско-английский словарь нормативно-технической терминологии > вентилятор

  • 111 единичный конденсатор

    1. capacitor unit

     

    единичный конденсатор
    Конструктивное соединение одного или нескольких конденсаторных элементов в общем корпусе с наружными выводами.
    Примечание. Термин "конденсатор" используется в тех случаях, когда нет необходимости подчеркивать различные значения терминов "единичный конденсатор" или "конденсаторный блок".
    [ ГОСТ 1282-88]

    единичный конденсатор
    Единичным конденсатором называется конструктивное соединение одного или нескольких конденсаторных элементов в общем корпусе с наружными выводами.
    Термин "конденсатор" используется тогда, когда нет необходимости подчеркивать различные значения терминов "единичный конденсатор" и "конденсаторная батарея".
    [ПУЭ]

    единичный конденсатор
    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    Тематики

    • конденсаторы для повыш. коэф. мощности

    EN

    Русско-английский словарь нормативно-технической терминологии > единичный конденсатор

  • 112 контактная панель Polyfast

    1. Polyfast

     

    контактная панель Polyfast
    Предназначена для съемного (втычного) присоединения автоматического выключателя в литом корпусе
    [Интент]

    0463
    Контактная панель Polyfast
    Рис. Schneider Electric
    1 - Контактная панель Polyfast; 2 - Автоматический выключатель в литом корпусе; 3 - Устройство отключения автоматического выключателя

     

    0464

    Рис. Schneider Electric

     

    0465
    Рис. Schneider Electric

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

    Русско-английский словарь нормативно-технической терминологии > контактная панель Polyfast

  • 113 клеммная колодка

    1. Zählerverteiler

     

    клеммная колодка
    Изолирующая часть, служащая носителем для одной или нескольких групп выводов, изолированных друг от друга, и предназначенная для крепления на опоре.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    клеммная колодка
    Набор из одного или нескольких контактных зажимов, установленных внутри или на одном корпусе из изоляционного материала и служащих для обеспечения взаимных соединений проводов.
    [ ГОСТ Р МЭК 60598-1-2011]

    клеммная колодка

    -
    [IEV number 314-09-18]

    EN

    terminal block
    support made of insulating material on which all or some of the terminals of the meter are grouped together
    [IEV number 314-09-18]

    FR

    plaque à bornes
    support en matière isolante groupant tout ou partie des bornes du compteur
    [IEV number 314-09-18]

     
    0218
    Рис. Tyco Electronics
    Клемманя колодка для реле Параллельные тексты EN-RU

    Socket with screw-type terminals for DIN rail mounting.
    [Tyco Electronics]

    Клеммная колодка для крепления на монтажной рейке, с винтовыми зажимами для присоединения внешних проводников.
    [Перевод Интент]

    Тематики

    • аппарат, изделие, устройство...

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > клеммная колодка

  • 114 шунтирующий конденсатор

    1. shunt power capacitor
    2. shunt capacitor
    3. by-pass capacitor

     

    шунтирующий конденсатор
    Конденсатор, подключаемый параллельно разрыву (разрывам) выключателя, главным образом, для выравнивания распределения напряжения между разрывами.
    [ ГОСТ Р 52565-2006]

    Тематики

    • выключатель, переключатель
    • высоковольтный аппарат, оборудование...

    EN

    1.5.9 шунтирующий конденсатор (by-pass capacitor): Конденсатор, в котором токи радиочастотных помех отводятся. Эти конденсаторы обычно бывают трех видов - односекционные, соединенные по схеме треугольника или по схеме в форме буквы Т.

    Односекционный конденсатор представляет собой конденсатор в металлическом корпусе с одним выводом, соединенным с корпусом, как показано на рисунке 5а; конденсатор, соединенный по схеме треугольника, состоит из конденсатора класса X и двух конденсаторов подкласса Y2 или Y3, как показано на рисунке 5b; конденсатор, соединенный по схеме в форме буквы Т, состоит из трех конденсаторов СА, СВ и СС, соединенных, как показано на рисунке 5с.

    x024.jpg

    Рисунок 5а - Односекционный шунтирующий конденсатор

    x026.jpg

    Рисунок 5b - Шунтирующий конденсатор, соединенный по схеме треугольника

    x028.jpg

    Рисунок 5с - Шунтирующий конденсатор, соединенный по схеме в форме буквы Т

    Примечание - Для конденсаторов в неметаллических корпусах заземляющее соединение выполняют через отдельный вывод.

    Конденсаторы, соединенные по схеме в форме треугольника и по схеме в форме буквы Т, электрически эквивалентны (преобразование звезда - треугольник). В схеме в форме буквы Т емкость конденсатора класса X является результатом последовательного соединения СВ - СС, а емкости конденсаторов класса Y - результатом последовательных соединений СА - СВ и СА - СС.

    Когда конденсаторы, соединенные по схеме в форме буквы Т, подвергают испытаниям и имеется указание, что напряжение следует прикладывать через конденсаторы класса X, то напряжение подают между выводами L и N. Аналогичным образом, когда указано, что напряжение должно быть приложено через конденсатор класса Y, напряжение прикладывают между соединенными вместе выводами L и N и заземляющим выводом.

    Источник: ГОСТ Р МЭК 60384-14-2004: Конденсаторы постоянной емкости для электронной аппаратуры. Часть 14. Групповые технические условия на конденсаторы постоянной емкости для подавления электромагнитных помех и соединения с питающими магистралями оригинал документа

    Русско-английский словарь нормативно-технической терминологии > шунтирующий конденсатор

  • 115 клеммная колодка

    1. plaque à bornes

     

    клеммная колодка
    Изолирующая часть, служащая носителем для одной или нескольких групп выводов, изолированных друг от друга, и предназначенная для крепления на опоре.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    клеммная колодка
    Набор из одного или нескольких контактных зажимов, установленных внутри или на одном корпусе из изоляционного материала и служащих для обеспечения взаимных соединений проводов.
    [ ГОСТ Р МЭК 60598-1-2011]

    клеммная колодка

    -
    [IEV number 314-09-18]

    EN

    terminal block
    support made of insulating material on which all or some of the terminals of the meter are grouped together
    [IEV number 314-09-18]

    FR

    plaque à bornes
    support en matière isolante groupant tout ou partie des bornes du compteur
    [IEV number 314-09-18]

     
    0218
    Рис. Tyco Electronics
    Клемманя колодка для реле Параллельные тексты EN-RU

    Socket with screw-type terminals for DIN rail mounting.
    [Tyco Electronics]

    Клеммная колодка для крепления на монтажной рейке, с винтовыми зажимами для присоединения внешних проводников.
    [Перевод Интент]

    Тематики

    • аппарат, изделие, устройство...

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > клеммная колодка

  • 116 конденсатор

    конденсатор м. Kapazität f; Kondensator m; Kühlapparat m; Kühler m; Verdichter m; хол. Verflüssiger m
    конденсатор м. переменной ёмкости Drehkondensator m; Drehplattenkondensator m; variabler Kondensator m; verstellbarer Kondensator m; veränderlicher Kondensator m
    конденсатор м. постоянной ёмкости Festkondensator m; fester Kondensator m; unveränderlicher Kondensator m
    конденсатор м. связи Koppelkondensator m; Kopplungskondensator m

    Большой русско-немецкий полетехнический словарь > конденсатор

  • 117 лючок


    access door
    (крышка или отверстие)
    - (крышка) — access panel /cover/
    - дпя ввода сопла переносного огнетушителя — fire extinguisher nozzle inserbian) door /panel/
    - для ввода сопла переносного огнетушителя (надпись) — fire access. fire access, to insert nozzle of extinguisher in event of fire, push in this panel.
    - для доступа к... (надпись) — access то...
    - к агрегатам гидросистемыhydraulic access door
    -, монтажный — maintenance access door
    -, открывающийся вверх — upwards-opening access door
    -, открывающийся вниз — downwards-opening access door
    -, смотровой — inspection door
    -, смотровой (на корпусе компрессора для осмотра лопаток) — (compressor blades) inspection hole
    -, технологический — structural access door
    -, эксплуатационный — access door
    -, эксплуатационный (для заправки и обслуживания 6oртовых систем) — servicing door servicing doors are used primarily to gain access for servicing the aircraft systems and equipment.
    -, эксплуатационный (для технического обслуживания и монтажа агрегатов) — maintenance access door

    Русско-английский сборник авиационно-технических терминов > лючок

  • 118 изолятор

    1. Steckverbindereinsatz, m
    2. Isolator

     

    изолятор
    Изделие, служащее для электрической изоляции и механического крепления частей электрических устройств, находящихся под разными потенциалами
    [ ГОСТ 21962-76]

    изолятор
    Электротехническое устройство, предназначенное для электрической изоляции и механического крепления электроустановок или их отдельных частей, находящихся под разными электрическими потенциалами.
    [ ГОСТ 27744-88]

    изолятор
    Изоляторы предназначены для создания электрической изоляции между контактами и между контактами и металлическим корпусом в заданных условиях работы. Изоляторы служат также для закрепления и фиксации контактов и передачи механических сил контактам при сочленении и расчленении вилок и розеток соединителей.
    В цилиндрических соединителях для крепления изоляторов в корпусе применяют пружинные кольца, в прямоугольных соединителях - винтовые зажимы.
    [В. Ф. Лярский, О. Б. Мурадян. Электрические соединители. Справочник. Радио и связь, 1988]

    изолятор (электрического соединителя)
    Часть соединителя, удерживающая контакт-детали в требуемом положении и обеспечивающая их электрическую изоляцию друг от друга и от корпуса
    [Интент]

    EN

    connector insert
    insulating element designed to support and position contacts in a connector housing
    [IEV number 581-27-11]

    insulator
    device intended for electrical insulation and mechanical fixing of equipment or conductors which are subject to electric potential differences
    [IEV number 471-01-10]

    insulator
    device designed to support and insulate a conductive element
    [IEV number 151-15-39]

    FR

    isolant d’un connecteur
    elément isolant conçu pour tenir et positionner les contacts dans le boîtier du connecteur
    [IEV number 581-27-11]


    isolateur
    dispositif destiné à isoler électriquement et à maintenir mécaniquement un matériel ou des conducteurs soumis à des potentiels électriques différents
    [IEV number 471-01-10]

    isolateur, m
    dispositif destiné à maintenir et à isoler un élément conducteur
    [IEV number 151-15-39]

    0239_1

    1. Монтажная сторона
    2. Изолятор
    3. Контактная сторона

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > изолятор

  • 119 изолятор

    1. pin header
    2. insulator
    3. insert
    4. housing
    5. contact insert
    6. connector insert

     

    изолятор
    Изделие, служащее для электрической изоляции и механического крепления частей электрических устройств, находящихся под разными потенциалами
    [ ГОСТ 21962-76]

    изолятор
    Электротехническое устройство, предназначенное для электрической изоляции и механического крепления электроустановок или их отдельных частей, находящихся под разными электрическими потенциалами.
    [ ГОСТ 27744-88]

    изолятор
    Изоляторы предназначены для создания электрической изоляции между контактами и между контактами и металлическим корпусом в заданных условиях работы. Изоляторы служат также для закрепления и фиксации контактов и передачи механических сил контактам при сочленении и расчленении вилок и розеток соединителей.
    В цилиндрических соединителях для крепления изоляторов в корпусе применяют пружинные кольца, в прямоугольных соединителях - винтовые зажимы.
    [В. Ф. Лярский, О. Б. Мурадян. Электрические соединители. Справочник. Радио и связь, 1988]

    изолятор (электрического соединителя)
    Часть соединителя, удерживающая контакт-детали в требуемом положении и обеспечивающая их электрическую изоляцию друг от друга и от корпуса
    [Интент]

    EN

    connector insert
    insulating element designed to support and position contacts in a connector housing
    [IEV number 581-27-11]

    insulator
    device intended for electrical insulation and mechanical fixing of equipment or conductors which are subject to electric potential differences
    [IEV number 471-01-10]

    insulator
    device designed to support and insulate a conductive element
    [IEV number 151-15-39]

    FR

    isolant d’un connecteur
    elément isolant conçu pour tenir et positionner les contacts dans le boîtier du connecteur
    [IEV number 581-27-11]


    isolateur
    dispositif destiné à isoler électriquement et à maintenir mécaniquement un matériel ou des conducteurs soumis à des potentiels électriques différents
    [IEV number 471-01-10]

    isolateur, m
    dispositif destiné à maintenir et à isoler un élément conducteur
    [IEV number 151-15-39]

    0239_1

    1. Монтажная сторона
    2. Изолятор
    3. Контактная сторона

    Тематики

    Классификация

    >>>

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > изолятор

  • 120 термометр сопротивления

    1. RTD
    2. resistance thermometer
    3. resistance temperature detector

     

    термометр сопротивления
    Термометр, принцип действия которого основан на использовании зависимости электрического сопротивления материала чувствительного элемента термометра от температуры.
    [РД 01.120.00-КТН-228-06]

    Термометр сопротивления ТС это термометр, как правило, в металлическом или керамическом корпусе, чувствительный элемент которого представляет собой резистор, выполненный из металлической проволоки или пленки и имеющий известную зависимость электрического сопротивления от температуры. Самый популярный тип термометра – платиновый термометр сопротивления, это объясняется высоким температурным коэффициентом платины, ее устойчивостью к окислению и хорошей технологичностью. В качестве рабочих средств измерений применяются также медные и никелевые термометры. Новый межгосударственный стандарт на технические требования к рабочим термометрам сопротивления: ГОСТ 6651-2009, разработанный на основе российского стандарта ГОСТ Р 8. 625-2006 ( Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). Ознакомиться со стандартом можно в разделе Российские стандарты. В стандарте приведены диапазоны, классы допуска ТС, таблицы НСХ и стандартные зависимости сопротивление-температура. Эти данные приведены также на нашем сайте в разделе справочник. Главное преимущество термометров сопротивления – широкий диапазон температур, высокая стабильность, близость характеристики к линейной зависимости, высокая взаимозаменяемость. Пленочные платиновые термометры сопротивления отличаются повышенной вибропрочностью, но меньшим диапазоном температур. Изготавливаются также герметичные чувствительные элементы термометров сопротивления различных размеров, что позволяет их использовать в местах, где важно устанавливать миниатюрный датчик температуры. Недостаток термометров и чувствительных элементов сопротивления – необходимость использования для точных измерений трех- или четырех- проводной схемы включения, т.к. при подключении датчика с помощью двух проводов, их сопротивление включается измеренное сопротивление термометра. Важнейшей технологической проблемой для ТС проволочного типа является герметизация корпуса ЧЭ специальной глазурью, состав глазури должен быть подобран так, чтобы при колебаниях температуры в пределах рабочего диапазона не происходило разрушение герметизирующего слоя.

    Промышленные платиновые термометры сопротивления в большинстве случаев используются со стандартной зависимостью сопротивление-температура (НСХ), что обуславливает допуск не лучше 0,1 °С (класс АА при 0 °С). Однако высокая стабильность некоторых термометров позволяет делать их индивидуальную градуировку и определять характерную именно для них зависимость сопротивление-температура. Такая градуировка может повысить точность до нескольких сотых градуса. Следует отметить, что использование функции МТШ-90 (что возможно сейчас для многих цифровых термометров) может точнее описать индивидуальную зависимость ТС, использование квадратичного уравнения Каллендара Ван Дьюзена ограничивает точность аппроксимации до 0,01-0,03 °С в зависимости от диапазона температур.

    Эталонные платиновые термометры (ПТС, ТСПН) первого разряда и термометры-рабочие эталоны по точности превосходят промышленные термометры сопротивления (расширенная неопределенность ПТС 1 разряда при 0 °С равна 0,002 °С), но они требуют очень осторожного обращения, не выносят тряски и резких тепловых. Кроме того, их стоимость в десятки раз выше стоимости рабочих термометров сопротивления. Стандарт на образцовые ПТС первого и второго разряда: ГОСТ Р 51233-98 «Термометры сопротивления платиновые эталонные 1 и 2 разрядов. Общие технические требования» (см. раздел Российские стандарты). Подробная информация о свойствах эталонных платиновых термометров сопротивления и методах работы с ними приводится в разделе "Платиновый термометр сопротивления - основной интерполяционный прибор МТШ-90"

    Для точного изменения криогенных температур с успехом применяются железо-родиевые термометры сопротивления. Их действие основано, на эффекте аномальной температурной зависимости сплава 0,5 ат.% железа к родию при низких температурах с положительным коэффициентом сопротивления. Опыт работы с термометрами показал, что их стабильность может достигать 0,15 мК/год при 20 К. Зависимость сопротивление - температура в диапазоне 0,5-27 К хорошо аппроксимируется полиномами не высоких степеней (8 -11 степень). Однако, сложности возникают при попытке аппроксимировать диапазоны, включающие 28 К, т.к. в этой точке «низкотемпературное» сопротивление, обусловленное примесями, уступает место «высокотемпературному» сопротивлению, обусловленному рассеянием на фононах.

    ...

    [ http://temperatures.ru/pages/termometry_soprotivleniya]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > термометр сопротивления

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»