Перевод: с английского на все языки

со всех языков на английский

to+return+to+a+subject

  • 41 Bodmer, Johann Georg

    [br]
    b. 9 December 1786 Zurich, Switzerland
    d. 30 May 1864 Zurich, Switzerland
    [br]
    Swiss mechanical engineer and inventor.
    [br]
    John George Bodmer (as he was known in England) showed signs of great inventive ability even as a child. Soon after completing his apprenticeship to a local millwright, he set up his own work-shop at Zussnacht. One of his first inventions, in 1805, was a shell which exploded on impact. Soon after this he went into partnership with Baron d'Eichthal to establish a cotton mill at St Blaise in the Black Forest. Bodmer designed the water-wheels and all the machinery. A few years later they established a factory for firearms and Bodmer designed special machine tools and developed a system of interchangeable manufacture comparable with American developments at that time. More inventions followed, including a detachable bayonet for breech-loading rifles and a rifled, breech-loading cannon for 12 lb (5.4 kg) shells.
    Bodmer was appointed by the Grand Duke of Baden to the posts of Director General of the Government Iron Works and Inspector of Artillery. He left St Blaise in 1816 and entered completely into the service of the Grand Duke, but before taking up his duties he visited Britain for the first time and made an intensive five-month tour of textile mills, iron works, workshops and similar establishments.
    In 1821 he returned to Switzerland and was engaged in setting up cotton mills and other engineering works. In 1824 he went back to England, where he obtained a patent for his improvements in cotton machinery and set up a mill near Bolton incorporating his ideas. His health failing, he was obliged to return to Switzerland in 1828, but he was soon busy with engineering works there and in France. In 1833 he went to England again, first to Bolton and four years later to Manchester in partnership with H.H.Birley. In the next ten years he patented many more inventions in the fields of textile machinery, steam engines and machine tools. These included a balanced steam engine, a mechanical stoker, steam engine valve gear, gear-cutting machines and a circular planer or vertical lathe, anticipating machines of this type later developed in America by E.P. Bullard. The metric system was used in his workshops and in gearing calculations he introduced the concept of diametral pitch, which then became known as "Manchester Pitch". The balanced engine was built in stationary form and in two locomotives, but although their running was remarkably smooth the additional complication prevented their wider use.
    After the death of H.H.Birley in 1846, Bodmer removed to London until 1848, when he went to Austria. About 1860 he returned to his native town of Zurich. He remained actively engaged in all kinds of inventions up to the end of his life. He obtained fourteen British patents, each of which describes many inventions; two of these patents were extended beyond the normal duration of fourteen years. Two others were obtained on his behalf, one by his brother James in 1813 for his cannon and one relating to railways by Charles Fox in 1847. Many of his inventions had little direct influence but anticipated much later developments. His ideas were sound and some of his engines and machine tools were in use for over sixty years. He was elected a Member of the Institution of Civil Engineers in 1835.
    [br]
    Bibliography
    1845, "The advantages of working stationary and marine engines with high-pressure steam, expansively and at great velocities; and of the compensating, or double crank system", Minutes of the Proceedings of the Institution of Civil Engineers 4:372–99.
    1846, "On the combustion of fuel in furnaces and steam-boilers, with a description of Bodmer's fire-grate", Minutes of the Proceedings of the Institution of Civil Engineers 5:362–8.
    Further Reading
    H.W.Dickinson, 1929–30, "Diary of John George Bodmer, 1816–17", Transactions of the Newcomen Society 10:102–14.
    D.Brownlie, 1925–6, John George Bodmer, his life and work, particularly in relation to the evolution of mechanical stoking', Transactions of the Newcomen Society 6:86–110.
    W.O.Henderson (ed.), 1968, Industrial Britain Under the Regency: The Diaries of Escher, Bodmer, May and de Gallois 1814–1818, London: Frank Cass (a more complete account of his visit to Britain).
    RTS

    Biographical history of technology > Bodmer, Johann Georg

  • 42 Bunsen, Robert Wilhelm

    SUBJECT AREA: Chemical technology
    [br]
    b. 31 March 1811 Göttingen, Germany
    d. 16 August 1899 Heidelberg, Germany
    [br]
    German chemist, pioneer of chemical spectroscopy.
    [br]
    Bunsen's father was Librarian and Professor of Linguistics at Göttingen University and Bunsen himself studied chemistry there. Obtaining his doctorate at the age of only 19, he travelled widely, meeting some of the leading chemists of the day and visiting many engineering works. On his return he held various academic posts, finally as Professor of Chemistry at Heidelberg in 1852, a post he held until his retirement in 1889.
    During 1837–41 Bunsen studied a series of compounds shown to contain the cacodyl (CH3)2As-group or radical. The elucidation of the structure of these compounds gave support to the radical theory in organic chemistry and earned him fame, but it also cost him the sight of an eye and other ill effects resulting from these dangerous and evil-smelling substances. With the chemist Gustav Robert Kirchhoff (1824–87), Bunsen pioneered the use of spectroscopy in chemical analysis from 1859, and with its aid he discovered the elements caesium and rubidium. He developed the Bunsen cell, a zinc-carbon primary cell, with which he isolated a number of alkali and other metals by electrodeposition from solution or electrolysis of fused chlorides.
    Bunsen's main work was in chemical analysis, in the course of which he devised some important laboratory equipment, such as a filter pump. The celebrated Bunsen gas burner was probably devised by his technician Peter Desdega. During 1838–44 Bunsen applied his methods of gas analysis to the study of the gases produced by blast furnaces for the production of cast iron. He demonstrated that no less than 80 per cent of the heat was lost during smelting, and that valuable gaseous by-products, such as ammonia, were also lost. Lyon Playfair in England was working along similar lines, and in 1848 the two men issued a paper, "On the gases evolved from iron furnaces", to draw attention to these drawbacks.
    [br]
    Bibliography
    1904, Bunsen's collected papers were published in 3 vols, Leipzig.
    Further Reading
    G.Lockemann, 1949, Robert Wilhelm Bunsen: Lebensbild eines deutschen Forschers, Stuttgart.
    T.Curtin, 1961, biog. account, in E.Farber (ed.), Great Chemists, New York, pp. 575–81. Henry E.Roscoe, 1900, "Bunsen memorial lecture, 29th March 1900", Journal of the
    Chemical Society 77:511–54.
    LRD

    Biographical history of technology > Bunsen, Robert Wilhelm

  • 43 Carlson, Chester Floyd

    [br]
    b. 8 July 1906 Seattle, Washington, USA
    d. 19 September 1968 New York, USA
    [br]
    [br]
    Carlson studied physics at the California Institute of Technology and in 1930 he took a research position at Bell Telephone Laboratories, but soon transferred to their patent department. To equip himself in this field, Carlson studied law, and in 1934 he became a patent attorney at P.R.Mallory \& Co., makers of electrical apparatus. He was struck by the difficulty in obtaining copies of documents and drawings; indeed, while still at school, he had encountered printing problems in trying to produce a newsletter for amateur chemists. He began experimenting with various light-sensitive substances, and by 1937 he had conceived the basic principles of xerography ("dry writing"), using the property of certain substances of losing an electrostatic charge when light impinges on them. His work for Mallory brought him into contact with the Battelle Memorial Institute, the world's largest non-profit research organization; their subsidiary, set up to develop promising ideas, took up Carlson's invention. Carlson received his first US patent for the process in 1940, with two more in 1942, and he assigned to Battelle exclusive patent rights in return for a share of any future proceeds. It was at Battelle that selenium was substituted as the light-sensitive material.
    In 1946 the Haloid Company of Rochester, manufacturers of photographic materials and photocopying equipment, heard of the Xerox copier and, seeing it as a possible addition to their products, took out a licence to develop it commercially. The first Xerox Copier was tested during 1949 and put on the market the following year. The process soon began to displace older methods, such as Photostat, but its full impact on the public came in 1959 with the advent of the Xerox 914 Copier. It is fair to apply the overworked word "revolution" to the change in copying methods initiated by Carlson. He became a multimillionaire from his royalties and stock holding, and in his last years he was able to indulge in philanthropic activities.
    [br]
    Further Reading
    Obituary, 1968, New York Times, 20 September.
    R.M.Schaffert, 1954, "Developments in xerography", Penrose Annual.
    J.Jewkes, 1969, The Sources of Invention, 2nd edn, London: Macmillan, pp. 405–8.
    LRD

    Biographical history of technology > Carlson, Chester Floyd

  • 44 Clerk, Sir Dugald

    [br]
    b. 31 March 1854 Glasgow, Scotland
    d. 12 November 1932 Ewhurst, Surrey, England
    [br]
    Scottish mechanical engineer, inventor of the two-stroke internal combustion engine.
    [br]
    Clerk began his engineering training at about the age of 15 in the drawing office of H.O.Robinson \& Company, Glasgow, and in his father's works. Meanwhile, he studied at the West of Scotland Technical College and then, from 1871 to 1876, at Anderson's College, Glasgow, and at the Yorkshire College of Science, Leeds. Here he worked under and then became assistant to the distinguished chemist T.E.Thorpe, who set him to work on the fractional distillation of petroleum, which was to be useful to him in his later work. At that time he had intended to become a chemical engineer, but seeing a Lenoir gas engine at work, after his return to Glasgow, turned his main interest to gas and other internal combustion engines. He pursued his investigations first at Thomson, Sterne \& Company (1877–85) and then at Tangyes of Birmingham (1886–88. In 1888 he began a lifelong partnership in Marks and Clerk, consulting engineers and patent agents, in London.
    Beginning his work on gas engines in 1876, he achieved two patents in the two following years. In 1878 he made his principal invention, patented in 1881, of an engine working on the two-stroke cycle, in which the piston is powered during each revolution of the crankshaft, instead of alternate revolutions as in the Otto four-stroke cycle. In this engine, Clerk introduced supercharging, or increasing the pressure of the air intake. Many engines of the Clerk type were made but their popularity waned after the patent for the Otto engine expired in 1890. Interest was later revived, particularly for application to large gas engines, but Clerk's engine eventually came into its own where simple, low-power motors are needed, such as in motor cycles or motor mowers.
    Clerk's work on the theory and design of gas engines bore fruit in the book The Gas Engine (1886), republished with an extended text in 1909 as The Gas, Petrol and Oil Engine; these and a number of papers in scientific journals won him international renown. During and after the First World War, Clerk widened the scope of his interests and served, often as chairman, on many bodies in the field of science and industry.
    [br]
    Principal Honours and Distinctions
    Knighted 1917; FRS 1908; Royal Society Royal Medal 1924; Royal Society of Arts Alber Medal 1922.
    Further Reading
    Obituary Notices of Fellows of the Royal Society, no. 2, 1933.
    LRD

    Biographical history of technology > Clerk, Sir Dugald

  • 45 Clerke, Sir Clement

    SUBJECT AREA: Metallurgy
    [br]
    d. 1693
    [br]
    English entrepreneur responsible, with others, for attempts to introduce coal-fired smelting of lead and, later, of copper.
    [br]
    Clerke, from Launde Abbey in Leicestershire, was involved in early experiments to smelt lead using coal fuel, which was believed to have been located on the Leicestershire-Derbyshire border. Concurrently, Lord Grandison was financing experiments at Bristol for similar purposes, causing the downfall of an earlier unsuccessful patented method before securing his own patent in 1678. In that same year Clerke took over management of the Bristol works, claiming the ability to secure financial return from Grandison's methods. Financial success proved elusive, although the technical problems of adapting the reverberatory furnace to coal fuel appear to have been solved when Clerke was found to have established another lead works nearby on his own account. He was forced to cease work on lead in 1684 in respect of Grandison's patent rights. Clerke then turned to investigations into the coal-fired smelting of other metals and started to smelt copper in coal-fired reverberatory furnaces. By 1688–9 small supplied of merchantable copper were offered for sale in London in order to pay his workers, possibly because of further financial troubles. The practical success of his smelting innovation is widely acknowledged to have been the responsibility of John Coster and, to a smaller extent, Gabriel Wayne, both of whom left Clerke and set up separate works elsewhere. Clerke's son Talbot took over administration of his father's works, which declined still further and closed c. 1693, at about the time of Sir Clement's death. Both Coster and Wayne continued to develop smelting techniques, establishing a new British industry in the smelting of copper with coal.
    [br]
    Principal Honours and Distinctions
    Created baronet 1661.
    Further Reading
    Rhys Jenkins, 1934, "The reverberatory furnace with coal fuel", Transactions of the Newcomen Society 34:67–81.
    —1943–4, "Copper smelting in England: Revival at the end of the seventeenth century", Transactions of the Newcomen Society 24:78–80.
    J.Morton, 1985, The Rise of the Modern Copper and Brass Industry: 1690 to 1750, unpublished PhD thesis, University of Birmingham, 87–106.
    JD

    Biographical history of technology > Clerke, Sir Clement

  • 46 Colt, Samuel

    SUBJECT AREA: Weapons and armour
    [br]
    b. 19 July 1814 Hartford, Connecticut, USA
    d. 10 January 1862 Hartford, Connecticut, USA
    [br]
    American inventor of the revolver.
    [br]
    The son of a textile manufacturer, as a youth Colt displayed an interest in chemistry, largely through bleaching and dyeing processes used in his father's business, and lectured to lay audiences on it. In 1832 he took ship as a deckhand on a voyage to India; the concept of the revolver is supposed to have come to him from watching the ship's wheel.
    Upon his return to the USA he described the idea to the US Patent Office, but did not register it until four years later, having taken out patents in Britain and France during a visit to Europe in 1835. He formed a company to manufacture his invention, but it failed in 1842. Even so, note had been taken of his weapon, and in 1846, upon the outbreak of the war with Mexico, the US Government placed an order for his revolver that was executed by the Eli Whitney arms factory in his native Hartford. Thereafter Colt set up another company, this time successfully. He also took an interest in other fields, experimenting with a submarine battery and electrically detonated mines, and opened a submarine telegraph between New York and Coney Island in 1843.
    CM

    Biographical history of technology > Colt, Samuel

  • 47 Deville, Henri Etienne Sainte-Claire

    SUBJECT AREA: Metallurgy
    [br]
    b. 11 March 1818 St Thomas, Virgin Islands
    d. 1 July 1881 Boulogne-sur-Seine, France
    [br]
    French chemist and metallurgist, pioneer in the large-scale production of aluminium and other light metals.
    [br]
    Deville was the son of a prosperous shipowner with diplomatic duties in the Virgin Islands. With his elder brother Charles, who later became a distinguished physicist, he was sent to Paris to be educated. He took his degree in medicine in 1843, but before that he had shown an interest in chemistry, due particularly to the lectures of Thenard. Two years later, with Thenard's influence, he was appointed Professor of Chemistry at Besançon. In 1851 he was able to return to Paris as Professor at the Ecole Normale Supérieure. He remained there for the rest of his working life, greatly improving the standard of teaching, and his laboratory became one of the great research centres of Europe. His first chemical work had been in organic chemistry, but he then turned to inorganic chemistry, specifically to improve methods of producing the new and little-known metal aluminium. Essentially, the process consisted of forming sodium aluminium trichloride and reducing it with sodium to metallic aluminium. He obtained sodium in sufficient quantity by reducing sodium carbonate with carbon. In 1855 he exhibited specimens of the metal at the Paris Exhibition, and the same year Napoleon III asked to see them, with a view to using it for breastplates for the Army and for spoons and forks for State banquets. With the resulting government support, he set up a pilot plant at Jarvel to develop the process, and then set up a small company, the Société d'Aluminium at Nan terre. This raised the output of this attractive and useful metal, so it could be used more widely than for the jewellery to which it had hitherto been restricted. Large-scale applications, however, had to await the electrolytic process that began to supersede Deville's in the 1890s. Deville extended his sodium reduction method to produce silicon, boron and the light metals magnesium and titanium. His investigations into the metallurgy of platinum revolutionized the industry and led in 1872 to his being asked to make the platinum-iridium (90–10) alloy for the standard kilogram and metre. Deville later carried out important work in high-temperature chemistry. He grieved much at the death of his brother Charles in 1876, and his retirement was forced by declining health in 1880; he did not survive for long.
    [br]
    Bibliography
    Deville published influential books on aluminium and platinum; these and all his publications are listed in the bibliography in the standard biography by J.Gray, 1889, Henri Sainte-Claire Deville: sa vie et ses travaux, Paris.
    Further Reading
    M.Daumas, 1949, "Henri Sainte-Claire Deville et les débuts de l'industrie de l'aluminium", Rev.Hist.Sci 2:352–7.
    J.C.Chaston, 1981, "Henri Sainte-Claire Deville: his outstanding contributions to the chemistry of the platinum metals", Platinum Metals Review 25:121–8.
    LRD

    Biographical history of technology > Deville, Henri Etienne Sainte-Claire

  • 48 Downing, Samuel

    SUBJECT AREA: Civil engineering
    [br]
    b. 19 July 1811 Bagenalstown, Co. Carlow, Ireland
    d. 21 April 1882
    [br]
    Irish engineer and teacher.
    [br]
    Samuel Downing had a formative influence on the development of engineering education in Ireland. He was educated at Kilkenny College and Trinity College, Dublin, where he took a BA in 1834. He subsequently attended courses in natural philosophy at Edinburgh, before taking up work as a railway and bridge engineer. Amongst structures on which he worked were the timber viaduct connecting Portland Island to the mainland in Dorset, England, and the curved viaduct at Coed-re-Coed on the Taff Vale Railway, Wales. In 1847 he was persuaded to return to Trinity College, Dublin, as Assistant to Sir John MacNeill, who had been appointed Professor of Engineering in the School of Engineering on its establishment in 1842. MacNeill always found it difficult to give up time on his engineering practice to spend on his teaching duties, so the addition of Downing to the staff gave a great impetus to the effectiveness of the School. When MacNeill retired from the Chair in 1852, Downing was his obvious successor and held the post until his death. For thirty years Downing devoted his engineering expertise and the energy of his warm personality to the School of Engineering and its students, of whom almost four hundred passed through the School in the years when he was responsible for it.
    [br]
    Principal Honours and Distinctions
    Associate Member, Institution of Civil Engineers 1852.
    Bibliography
    Further Reading
    Proceedings of the Institution of Civil Engineers 72:310–11.
    AB

    Biographical history of technology > Downing, Samuel

  • 49 Egerton, Francis, 3rd Duke of Bridgewater

    SUBJECT AREA: Ports and shipping
    [br]
    b. 21 May 1736
    d. 9 March 1803 London, England
    [br]
    English entrepreneur, described as the "father of British inland navigation".
    [br]
    Francis Egerton was the younger of the two surviving sons of Scroop, 1st Duke of Bridgewater, and on the death of his brother, the 2nd Duke, he succeeded to the title in 1748. Until that time he had received little or no education as his mother considered him to be of feeble intellect. His guardians, the Duke of Bedford and Lord Trentham, decided he should be given an opportunity and sent him to Eton in 1749. He remained there for three years and then went on the "grand tour" of Europe. During this period he saw the Canal du Midi, though whether this was the spark that ignited his interest in canals is hard to say. On his return to England he indulged in the social round in London and raced at Newmarket. After two unsuccessful attempts at marriage he retired to Lancashire to further his mining interests at Worsley, where the construction of a canal to Manchester was already being considered. In fact, the Act for the Bridgewater Canal had been passed at the time he left London. John Gilbert, his land agent at Worsley, encouraged the Duke to pursue the canal project, which had received parliamentary approval in March 1759. Brindley had been recommended on account of his work at Trentham, the estate of the Duke's brother-in-law, and Brindley was consulted and subsequently appointed Engineer; the canal opened on 17 July 1761. This was immediately followed by an extension project from Longford Brook to Runcorn to improve communications between Manchester and Liverpool; this was completed on 31 December 1772, after Brindley's death. The Duke also invested heavily in the Trent \& Mersey Canal, but his interests were confined to his mines and the completed canals for the rest of his life.
    It is said that he lacked a sense of humour and even refused to read books. He was untidy in his dress and habits yet he was devoted to the Worsley undertakings. When travelling to Worsley he would have his coach placed on a barge so that he could inspect the canal during the journey. He amassed a great fortune from his various activities, but when he died, instead of leaving his beloved canal to the beneficiaries under his will, he created a trust to ensure that the canal would endure; the trust did not expire until 1903. The Duke is commemorated by a large Corinthian pillar, which is now in the care of the National Trust, in the grounds of his mansion at Ashridge, Hertfordshire.
    [br]
    Further Reading
    H.Malet, 1961, The Canal Duke, Dawlish: David \& Charles.
    JHB

    Biographical history of technology > Egerton, Francis, 3rd Duke of Bridgewater

  • 50 Ehrlich, Paul

    SUBJECT AREA: Medical technology
    [br]
    b. 14 March 1854 Strehlen, Silesia, Germany
    d. 20 August 1915 Homburg, Saarland, Germany
    [br]
    German medical scientist who laid the foundations of intra-vital staining in histology, and of chemotherapy.
    [br]
    After studying medicine at a number of schools in Germany, Ehrlich graduated from Leipzig in 1878. After some years at the Charite in Berlin, an attack of tuberculosis compelled a three-year sojourn in Egypt for treatment. Upon his return in 1890, he was invited by Koch to work at the new Institute for Infectious Diseases. There he commenced his work on immunity, having already, while a student, discovered the mast cells in the blood (1877) and then developed the techniques of differential staining which identified the other white cells of the blood. In 1882 he established the diazo reaction in the urine of typhoid patients, and in the same year he identified the acid-fast staining reactions of the tubercle bacillus. He then moved to the study of immunity in infectious disease, which led him to the search for synthetic chemical substances which would act on the causative organism without harming the patient's tissue. The outcome of his specific investigation of syphilis was the discovery of the first two specific chemotherapeutic agents: salvarsan (being the 606th compound to be tested); and the later, but less toxic, neosalvarsan (the 909th). In 1896 he became Director of the State Institute for Serum Research, and in 1906 Director of the new Royal Institute for Experimental Therapy at Frankfurt-am-Main. He received numerous awards and honours from governments and learned societies.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Medicine or Physiology (jointly with E.Metchnikov) 1908.
    Bibliography
    1879, "Beiträge für Kentnis der granulierten Bindegewabszellen und der Eosinophilen Leucocythen" Arch. Anat. Physiol. Abt.
    1914, Paul Ehrlich: eine Darstellung seines wissenschaftlichen Wirkens, Festschrift zum
    60. Geburtstage des Forschers.
    Further Reading
    M.Marquardt, 1924, Paul Ehrlich als Mensch und Arbeiter.
    MG

    Biographical history of technology > Ehrlich, Paul

  • 51 Fairlie, Robert Francis

    [br]
    b. March 1831 Scotland
    d. 31 July 1885 Clapham, London, England
    [br]
    British engineer, designer of the double-bogie locomotive, advocate of narrow-gauge railways.
    [br]
    Fairlie worked on railways in Ireland and India, and established himself as a consulting engineer in London by the early 1860s. In 1864 he patented his design of locomotive: it was to be carried on two bogies and had a double boiler, the barrels extending in each direction from a central firebox. From smokeboxes at the outer ends, return tubes led to a single central chimney. At that time in British practice, locomotives of ever-increasing size were being carried on longer and longer rigid wheelbases, but often only one or two of their three or four pairs of wheels were powered. Bogies were little used and then only for carrying-wheels rather than driving-wheels: since their pivots were given no sideplay, they were of little value. Fairlie's design offered a powerful locomotive with a wheelbase which though long would be flexible; it would ride well and have all wheels driven and available for adhesion.
    The first five double Fairlie locomotives were built by James Cross \& Co. of St Helens during 1865–7. None was particularly successful: the single central chimney of the original design had been replaced by two chimneys, one at each end of the locomotive, but the single central firebox was retained, so that exhaust up one chimney tended to draw cold air down the other. In 1870 the next double Fairlie, Little Wonder, was built for the Festiniog Railway, on which C.E. Spooner was pioneering steam trains of very narrow gauge. The order had gone to George England, but the locomotive was completed by his successor in business, the Fairlie Engine \& Steam Carriage Company, in which Fairlie and George England's son were the principal partners. Little Wonder was given two inner fireboxes separated by a water space and proved outstandingly successful. The spectacle of this locomotive hauling immensely long trains up grade, through the Festiniog Railway's sinuous curves, was demonstrated before engineers from many parts of the world and had lasting effect. Fairlie himself became a great protagonist of narrow-gauge railways and influenced their construction in many countries.
    Towards the end of the 1860s, Fairlie was designing steam carriages or, as they would now be called, railcars, but only one was built before the death of George England Jr precipitated closure of the works in 1870. Fairlie's business became a design agency and his patent locomotives were built in large numbers under licence by many noted locomotive builders, for narrow, standard and broad gauges. Few operated in Britain, but many did in other lands; they were particularly successful in Mexico and Russia.
    Many Fairlie locomotives were fitted with the radial valve gear invented by Egide Walschaert; Fairlie's role in the universal adoption of this valve gear was instrumental, for he introduced it to Britain in 1877 and fitted it to locomotives for New Zealand, whence it eventually spread worldwide. Earlier, in 1869, the Great Southern \& Western Railway of Ireland had built in its works the first "single Fairlie", a 0–4–4 tank engine carried on two bogies but with only one of them powered. This type, too, became popular during the last part of the nineteenth century. In the USA it was built in quantity by William Mason of Mason Machine Works, Taunton, Massachusetts, in preference to the double-ended type.
    Double Fairlies may still be seen in operation on the Festiniog Railway; some of Fairlie's ideas were far ahead of their time, and modern diesel and electric locomotives are of the powered-bogie, double-ended type.
    [br]
    Bibliography
    1864, British patent no. 1,210 (Fairlie's master patent).
    1864, Locomotive Engines, What They Are and What They Ought to Be, London; reprinted 1969, Portmadoc: Festiniog Railway Co. (promoting his ideas for locomotives).
    1865, British patent no. 3,185 (single Fairlie).
    1867. British patent no. 3,221 (combined locomotive/carriage).
    1868. "Railways and their Management", Journal of the Society of Arts: 328. 1871. "On the Gauge for Railways of the Future", abstract in Report of the Fortieth
    Meeting of the British Association in 1870: 215. 1872. British patent no. 2,387 (taper boiler).
    1872, Railways or No Railways. "Narrow Gauge, Economy with Efficiency; or Broad Gauge, Costliness with Extravagance", London: Effingham Wilson; repr. 1990s Canton, Ohio: Railhead Publications (promoting the cause for narrow-gauge railways).
    Further Reading
    Fairlie and his patent locomotives are well described in: P.C.Dewhurst, 1962, "The Fairlie locomotive", Part 1, Transactions of the Newcomen Society 34; 1966, Part 2, Transactions 39.
    R.A.S.Abbott, 1970, The Fairlie Locomotive, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Fairlie, Robert Francis

  • 52 Ford, Henry

    [br]
    b. 30 July 1863 Dearborn, Michigan, USA
    d. 7 April 1947 Dearborn, Michigan, USA
    [br]
    American pioneer motor-car maker and developer of mass-production methods.
    [br]
    He was the son of an Irish immigrant farmer, William Ford, and the oldest son to survive of Mary Litogot; his mother died in 1876 with the birth of her sixth child. He went to the village school, and at the age of 16 he was apprenticed to Flower brothers' machine shop and then at the Drydock \& Engineering Works in Detroit. In 1882 he left to return to the family farm and spent some time working with a 1 1/2 hp steam engine doing odd jobs for the farming community at $3 per day. He was then employed as a demonstrator for Westinghouse steam engines. He met Clara Jane Bryant at New Year 1885 and they were married on 11 April 1888. Their only child, Edsel Bryant Ford, was born on 6 November 1893.
    At that time Henry worked on steam engine repairs for the Edison Illuminating Company, where he became Chief Engineer. He became one of a group working to develop a "horseless carriage" in 1896 and in June completed his first vehicle, a "quadri cycle" with a two-cylinder engine. It was built in a brick shed, which had to be partially demolished to get the carriage out.
    Ford became involved in motor racing, at which he was more successful than he was in starting a car-manufacturing company. Several early ventures failed, until the Ford Motor Company of 1903. By October 1908 they had started with production of the Model T. The first, of which over 15 million were built up to the end of its production in May 1927, came out with bought-out steel stampings and a planetary gearbox, and had a one-piece four-cylinder block with a bolt-on head. This was one of the most successful models built by Ford or any other motor manufacturer in the life of the motor car.
    Interchangeability of components was an important element in Ford's philosophy. Ford was a pioneer in the use of vanadium steel for engine components. He adopted the principles of Frederick Taylor, the pioneer of time-and-motion study, and installed the world's first moving assembly line for the production of magnetos, started in 1913. He installed blast furnaces at the factory to make his own steel, and he also promoted research and the cultivation of the soya bean, from which a plastic was derived.
    In October 1913 he introduced the "Five Dollar Day", almost doubling the normal rate of pay. This was a profit-sharing scheme for his employees and contained an element of a reward for good behaviour. About this time he initiated work on an agricultural tractor, the "Fordson" made by a separate company, the directors of which were Henry and his son Edsel.
    In 1915 he chartered the Oscar II, a "peace ship", and with fifty-five delegates sailed for Europe a week before Christmas, docking at Oslo. Their objective was to appeal to all European Heads of State to stop the war. He had hoped to persuade manufacturers to replace armaments with tractors in their production programmes. In the event, Ford took to his bed in the hotel with a chill, stayed there for five days and then sailed for New York and home. He did, however, continue to finance the peace activists who remained in Europe. Back in America, he stood for election to the US Senate but was defeated. He was probably the father of John Dahlinger, illegitimate son of Evangeline Dahlinger, a stenographer employed by the firm and on whom he lavished gifts of cars, clothes and properties. He became the owner of a weekly newspaper, the Dearborn Independent, which became the medium for the expression of many of his more unorthodox ideas. He was involved in a lawsuit with the Chicago Tribune in 1919, during which he was cross-examined on his knowledge of American history: he is reputed to have said "History is bunk". What he actually said was, "History is bunk as it is taught in schools", a very different comment. The lawyers who thus made a fool of him would have been surprised if they could have foreseen the force and energy that their actions were to release. For years Ford employed a team of specialists to scour America and Europe for furniture, artefacts and relics of all kinds, illustrating various aspects of history. Starting with the Wayside Inn from South Sudbury, Massachusetts, buildings were bought, dismantled and moved, to be reconstructed in Greenfield Village, near Dearborn. The courthouse where Abraham Lincoln had practised law and the Ohio bicycle shop where the Wright brothers built their first primitive aeroplane were added to the farmhouse where the proprietor, Henry Ford, had been born. Replicas were made of Independence Hall, Congress Hall and the old City Hall in Philadelphia, and even a reconstruction of Edison's Menlo Park laboratory was installed. The Henry Ford museum was officially opened on 21 October 1929, on the fiftieth anniversary of Edison's invention of the incandescent bulb, but it continued to be a primary preoccupation of the great American car maker until his death.
    Henry Ford was also responsible for a number of aeronautical developments at the Ford Airport at Dearborn. He introduced the first use of radio to guide a commercial aircraft, the first regular airmail service in the United States. He also manufactured the country's first all-metal multi-engined plane, the Ford Tri-Motor.
    Edsel became President of the Ford Motor Company on his father's resignation from that position on 30 December 1918. Following the end of production in May 1927 of the Model T, the replacement Model A was not in production for another six months. During this period Henry Ford, though officially retired from the presidency of the company, repeatedly interfered and countermanded the orders of his son, ostensibly the man in charge. Edsel, who died of stomach cancer at his home at Grosse Point, Detroit, on 26 May 1943, was the father of Henry Ford II. Henry Ford died at his home, "Fair Lane", four years after his son's death.
    [br]
    Bibliography
    1922, with S.Crowther, My Life and Work, London: Heinemann.
    Further Reading
    R.Lacey, 1986, Ford, the Men and the Machine, London: Heinemann. W.C.Richards, 1948, The Last Billionaire, Henry Ford, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Ford, Henry

  • 53 Gestetner, David

    SUBJECT AREA: Paper and printing
    [br]
    b. March 1854 Csorna, Hungary
    d. 8 March 1939 Nice, France
    [br]
    Hungarian/British pioneer of stencil duplicating.
    [br]
    For the first twenty-five years of his life, Gestetner was a rolling stone and accordingly gathered no moss. Leaving school in 1867, he began working for an uncle in Sopron, making sausages. Four years later he apprenticed himself to another uncle, a stockbroker, in Vienna. The financial crisis of 1873 prompted a move to a restaurant, also in the family, but tiring of a menial existence, he emigrated to the USA, travelling steerage. He began to earn a living by selling Japanese kites: these were made of strong Japanese paper coated with lacquer, and he noted their long fibres and great strength, an observation that was later to prove useful when he was searching for a suitable medium for stencil duplicating. However, he did not prosper in the USA and he returned to Europe, first to Vienna and finally to London in 1879. He took a job with Fairholme \& Co., stationers in Shoe Lane, off Holborn; at last Gestetner found an outlet for his inventive genius and he began his life's work in developing stencil duplicating. His first patent was in 1879 for an application of the hectograph, an early method of duplicating documents. In 1881, he patented the toothed-wheel pen, or Cyclostyle, which made good ink-passing perforations in the stencil paper, with which he was able to pioneer the first practicable form of stencil duplicating. He then adopted a better stencil tissue of Japanese paper coated with wax, and later an improved form of pen. This assured the success of Gestetner's form of stencil duplicating and it became established practice in offices in the late 1880s. Gestetner began to manufacture the apparatus in premises in Sun Street, at first under the name of Fairholme, since they had defrayed the patent expenses and otherwise supported him financially, in return for which Gestetner assigned them his patent rights. In 1882 he patented the wheel pen in the USA and appointed an agent to sell the equipment there. In 1884 he moved to larger premises, and three years later to still larger premises. The introduction of the typewriter prompted modifications that enabled stencil duplicating to become both the standard means of printing short runs of copy and an essential piece of equipment in offices. Before the First World War, Gestetner's products were being sold around the world; in fact he created one of the first truly international distribution networks. He finally moved to a large factory to the north-east of London: when his company went public in 1929, it had a share capital of nearly £750,000. It was only with the development of electrostatic photocopying and small office offset litho machines that stencil duplicating began to decline in the 1960s. The firm David Gestetner had founded adapted to the new conditions and prospers still, under the direction of his grandson and namesake.
    [br]
    Further Reading
    W.B.Proudfoot, 1972, The Origin of Stencil Duplicating London: Hutchinson (gives a good account of the method and the development of the Gestetner process, together with some details of his life).
    H.V.Culpan, 1951, "The House of Gestetner", in Gestetner 70th Anniversary Celebration Brochure, London: Gestetner.
    LRD

    Biographical history of technology > Gestetner, David

  • 54 Gutenberg, Johann Gensfleisch zum

    SUBJECT AREA: Paper and printing
    [br]
    b. c. 1394–9 Mainz, Germany
    d. 3 February 1468 Mainz, Germany
    [br]
    German inventor of printing with movable type.
    [br]
    Few biographical details are known of Johann Gensfleisch zum Gutenberg, yet it has been said that he was responsible for Germany's most notable contribution to civilization. He was a goldsmith by trade, of a patrician family of the city of Mainz. He seems to have begun experiments on printing while a political exile in Strasbourg c. 1440. He returned to Mainz between 1444 and 1448 and continued his experiments, until by 1450 he had perfected his invention sufficiently to justify raising capital for its commercial exploitation.
    Circumstances were propitious for the invention of printing at that time. Rises in literacy and prosperity had led to the formation of a social class with the time and resources to develop a taste for reading, and the demand for reading matter had outstripped the ability of the scribes to satisfy it. The various technologies required were well established, and finally the flourishing textile industry was producing enough waste material, rag, to make paper, the only satisfactory and cheap medium for printing. There were others working along similar lines, but it was Gutenberg who achieved the successful adaptation and combination of technologies to arrive at a process by which many identical copies of a text could be produced in a wide variety of forms, of which the book was the most important. Gutenberg did make several technical innovations, however. The two-piece adjustable mould for casting types of varying width, from T to "M", was ingenious. Then he had to devise an oil-based ink suitable for inking metal type, derived from the painting materials developed by contemporary Flemish artists. Finally, probably after many experiments, he arrived at a metal alloy of distinctive composition suitable for casting type.
    In 1450 Gutenberg borrowed 800 guldens from Johannes Fust, a lawyer of Mainz, and two years later Fust advanced a further 800 guldens, securing for himself a partnership in Gutenberg's business. But in 1455 Fust foreclosed and the bulk of Gutenberg's equipment passed to Peter Schöffer, who was in the service of Fust and later married his daughter. Like most early printers, Gutenberg seems not to have appreciated, or at any rate to have been able to provide for, the great dilemma of the publishing trade, namely the outlay of considerable capital in advance of each publication and the slowness of the return. Gutenberg probably retained only the type for the 42- and 36-line bibles and possibly the Catholicon of 1460, an encyclopedic work compiled in the thirteenth century and whose production pointed the way to printing's role as a means of spreading knowledge. The work concluded with a short descriptive piece, or colophon, which is probably by Gutenberg himself and is the only output of his mind that we have; it manages to omit the names of both author and printer.
    Gutenberg seems to have abandoned printing after 1460, perhaps due to failing eyesight as well as for financial reasons, and he suffered further loss in the sack of Mainz in 1462. He received a kind of pension from the Archbishop in 1465, and on his death was buried in the Franciscan church in Mainz. The only major work to have issued for certain from Gutenberg's workshop is the great 42-line bible, begun in 1452 and completed by August 1456. The quality of this Graaf piece of printing is a tribute to Gutenberg's ability as a printer, and the soundness of his invention is borne out by the survival of the process as he left it to the world, unchanged for over three hundred years save in minor details.
    [br]
    Further Reading
    A.Ruppel, 1967, Johannes Gutenberg: sein Leben und sein Werk, 3rd edn, Nieuwkoop: B.de Graaf (the standard biography), A.M.L.de Lamartine, 1960, Gutenberg, inventeur de l'imprimerie, Tallone.
    Scholderer, 1963, Gutenberg, Inventor of Printing, London: British Museum.
    S.H.Steinberg, 1974, Five Hundred Years of Printing 3rd edn, London: Penguin (provides briefer details).
    LRD

    Biographical history of technology > Gutenberg, Johann Gensfleisch zum

  • 55 Hamilton, Harold Lee (Hal)

    [br]
    b. 14 June 1890 Little Shasta, California, USA
    d. 3 May 1969 California, USA
    [br]
    American pioneer of diesel rail traction.
    [br]
    Orphaned as a child, Hamilton went to work for Southern Pacific Railroad in his teens, and then worked for several other companies. In his spare time he learned mathematics and physics from a retired professor. In 1911 he joined the White Motor Company, makers of road motor vehicles in Denver, Colorado, where he had gone to recuperate from malaria. He remained there until 1922, apart from an eighteenth-month break for war service.
    Upon his return from war service, Hamilton found White selling petrol-engined railbuses with mechanical transmission, based on road vehicles, to railways. He noted that they were not robust enough and that the success of petrol railcars with electric transmission, built by General Electric since 1906, was limited as they were complex to drive and maintain. In 1922 Hamilton formed, and became President of, the Electro- Motive Engineering Corporation (later Electro-Motive Corporation) to design and produce petrol-electric rail cars. Needing an engine larger than those used in road vehicles, yet lighter and faster than marine engines, he approached the Win ton Engine Company to develop a suitable engine; in addition, General Electric provided electric transmission with a simplified control system. Using these components, Hamilton arranged for his petrol-electric railcars to be built by the St Louis Car Company, with the first being completed in 1924. It was the beginning of a highly successful series. Fuel costs were lower than for steam trains and initial costs were kept down by using standardized vehicles instead of designing for individual railways. Maintenance costs were minimized because Electro-Motive kept stocks of spare parts and supplied replacement units when necessary. As more powerful, 800 hp (600 kW) railcars were produced, railways tended to use them to haul trailer vehicles, although that practice reduced the fuel saving. By the end of the decade Electro-Motive needed engines more powerful still and therefore had to use cheap fuel. Diesel engines of the period, such as those that Winton had made for some years, were too heavy in relation to their power, and too slow and sluggish for rail use. Their fuel-injection system was erratic and insufficiently robust and Hamilton concluded that a separate injector was needed for each cylinder.
    In 1930 Electro-Motive Corporation and Winton were acquired by General Motors in pursuance of their aim to develop a diesel engine suitable for rail traction, with the use of unit fuel injectors; Hamilton retained his position as President. At this time, industrial depression had combined with road and air competition to undermine railway-passenger business, and Ralph Budd, President of the Chicago, Burlington \& Quincy Railroad, thought that traffic could be recovered by way of high-speed, luxury motor trains; hence the Pioneer Zephyr was built for the Burlington. This comprised a 600 hp (450 kW), lightweight, two-stroke, diesel engine developed by General Motors (model 201 A), with electric transmission, that powered a streamlined train of three articulated coaches. This train demonstrated its powers on 26 May 1934 by running non-stop from Denver to Chicago, a distance of 1,015 miles (1,635 km), in 13 hours and 6 minutes, when the fastest steam schedule was 26 hours. Hamilton and Budd were among those on board the train, and it ushered in an era of high-speed diesel trains in the USA. By then Hamilton, with General Motors backing, was planning to use the lightweight engine to power diesel-electric locomotives. Their layout was derived not from steam locomotives, but from the standard American boxcar. The power plant was mounted within the body and powered the bogies, and driver's cabs were at each end. Two 900 hp (670 kW) engines were mounted in a single car to become an 1,800 hp (l,340 kW) locomotive, which could be operated in multiple by a single driver to form a 3,600 hp (2,680 kW) locomotive. To keep costs down, standard locomotives could be mass-produced rather than needing individual designs for each railway, as with steam locomotives. Two units of this type were completed in 1935 and sent on trial throughout much of the USA. They were able to match steam locomotive performance, with considerable economies: fuel costs alone were halved and there was much less wear on the track. In the same year, Electro-Motive began manufacturing diesel-electrie locomotives at La Grange, Illinois, with design modifications: the driver was placed high up above a projecting nose, which improved visibility and provided protection in the event of collision on unguarded level crossings; six-wheeled bogies were introduced, to reduce axle loading and improve stability. The first production passenger locomotives emerged from La Grange in 1937, and by early 1939 seventy units were in service. Meanwhile, improved engines had been developed and were being made at La Grange, and late in 1939 a prototype, four-unit, 5,400 hp (4,000 kW) diesel-electric locomotive for freight trains was produced and sent out on test from coast to coast; production versions appeared late in 1940. After an interval from 1941 to 1943, when Electro-Motive produced diesel engines for military and naval use, locomotive production resumed in quantity in 1944, and within a few years diesel power replaced steam on most railways in the USA.
    Hal Hamilton remained President of Electro-Motive Corporation until 1942, when it became a division of General Motors, of which he became Vice-President.
    [br]
    Further Reading
    P.M.Reck, 1948, On Time: The History of the Electro-Motive Division of General Motors Corporation, La Grange, Ill.: General Motors (describes Hamilton's career).
    PJGR

    Biographical history of technology > Hamilton, Harold Lee (Hal)

  • 56 Harrison, James

    [br]
    b. 1816 Glasgow, Scotland
    d. 3 September 1893 Geelong, Victoria, Australia
    [br]
    Scottish pioneer of the transport of frozen meat.
    [br]
    James Harrison emigrated to Australia in 1834, and in 1840 settled in Geelong as a journalist. At one time he was editor of the Melbourne Age. In 1850 he began to devote his attention to the development of an ice-making scheme, erecting the first factory at Rodey Point, Barwin, in that year. In 1851 the Brewery Glasgow \& Co. in Bendigo, Victoria, installed the first Harrison refrigerator. He took out patents for his invention in 1856 and 1857, and visited London at about the same time. On his return to Australia he began experiments into the long-term freezing of meat. In 1873 he publicly exhibited the process in Melbourne and organized a banquet for the consumption of meat which had been in store for six months. In July of the same year the SS Norfolk sailed with a cargo of 20 tons of frozen mutton and beef, but this began to rot en route to London. The refrigeration plant was later put to use in a paraffin factory in London, but the failure ruined Harrison and took all his newspaper profits.
    [br]
    Further Reading
    J.T.Critchell, 1912, A History of the Frozen Meat Trade, London (gives a brief account of Harrison's abortive but essential part in the transport of frozen meat).
    AP

    Biographical history of technology > Harrison, James

  • 57 Harrison, John

    [br]
    b. 24 March 1693 Foulby, Yorkshire, England
    d. 24 March 1776 London, England
    [br]
    English horologist who constructed the first timekeeper of sufficient accuracy to determine longitude at sea and invented the gridiron pendulum for temperature compensation.
    [br]
    John Harrison was the son of a carpenter and was brought up to that trade. He was largely self-taught and learned mechanics from a copy of Nicholas Saunderson's lectures that had been lent to him. With the assistance of his younger brother, James, he built a series of unconventional clocks, mainly of wood. He was always concerned to reduce friction, without using oil, and this influenced the design of his "grasshopper" escapement. He also invented the "gridiron" compensation pendulum, which depended on the differential expansion of brass and steel. The excellent performance of his regulator clocks, which incorporated these devices, convinced him that they could also be used in a sea dock to compete for the longitude prize. In 1714 the Government had offered a prize of £20,000 for a method of determining longitude at sea to within half a degree after a voyage to the West Indies. In theory the longitude could be found by carrying an accurate timepiece that would indicate the time at a known longitude, but the requirements of the Act were very exacting. The timepiece would have to have a cumulative error of no more than two minutes after a voyage lasting six weeks.
    In 1730 Harrison went to London with his proposal for a sea clock, supported by examples of his grasshopper escapement and his gridiron pendulum. His proposal received sufficient encouragement and financial support, from George Graham and others, to enable him to return to Barrow and construct his first sea clock, which he completed five years later. This was a large and complicated machine that was made out of brass but retained the wooden wheelwork and the grasshopper escapement of the regulator clocks. The two balances were interlinked to counteract the rolling of the vessel and were controlled by helical springs operating in tension. It was the first timepiece with a balance to have temperature compensation. The effect of temperature change on the timekeeping of a balance is more pronounced than it is for a pendulum, as two effects are involved: the change in the size of the balance; and the change in the elasticity of the balance spring. Harrison compensated for both effects by using a gridiron arrangement to alter the tension in the springs. This timekeeper performed creditably when it was tested on a voyage to Lisbon, and the Board of Longitude agreed to finance improved models. Harrison's second timekeeper dispensed with the use of wood and had the added refinement of a remontoire, but even before it was tested he had embarked on a third machine. The balance of this machine was controlled by a spiral spring whose effective length was altered by a bimetallic strip to compensate for changes in temperature. In 1753 Harrison commissioned a London watchmaker, John Jefferys, to make a watch for his own personal use, with a similar form of temperature compensation and a modified verge escapement that was intended to compensate for the lack of isochronism of the balance spring. The time-keeping of this watch was surprisingly good and Harrison proceeded to build a larger and more sophisticated version, with a remontoire. This timekeeper was completed in 1759 and its performance was so remarkable that Harrison decided to enter it for the longitude prize in place of his third machine. It was tested on two voyages to the West Indies and on both occasions it met the requirements of the Act, but the Board of Longitude withheld half the prize money until they had proof that the timekeeper could be duplicated. Copies were made by Harrison and by Larcum Kendall, but the Board still continued to prevaricate and Harrison received the full amount of the prize in 1773 only after George III had intervened on his behalf.
    Although Harrison had shown that it was possible to construct a timepiece of sufficient accuracy to determine longitude at sea, his solution was too complex and costly to be produced in quantity. It had, for example, taken Larcum Kendall two years to produce his copy of Harrison's fourth timekeeper, but Harrison had overcome the psychological barrier and opened the door for others to produce chronometers in quantity at an affordable price. This was achieved before the end of the century by Arnold and Earnshaw, but they used an entirely different design that owed more to Le Roy than it did to Harrison and which only retained Harrison's maintaining power.
    [br]
    Principal Honours and Distinctions
    Royal Society Copley Medal 1749.
    Bibliography
    1767, The Principles of Mr Harrison's Time-keeper, with Plates of the Same, London. 1767, Remarks on a Pamphlet Lately Published by the Rev. Mr Maskelyne Under the
    Authority of the Board of Longitude, London.
    1775, A Description Concerning Such Mechanisms as Will Afford a Nice or True Mensuration of Time, London.
    Further Reading
    R.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press.
    —1978, John Harrison and His Timekeepers, 4th edn, London: National Maritime Museum.
    H.Quill, 1966, John Harrison, the Man who Found Longitude, London. A.G.Randall, 1989, "The technology of John Harrison's portable timekeepers", Antiquarian Horology 18:145–60, 261–77.
    J.Betts, 1993, John Harrison London (a good short account of Harrison's work). S.Smiles, 1905, Men of Invention and Industry; London: John Murray, Chapter III. Dictionary of National Biography, Vol. IX, pp. 35–6.
    DV

    Biographical history of technology > Harrison, John

  • 58 Hedley, William

    [br]
    b. 13 July 1779 Newburn, Northumberland, England
    d. 9 January 1843 Lanchester, Co. Durham, England
    [br]
    English coal-mine manager, pioneer in the construction and use of steam locomotives.
    [br]
    The Wylam wagonway passed Newburn, and Hedley, who went to school at Wylam, must have been familiar with this wagonway from childhood. It had been built c.1748 to carry coal from Wylam Colliery to the navigable limit of the Tyne at Lemington. In 1805 Hedley was appointed viewer, or manager, of Wylam Colliery by Christopher Blackett, who had inherited the colliery and wagonway in 1800. Unlike most Tyneside wagonways, the gradient of the Wylam line was insufficient for loaded wagons to run down by gravity and they had to be hauled by horses. Blackett had a locomotive, of the type designed by Richard Trevithick, built at Gateshead as early as 1804 but did not take delivery, probably because his wooden track was not strong enough. In 1808 Blackett and Hedley relaid the wagonway with plate rails of the type promoted by Benjamin Outram, and in 1812, following successful introduction of locomotives at Middleton by John Blenkinsop, Blackett asked Hedley to investigate the feasibility of locomotives at Wylam. The expense of re-laying with rack rails was unwelcome, and Hedley experimented to find out the relationship between the weight of a locomotive and the load it could move relying on its adhesion weight alone. He used first a model test carriage, which survives at the Science Museum, London, and then used a full-sized test carriage laden with weights in varying quantities and propelled by men turning handles. Having apparently satisfied himself on this point, he had a locomotive incorporating the frames and wheels of the test carriage built. The work was done at Wylam by Thomas Waters, who was familiar with the 1804 locomotive, Timothy Hackworth, foreman smith, and Jonathan Forster, enginewright. This locomotive, with cast-iron boiler and single cylinder, was unsatisfactory: Hackworth and Forster then built another locomotive to Hedley's design, with a wrought-iron return-tube boiler, two vertical external cylinders and drive via overhead beams through pinions to the two axles. This locomotive probably came into use in the spring of 1814: it performed well and further examples of the type were built. Their axle loading, however, was too great for the track and from about 1815 each locomotive was mounted on two four-wheeled bogies, the bogie having recently been invented by William Chapman. Hedley eventually left Wylam in 1827 to devote himself to other colliery interests. He supported the construction of the Clarence Railway, opened in 1833, and sent his coal over it in trains hauled by his own locomotives. Two of his Wylam locomotives survive— Puffing Billy at the Science Museum, London, and Wylam Dilly at the Royal Museum of Scotland, Edinburgh—though how much of these is original and how much dates from the period 1827–32, when the Wylam line was re-laid with edge rails and the locomotives reverted to four wheels (with flanges), is a matter of mild controversy.
    [br]
    Further Reading
    P.R.B.Brooks, 1980, William Hedley Locomotive Pioneer, Newcastle upon Tyne: Tyne \& Wear Industrial Monuments Trust (a good recent short biography of Hedley, with bibliography).
    R.Young, 1975, Timothy Hackworth and the Locomotive, Shildon: Shildon "Stockton \& Darlington Railway" Silver Jubilee Committee; orig. pub. 1923, London.
    C.R.Warn, 1976, Waggonways and Early Railways of Northumberland, Newcastle upon Tyne: Frank Graham.
    PJGR

    Biographical history of technology > Hedley, William

  • 59 Hofmann, August Wilhelm von

    SUBJECT AREA: Chemical technology
    [br]
    b. 8 April 1818 Giessen, Germany
    d. 2 May 1892 Berlin, Germany
    [br]
    German organic chemist.
    [br]
    The son of an architect, Hofmann began studying law and languages but was increasingly drawn to chemistry, attracted by Liebig's teaching at Giessen. In 1841 Hofmann took his doctorate with a study of coal tar. He became Privatdozent at Bonn University in 1845, but later that year he was persuaded to take up the post of first Director of the Royal College of Chemistry in London, after tenure was guaranteed as a result of Prince Albert's influence. He remained there for twenty years until he was offered professorships in chemistry at Bonn and Berlin. He accepted the latter. Hofmann continued the method of teaching chemistry, based on laboratory instruction, developed by Liebig at Giessen, and extended it to England and Berlin. A steady stream of well-trained chemists issued forth from Hofmann's tuition, concerning themselves especially with experimental organic chemistry and the industrial applications of chemistry. In 1848 one of his students, C.B. Mansfield, devised the method of fractional distillation of coal tar, to separate pure benzene, xylene and toluene, thus laying the foundations of the coal-tar industry. In 1856 another student, W.H. Perkin, prepared the first synthetic dyestuff, aniline purple, heralding the great dyestuffs industry, in which several other of his students distinguished themselves. Although keenly interested in the chemistry of dyestuffs, Hofmann did not pursue their large-scale preparation, but he stressed the importance of scientific research for success on a commercial scale. Hofmann's stimulus in this direction flagged after his return to Germany, and this was a factor in the failure of British industry to follow up their initial advantage and allow it to pass to Germany. In 1862 Hofmann prepared a dye from a derivative of triphenylmethane, which he called rosaniline. From this he derived a series of beautiful colours, ranging from blue to violet, which he patented as "Hofmann's violets" the following year.
    [br]
    Principal Honours and Distinctions
    Ennobled 1888.
    Further Reading
    J.Volhard and E.Fischer, 1902, August Wilhelm von Hofmann, ein Lebensbild, Berlin (the basic biography).
    K.M.Hammond, 1967, bibliography, unpublished, (Diploma in Librarianship, London University (lists 373 items; deposited in University College, London)).
    LRD

    Biographical history of technology > Hofmann, August Wilhelm von

  • 60 Houldsworth, Henry

    SUBJECT AREA: Textiles
    [br]
    b. 1797 Manchester (?), England
    d. 1868 Manchester (?), England
    [br]
    English cotton spinner who introduced the differential gear to roving frames in Britain.
    [br]
    There are two claimants for the person who originated the differential gear as applied to roving frames: one is J.Green, a tinsmith of Mansfield, in his patent of 1823; the other is Arnold, who had applied it in America and patented it in early 1823. This latter was the source for Houldsworth's patent in 1826. It seems that Arnold's gearing was secretly communicated to Houldsworth by Charles Richmond, possibly when Houldsworth visited the United States in 1822–3, but more probably in 1825 when Richmond went to England. In return, Richmond received information about parts of a cylinder printing machine from Houldsworth. In the working of the roving frame, as the rovings were wound onto their bobbins and the diameter of the bobbins increased, the bobbin speed had to be reduced to keep the winding on at the same speed while the flyers and drawing rollers had to maintain their initial speed. Although this could be achieved by moving the driving belt along coned pulleys, this method did not provide enough power and slippage occurred. The differential gear combined the direct drive from the main shaft of the roving frame with that from the cone drive, so that only the latter provided the dif-ference between flyer and bobbin speeds, i.e. the winding speeds, thus taking away most of the power from that belt. Henry Houldsworth Senior (1774–1853) was living in Manchester when his son Henry was born, but by 1800 had moved to Glasgow. He built several mills, including a massive one at Anderston, Scotland, in which a Boulton \& Watt steam engine was installed. Henry Houldsworth Junior was probably back in Manchester by 1826, where he was to become an influential cotton spinner as chief partner in his mills, which he moved out to Reddish in 1863–5. He was also a prominent landowner in Cheetham. When William Fairbairn was considering establishing the Association for the Prevention of Steam Boiler Explosions in 1854, he wanted to find an influential manufacturer and mill-owner and he made a happy choice when he turned to Henry Houldsworth for assistance.
    [br]
    Bibliography
    1826, British patent no. 5,316 (differential gear for roving frames).
    Further Reading
    Details about Henry Houldsworth Junior are very sparse. The best account of his acquisition of the differential gear is given by D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830, Oxford.
    W.English, 1969, The Textile Industry, London (an explanation of the mechanisms of the roving frame).
    W.Pole, 1877, The Life of Sir William Fairbairn, Bart., London (provides an account of the beginning of the Manchester Steam Users' Association for the Prevention of Steam-boiler Explosions).
    RLH

    Biographical history of technology > Houldsworth, Henry

См. также в других словарях:

  • return — [ri tʉrn′] vi. [ME retournen < OFr retourner: see RE & TURN] 1. to go or come back, as to a former place, condition, practice, opinion, etc. 2. to go back in thought or speech [to return to the subject] 3. to revert to a former owner 4. to ans …   English World dictionary

  • return to our muttons — (informal) Return to the subject of discussion (a playful translation of the judge s ‘Revenons à nos moutons in the old French farce of Maître Pathelin, in which the witnesses wander from the matter in dispute, some sheep) • • • Main Entry:… …   Useful english dictionary

  • return — 1 verb 1 GO BACK (I) to go back to a place where you were before, or come back from a place where you have just been (+ to): Conor did not return to Ireland until 1937. (+ from): When Alice returned from university, she was a changed person. |… …   Longman dictionary of contemporary English

  • return — [[t]rɪtɜ͟ː(r)n[/t]] ♦ returns, returning, returned 1) VERB When you return to a place, you go back there after you have been away. [V to/from n] There are unconfirmed reports that Aziz will return to Moscow within hours... [V to/from n] Our… …   English dictionary

  • Return of Heracles — is an adventure game for the Atari 8 bit, Commodore 64 and Apple II computers, originally written by Stuart Smith and published by Quality Software. Built on an engine that was a precursor to Adventure Construction Set , Return of Heracles is set …   Wikipedia

  • Return to Rocheworld — is a 1993 science fiction novel by Robert L. Forward and Julie Forward Fuller. It is the sequel to Forward s Rocheworld (a.k.a. The Flight of the Dragonfly ), a novel about the first manned interstellar mission to a unique double planet.Having… …   Wikipedia

  • return — {{Roman}}I.{{/Roman}} noun 1 coming/going back; giving sth back ADJECTIVE ▪ complete, full ▪ a full return to health ▪ gradual ▪ eventual ▪ …   Collocations dictionary

  • return — re|turn1 W1S2 [rıˈtə:n US ə:rn] v ▬▬▬▬▬▬▬ 1¦(go back)¦ 2¦(give back)¦ 3¦(feeling/situation)¦ 4¦(do the same)¦ 5¦(answer)¦ 6¦(ball)¦ 7¦(elect)¦ 8 return a verdict 9¦(profit)¦ Phrasal verbs …   Dictionary of contemporary English

  • return — re|turn1 [ rı tɜrn ] verb *** ▸ 1 go/come back ▸ 2 put/send/take something back ▸ 3 do/say something similar back ▸ 4 produce profit ▸ 5 hit ball back ▸ 6 elect someone to position ▸ + PHRASES 1. ) intransitive to go back to a place where you… …   Usage of the words and phrases in modern English

  • return*/*/*/ — [rɪˈtɜːn] verb I 1) to go back to a place where you were earlier, or to come back from a place where you have just been He returned home around midnight.[/ex] Seven years later we returned to the village.[/ex] And when do you return from… …   Dictionary for writing and speaking English

  • Return of the Rentals — Infobox Album | Name = Return Of The Rentals Type = Album Artist = The Rentals Released = October 24, 1995 Recorded = Poop Alley Studios Genre = Alternative rock Length = Label = Maverick / Reprise 9 46093 2 Producer = Tom Grimley, Matt Sharp… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»