Перевод: с немецкого на все языки

со всех языков на немецкий

surface+properties

  • 1 Metallverarbeitung

    1. обработка металлов

     

    обработка металлов

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    metal finishing
    A process in which a chemical or some other substance is applied to metals as a way to clean, protect, alter or modify appearance or physical properties, especially surface properties. (Source: MHD)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Metallverarbeitung

  • 2 Oberflächeneigenschaften

    fpl <obfl.qualit> ■ surface properties pl

    German-english technical dictionary > Oberflächeneigenschaften

  • 3 Dauerstrombelastbarkeit, f

    1. длительный допустимый ток

     

    (длительный) допустимый ток
    Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
    [ ГОСТ Р МЭК 60050-826-2009]

    Этот ток обозначают IZ
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    EN

    (continuous) current-carrying capacity
    ampacity (US)
    maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
    [IEV number 826-11-13]

    ampacity
    The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
    [National Electrical Cod]

    FR

    courant (permanent) admissible, m
    valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
    [IEV number 826-11-13]

    Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:

    • its insulation temperature rating;
    • conductor electrical properties for current;
    • frequency, in the case of alternating currents;
    • ability to dissipate heat, which depends on cable geometry and its surroundings;
    • ambient temperature.

    Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.

    The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.

    In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.

    Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.

    The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.

    For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.

    Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.

    When designing an electrical system, one will normally need to know the current rating for the following:

    Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.

    [http://en.wikipedia.org/wiki/Ampacity]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

    DE

    • Dauerstrombelastbarkeit, f
    • Strombelastbarkeit, f

    FR

    • courant admissible, m
    • courant permanent admissible, m

    Немецко-русский словарь нормативно-технической терминологии > Dauerstrombelastbarkeit, f

  • 4 Strombelastbarkeit, f

    1. длительный допустимый ток

     

    (длительный) допустимый ток
    Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
    [ ГОСТ Р МЭК 60050-826-2009]

    Этот ток обозначают IZ
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    EN

    (continuous) current-carrying capacity
    ampacity (US)
    maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
    [IEV number 826-11-13]

    ampacity
    The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
    [National Electrical Cod]

    FR

    courant (permanent) admissible, m
    valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
    [IEV number 826-11-13]

    Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:

    • its insulation temperature rating;
    • conductor electrical properties for current;
    • frequency, in the case of alternating currents;
    • ability to dissipate heat, which depends on cable geometry and its surroundings;
    • ambient temperature.

    Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.

    The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.

    In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.

    Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.

    The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.

    For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.

    Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.

    When designing an electrical system, one will normally need to know the current rating for the following:

    Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.

    [http://en.wikipedia.org/wiki/Ampacity]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

    DE

    • Dauerstrombelastbarkeit, f
    • Strombelastbarkeit, f

    FR

    • courant admissible, m
    • courant permanent admissible, m

    Немецко-русский словарь нормативно-технической терминологии > Strombelastbarkeit, f

  • 5 Bodenbeschaffenheit

    f
    1. surface conditions Pl.
    2. AGR. properties Pl. of the soil
    * * *
    Bo|den|be|schaf|fen|heit
    f
    condition of the ground; (von Acker etc) condition of the soil
    * * *
    Bo·den·be·schaf·fen·heit
    f
    1. AGR (Art des Erdbodens) [consistency of the] soil
    2. (Art der Oberfläche) condition of the ground
    * * *
    1. surface conditions pl
    2. AGR properties pl of the soil

    Deutsch-Englisch Wörterbuch > Bodenbeschaffenheit

  • 6 Ozean-Luft Schnitstelle

    1. граница между воздухом и поверхностью океана

     

    граница между воздухом и поверхностью океана

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    ocean-air interface
    The sea and the atmosphere are fluids in contact with one another, but in different energy states - the liquid and the gaseous. The free surface boundary between them inhibits, but by no means totally prevents, exchange of mass and energy between the two. Almost all interchanges across this boundary occur most effectively when turbulent conditions prevail. A roughened sea surface, large differences in properties between the water and the air, or an unstable air column that facilitates the transport of air volumes from sea surface to high in the atmosphere. Both heat and water (vapor) tend to migrate across the boundary in the direction from sea to air. Heat is exchanged by three processes: radiation, conduction, and evaporation. The largest net exchange is through evaporation, the process of transferring water from sea to air by vaporization of the water. (Source: PARCOR)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Ozean-Luft Schnitstelle

  • 7 Kataster

    1. регистр земель
    2. кадастр

     

    кадастр
    Систематизированный свод определённых сведений, составляемый на основе периодических или непрерывных наблюдений над соответствующим объектом
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    кадастр
    Реестр, содержащий сведения об оценке и средней доходности объектов (земли, домов, промыслов), которые используются для исчисления соответствующих прямых реальных налогов.
    [РД 01.120.00-КТН-228-06]

    Тематики

    EN

    DE

    FR

     

    регистр земель

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    land register
    A register or survey of land, containing information on the surface of properties, tenants' names, commencing with the earliest owners through successive ownership and partitions, and such like. (Source: CED / WESTS / HARRIS)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Kataster

  • 8 Polychlorbiphenyl

    1. полихлорированный бифенил

     

    полихлорированный бифенил

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    polychlorinated biphenyl
    PCBs are a family of chemical compounds which do not exist in nature but which are man-made. Commercial mixtures are clear, pale yellow liquids, manufactured by the replacement of hydrogen atoms on the biphenyl molecule by chlorine. Because of their physical properties, PCBs are commonly found in electrical equipment which requires dielectric fluid such as power transformers and capacitors, as well as in hydraulic machinery, vacuum pumps, compressors and heat-exchanger fluids. Other uses include: lubricants, fluorescent light ballasts, paints, glues, waxes, carbonless copy paper, inks including newspapers, dust-control agents for dirt roads, solvents for spreading insecticides, cutting oils. PCBs are stable compounds and although they are no longer manufactured they are extremely persistent and remain in huge quantities in the atmosphere and in landfill sites. They are not water-soluble and float on the surface of water where they are eaten by aquatic animals and so enter the food chain. PCBs are fat-soluble, and are therefore easy to take into the system, but difficult to excrete. (Source: PZ / PHC)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Polychlorbiphenyl

См. также в других словарях:

  • surface coating — ▪ chemistry Introduction       any mixture of film forming materials plus pigments, solvents, and other additives, which, when applied to a surface and cured or dried, yields a thin film that is functional and often decorative. Surface coatings… …   Universalium

  • surface-active agent — a substance that exerts a change on the surface properties of a liquid, especially one that reduces its surface tension, such as a detergent. Called also surfactant …   Medical dictionary

  • Surface second harmonic generation — is a method for probing interfaces in atomic and molecular systems. In second harmonic generation (SHG), the light frequency is doubled, essentially converting two photons of the original beam of energy E into a single photon of energy 2 E as it… …   Wikipedia

  • Surface engineering — is the sub discipline of materials science which deals with the surface of solid matter. It has applications to chemistry, mechanical engineering, and electrical engineering (particularly in relation to semiconductor manufacturing).Solids are… …   Wikipedia

  • Surface grinding — is used to produce a smooth finish on flat surfaces. It is a widely used abrasive machining process in which a spinning wheel covered in rough particles (grinding wheel) cuts chips of metallic or non metallic substance from a workpiece, making a… …   Wikipedia

  • Surface photovoltage — (SPV) measurements are a widely used method to determine the minority carrier diffusion length of semiconductors. Since the transport of minority carriers determines the behavior of the p n junctions that are ubiquitous in semiconductor devices,… …   Wikipedia

  • Surface science — is the study of physical and chemical phenomena that occur at the interface of two phases, including solid liquid interfaces, solid gas interfaces, solid vacuum interfaces, and liquid gas interfaces. It includes the fields of surface chemistry… …   Wikipedia

  • Surface plasmon — Surface plasmons, also referred to in the literature as surface plasma polaritons, are fluctuations in the electron density at the boundary of two materials. Plasmons are the collective vibrations of an electron gas (or plasma) surrounding the… …   Wikipedia

  • Surface metrology — is the measuring of small scale features on surfaces, and is a branch of Metrology. Surface primary form, surface waviness and surface roughness are the parameters most commonly associated with the field. It is important to many disciplines and… …   Wikipedia

  • Surface layering — is a quasi crystalline structure at the surfaces of otherwise disordered liquids, where atoms or molecules of even the simplest liquid are stratified into well defined layers parallel to the surface. While in crystalline solids such atomic layers …   Wikipedia

  • Surface (disambiguation) — Surface may mean:*Surface, a two dimensional manifold in mathematics *Microsoft Surface, a touch sensitive user interface from Microsoft * Surface (magazine), an American design magazine * Surface (TV series), an NBC television show *Surface… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»