Перевод: со всех языков на английский

с английского на все языки

subject+to+trial

  • 61 Highs, Thomas

    SUBJECT AREA: Textiles
    [br]
    fl. 1760s England
    [br]
    English reedmaker who claimed to have invented both the spinning jenny and the waterframe.
    [br]
    The claims of Highs to have invented both the spinning jenny and the waterframe have been dismissed by most historians. Thomas Highs was a reedmaker of Leigh, Lancashire. In about 1763 he had as a neighbour John Kay, the clockmaker from Warrington, whom he employed to help him construct his machines. During this period they were engaged in making a spinning jenny, but after several months of toil, in a fit of despondency, they threw the machine through the attic window. Highs persevered, however, and made a jenny that could spin six threads. The comparatively sophisticated arrangements for drawing and twisting at the same time, as depicted by Guest (1823), suggest that this machine came after the one invented by James Hargreaves. Guest claims that Highs made this machine between 1764 and 1766 and in the following two years constructed another, in which the spindles were placed in a circle. In 1771 Highs moved to Manchester, where he constructed a double jenny that was displayed at the Manchester Exchange, and received a subscription of £200 from the cotton manufacturers. However, all this occurred after Hargreaves had constructed his jenny. In the trial of Arkwright's patent during 1781, Highs gave evidence. He was recalled from Ireland, where he had been superintending the building of cotton-spinning machinery for Baron Hamilton's newly erected mill at Balbriggan, north of Dublin. Then in 1785, during the next trial of Arkwright's patent, Highs claimed that in 1767 he had made rollers for drawing out the cotton before spinning. This would have been for a different type of spinning machine, similar to the one later constructed by Arkwright. Highs was helped by John Kay and it was these rollers that Kay subsequently built for Arkwright. If the drawing shown by Guest is correct, then Highs was working on the wrong principles because his rollers were spaced too far apart and were not held together by weights, with the result that the twist would have passed into the drafting zone, producing uneven drawing.
    [br]
    Further Reading
    R.Guest, 1823, A Compendious History of the Cotton-Manufacture: With a Disproval of the Claim of Sir Richard Arkwright to the Invention of its Ingenious Machinery, Manchester (Highs's claim for the invention of his spinning machines).
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (an examination of Highs's claims).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (discusses the technical problems of the invention).
    RLH

    Biographical history of technology > Highs, Thomas

  • 62 Braun, Wernher Manfred von

    [br]
    b. 23 March 1912 Wirsitz, Germany
    d. 16 June 1977 Alexandria, Virginia, USA
    [br]
    German pioneer in rocket development.
    [br]
    Von Braun's mother was an amateur astronomer who introduced him to the futuristic books of Jules Verne and H.G.Wells and gave him an astronomical telescope. He was a rather slack and undisciplined schoolboy until he came across Herman Oberth's book By Rocket to Interplanetary Space. He discovered that he required a good deal of mathematics to follow this exhilarating subject and immediately became an enthusiastic student.
    The Head of the Ballistics and Armaments branch of the German Army, Professor Karl Becker, had asked the engineer Walter Dornberger to develop a solid-fuel rocket system for short-range attack, and one using liquid-fuel rockets to carry bigger loads of explosives beyond the range of any known gun. Von Braun joined the Verein für Raumschiffsfahrt (the German Space Society) as a young man and soon became a leading member. He was asked by Rudolf Nebel, VfR's chief, to persuade the army of the value of rockets as weapons. Von Braun wisely avoided all mention of the possibility of space flight and some financial backing was assured. Dornberger in 1932 built a small test stand for liquid-fuel rockets and von Braun built a small rocket to test it; the success of this trial won over Dornberger to space rocketry.
    Initially research was carried out at Kummersdorf, a suburb of Berlin, but it was decided that this was not a suitable site. Von Braun recalled holidays as a boy at a resort on the Baltic, Peenemünde, which was ideally suited to rocket testing. Work started there but was not completed until August 1939, when the group of eighty engineers and scientists moved in. A great fillip to rocket research was received when Hitler was shown a film and was persuaded of the efficacy of rockets as weapons of war. A factory was set up in excavated tunnels at Mittelwerk in the Harz mountains. Around 6,000 "vengeance" weapons were built, some 3,000 of which were fired on targets in Britain and 2,000 of which were still in storage at the end of the Second World War.
    Peenemünde was taken by the Russians on 5 May 1945, but by then von Braun was lodging with many of his colleagues at an inn, Haus Ingeburg, near Oberjoch. They gave themselves up to the Americans, and von Braun presented a "prospectus" to the Americans, pointing out how useful the German rocket team could be. In "Operation Paperclip" some 100 of the team were moved to the United States, together with tons of drawings and a number of rocket missiles. Von Braun worked from 1946 at the White Sands Proving Ground, New Mexico, and in 1950 moved to Redstone Arsenal, Huntsville, Alabama. In 1953 he produced the Redstone missile, in effect a V2 adapted to carry a nuclear warhead a distance of 320 km (199 miles). The National Aeronautics and Space Administration (NASA) was formed in 1958 and recruited von Braun and his team. He was responsible for the design of the Redstone launch vehicles which launched the first US satellite, Explorer 1, in 1958, and the Mercury capsules of the US manned spaceflight programme which carried Alan Shepard briefly into space in 1961 and John Glenn into earth orbit in 1962. He was also responsible for the Saturn series of large, staged launch vehicles, which culminated in the Saturn V rocket which launched the Apollo missions taking US astronauts for the first human landing on the moon in 1969. Von Braun announced his resignation from NASA in 1972 and died five years later.
    [br]
    Bibliography
    Further Reading
    P.Marsh, 1985, The Space Business, Penguin. J.Trux, 1985, The Space Race, New English Library. T.Osman, 1983, Space History, Michael Joseph.
    IMcN

    Biographical history of technology > Braun, Wernher Manfred von

  • 63 Allen, Horatio

    [br]
    b. 10 May 1802 Schenectady, New York, USA
    d. 1 January 1890 South Orange, New Jersey, USA
    [br]
    American engineer, pioneer of steam locomotives.
    [br]
    Allen was the Resident Engineer for construction of the Delaware \& Hudson Canal and in 1828 was instructed by J.B. Jervis to visit England to purchase locomotives for the canal's rail extension. He drove the locomotive Stourbridge Lion, built by J.U. Rastrick, on its first trial on 9 August 1829, but weak track prevented its regular use.
    Allen was present at the Rainhill Trials on the Liverpool \& Manchester Railway in October 1829. So was E.L.Miller, one of the promoters of the South Carolina Canal \& Rail Road Company, to which Allen was appointed Chief Engineer that autumn. Allen was influential in introducing locomotives to this railway, and the West Point Foundry built a locomotive for it to his design; it was the first locomotive built in the USA for sale. This locomotive, which bore some resemblance to Novelty, built for Rainhill by John Braithwaite and John Ericsson, was named Best Friend of Charleston. On Christmas Day 1830 it hauled the first scheduled steam train to run in America, carrying 141 passengers.
    In 1832 the West Point Foundry built four double-ended, articulated 2–2–0+0–2–2 locomotives to Horatio Allen's design for the South Carolina railroad. From each end of a central firebox extended two boiler barrels side by side with common smokeboxes and chimneys; wheels were mounted on swivelling sub-frames, one at each end, beneath these boilers. Allen's principal object was to produce a powerful locomotive with a light axle loading.
    Allen subsequently became a partner in Stillman, Allen \& Co. of New York, builders of marine engines, and in 1843 was President of the Erie Railroad.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    Dictionary of American Biography.
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    J.H.White Jr, 1994, "Old debts and new visions", in Common Roots—Separate Branches, London: Science Museum, 79–82.
    PJGR

    Biographical history of technology > Allen, Horatio

  • 64 Aspinall, Sir John Audley Frederick

    [br]
    b. 25 August 1851 Liverpool, England
    d. 19 January 1937 Woking, England
    [br]
    English mechanical engineer, pioneer of the automatic vacuum brake for railway trains and of railway electrification.
    [br]
    Aspinall's father was a QC, Recorder of Liverpool, and Aspinall himself became a pupil at Crewe Works of the London \& North Western Railway, eventually under F.W. Webb. In 1875 he was appointed Manager of the works at Inchicore, Great Southern \& Western Railway, Ireland. While he was there, some of the trains were equipped, on trial, with continuous brakes of the non-automatic vacuum type. Aspinall modified these to make them automatic, i.e. if the train divided, brakes throughout both parts would be applied automatically. Aspinall vacuum brakes were subsequently adopted by the important Great Northern, Lancashire \& Yorkshire, and London \& North Western Railways.
    In 1883, aged only 32, Aspinall was appointed Locomotive Superintendent of the Great Southern \& Western Railway, but in 1886 he moved in the same capacity to the Lancashire \& Yorkshire Railway, where his first task was to fit out the new works at Horwich. The first locomotive was completed there in 1889, to his design. In 1899 he introduced a 4–4–2, the largest express locomotive in Britain at the time, some of which were fitted with smokebox superheaters to Aspinall's design.
    Unusually for an engineer, in 1892 Aspinall was appointed General Manager of the Lancashire \& Yorkshire Railway. He electrified the Liverpool-Southport line in 1904 at 600 volts DC with a third rail; this was an early example of main-line electrification, for it extended beyond the Liverpool suburban area. He also experimented with 3,500 volt DC overhead electrification of the Bury-Holcombe Brook branch in 1913, but converted this to 1,200 volts DC third rail to conform with the Manchester-Bury line when this was electrified in 1915. In 1918 he was made a director of the Lancashire \& Yorkshire Railway.
    [br]
    Principal Honours and Distinctions
    Knighted 1917. President, Institution of Mechanical Engineers 1909. President, Institution of Civil Engineers 1918.
    Further Reading
    H.A.V.Bulleid, 1967, The Aspinall Era, Shepperton: Ian Allan (provides a good account of Aspinall and his life's work).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 19 (a good brief account).
    PJGR

    Biographical history of technology > Aspinall, Sir John Audley Frederick

  • 65 Bain, Alexander

    [br]
    b. October 1810 Watten, Scotland
    d. 2 January 1877 Kirkintilloch, Scotland
    [br]
    Scottish inventor and entrepreneur who laid the foundations of electrical horology and designed an electromagnetic means of transmitting images (facsimile).
    [br]
    Alexander Bain was born into a crofting family in a remote part of Scotland. He was apprenticed to a watchmaker in Wick and during that time he was strongly influenced by a lecture on "Heat, sound and electricity" that he heard in nearby Thurso. This lecture induced him to take up a position in Clerkenwell in London, working as a journeyman clockmaker, where he was able to further his knowledge of electricity by attending lectures at the Adelaide Gallery and the Polytechnic Institution. His thoughts naturally turned to the application of electricity to clockmaking, and despite a bitter dispute with Charles Wheatstone over priority he was granted the first British patent for an electric clock. This patent, taken out on 11 January 1841, described a mechanism for an electric clock, in which an oscillating component of the clock operated a mechanical switch that initiated an electromagnetic pulse to maintain the regular, periodic motion. This principle was used in his master clock, produced in 1845. On 12 December of the same year, he patented a means of using electricity to control the operation of steam railway engines via a steam-valve. His earliest patent was particularly far-sighted and anticipated most of the developments in electrical horology that occurred during the nineteenth century. He proposed the use of electricity not only to drive clocks but also to distribute time over a distance by correcting the hands of mechanical clocks, synchronizing pendulums and using slave dials (here he was anticipated by Steinheil). However, he was less successful in putting these ideas into practice, and his electric clocks proved to be unreliable. Early electric clocks had two weaknesses: the battery; and the switching mechanism that fed the current to the electromagnets. Bain's earth battery, patented in 1843, overcame the first defect by providing a reasonably constant current to drive his clocks, but unlike Hipp he failed to produce a reliable switch.
    The application of Bain's numerous patents for electric telegraphy was more successful, and he derived most of his income from these. They included a patent of 12 December 1843 for a form of fax machine, a chemical telegraph that could be used for the transmission of text and of images (facsimile). At the receiver, signals were passed through a moving band of paper impregnated with a solution of ammonium nitrate and potassium ferrocyanide. For text, Morse code signals were used, and because the system could respond to signals faster than those generated by hand, perforated paper tape was used to transmit the messages; in a trial between Paris and Lille, 282 words were transmitted in less than one minute. In 1865 the Abbé Caselli, a French engineer, introduced a commercial fax service between Paris and Lyons, based on Bain's device. Bain also used the idea of perforated tape to operate musical wind instruments automatically. Bain squandered a great deal of money on litigation, initially with Wheatstone and then with Morse in the USA. Although his inventions were acknowledged, Bain appears to have received no honours, but when towards the end of his life he fell upon hard times, influential persons in 1873 secured for him a Civil List Pension of £80 per annum and the Royal Society gave him £150.
    [br]
    Bibliography
    1841, British patent no. 8,783; 1843, British patent no. 9,745; 1845, British patent no.
    10,838; 1847, British patent no. 11,584; 1852, British patent no. 14,146 (all for electric clocks).
    1852, A Short History of the Electric Clocks with Explanation of Their Principles and
    Mechanism and Instruction for Their Management and Regulation, London; reprinted 1973, introd. W.Hackmann, London: Turner \& Devereux (as the title implies, this pamphlet was probably intended for the purchasers of his clocks).
    Further Reading
    The best account of Bain's life and work is in papers by C.A.Aked in Antiquarian Horology: "Electricity, magnetism and clocks" (1971) 7: 398–415; "Alexander Bain, the father of electrical horology" (1974) 9:51–63; "An early electric turret clock" (1975) 7:428–42. These papers were reprinted together (1976) in A Conspectus of Electrical Timekeeping, Monograph No. 12, Antiquarian Horological Society: Tilehurst.
    J.Finlaison, 1834, An Account of Some Remarkable Applications of the Electric Fluid to the Useful Arts by Alexander Bain, London (a contemporary account between Wheatstone and Bain over the invention of the electric clock).
    J.Munro, 1891, Heroes of the Telegraph, Religious Tract Society.
    J.Malster \& M.J.Bowden, 1976, "Facsimile. A Review", Radio \&Electronic Engineer 46:55.
    D.J.Weaver, 1982, Electrical Clocks and Watches, Newnes.
    T.Hunkin, 1993, "Just give me the fax", New Scientist (13 February):33–7 (provides details of Bain's and later fax devices).
    DV / KF

    Biographical history of technology > Bain, Alexander

  • 66 Baldwin, Matthias William

    [br]
    b. 10 November 1795 Elizabethtown, New Jersey, USA
    d. 7 September 1866 Philadelphia, Pennsylvania, USA
    [br]
    American builder of steam locomotives, founder of Baldwin Locomotive Works.
    [br]
    After apprenticeship as a jeweller, Baldwin set up a machinery manufacturing business, and built stationary steam engines and, in 1832, his first locomotive, Old Ironsides, for the then-new Philadelphia, Germantown \& Norristown Railroad. Old Ironsides achieved only 1 mph (1.6 km/h) on trial, but after experimentation reached 28 mph (45 km/h). Over the next ten years Baldwin built many stationary engines and ten more locomotives, and subsequently built locomotives exclusively.
    He steadily introduced detail improvements in locomotive design; standardized components by means of templates and gauges from 1838 onwards; introduced the cylinder cast integrally with half of the smokebox saddle in 1858; and in 1862 imported steel tyres, which had first been manufactured in Germany by Krupp of Essen in 1851, and began the practice in the USA of shrinking them on to locomotive wheels. At the time of Matthias Baldwin's death, the Baldwin Locomotive Works had built some 1,500 locomotives: it went on to become the largest locomotive building firm to develop from a single foundation, and by the time it built its last steam locomotive, in 1955, had produced about 75,000 in total.
    [br]
    Further Reading
    J.H.White Jr, 1979, A History of the American Locomotive—Its Development 1830–
    1880, New York: Dover Publications Inc.
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    Dictionary of American Biography.
    PJGR

    Biographical history of technology > Baldwin, Matthias William

  • 67 Barnack, Oskar

    [br]
    b. 1879 Berlin, Germany
    d. January 1936 Wetzlar, Germany
    [br]
    German camera designer who conceived the first Leica camera and many subsequent models.
    [br]
    Oskar Barnack was an optical engineer, introspective and in poor health, when in 1910 he was invited through the good offices of his friend the mechanical engineer Emil Mechau, who worked for Ernst Leitz, to join the company at Wetzlar to work on research into microscope design. He was engaged after a week's trial, and on 2 January 1911 he was put in charge of microscope research. He was an enthusiastic photographer, but excursions with his large and heavy plate camera equipment taxed his strength. In 1912, Mechau was working on a revolutionary film projector design and needed film to test it. Barnack suggested that it was not necessary to buy an expensive commercial machine— why not make one? Leitz agreed, and Barnack constructed a 35 mm movie camera, which he used to cover events in and around Wetzlar.
    The exposure problems he encountered with the variable sensitivity of the cine film led him to consider the design of a still camera in which short lengths of film could be tested before shooting—a kind of exposure-meter camera. Dissatisfied with the poor picture quality of his first model, which took the standard cine frame of 18×24 mm, he built a new model in which the frame size was doubled to 36×24 mm. It used a simple focal-plane shutter adjustable to 1/500 of a second, and a Zeiss Milar lens of 42 mm focal length. This is what is now known as the UR-Leica. Using his new camera, 1/250 of the weight of his plate equipment, Barnack made many photographs around Wetzlar, giving postcard-sized prints of good quality.
    Ernst Leitz Junior was lent the camera for his trip in June 1914 to America, where he was urged to put it into production. Visiting George Eastman in Rochester, Leitz passed on Barnack's requests for film of finer grain and better quality. The First World War put an end to the chances of developing the design at that time. As Germany emerged from the postwar chaos, Leitz Junior, then in charge of the firm, took Barnack off microscope work to design prototypes for a commercial model. Leitz's Chief Optician, Max Berek, designed a new lens, the f3.5 Elmax, for the new camera. They settled on the name Leica, and the first production models went on show at the Leipzig Spring Fair in 1925. By the end of the year, 1,000 cameras had been shipped, despite costing about two months' good wages.
    The Leica camera established 35 mm still photography as a practical proposition, and film manufacturers began to create the special fine-grain films that Barnack had longed for. He continued to improve the design, and a succession of new Leica models appeared with new features, such as interchangeable lenses, coupled range-finders, 250 exposures. By the time of his sudden death in 1936, Barnack's life's work had forever transformed the nature of photography.
    [br]
    Further Reading
    J.Borgé and G.Borgé, 1977, Prestige de la, photographie.
    BC

    Biographical history of technology > Barnack, Oskar

  • 68 Bell, Revd Patrick

    [br]
    b. 1799 Auchterhouse, Scotland
    d. 22 April 1869 Carmyllie, Scotland
    [br]
    Scottish inventor of the first successful reaping machine.
    [br]
    The son of a Forfarshire tenant farmer, Patrick Bell obtained an MA from the University of St Andrews. His early association with farming kindled an interest in engineering and mechanics and he was to maintain a workshop not only on his father's farm, but also, in later life, at the parsonage at Carmyllie.
    He was still studying divinity when he invented his reaping machine. Using garden shears as the basis of his design, he built a model in 1827 and a full-scale prototype the following year. Not wishing the machine to be seen during his early experiments, he and his brother planted a sheaf of oats in soil laid out in a shed, and first tried the machine on this. It cut well enough but left the straw in a mess behind it. A canvas belt system was devised and another secret trial in the barn was followed by a night excursion into a field, where corn was successfully harvested.
    Two machines were at work during 1828, apparently achieving a harvest rate of one acre per hour. In 1832 there were ten machines at work, and at least another four had been sent to the United States by this time. Despite their success Bell did not patent his design, feeling that the idea should be given free to the world. In later years he was to regret the decision, feeling that the many badly-made imitations resulted in its poor reputation and prevented its adoption.
    Bell's calling took precedence over his inventive interests and after qualifying he went to Canada in 1833, spending four years in Fergus, Ontario. He later returned to Scotland and be-came the minister at Carmyllie, with a living of £150 per annum.
    [br]
    Principal Honours and Distinctions
    Late in the day he was honoured for his part in the development of the reaping machine. He received an honorary degree from the University of St Andrews and in 1868 a testimonial and £1,000 raised by public subscription by the Highland and Agricultural Society of Scotland.
    Bibliography
    1854, Journal of Agriculture (perhaps stung by other claims, Bell wrote his own account).
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (gives an account of the development of harvesting machinery).
    L.J.Jones, 1979, History of Technology, pp. 101–48 (gives a critical assessment of the various claims regarding the originality of the invention).
    51–69 (provides a celebration of Bell's achievement on its centenary).
    AP

    Biographical history of technology > Bell, Revd Patrick

  • 69 Blenkinsop, John

    [br]
    b. 1783 near Newcastle upon Tyne, England
    d. 22 January 1831 Leeds, England
    [br]
    English coal-mine manager who made the first successful commercial use of steam locomotives.
    [br]
    In 1808 Blenkinsop became agent to J.C.Brandling, MP, owner of Middleton Colliery, from which coal was carried to Leeds over the Middle-ton Waggonway. This had been built by Brandling's ancestor Charles Brandling, who in 1758 obtained an Act of Parliament to establish agreements with owners of land over which the wagon way was to pass. That was the first railway Act of Parliament.
    By 1808 horse haulage was becoming uneconomic because the price of fodder had increased due to the Napoleonic wars. Brandling probably saw the locomotive Catch-Me- Who-Can demonstrated by Richard Trevithick. In 1811 Blenkinsop patented drive by cog-wheel and rack rail, the power to be provided preferably by a steam engine. His object was to produce a locomotive able to haul a substantial load, while remaining light enough to minimize damage to rails made from cast iron which, though brittle, was at that date the strongest material from which rails could be made. The wagonway, formerly of wood, was relaid with iron-edge rails; along one side rails cast with rack teeth were laid beside the running surface. Locomotives incorporating Blenkinsop's cog-wheel drive were designed by Matthew Murray and built by Fenton Murray \& Wood. The design was developed from Trevithick's to include two cylinders, for easier starting and smoother running. The first locomotive was given its first public trial on 24 June 1812, when it successfully hauled eight wagons of coal, on to which fifty spectators climbed. Locomotives of this type entered regular service later in the summer and proved able to haul loads of 110 tons; Trevithick's locomotive of 1804 had managed 25 tons.
    Blenkinsop-type locomotives were introduced elsewhere in Britain and in Europe, and those upon the Kenton \& Coxlodge Wagonway, near Newcastle upon Tyne, were observed by George Stephenson. The Middleton locomotives remained at work until 1835.
    [br]
    Bibliography
    10 April, 1811, "Certain Mechanical Means by which the Conveyance of Coals, Minerals and Other Articles is Facilitated….", British patent no. 3,431.
    Further Reading
    J.Bushell, 1975, The World's Oldest Railway, Sheffield: Turntable (describes Blenkinsop's work).
    E.K.Scott (ed.), 1928, Matthew Murray, Pioneer Engineer, Leeds.
    C.von Oeynhausen and H.von Dechen, 1971, Railways in England 1826 and 1827, Cambridge: W.Heffer \& Sons.
    PJGR

    Biographical history of technology > Blenkinsop, John

  • 70 Clement (Clemmet), Joseph

    [br]
    bapt. 13 June 1779 Great Asby, Westmoreland, England
    d. 28 February 1844 London, England
    [br]
    English machine tool builder and inventor.
    [br]
    Although known as Clement in his professional life, his baptism at Asby and his death were registered under the name of Joseph Clemmet. He worked as a slater until the age of 23, but his interest in mechanics led him to spend much of his spare time in the local blacksmith's shop. By studying books on mechanics borrowed from his cousin, a watchmaker, he taught himself and with the aid of the village blacksmith made his own lathe. By 1805 he was able to give up the slating trade and find employment as a mechanic in a small factory at Kirkby Stephen. From there he moved to Carlisle for two years, and then to Glasgow where, while working as a turner, he took lessons in drawing; he had a natural talent and soon became an expert draughtsman. From about 1809 he was employed by Leys, Mason \& Co. of Aberdeen designing and making power looms. For this work he built a screw-cutting lathe and continued his self-education. At the end of 1813, having saved about £100, he made his way to London, where he soon found employment as a mechanic and draughtsman. Within a few months he was engaged by Joseph Bramah, and after a trial period a formal agreement dated 1 April 1814 was made by which Clement was to be Chief Draughtsman and Superintendent of Bramah's Pimlico works for five years. However, Bramah died in December 1814 and after his sons took over the business it was agreed that Clement should leave before the expiry of the five-year period. He soon found employment as Chief Draughtsman with Henry Maudslay \& Co. By 1817 Clement had saved about £500, which enabled him to establish his own business at Prospect Place, Newington Butts, as a mechanical draughtsman and manufacturer of high-class machinery. For this purpose he built lathes for his own use and invented various improvements in their detailed design. In 1827 he designed and built a facing lathe which incorporated an ingenious system of infinitely variable belt gearing. He had also built his own planing machine by 1820 and another, much larger one in 1825. In 1828 Clement began making fluted taps and dies and standardized the screw threads, thus anticipating on a small scale the national standards later established by Sir Joseph Whitworth. Because of his reputation for first-class workmanship, Clement was in the 1820s engaged by Charles Babbage to carry out the construction of his first Difference Engine.
    [br]
    Principal Honours and Distinctions
    Society of Arts Gold Medal 1818 (for straightline mechanism), 1827 (for facing lathe); Silver Medal 1828 (for lathe-driving device).
    Bibliography
    Further Reading
    S.Smiles, 1863, Industrial Biography, London, reprinted 1967, Newton Abbot (virtually the only source of biographical information on Clement).
    L.T.C.Rolt, 1965, Tools for the Job, London (repub. 1986); W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (both contain descriptions of his machine tools).
    RTS

    Biographical history of technology > Clement (Clemmet), Joseph

  • 71 Dallos, Joseph

    [br]
    b. 1906 Budapest, Hungary
    d. 27 June 1979 London, England
    [br]
    Hungarian ophthalmologist and contact-lens specialist who pioneered the technique of individually fitted moulded-glass contact lenses.
    [br]
    Dallos graduated from the University of Budapest in 1929 and almost at once specialized in contact-lens work and was appointed Assistant Professor. At that time the fitting of lenses was and had been, since their inception c.1885, a matter of trial and error. He developed a method of taking a moulding of the surface of the eye and then producing a blown-glass lens to this shape. His work was based on a concept of corneal physiology and the need to maintain its normal respiration and metabolism.
    In 1937 he was invited to England to set up a centre in London making these innovations available. During the Second World War he worked in collaboration with the services and their special needs, and at its conclusion was invited to work at Moorfields Eye Hospital and later at the Western Opthalmic Hospital. Although plastic materials have now superseded Dallos's technology, the fundamental basis of his work remains relevant.
    [br]
    Bibliography
    1933, "Über Haftgläser und Kontaktschalen", Klin. med. Augenheilk. 1937, "The individual fitting of contact lenses", Trans. Ophth. Soc. UK. 1930–37, Papers in the Klinische Monatsblätter fur Augenheilkunde.
    Further Reading
    S.Duke-Elder, 1970, System of Ophthalmology, Vol. 5, London.
    MG

    Biographical history of technology > Dallos, Joseph

  • 72 Gillette, King Camp

    [br]
    b. 5 January 1855 Fond du Lac, Wisconsin, USA
    d. 9 July 1932 Los Angeles, California, USA
    [br]
    American inventor and manufacturer, inventor of the safety razor.
    [br]
    Gillette's formal education in Chicago was brought to an end when a disastrous fire destroyed all his father's possessions. Forced to fend for himself, he worked first in the hardware trade in Chicago and New York, then as a travelling salesman. Gillette inherited the family talent for invention, but found that his successful inventions barely paid for those that failed. He was advised by a previous employer, William Painter (inventor of the Crown Cork), to look around for something that could be used widely and then thrown away. In 1895 he succeeded in following that advice of inventing something which people could use and then throw away, so that they would keep coming back for more. An idea came to him while he was honing an old-fashioned razor one morning; he was struck by the fact that only a short piece of the whole length of a cutthroat razor is actually used for shaving, as well as by the potentially dangerous nature of the implement. He "rushed out to purchase some pieces of brass, some steel ribbon used for clock springs, a small hand vise and some files". He thought of using a thin steel blade sharpened on each side, placed between two plates and held firmly together by a handle. Though coming from a family of inventors, Gillette had no formal technical education and was entirely ignorant of metallurgy. For six years he sought a way of making a cheap blade from sheet steel that could be hardened, tempered and sharpened to a keen edge.
    Gillette eventually found financial supporters: Henry Sachs, a Boston lamp manufacturer; his brother-in-law Jacob Heilbron; and William Nickerson, who had a considerable talent for invention. By skilled trial and error rather than expert metallurgical knowledge, Nickerson devised ways of forming and sharpening the blades, and it was these that brought commercial success. In 1901, the American Safety Razor Company, later to be renamed the Gillette Safety Razor Company, was set up. When it started production in 1903 the company was badly in debt, and managed to sell only fifty-one razors and 168 blades; but by the end of the following year, 90,000 razors and 12.4 million blades had been sold. A sound invention coupled with shrewd promotion ensured further success, and eight plants manufacturing safety razors were established in various parts of the world. Gillette's business experiences led him into the realms of social theory about the way society should be organized. He formulated his views in a series of books published over the years 1894 to 1910. He believed that competition led to a waste of up to 90 per cent of human effort and that want and crime would be eliminated by substituting a giant trust to plan production centrally. Unfortunately, the public in America, or anywhere else for that matter, were not ready for this form of Utopia; no omniscient planners were available, and human wants and needs were too various to be supplied by a single agency. Even so, some of his ideas have found favour: air conditioning and government provision of work for the unemployed. Gillette made a fortune from his invention and retired from active participation in the business in 1913, although he remained President until 1931 and Director until his death.
    [br]
    Bibliography
    "Origin of the Gillette razor", Gillette Blade (February/March).
    Further Reading
    Obituary, 1932, New York Times (11 July).
    J.Jewkes, D.Sawers and R.Stillerman, 1958, The Sources of Invention, London: Macmillan.
    LRD / IMcN

    Biographical history of technology > Gillette, King Camp

  • 73 Hamilton, Harold Lee (Hal)

    [br]
    b. 14 June 1890 Little Shasta, California, USA
    d. 3 May 1969 California, USA
    [br]
    American pioneer of diesel rail traction.
    [br]
    Orphaned as a child, Hamilton went to work for Southern Pacific Railroad in his teens, and then worked for several other companies. In his spare time he learned mathematics and physics from a retired professor. In 1911 he joined the White Motor Company, makers of road motor vehicles in Denver, Colorado, where he had gone to recuperate from malaria. He remained there until 1922, apart from an eighteenth-month break for war service.
    Upon his return from war service, Hamilton found White selling petrol-engined railbuses with mechanical transmission, based on road vehicles, to railways. He noted that they were not robust enough and that the success of petrol railcars with electric transmission, built by General Electric since 1906, was limited as they were complex to drive and maintain. In 1922 Hamilton formed, and became President of, the Electro- Motive Engineering Corporation (later Electro-Motive Corporation) to design and produce petrol-electric rail cars. Needing an engine larger than those used in road vehicles, yet lighter and faster than marine engines, he approached the Win ton Engine Company to develop a suitable engine; in addition, General Electric provided electric transmission with a simplified control system. Using these components, Hamilton arranged for his petrol-electric railcars to be built by the St Louis Car Company, with the first being completed in 1924. It was the beginning of a highly successful series. Fuel costs were lower than for steam trains and initial costs were kept down by using standardized vehicles instead of designing for individual railways. Maintenance costs were minimized because Electro-Motive kept stocks of spare parts and supplied replacement units when necessary. As more powerful, 800 hp (600 kW) railcars were produced, railways tended to use them to haul trailer vehicles, although that practice reduced the fuel saving. By the end of the decade Electro-Motive needed engines more powerful still and therefore had to use cheap fuel. Diesel engines of the period, such as those that Winton had made for some years, were too heavy in relation to their power, and too slow and sluggish for rail use. Their fuel-injection system was erratic and insufficiently robust and Hamilton concluded that a separate injector was needed for each cylinder.
    In 1930 Electro-Motive Corporation and Winton were acquired by General Motors in pursuance of their aim to develop a diesel engine suitable for rail traction, with the use of unit fuel injectors; Hamilton retained his position as President. At this time, industrial depression had combined with road and air competition to undermine railway-passenger business, and Ralph Budd, President of the Chicago, Burlington \& Quincy Railroad, thought that traffic could be recovered by way of high-speed, luxury motor trains; hence the Pioneer Zephyr was built for the Burlington. This comprised a 600 hp (450 kW), lightweight, two-stroke, diesel engine developed by General Motors (model 201 A), with electric transmission, that powered a streamlined train of three articulated coaches. This train demonstrated its powers on 26 May 1934 by running non-stop from Denver to Chicago, a distance of 1,015 miles (1,635 km), in 13 hours and 6 minutes, when the fastest steam schedule was 26 hours. Hamilton and Budd were among those on board the train, and it ushered in an era of high-speed diesel trains in the USA. By then Hamilton, with General Motors backing, was planning to use the lightweight engine to power diesel-electric locomotives. Their layout was derived not from steam locomotives, but from the standard American boxcar. The power plant was mounted within the body and powered the bogies, and driver's cabs were at each end. Two 900 hp (670 kW) engines were mounted in a single car to become an 1,800 hp (l,340 kW) locomotive, which could be operated in multiple by a single driver to form a 3,600 hp (2,680 kW) locomotive. To keep costs down, standard locomotives could be mass-produced rather than needing individual designs for each railway, as with steam locomotives. Two units of this type were completed in 1935 and sent on trial throughout much of the USA. They were able to match steam locomotive performance, with considerable economies: fuel costs alone were halved and there was much less wear on the track. In the same year, Electro-Motive began manufacturing diesel-electrie locomotives at La Grange, Illinois, with design modifications: the driver was placed high up above a projecting nose, which improved visibility and provided protection in the event of collision on unguarded level crossings; six-wheeled bogies were introduced, to reduce axle loading and improve stability. The first production passenger locomotives emerged from La Grange in 1937, and by early 1939 seventy units were in service. Meanwhile, improved engines had been developed and were being made at La Grange, and late in 1939 a prototype, four-unit, 5,400 hp (4,000 kW) diesel-electric locomotive for freight trains was produced and sent out on test from coast to coast; production versions appeared late in 1940. After an interval from 1941 to 1943, when Electro-Motive produced diesel engines for military and naval use, locomotive production resumed in quantity in 1944, and within a few years diesel power replaced steam on most railways in the USA.
    Hal Hamilton remained President of Electro-Motive Corporation until 1942, when it became a division of General Motors, of which he became Vice-President.
    [br]
    Further Reading
    P.M.Reck, 1948, On Time: The History of the Electro-Motive Division of General Motors Corporation, La Grange, Ill.: General Motors (describes Hamilton's career).
    PJGR

    Biographical history of technology > Hamilton, Harold Lee (Hal)

  • 74 Kay (of Warrington), John

    SUBJECT AREA: Textiles
    [br]
    fl. c.1770 England
    [br]
    English clockmaker who helped Richard Arkwright to construct his spinning machine.
    [br]
    John Kay was a clockmaker of Warrington. He moved to Leigh, where he helped Thomas Highs to construct his spinning machine, but lack of success made them abandon their attempts. Kay first met Richard Arkwright in March 1767 and six months later was persuaded by Arkwright to make one or more models of the roller spinning machine he had built under Highs's supervision. Kay went with Arkwright to Preston, where they continued working on the machine. Kay also went with Arkwright when he moved to Nottingham. It was around this time that he entered into an agreement with Arkwright to serve him for twenty-one years and was bound not to disclose any details of the machines. Presumably Kay helped to set up the first spinning machines at Arkwright's Nottingham mill as well as at Cromford. Despite their agreement, he seems to have left after about five years and may have disclosed the secret of Arkwright's crank and comb on the carding engine to others. Kay was later to give evidence against Arkwright during the trial of his patent in 1785.
    [br]
    Further Reading
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (the most detailed account of Kay's connections with Arkwright and his evidence during the later patent trials).
    A.P.Wadsworth and J. de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, Manchester (mentions Kay's association with Arkwright).
    RLH

    Biographical history of technology > Kay (of Warrington), John

  • 75 Lartigue, Charles François Marie-Thérèse

    [br]
    b. 1834 Toulouse, France d. 1907
    [br]
    French engineer and businessman, inventor of the Lartigue monorail.
    [br]
    Lartigue worked as a civil engineer in Algeria and while there invented a simple monorail for industrial or agricultural use. It comprised a single rail carried on trestles; vehicles comprised a single wheel with two tubs suspended either side, like panniers. These were pushed or pulled by hand or, occasionally, hauled by mule. Such lines were used in Algerian esparto-grass plantations.
    In 1882 he patented a monorail system based on this arrangement, with important improvements: traction was to be mechanical; vehicles were to have two or four wheels and to be able to be coupled together; and the trestles were to have, on each side, a light guide rail upon which horizontal rollers beneath the vehicles would bear. Early in 1883 the Lartigue Railway Construction Company was formed in London and two experimental prototype monorails were subsequently demonstrated in public. One, at the Paris Agricultural Exhibition, had an electric locomotive that was built in two parts, one either side of the rail to maintain balance, hauling small wagons. The other prototype, in London, had a small, steam locomotive with two vertical boilers and was designed by Anatole Mallet. By now Lartigue had become associated with F.B. Behr. Behr was Managing Director of the construction company and of the Listowel \& Ballybunion Railway Company, which obtained an Act of Parliament in 1886 to built a Lartigue monorail railway in the South West of Ireland between those two places. Its further development and successful operation are described in the article on Behr in this volume.
    A much less successful attempt to establish a Lartigue monorail railway took place in France, in the départment of Loire. In 1888 the council of the département agreed to a proposal put forward by Lartigue for a 10 1/2 mile (17 km) long monorail between the towns of Feurs and Panissières: the agreement was reached on the casting vote of the Chairman, a contact of Lartigue. A concession was granted to successive companies with which Lartigue was closely involved, but construction of the line was attended by muddle, delay and perhaps fraud, although it was completed sufficiently for trial trains to operate. The locomotive had two horizontal boilers, one either side of the track. But the inspectors of the department found deficiencies in the completeness and probable safety of the railway; when they did eventually agree to opening on a limited scale, the company claimed to have insufficient funds to do so unless monies owed by the department were paid. In the end the concession was forfeited and the line dismantled. More successful was an electrically operated Lartigue mineral line built at mines in the eastern Pyrenees.
    It appears to have reused equipment from the electric demonstration line, with modifications, and included gradients as steep as 1 in 12. There was no generating station: descending trains generated the electricity to power ascending ones. This line is said to have operated for at least two years.
    [br]
    Bibliography
    1882, French patent no. 149,301 (monorail system). 1882, British patent no. 2,764 (monorail system).
    Further Reading
    D.G.Tucker, 1984, "F.B.Behr's development of the Lartigue monorail", Transactions of the Newcomen Society 55 (describes Lartigue and his work).
    P.H.Chauffort and J.-L.Largier, 1981, "Le monorail de Feurs à Panissières", Chemin defer régionaux et urbains (magazine of the Fédération des Amis des Chemins de Fer
    Secondaires) 164 (in French; describes Lartigue and his work).
    PJGR

    Biographical history of technology > Lartigue, Charles François Marie-Thérèse

  • 76 Lesseps, Ferdinand de

    SUBJECT AREA: Canals
    [br]
    b. 19 November 1805 Versailles, France
    d. 7 December 1894 La Chesnaye, near Paris, France
    [br]
    French diplomat and canal entrepreneur.
    [br]
    Ferdinand de Lesseps was born into a family in the diplomatic service and it was intended that his should be his career also. He was educated at the Lycée Napoléon in Paris. In 1825, aged 20, he was appointed an attaché to the French consulate in Lisbon. In 1828 he went to the Consulate-General in Tunis and in 1831 was posted from there to Egypt, becoming French Consul in Cairo two years later. For his work there during the plague in 1836 he was awarded the Croix de Chevalier in the Légion d'honneur. During this time he became very friendly with Said Mohammed and the friendship was maintained over the years, although there were no expectations then that Said would occupy any great position of authority.
    De Lesseps then served in other countries. In 1841 he had thought about a canal from the Mediterranean to the Red Sea, and he brooded over the idea until 1854. In October of that year, having retired from the diplomatic service, he returned to Egypt privately. His friend Said became Viceroy and he readily agreed to the proposal to cut the canal. At first there was great international opposition to the idea, and in 1855 de Lesseps travelled to England to try to raise capital. Work finally started in 1859, but there were further delays following the death of Said Pasha in 1863. The work was completed in 1869 and the canal was formally opened by the Empress Eugenic on 20 November 1869. De Lesseps was fêted in France and awarded the Grand Croix de la Légion d'honneur.
    He subsequently promoted the project of the Corinth Canal, but his great ambition in his later years was to construct a canal across the Isthmus of Panama. This idea had been conceived by Spanish adventurers in 1514, but everyone felt the problems and cost would be too great. De Lesseps, riding high in popularity and with his charismatic character, convinced the public of the scheme's feasibility and was able to raise vast sums for the enterprise. He proposed a sea-level canal, which required the excavation of a 350 ft (107 m) cut through terrain; this eventually proved impossible, but work nevertheless started in 1881.
    In 1882 de Lesseps became first President d'-Honneur of the Syndicat des Entrepreneurs de Travaux Publics de France and was elected to the Chair of the French Academy in 1884. By 1891 the Panama Canal was in a disastrous financial crisis: a new company was formed, and because of the vast sums expended a financial investigation was made. The report led to de Lesseps, his son and several high-ranking government ministers and officials being charged with bribery and corruption, but de Lesseps was a very sick man and never appeared at the trial. He was never convicted, although others were, and he died soon after, at the age of 89, at his home.
    [br]
    Principal Honours and Distinctions
    Croix de Chevalier de la Légion d'honneur 1836; Grand Croix 1869.
    Further Reading
    John S.Pudney, 1968, Suez. De Lesseps' Canal, London: Dent.
    John Marlowe, 1964, The Making of the Suez Canal, London: Cresset.
    JHB

    Biographical history of technology > Lesseps, Ferdinand de

  • 77 Matzeliger, Jan

    [br]
    b. 1852 Surinam
    d. 1889 Lynn, Massachusetts, (?) USA
    [br]
    African-American inventor of the shoe-lasting machine.
    [br]
    He served an apprenticeship as a machinist in his native country, Surinam. As a young man he emigrated to New England in the USA, but he was unable to secure employment in his trade. To survive, he took various odd jobs, including sewing soles on to shoes in a factory at Lynn, Massachusetts, a centre of the shoemaking industry. Much of the shoemaking process had already been mechanized, but lasting remained laborious, painstaking hand work. Matzeliger turned his undoubted inventive powers to mechanizing this operation. It took him four years to achieve a working model of a mechanical last that could be patented. By this time his health and finances had been undermined by the struggle to reach this stage; to raise funds he had to dispose of two-thirds of his rights in his patent to two local investors. Eventually he demonstrated a trial model of his lasting machine and successfully lasted seventy-five pairs of shoes. Not satisfied with that, Matzeliger went on to produce two improved machines, protected by further patents. Finally, the United Shoe Machine Company bought up his patents, but that relief came too late to prevent Matzeliger from dying in poor circumstances. The mechanization of shoe lasting made a significant contribution to the manufacture of shoes, raising production and reducing costs. It also effectively extinguished the final element of skilled hand work required in shoemaking, earning him considerable unpopularity among the workers who were about to be displaced, and resulting in the machine being derogatorily nicknamed "Niggerhead".
    [br]
    Further Reading
    P.P.James, 1989, The Real McCoy: African-American Invention and Innovation 1619– 1930, Washington, DC: Smithsonian Institution, pp. 70–2.
    LRD

    Biographical history of technology > Matzeliger, Jan

  • 78 Muybridge, Eadweard

    [br]
    b. 9 April 1830 Kingston upon Thames, England
    d. 8 May 1904 Kingston upon Thames, England
    [br]
    English photographer and pioneer of sequence photography of movement.
    [br]
    He was born Edward Muggeridge, but later changed his name, taking the Saxon spelling of his first name and altering his surname, first to Muygridge and then to Muybridge. He emigrated to America in 1851, working in New York in bookbinding and selling as a commission agent for the London Printing and Publishing Company. Through contact with a New York daguerreotypist, Silas T.Selleck, he acquired an interest in photography that developed after his move to California in 1855. On a visit to England in 1860 he learned the wet-collodion process from a friend, Arthur Brown, and acquired the best photographic equipment available in London before returning to America. In 1867, under his trade pseudonym "Helios", he set out to record the scenery of the Far West with his mobile dark-room, christened "The Flying Studio".
    His reputation as a photographer of the first rank spread, and he was commissioned to record the survey visit of Major-General Henry W.Halleck to Alaska and also to record the territory through which the Central Pacific Railroad was being constructed. Perhaps because of this latter project, he was approached by the President of the Central Pacific, Leland Stanford, to attempt to photograph a horse trotting at speed. There was a long-standing controversy among racing men as to whether a trotting horse had all four hooves off the ground at any point; Stanford felt that it did, and hoped than an "instantaneous" photograph would settle the matter once and for all. In May 1872 Muybridge photographed the horse "Occident", but without any great success because the current wet-collodion process normally required many seconds, even in a good light, for a good result. In April 1873 he managed to produce some better negatives, in which a recognizable silhouette of the horse showed all four feet above the ground at the same time.
    Soon after, Muybridge left his young wife, Flora, in San Francisco to go with the army sent to put down the revolt of the Modoc Indians. While he was busy photographing the scenery and the combatants, his wife had an affair with a Major Harry Larkyns. On his return, finding his wife pregnant, he had several confrontations with Larkyns, which culminated in his shooting him dead. At his trial for murder, in February 1875, Muybridge was acquitted by the jury on the grounds of justifiable homicide; he left soon after on a long trip to South America.
    He again took up his photographic work when he returned to North America and Stanford asked him to take up the action-photography project once more. Using a new shutter design he had developed while on his trip south, and which would operate in as little as 1/1,000 of a second, he obtained more detailed pictures of "Occident" in July 1877. He then devised a new scheme, which Stanford sponsored at his farm at Palo Alto. A 50 ft (15 m) long shed was constructed, containing twelve cameras side by side, and a white background marked off with vertical, numbered lines was set up. Each camera was fitted with Muybridge's highspeed shutter, which was released by an electromagnetic catch. Thin threads stretched across the track were broken by the horse as it moved along, closing spring electrical contacts which released each shutter in turn. Thus, in about half a second, twelve photographs were obtained that showed all the phases of the movement.
    Although the pictures were still little more than silhouettes, they were very sharp, and sequences published in scientific and photographic journals throughout the world excited considerable attention. By replacing the threads with an electrical commutator device, which allowed the release of the shutters at precise intervals, Muybridge was able to take series of actions by other animals and humans. From 1880 he lectured in America and Europe, projecting his results in motion on the screen with his Zoopraxiscope projector. In August 1883 he received a grant of $40,000 from the University of Pennsylvania to carry on his work there. Using the vastly improved gelatine dry-plate process and new, improved multiple-camera apparatus, during 1884 and 1885 he produced over 100,000 photographs, of which 20,000 were reproduced in Animal Locomotion in 1887. The subjects were animals of all kinds, and human figures, mostly nude, in a wide range of activities. The quality of the photographs was extremely good, and the publication attracted considerable attention and praise.
    Muybridge returned to England in 1894; his last publications were Animals in Motion (1899) and The Human Figure in Motion (1901). His influence on the world of art was enormous, over-turning the conventional representations of action hitherto used by artists. His work in pioneering the use of sequence photography led to the science of chronophotography developed by Marey and others, and stimulated many inventors, notably Thomas Edison to work which led to the introduction of cinematography in the 1890s.
    [br]
    Bibliography
    1887, Animal Locomotion, Philadelphia.
    1893, Descriptive Zoopraxography, Pennsylvania. 1899, Animals in Motion, London.
    Further Reading
    1973, Eadweard Muybridge: The Stanford Years, Stanford.
    G.Hendricks, 1975, Muybridge: The Father of the Motion Picture, New York. R.Haas, 1976, Muybridge: Man in Motion, California.
    BC

    Biographical history of technology > Muybridge, Eadweard

  • 79 Ridley, John

    [br]
    b. 1806 West Boldon, Co. Durham, England
    d. 1887 Malvern, England
    [br]
    English developer of the stripper harvester which led to a machine suited to the conditions of Australia and South America.
    [br]
    John Ridley was a preacher in his youth, and then became a mill owner before migrating to Australia with his wife and daughters in 1839. Intending to continue his business in the new colony, he took with him a "Grasshopper" overbeam steam-engine made by James Watt, together with milling equipment. Cereal acreages were insufficient for the steam power he had available, and he expanded into saw milling as well as farming 300 acres. Aware of the Adelaide trials of reaping machines, he eventually built a prototype using the same principles as those developed by Wrathall Bull. After a successful trial in 1843 Ridley began the patent procedure in England, although he never completed the project. The agricultural press was highly enthusiastic about his machine, but when trials took place in 1855 the award went to a rival. The development of the stripper enabled a spectacular increase in the cereal acreage planted over the next decade. Ridley left Australia in 1853 and returned to England. He built a number of machines to his design in Leeds; however, these failed to perform in the much damper English climate. All of the machines were exported to South America, anticipating a substantial market to be exploited by Australian manufacturers.
    [br]
    Principal Honours and Distinctions
    In 1913 a Ridley scholarship was established by the faculty of Agriculture at Adelaide University.
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (includes a chapter devoted to the Australian developments).
    A.E.Ridley, 1904, A Backward Glance (describes Ridley's own story).
    G.L.Sutton, 1937, The Invention of the Stripper (a review of the disputed claims between Ridley and Bull).
    L.J.Jones, 1980, "John Ridley and the South Australian stripper", The History of
    Technology, pp. 55–103 (a more detailed study).
    ——1979, "The early history of mechanical harvesting", The History of Technology, pp. 4,101–48 (discusses the various claims to the first invention of a machine for mechanical harvesting).
    AP

    Biographical history of technology > Ridley, John

  • 80 Seguin, Marc

    [br]
    b. 20 April 1786 Annonay, Ardèche, France
    d. 24 February 1875 Annonay, Ardèche, France
    [br]
    French engineer, inventor of multi-tubular firetube boiler.
    [br]
    Seguin trained under Joseph Montgolfier, one of the inventors of the hot-air balloon, and became a pioneer of suspension bridges. In 1825 he was involved in an attempt to introduce steam navigation to the River Rhône using a tug fitted with a winding drum to wind itself upstream along a cable attached to a point on the bank, with a separate boat to transfer the cable from point to point. The attempt proved unsuccessful and was short-lived, but in 1825 Seguin had decided also to seek a government concession for a railway from Saint-Etienne to Lyons as a feeder of traffic to the river. He inspected the Stockton \& Darlington Railway and met George Stephenson; the concession was granted in 1826 to Seguin Frères \& Ed. Biot and two steam locomotives were built to their order by Robert Stephenson \& Co. The locomotives were shipped to France in the spring of 1828 for evaluation prior to construction of others there; each had two vertical cylinders, one each side between front and rear wheels, and a boiler with a single large-diameter furnace tube, with a watertube grate. Meanwhile, in 1827 Seguin, who was still attempting to produce a steamboat powerful enough to navigate the fast-flowing Rhône, had conceived the idea of increasing the heating surface of a boiler by causing the hot gases from combustion to pass through a series of tubes immersed in the water. He was soon considering application of this type of boiler to a locomotive. He applied for a patent for a multi-tubular boiler on 12 December 1827 and carried out numerous experiments with various means of producing a forced draught to overcome the perceived obstruction caused by the small tubes. By May 1829 the steam-navigation venture had collapsed, but Seguin had a locomotive under construction in the workshops of the Lyons-Sain t- Etienne Railway: he retained the cylinder layout of its Stephenson locomotives, but incorporated a boiler of his own design. The fire was beneath the barrel, surrounded by a water-jacket: a single large flue ran towards the front of the boiler, whence hot gases returned via many small tubes through the boiler barrel to a chimney above the firedoor. Draught was provided by axle-driven fans on the tender.
    Seguin was not aware of the contemporary construction of Rocket, with a multi-tubular boiler, by Robert Stephenson; Rocket had its first trial run on 5 September 1829, but the precise date on which Seguin's locomotive first ran appears to be unknown, although by 20 October many experiments had been carried out upon it. Seguin's concept of a multi-tubular locomotive boiler therefore considerably antedated that of Henry Booth, and his first locomotive was completed about the same date as Rocket. It was from Rocket's boiler, however, rather than from that of Seguin's locomotive, that the conventional locomotive boiler was descended.
    [br]
    Bibliography
    February 1828, French patent no. 3,744 (multi-tubular boiler).
    1839, De l'Influence des chemins de fer et de l'art de les tracer et de les construire, Paris.
    Further Reading
    F.Achard and L.Seguin, 1928, "Marc Seguin and the invention of the tubular boiler", Transactions of the Newcomen Society 7 (traces the chronology of Seguin's boilers).
    ——1928, "British railways of 1825 as seen by Marc Seguin", Transactions of the Newcomen Society 7.
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson.
    J.-M.Combe and B.Escudié, 1991, Vapeurs sur le Rhône, Lyons: Presses Universitaires de Lyon.
    PJGR

    Biographical history of technology > Seguin, Marc

См. также в других словарях:

  • Trial and error — Trial and error, or trial by error, is a general method of problem solving for obtaining knowledge, both propositional knowledge and know how. In the field of computer science, the method is called generate and test. In elementary algebra, when… …   Wikipedia

  • Trial by ordeal — is a judicial practice by which the guilt or innocence of the accused is determined by subjecting them to an unpleasant, usually dangerous experience. In some cases, the accused were considered innocent only if they survived the test, or if their …   Wikipedia

  • Trial of Joan of Arc — The Trial of Joan of Arc, which took place before an English backed church court in Rouen, France in the first half of the year 1431 was, by general consensus, one of the most significant and moving trials ever conducted in human history. It… …   Wikipedia

  • Trial — For other uses, see Trial (disambiguation). Mistrial redirects here. For other uses, see Mistrial (disambiguation). In law, a trial is when parties to a dispute come together to present information (in the form of evidence) in a tribunal, a… …   Wikipedia

  • Trial (law) — In law, a trial is an event in which parties come together to a dispute present information (in the form of evidence) in a formal setting, usually a court, before a judge, jury, or other designated finder of fact, in order to achieve a resolution …   Wikipedia

  • Subject-object problem — issues tone=December 2007 confusing=September 2008 unbalanced=July 2008 refimprove=July 2008 The subject object problem is a longstanding philosophical issue. It arises from the notion that the world consists of objects (what is observed) which… …   Wikipedia

  • Trial by combat — 1540s depiction of a 1409 judicial combat in Augsburg (Paulus Hector Mair, Munich cod. icon. 393) Trial by combat (also wager of battle, trial by battle or judicial duel) was a method of Germanic law to settle accusations in the absence of… …   Wikipedia

  • Trial of Conrad Murray — People v. Murray Court Superior Court of Los Angeles County Full case name People of the State of California v. Conrad Robert Murray Date decided November 7, 2011 Judge(s) sitting Michael E. Pastor Case opinions …   Wikipedia

  • Trial de novo — Civil procedure in the United States Federal Rules of Civil Procedure Doctrines of civil procedure Jurisdiction Subject matter jurisdiction Diversity jurisdiction Personal jurisdiction Removal jurisdiction Venue Change of venue …   Wikipedia

  • Trial and conviction of Alfred Dreyfus — The trial and conviction of Alfred Dreyfus was the event that instigated the Dreyfus Affair, a political scandal which divided France during the 1890s and early 1900s. It involved the wrongful conviction of Dreyfus, a Jewish military officer, for …   Wikipedia

  • Trial court — Court of first instance redirects here. For other uses, see Court of first instance (disambiguation). A trial court or court of first instance is a court in which trials take place. Such courts are said to have original jurisdiction. In the… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»