Перевод: со всех языков на английский

с английского на все языки

sketches)

  • 101 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 102 Gresley, Sir Herbert Nigel

    [br]
    b. 19 June 1876 Edinburgh, Scotland
    d. 5 April 1941 Hertford, England
    [br]
    English mechanical engineer, designer of the A4-class 4–6–2 locomotive holding the world speed record for steam traction.
    [br]
    Gresley was the son of the Rector of Netherseale, Derbyshire; he was educated at Marlborough and by the age of 13 was skilled at making sketches of locomotives. In 1893 he became a pupil of F.W. Webb at Crewe works, London \& North Western Railway, and in 1898 he moved to Horwich works, Lancashire \& Yorkshire Railway, to gain drawing-office experience under J.A.F.Aspinall, subsequently becoming Foreman of the locomotive running sheds at Blackpool. In 1900 he transferred to the carriage and wagon department, and in 1904 he had risen to become its Assistant Superintendent. In 1905 he moved to the Great Northern Railway, becoming Superintendent of its carriage and wagon department at Doncaster under H.A. Ivatt. In 1906 he designed and produced a bogie luggage van with steel underframe, teak body, elliptical roof, bowed ends and buckeye couplings: this became the prototype for East Coast main-line coaches built over the next thirty-five years. In 1911 Gresley succeeded Ivatt as Locomotive, Carriage \& Wagon Superintendent. His first locomotive was a mixed-traffic 2–6–0, his next a 2–8–0 for freight. From 1915 he worked on the design of a 4–6–2 locomotive for express passenger traffic: as with Ivatt's 4 4 2s, the trailing axle would allow the wide firebox needed for Yorkshire coal. He also devised a means by which two sets of valve gear could operate the valves on a three-cylinder locomotive and applied it for the first time on a 2–8–0 built in 1918. The system was complex, but a later simplified form was used on all subsequent Gresley three-cylinder locomotives, including his first 4–6–2 which appeared in 1922. In 1921, Gresley introduced the first British restaurant car with electric cooking facilities.
    With the grouping of 1923, the Great Northern Railway was absorbed into the London \& North Eastern Railway and Gresley was appointed Chief Mechanical Engineer. More 4–6– 2s were built, the first British class of such wheel arrangement. Modifications to their valve gear, along lines developed by G.J. Churchward, reduced their coal consumption sufficiently to enable them to run non-stop between London and Edinburgh. So that enginemen might change over en route, some of the locomotives were equipped with corridor tenders from 1928. The design was steadily improved in detail, and by comparison an experimental 4–6–4 with a watertube boiler that Gresley produced in 1929 showed no overall benefit. A successful high-powered 2–8–2 was built in 1934, following the introduction of third-class sleeping cars, to haul 500-ton passenger trains between Edinburgh and Aberdeen.
    In 1932 the need to meet increasing road competition had resulted in the end of a long-standing agreement between East Coast and West Coast railways, that train journeys between London and Edinburgh by either route should be scheduled to take 8 1/4 hours. Seeking to accelerate train services, Gresley studied high-speed, diesel-electric railcars in Germany and petrol-electric railcars in France. He considered them for the London \& North Eastern Railway, but a test run by a train hauled by one of his 4–6–2s in 1934, which reached 108 mph (174 km/h), suggested that a steam train could better the railcar proposals while its accommodation would be more comfortable. To celebrate the Silver Jubilee of King George V, a high-speed, streamlined train between London and Newcastle upon Tyne was proposed, the first such train in Britain. An improved 4–6–2, the A4 class, was designed with modifications to ensure free running and an ample reserve of power up hill. Its streamlined outline included a wedge-shaped front which reduced wind resistance and helped to lift the exhaust dear of the cab windows at speed. The first locomotive of the class, named Silver Link, ran at an average speed of 100 mph (161 km/h) for 43 miles (69 km), with a maximum speed of 112 1/2 mph (181 km/h), on a seven-coach test train on 27 September 1935: the locomotive went into service hauling the Silver Jubilee express single-handed (since others of the class had still to be completed) for the first three weeks, a round trip of 536 miles (863 km) daily, much of it at 90 mph (145 km/h), without any mechanical troubles at all. Coaches for the Silver Jubilee had teak-framed, steel-panelled bodies on all-steel, welded underframes; windows were double glazed; and there was a pressure ventilation/heating system. Comparable trains were introduced between London Kings Cross and Edinburgh in 1937 and to Leeds in 1938.
    Gresley did not hesitate to incorporate outstanding features from elsewhere into his locomotive designs and was well aware of the work of André Chapelon in France. Four A4s built in 1938 were equipped with Kylchap twin blast-pipes and double chimneys to improve performance still further. The first of these to be completed, no. 4468, Mallard, on 3 July 1938 ran a test train at over 120 mph (193 km/h) for 2 miles (3.2 km) and momentarily achieved 126 mph (203 km/h), the world speed record for steam traction. J.Duddington was the driver and T.Bray the fireman. The use of high-speed trains came to an end with the Second World War. The A4s were then demonstrated to be powerful as well as fast: one was noted hauling a 730-ton, 22-coach train at an average speed exceeding 75 mph (120 km/h) over 30 miles (48 km). The war also halted electrification of the Manchester-Sheffield line, on the 1,500 volt DC overhead system; however, anticipating eventual resumption, Gresley had a prototype main-line Bo-Bo electric locomotive built in 1941. Sadly, Gresley died from a heart attack while still in office.
    [br]
    Principal Honours and Distinctions
    Knighted 1936. President, Institution of Locomotive Engineers 1927 and 1934. President, Institution of Mechanical Engineers 1936.
    Further Reading
    F.A.S.Brown, 1961, Nigel Gresley, Locomotive Engineer, Ian Allan (full-length biography).
    John Bellwood and David Jenkinson, Gresley and Stanier. A Centenary Tribute (a good comparative account).
    PJGR

    Biographical history of technology > Gresley, Sir Herbert Nigel

  • 103 Howe, Elias

    [br]
    b. 9 July 1819 Spencer, Massachusetts, USA
    d. 3 October 1867 Bridgeport, Connecticut, USA
    [br]
    American inventor of one of the earliest successful sewing machines.
    [br]
    Son of Elias Howe, a farmer, he acquired his mechanical knowledge in his father's mill. He left school at 12 years of age and was apprenticed for two years in a machine shop in Lowell, Massachusetts, and later to an instrument maker, Ari Davis in Boston, Massachusetts, where his master's services were much in demand by Harvard University. Fired by a desire to invent a sewing machine, he utilized the experience gained in Lowell to devise a shuttle carrying a lower thread and a needle carrying an upper thread to make lock-stitch in straight lines. His attempts were so rewarding that he left his job and was sustained first by his father and then by a partner. By 1845 he had built a machine that worked at 250 stitches per minute, and the following year he patented an improved machine. The invention of the sewing machine had an enormous impact on the textile industry, stimulating demand for cloth because making up garments became so much quicker. The sewing machine was one of the first mass-produced consumer durables and was essentially an American invention. William Thomas, a London manufacturer of shoes, umbrellas and corsets, secured the British rights and persuaded Howe to come to England to apply it to the making of shoes. This Howe did, but he quarrelled with Thomas after less than one year. He returned to America to face with his partner, G.W.Bliss, a bigger fight over his patent (see I.M. Singer), which was being widely infringed. Not until 1854 was the case settled in his favour. This litigation threatened the very existence of the new industry, but the Great Sewing Machine Combination, the first important patent-pooling arrangement in American history, changed all this. For a fee of $5 on every domestically-sold machine and $1 on every exported one, Howe contributed to the pool his patent of 1846 for a grooved eye-pointed needle used in conjunction with a lock-stitch-forming shuttle. Howe's patent was renewed in 1861; he organized and equipped a regiment during the Civil War with the royalties. When the war ended he founded the Howe Machine Company of Bridgeport, Connecticut.
    [br]
    Further Reading
    Obituary, 1867, Engineer 24.
    Obituary, 1867, Practical Magazine 5.
    F.G.Harrison, 1892–3, Biographical Sketches of Pre-eminent Americans (provides a good account of Howe's life and achievements).
    N.Salmon, 1863, History of the Sewing Machine from the Year 1750, with a biography of Elias Howe, London (tells the history of sewing machines).
    F.B.Jewell, 1975, Veteran Sewing Machines, A Collector's Guide, Newton Abbot (a more modern account of the history of sewing machines).
    C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press (covers the mechanical developments).
    D.A.Hounshell, 1984, From the American System to Mass Production 1800–1932. The
    Development of Manufacturing Technology in the United States, Baltimore (examines the role of the American sewing machine companies in the development of mass-production techniques).
    RLH

    Biographical history of technology > Howe, Elias

  • 104 Leonardo da Vinci

    [br]
    b. 15 April 1452 Vinci, near Florence, Italy,
    d. 2 May 1519 St Cloux, near Amboise, France.
    [br]
    Italian scientist, engineer, inventor and artist.
    [br]
    Leonardo was the illegitimate son of a Florentine lawyer. His first sixteen years were spent with the lawyer's family in the rural surroundings of Vinci, which aroused in him a lifelong love of nature and an insatiable curiosity in it. He received little formal education but extended his knowledge through private reading. That gave him only a smattering of Latin, a deficiency that was to be a hindrance throughout his active life. At sixteen he was apprenticed in the studio of Andrea del Verrochio in Florence, where he received a training not only in art but in a wide variety of crafts and technical arts.
    In 1482 Leonardo went to Milan, where he sought and obtained employment with Ludovico Sforza, later Duke of Milan, partly to sculpt a massive equestrian statue of Ludovico but the work never progressed beyond the full-scale model stage. He did, however, complete the painting which became known as the Virgin of the Rocks and in 1497 his greatest artistic achievement, The Last Supper, commissioned jointly by Ludovico and the friars of Santa Maria della Grazie and painted on the wall of the monastery's refectory. Leonardo was responsible for the court pageants and also devised a system of irrigation to supply water to the plains of Lombardy. In 1499 the French army entered Milan and deposed Leonardo's employer. Leonardo departed and, after a brief visit to Mantua, returned to Florence, where for a time he was employed as architect and engineer to Cesare Borgia, Duke of Romagna. Around 1504 he completed another celebrated work, the Mona Lisa.
    In 1506 Leonardo began his second sojourn in Milan, this time in the service of King Louis XII of France, who appointed him "painter and engineer". In 1513 Leonardo left for Rome in the company of his pupil Francesco Melzi, but his time there was unproductive and he found himself out of touch with the younger artists active there, Michelangelo above all. In 1516 he accepted with relief an invitation from King François I of France to reside at the small château of St Cloux in the royal domain of Amboise. With the pension granted by François, Leonardo lived out his remaining years in tranquility at St Cloux.
    Leonardo's career can hardly be regarded as a success or worthy of such a towering genius. For centuries he was known only for the handful of artistic works that he managed to complete and have survived more or less intact. His main activity remained hidden until the nineteenth and twentieth centuries, during which the contents of his notebooks were gradually revealed. It became evident that Leonardo was one of the greatest scientific investigators and inventors in the history of civilization. Throughout his working life he extended a searching curiosity over an extraordinarily wide range of subjects. The notes show careful investigation of questions of mechanical and civil engineering, such as power transmission by means of pulleys and also a form of chain belting. The notebooks record many devices, such as machines for grinding and polishing lenses, a lathe operated by treadle-crank, a rolling mill with conical rollers and a spinning machine with pinion and yard divider. Leonardo made an exhaustive study of the flight of birds, with a view to designing a flying machine, which obsessed him for many years.
    Leonardo recorded his observations and conclusions, together with many ingenious inventions, on thousands of pages of manuscript notes, sketches and drawings. There are occasional indications that he had in mind the publication of portions of the notes in a coherent form, but he never diverted his energy into putting them in order; instead, he went on making notes. As a result, Leonardo's impact on the development of science and technology was virtually nil. Even if his notebooks had been copied and circulated, there were daunting impediments to their understanding. Leonardo was left-handed and wrote in mirror-writing: that is, in reverse from right to left. He also used his own abbreviations and no punctuation.
    At his death Leonardo bequeathed his entire output of notes to his friend and companion Francesco Melzi, who kept them safe until his own death in 1570. Melzi left the collection in turn to his son Orazio, whose lack of interest in the arts and sciences resulted in a sad period of dispersal which endangered their survival, but in 1636 the bulk of them, in thirteen volumes, were assembled and donated to the Ambrosian Library in Milan. These include a large volume of notes and drawings compiled from the various portions of the notebooks and is now known as the Codex Atlanticus. There they stayed, forgotten and ignored, until 1796, when Napoleon's marauding army overran Italy and art and literary works, including the thirteen volumes of Leonardo's notebooks, were pillaged and taken to Paris. After the war in 1815, the French government agreed to return them but only the Codex Atlanticus found its way back to Milan; the rest remained in Paris. The appendix to one notebook, dealing with the flight of birds, was later regarded as of sufficient importance to stand on its own. Four small collections reached Britain at various times during the seventeenth and eighteenth centuries; of these, the volume in the Royal Collection at Windsor Castle is notable for its magnificent series of anatomical drawings. Other collections include the Codex Leicester and Codex Arundel in the British Museum in London, and the Madrid Codices in Spain.
    Towards the end of the nineteenth century, Leonardo's true stature as scientist, engineer and inventor began to emerge, particularly with the publication of transcriptions and translations of his notebooks. The volumes in Paris appeared in 1881–97 and the Codex Atlanticus was published in Milan between 1894 and 1904.
    [br]
    Principal Honours and Distinctions
    "Premier peintre, architecte et mécanicien du Roi" to King François I of France, 1516.
    Further Reading
    E.MacCurdy, 1939, The Notebooks of Leonardo da Vinci, 2 vols, London; 2nd edn, 1956, London (the most extensive selection of the notes, with an English translation).
    G.Vasari (trans. G.Bull), 1965, Lives of the Artists, London: Penguin, pp. 255–271.
    C.Gibbs-Smith, 1978, The Inventions of Leonardo da Vinci, Oxford: Phaidon. L.H.Heydenreich, Dibner and L. Reti, 1981, Leonardo the Inventor, London: Hutchinson.
    I.B.Hart, 1961, The World of Leonardo da Vinci, London: Macdonald.
    LRD / IMcN

    Biographical history of technology > Leonardo da Vinci

  • 105 Talbot, William Henry Fox

    [br]
    b. 11 February 1800 Melbury, England
    d. 17 September 1877 Lacock, Wiltshire, England
    [br]
    English scientist, inventor of negative—positive photography and practicable photo engraving.
    [br]
    Educated at Harrow, where he first showed an interest in science, and at Cambridge, Talbot was an outstanding scholar and a formidable mathematician. He published over fifty scientific papers and took out twelve English patents. His interests outside the field of science were also wide and included Assyriology, etymology and the classics. He was briefly a Member of Parliament, but did not pursue a parliamentary career.
    Talbot's invention of photography arose out of his frustrating attempts to produce acceptable pencil sketches using popular artist's aids, the camera discura and camera lucida. From his experiments with the former he conceived the idea of placing on the screen a paper coated with silver salts so that the image would be captured chemically. During the spring of 1834 he made outline images of subjects such as leaves and flowers by placing them on sheets of sensitized paper and exposing them to sunlight. No camera was involved and the first images produced using an optical system were made with a solar microscope. It was only when he had devised a more sensitive paper that Talbot was able to make camera pictures; the earliest surviving camera negative dates from August 1835. From the beginning, Talbot noticed that the lights and shades of his images were reversed. During 1834 or 1835 he discovered that by placing this reversed image on another sheet of sensitized paper and again exposing it to sunlight, a picture was produced with lights and shades in the correct disposition. Talbot had discovered the basis of modern photography, the photographic negative, from which could be produced an unlimited number of positives. He did little further work until the announcement of Daguerre's process in 1839 prompted him to publish an account of his negative-positive process. Aware that his photogenic drawing process had many imperfections, Talbot plunged into further experiments and in September 1840, using a mixture incorporating a solution of gallic acid, discovered an invisible latent image that could be made visible by development. This improved calotype process dramatically shortened exposure times and allowed Talbot to take portraits. In 1841 he patented the process, an exercise that was later to cause controversy, and between 1844 and 1846 produced The Pencil of Nature, the world's first commercial photographically illustrated book.
    Concerned that some of his photographs were prone to fading, Talbot later began experiments to combine photography with printing and engraving. Using bichromated gelatine, he devised the first practicable method of photo engraving, which was patented as Photoglyphic engraving in October 1852. He later went on to use screens of gauze, muslin and finely powdered gum to break up the image into lines and dots, thus anticipating modern photomechanical processes.
    Talbot was described by contemporaries as the "Father of Photography" primarily in recognition of his discovery of the negative-positive process, but he also produced the first photomicrographs, took the first high-speed photographs with the aid of a spark from a Leyden jar, and is credited with proposing infra-red photography. He was a shy man and his misguided attempts to enforce his calotype patent made him many enemies. It was perhaps for this reason that he never received the formal recognition from the British nation that his family felt he deserved.
    [br]
    Principal Honours and Distinctions
    FRS March 1831. Royal Society Rumford Medal 1842. Grand Médaille d'Honneur, L'Exposition Universelle, Paris, 1855. Honorary Doctorate of Laws, Edinburgh University, 1863.
    Bibliography
    1839, "Some account of the art of photographic drawing", Royal Society Proceedings 4:120–1; Phil. Mag., XIV, 1839, pp. 19–21.
    8 February 1841, British patent no. 8842 (calotype process).
    1844–6, The Pencil of Nature, 6 parts, London (Talbot'a account of his invention can be found in the introduction; there is a facsimile edn, with an intro. by Beamont Newhall, New York, 1968.
    Further Reading
    H.J.P.Arnold, 1977, William Henry Fox Talbot, London.
    D.B.Thomas, 1964, The First Negatives, London (a lucid concise account of Talbot's photograph work).
    J.Ward and S.Stevenson, 1986, Printed Light, Edinburgh (an essay on Talbot's invention and its reception).
    H.Gernsheim and A.Gernsheim, 1977, The History of Photography, London (a wider picture of Talbot, based primarily on secondary sources).
    JW

    Biographical history of technology > Talbot, William Henry Fox

  • 106 Thomas, William

    SUBJECT AREA: Textiles
    [br]
    fl. 1850 London, England
    [br]
    English patentee of the lock-stitch sewing machine in Britain.
    [br]
    William Thomas, of Cheapside, London, was a manufacturer of shoes, umbrellas and corsets. He paid Elias Howe a sum of £250 to secure the British rights of Howe's 1846 patent for the lock-stitch sewing machine. Thomas persuaded Howe to go from the USA to England and apply his machine to the manufacture of shoes and corsets. Howe was to receive £3 per week, and in addition Thomas was to patent the machine in Britain and pay Howe £3 for every machine sold under the British patent. Patents for sewing machines were taken out in the name of W.Thomas in 1846 and 1848, and again in 1849. Howe did travel to Britain but quarrelled with Thomas after less than a year and returned to the USA. In 1853 Thomas started selling his own lock-stitch machine. There are patents in the name of W.F. Thomas for sewing machines, making button-holes bindings, etc., dating from 1853 through to 1864.
    [br]
    Bibliography
    1846, British patent no. 11,464 (sewing machine). 1848, British patent no. 12,221 (sewing machine). 1849, British patent no. 12,736 (sewing machine). 1853, British patent no. 1,026.
    1855, British patent no. 2,079.
    1856, British patent no. 740.
    1856, British patent no. 2,978.
    1860, British patent no. 1,631.
    1864, British patent no. 1,609.
    Further Reading
    F.G.Harrison, 1892–3, Biographical Sketches of Pre-eminent Americans (includes an account of Howe's life).
    F.B.Jewell, 1975, Veteran Sewing Machines. A Collector's Guide, Newton Abbot (makes brief mention of Thomas).
    RLH

    Biographical history of technology > Thomas, William

  • 107 Charakterbilder

    pl
    character sketches

    Deutsch-Englisches Wörterbuch > Charakterbilder

  • 108 skizziert

    1. adumbrates
    2. delineated
    3. delineates
    4. drafted
    5. outlined
    6. outlines
    7. sketched
    8. sketches

    Deutsch-Englisches Wörterbuch > skizziert

  • 109 Umrisszeichnungen

    pl
    sketches

    Deutsch-Englisches Wörterbuch > Umrisszeichnungen

  • 110 arriligaa

    draws, sketches its likeness

    Inupiaq-English dictionary > arriligaa

  • 111 atriligaa

    draws, sketches its likeness

    Inupiaq-English dictionary > atriligaa

См. также в других словарях:

  • Sketches — Scène comique Une scène comique, qu on appelle communément un sketch ou, plus classiquement, une saynète, est une courte représentation assurée par un ou plusieurs comédiens sur un ton humoristique. Histoire Depuis l Antiquité, les scènes… …   Wikipédia en Français

  • sketches — ● sketch, sketches ou sketchs nom masculin (anglais sketch, esquisse) Œuvre dialoguée de courte durée, généralement comique, représentée au théâtre, au music hall, à la télévision ou au cinéma. ● sketch, sketches ou sketchs (difficultés) nom… …   Encyclopédie Universelle

  • Sketches à gogo ! — Sketches à gogo ! Titre original So Random! Genre Sitcom Créateur(s) Steve Marmel Michael Feldman Production It s a Laugh Productions Pays d’origine …   Wikipédia en Français

  • Sketches of Spain — Студийны …   Википедия

  • Sketches of Spain — Studioalbum von Miles Davis Veröffentlichung 1960 Label Columbia Format …   Deutsch Wikipedia

  • Sketches for My Sweetheart the Drunk — Sketches for My Sweetheart the Drunk …   Википедия

  • Sketches for My Sweetheart the Drunk — Studio album by Jeff Buckley Relea …   Wikipedia

  • Sketches of spain — Album par Miles Davis Sortie 1960 Enregistrement 20 novembre 1959 et 10 mars 1960 Durée 41:33 Genre(s) Jazz Producteur(s) …   Wikipédia en Français

  • Sketches of Spain — Album par Miles Davis Sortie 1960 Enregistrement 20 novembre 1959 et 10 mars 1960 Durée 41:33 Genre Jazz Producteur T …   Wikipédia en Français

  • Sketches New and Old — is a group of fictional stories by Mark Twain. It was published in 1875.External links*gutenberg|no=3189|name=Sketches New and Old …   Wikipedia

  • Sketches of Etruscan Places and other Italian essays — or Etruscan Places , is a collection of travel writings by D. H. Lawrence, first published posthumously in 1932. In this book Lawrence contrasted the life affirming world of the Etruscans with the shabbiness of Mussolini s Italy during the late …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»