Перевод: со всех языков на все языки

со всех языков на все языки

rlh

  • 61 Holly, Birdsill

    [br]
    b. Auburn, New York, USA
    d. 27 April 1894 Lockport, New York, USA
    [br]
    American inventor of water-pumping machinery and a steam heating system.
    [br]
    Holly was educated in mechanics and millwrighting work. He was an indefatigable inventor and took out over 150 patents for his ideas. He became Superintendent and later Proprietor of a millwrighting shop in Uniontown, Pennsylvania. Then at Seneca Falls, New York, he began manufacturing hydraulic machinery with the firm of Silsby, Race \& Holly. He made the Silsby fire-engine famous through his invention in 1852 of a rotary pump which was later developed into a steam fire pump. In 1866 he introduced at Lockport, New York, a pressurized water-supply system using a pump rather than an elevated reservoir or standpipe. While this installation at Lockport was powered by a water-wheel, a second one in Dunkirk, New York, used steam-driven pumps, which had a significant effect on the history of steam pumping engines.
    [br]
    Further Reading
    Obituary, 1894, Engineering Record 29.
    Obituary, 1894, Iron Age 53.
    I.McNeil (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge (mentions his work on water supply).
    RLH

    Biographical history of technology > Holly, Birdsill

  • 62 Hornblower, Jonathan

    [br]
    b. 1753 Cornwall (?), England
    d. 1815 Penryn, Cornwall, England
    [br]
    English mining engineer who patented an early form of compound steam engine.
    [br]
    Jonathan came from a family with an engineering tradition: his grandfather Joseph had worked under Thomas Newcomen. Jonathan was the sixth child in a family of thirteen whose names all began with "J". In 1781 he was living at Penryn, Cornwall and described himself as a plumber, brazier and engineer. As early as 1776, when he wished to amuse himself by making a small st-eam engine, he wanted to make something new and wondered if the steam would perform more than one operation in an engine. This was the foundation for his compound engine. He worked on engines in Cornwall, and in 1778 was Engineer at the Ting Tang mine where he helped Boulton \& Watt erect one of their engines. He was granted a patent in 1781 and in that year tried a large-scale experiment by connecting together two engines at Wheal Maid. Very soon John Winwood, a partner in a firm of iron founders at Bristol, acquired a share in the patent, and in 1782 an engine was erected in a colliery at Radstock, Somerset. This was probably not very successful, but a second was erected in the same area. Hornblower claimed greater economy from his engines, but steam pressures at that time were not high enough to produce really efficient compound engines. Between 1790 and 1794 ten engines with his two-cylinder arrangement were erected in Cornwall, and this threatened Boulton \& Watt's near monopoly. At first the steam was condensed by a surface condenser in the bottom of the second, larger cylinder, but this did not prove very successful and later a water jet was used. Although Boulton \& Watt proceeded against the owners of these engines for infringement of their patent, they did not take Jonathan Hornblower to court. He tried a method of packing the piston rod by a steam gland in 1781 and his work as an engineer must have been quite successful, for he left a considerable fortune on his death.
    [br]
    Bibliography
    1781, British patent no. 1,298 (compound steam engine).
    Further Reading
    R.Jenkins, 1979–80, "Jonathan Hornblower and the compound engine", Transactions of the Newcomen Society 11.
    J.Tann, 1979–80, "Mr Hornblower and his crew, steam engine pirates in the late 18th century", Transactions of the Newcomen Society 51.
    J.Farey, 1827, A Treatise on the Steam Engine, Historical, Practical and Descriptive, reprinted 1971, Newton Abbot: David \& Charles (an almost contemporary account of the compound engine).
    D.S.L.Cardwell, 1971, From Watt to Clausius. The Rise of Thermo dynamics in the Early Industrial Age, London: Heinemann.
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press.
    RLH

    Biographical history of technology > Hornblower, Jonathan

  • 63 Houldsworth, Henry

    SUBJECT AREA: Textiles
    [br]
    b. 1797 Manchester (?), England
    d. 1868 Manchester (?), England
    [br]
    English cotton spinner who introduced the differential gear to roving frames in Britain.
    [br]
    There are two claimants for the person who originated the differential gear as applied to roving frames: one is J.Green, a tinsmith of Mansfield, in his patent of 1823; the other is Arnold, who had applied it in America and patented it in early 1823. This latter was the source for Houldsworth's patent in 1826. It seems that Arnold's gearing was secretly communicated to Houldsworth by Charles Richmond, possibly when Houldsworth visited the United States in 1822–3, but more probably in 1825 when Richmond went to England. In return, Richmond received information about parts of a cylinder printing machine from Houldsworth. In the working of the roving frame, as the rovings were wound onto their bobbins and the diameter of the bobbins increased, the bobbin speed had to be reduced to keep the winding on at the same speed while the flyers and drawing rollers had to maintain their initial speed. Although this could be achieved by moving the driving belt along coned pulleys, this method did not provide enough power and slippage occurred. The differential gear combined the direct drive from the main shaft of the roving frame with that from the cone drive, so that only the latter provided the dif-ference between flyer and bobbin speeds, i.e. the winding speeds, thus taking away most of the power from that belt. Henry Houldsworth Senior (1774–1853) was living in Manchester when his son Henry was born, but by 1800 had moved to Glasgow. He built several mills, including a massive one at Anderston, Scotland, in which a Boulton \& Watt steam engine was installed. Henry Houldsworth Junior was probably back in Manchester by 1826, where he was to become an influential cotton spinner as chief partner in his mills, which he moved out to Reddish in 1863–5. He was also a prominent landowner in Cheetham. When William Fairbairn was considering establishing the Association for the Prevention of Steam Boiler Explosions in 1854, he wanted to find an influential manufacturer and mill-owner and he made a happy choice when he turned to Henry Houldsworth for assistance.
    [br]
    Bibliography
    1826, British patent no. 5,316 (differential gear for roving frames).
    Further Reading
    Details about Henry Houldsworth Junior are very sparse. The best account of his acquisition of the differential gear is given by D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830, Oxford.
    W.English, 1969, The Textile Industry, London (an explanation of the mechanisms of the roving frame).
    W.Pole, 1877, The Life of Sir William Fairbairn, Bart., London (provides an account of the beginning of the Manchester Steam Users' Association for the Prevention of Steam-boiler Explosions).
    RLH

    Biographical history of technology > Houldsworth, Henry

  • 64 Howe, Elias

    [br]
    b. 9 July 1819 Spencer, Massachusetts, USA
    d. 3 October 1867 Bridgeport, Connecticut, USA
    [br]
    American inventor of one of the earliest successful sewing machines.
    [br]
    Son of Elias Howe, a farmer, he acquired his mechanical knowledge in his father's mill. He left school at 12 years of age and was apprenticed for two years in a machine shop in Lowell, Massachusetts, and later to an instrument maker, Ari Davis in Boston, Massachusetts, where his master's services were much in demand by Harvard University. Fired by a desire to invent a sewing machine, he utilized the experience gained in Lowell to devise a shuttle carrying a lower thread and a needle carrying an upper thread to make lock-stitch in straight lines. His attempts were so rewarding that he left his job and was sustained first by his father and then by a partner. By 1845 he had built a machine that worked at 250 stitches per minute, and the following year he patented an improved machine. The invention of the sewing machine had an enormous impact on the textile industry, stimulating demand for cloth because making up garments became so much quicker. The sewing machine was one of the first mass-produced consumer durables and was essentially an American invention. William Thomas, a London manufacturer of shoes, umbrellas and corsets, secured the British rights and persuaded Howe to come to England to apply it to the making of shoes. This Howe did, but he quarrelled with Thomas after less than one year. He returned to America to face with his partner, G.W.Bliss, a bigger fight over his patent (see I.M. Singer), which was being widely infringed. Not until 1854 was the case settled in his favour. This litigation threatened the very existence of the new industry, but the Great Sewing Machine Combination, the first important patent-pooling arrangement in American history, changed all this. For a fee of $5 on every domestically-sold machine and $1 on every exported one, Howe contributed to the pool his patent of 1846 for a grooved eye-pointed needle used in conjunction with a lock-stitch-forming shuttle. Howe's patent was renewed in 1861; he organized and equipped a regiment during the Civil War with the royalties. When the war ended he founded the Howe Machine Company of Bridgeport, Connecticut.
    [br]
    Further Reading
    Obituary, 1867, Engineer 24.
    Obituary, 1867, Practical Magazine 5.
    F.G.Harrison, 1892–3, Biographical Sketches of Pre-eminent Americans (provides a good account of Howe's life and achievements).
    N.Salmon, 1863, History of the Sewing Machine from the Year 1750, with a biography of Elias Howe, London (tells the history of sewing machines).
    F.B.Jewell, 1975, Veteran Sewing Machines, A Collector's Guide, Newton Abbot (a more modern account of the history of sewing machines).
    C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press (covers the mechanical developments).
    D.A.Hounshell, 1984, From the American System to Mass Production 1800–1932. The
    Development of Manufacturing Technology in the United States, Baltimore (examines the role of the American sewing machine companies in the development of mass-production techniques).
    RLH

    Biographical history of technology > Howe, Elias

  • 65 Jacquard, Joseph-Marie

    SUBJECT AREA: Textiles
    [br]
    b. 7 July 1752 Lyons, France
    d. 7 August 1834 Oullines, France
    [br]
    French developer of the apparatus named after him and used for selecting complicated patterns in weaving.
    [br]
    Jacquard was apprenticed at the age of 12 to bookbinding, and later to type-founding and cutlery. His parents, who had some connection with weaving, left him a small property upon their death. He made some experiments with pattern weaving, but lost all his inheritance; after marrying, he returned to type-founding and cutlery. In 1790 he formed the idea for his machine, but it was forgotten amidst the excitement of the French Revolution, in which he fought for the Revolutionists at the defence of Lyons. The machine he completed in 1801 combined earlier inventions and was for weaving net. He was sent to Paris to demonstrate it at the National Exposition and received a bronze medal. In 1804 Napoleon granted him a patent, a pension of 1,500 francs and a premium on each machine sold. This enabled him to study and work at the Conservatoire des Arts et Métiers to perfect his mechanism for pattern weaving. A method of selecting any combination of leashes at each shoot of the weft had to be developed, and Jacquard's mechanism was the outcome of various previous inventions. By taking the cards invented by Falcon in 1728 that were punched with holes like the paper of Bouchon in 1725, to select the needles for each pick, and by placing the apparatus above the loom where Vaucanson had put his mechanism, Jacquard combined the best features of earlier inventions. He was not entirely successful because his invention failed in the way it pressed the card against the needles; later modifications by Breton in 1815 and Skola in 1819 were needed before it functioned reliably. However, the advantage of Jacquard's machine was that each pick could be selected much more quickly than on the earlier draw looms, which meant that John Kay's flying shuttle could be introduced on fine pattern looms because the weaver no longer had to wait for the drawboy to sort out the leashes for the next pick. Robert Kay's drop box could also be used with different coloured wefts. The drawboy could be dispensed with because the foot-pedal operating the Jacquard mechanism could be worked by the weaver. Patterns could be changed quickly by replacing one set of cards with another, but the scope of the pattern was more limited than with the draw loom. Some machines that were brought into use aroused bitter hostility. Jacquard suffered physical violence, barely escaping with his life, and his machines were burnt by weavers at Lyons. However, by 1812 his mechanism began to be generally accepted and had been applied to 11,000 draw-looms in France. In 1819 Jacquard received a gold medal and a Cross of Honour for his invention. His machines reached England c.1816 and still remain the basic way of weaving complicated patterns.
    [br]
    Principal Honours and Distinctions
    French Cross of Honour 1819. National Exposition Bronze Medal 1801.
    Further Reading
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press.
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (covers the introduction of pattern weaving and the power loom).
    RLH

    Biographical history of technology > Jacquard, Joseph-Marie

  • 66 Johnson, Thomas

    SUBJECT AREA: Textiles
    [br]
    fl. 1800s England
    d. after 1846
    [br]
    English developer of the sizing and beaming machine, and improver of the hand loom.
    [br]
    Thomas Johnson was an assistant to William Radcliffe c.1802 in his developments of the sizing machine and hand looms. Johnson is described by Edward Baines (1835) as "an ingenious but dissipated young man to whom he [Radcliffe] explained what he wanted, and whose fertile invention suggested a great variety of expedients, so that he obtained the name of the “conjuror” among his fellow-workmen". Johnson's genius, and Radcliffe's judgement and perseverance, at length produced the dressing-machine that was soon applied to power looms and made their use economic. Cotton warps had to be dressed with a starch paste to prevent them from fraying as they were being woven. Up to this time, the paste had had to be applied as the warp was unwound from the back of the loom, which meant that only short lengths could be treated and then left to dry, holding up the weaver. Radcliffe carried out the dressing and beaming in a separate machine so that weaving could proceed without interruption. Work on the dressing-machine was carried out in 1802 and patents were taken out in 1803 and 1804. These were made out in Johnson's name because Radcliffe was afraid that if his own name were used other people, particularly foreigners, would discover his secrets. Two more patents were taken out for improvements to hand looms. The first of these was a take-up motion for the woven cloth that automatically wound the cloth onto a roller as the weaver operated the loom. This was later incorporated by H.Horrocks into his own power loom design.
    Radcliffe and Johnson also developed the "dandy-loom", which was a more compact form of hand loom and later became adapted for weaving by power. Johnson was the inventor of the first circular or revolving temples, which kept the woven cloth at the right width. In the patent specifications there is a patent in 1805 by Thomas Johnson and James Kay for an improved power loom and another in 1807 for a vertical type of power loom. Johnson could have been involved with further patents in the 1830s and 1840s for vertical power looms and dressing-machines, which would put his death after 1846.
    [br]
    Bibliography
    1802, British patent no. 2,684 (dressing-machine).
    1803, British patent no. 2,771 (dressing-machine).
    1805, with James Kay, British patent no. 2,876 (power-loom). 1807, British patent no. 6,570 (vertical powerloom).
    Further Reading
    There is no general account of Johnson's life, but references to his work with Radcliffe may be found in A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; and in E.Baines, 1835, History of the Cotton Manufacture in Great Britain, London.
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830s, Oxford (for the impact of the dressing-machine in America).
    RLH

    Biographical history of technology > Johnson, Thomas

  • 67 Jolly-Bellin, Jean-Baptiste

    SUBJECT AREA: Textiles
    [br]
    fl. c.1850 France
    [br]
    French pioneer in dry-cleaning.
    [br]
    Until the mid-nineteenth century, washing with soap and water was the only way to clean clothes; with woollen fabrics in particular, it was more common to dye them to a darker colour to conceal the dirt. In about 1850, Jean-Baptiste Jolly-Bellin, a Paris tailor, spilt some camphene, a kind of turpentine, on an article belonging to his wife and found that the area stained by the spirit was cleaner than the rest. He opened up a business for "Nettoyage à sec", the first dry-cleaning business. The garments had to be unstitched before being brushed with camphene and were then sewn together again.
    [br]
    Further Reading
    I.McNeil (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge (provides an account of the development of methods of cleaning garments).
    RLH

    Biographical history of technology > Jolly-Bellin, Jean-Baptiste

  • 68 Judson, Whitcomb L.

    SUBJECT AREA: Textiles
    [br]
    fl. 1891–1905 USA
    [br]
    American inventor of the zip fastener.
    [br]
    Whitcomb Judson was a mechanical engineer by profession. He filed his first patent application for a zip fastener in 1891 and took out a fifth in 1905. His invention was originally designed for shoes and consisted of separate fasteners with two interlocking parts which could be fastened either by hand or by a movable guide. In his last patent, he clamped the fastening elements to the edge of a fabric tape and patented a machine for manufacturing this. Through an earlier exploit, the Judson Pneumatic Street Railway Company, Judson knew Colonel Lewis Walker, who helped him to organize the Universal Fastener Company of Chicago to manufacture these fasteners, which at first were made by hand. One machine invented by Judson proved to be too complicated, but Judson's later fasteners were easier to adapt to machine production. The original company was reorganized as the Automatic Hook and Eye Company of Hoboken, New Jersey, and the new fasteners were sold under the name "C-curity". However, the garment manufacturers would not use them at first because the fasteners had defects, such as springing open at unexpected moments. The Automatic Hook and Eye Company brought in Gideon Sundback, who improved Judson's work and made the zip fastener successful.
    [br]
    Further Reading
    J.Jewkes, D.Sawyers and R.Stillerman, 1969, The Sources of Invention, 2nd edn, London (for an account of the invention).
    I.McNeil (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge, pp. 852–3 (provides a brief account of fastenings).
    RLH

    Biographical history of technology > Judson, Whitcomb L.

  • 69 Kay (of Bury), John

    SUBJECT AREA: Textiles
    [br]
    b. 16 July 1704 Walmersley, near Bury, Lancashire, England
    d. 1779 France
    [br]
    English inventor of the flying shuttle.
    [br]
    John Kay was the youngest of five sons of a yeoman farmer of Walmersley, near Bury, Lancashire, who died before his birth. John was apprenticed to a reedmaker, and just before he was 21 he married a daughter of John Hall of Bury and carried on his trade in that town until 1733. It is possible that his first patent, taken out in 1730, was connected with this business because it was for an engine that made mohair thread for tailors and twisted and dressed thread; such thread could have been used to bind up the reeds used in looms. He also improved the reeds by making them from metal instead of cane strips so they lasted much longer and could be made to be much finer. His next patent in 1733, was a double one. One part of it was for a batting machine to remove dust from wool by beating it with sticks, but the patent is better known for its description of the flying shuttle. Kay placed boxes to receive the shuttle at either end of the reed or sley. Across the open top of these boxes was a metal rod along which a picking peg could slide and drive the shuttle out across the loom. The pegs at each end were connected by strings to a stick that was held in the right hand of the weaver and which jerked the shuttle out of the box. The shuttle had wheels to make it "fly" across the warp more easily, and ran on a shuttle race to support and guide it. Not only was weaving speeded up, but the weaver could produce broader cloth without any aid from a second person. This invention was later adapted for the power loom. Kay moved to Colchester and entered into partnership with a baymaker named Solomon Smith and a year later was joined by William Carter of Ballingdon, Essex. His shuttle was received with considerable hostility in both Lancashire and Essex, but it was probably more his charge of 15 shillings a year for its use that roused the antagonism. From 1737 he was much involved with lawsuits to try and protect his patent, particularly the part that specified the method of winding the thread onto a fixed bobbin in the shuttle. In 1738 Kay patented a windmill for working pumps and an improved chain pump, but neither of these seems to have been successful. In 1745, with Joseph Stell of Keighley, he patented a narrow fabric loom that could be worked by power; this type may have been employed by Gartside in Manchester soon afterwards. It was probably through failure to protect his patent rights that Kay moved to France, where he arrived penniless in 1747. He went to the Dutch firm of Daniel Scalongne, woollen manufacturers, in Abbeville. The company helped him to apply for a French patent for his shuttle, but Kay wanted the exorbitant sum of £10,000. There was much discussion and eventually Kay set up a workshop in Paris, where he received a pension of 2,500 livres. However, he was to face the same problems as in England with weavers copying his shuttle without permission. In 1754 he produced two machines for making card clothing: one pierced holes in the leather, while the other cut and sharpened the wires. These were later improved by his son, Robert Kay. Kay returned to England briefly, but was back in France in 1758. He was involved with machines to card both cotton and wool and tried again to obtain support from the French Government. He was still involved with developing textile machines in 1779, when he was 75, but he must have died soon afterwards. As an inventor Kay was a genius of the first rank, but he was vain, obstinate and suspicious and was destitute of business qualities.
    [br]
    Bibliography
    1730, British patent no. 515 (machine for making mohair thread). 1733, British patent no. 542 (batting machine and flying shuttle). 1738, British patent no. 561 (pump windmill and chain pump). 1745, with Joseph Stell, British patent no. 612 (power loom).
    Further Reading
    B.Woodcroft, 1863, Brief Biographies of Inventors or Machines for the Manufacture of Textile Fabrics, London.
    J.Lord, 1903, Memoir of John Kay, (a more accurate account).
    Descriptions of his inventions may be found in A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the
    Industrial Revolution, Manchester; and C.Singer (ed.), 1957, A History of
    Technology, Vol. III, Oxford: Clarendon Press. The most important record, however, is in A.P.Wadsworth and J. de L. Mann, 1931, The Cotton Trade and Industrial
    Lancashire, Manchester.
    RLH

    Biographical history of technology > Kay (of Bury), John

  • 70 Kay (of Warrington), John

    SUBJECT AREA: Textiles
    [br]
    fl. c.1770 England
    [br]
    English clockmaker who helped Richard Arkwright to construct his spinning machine.
    [br]
    John Kay was a clockmaker of Warrington. He moved to Leigh, where he helped Thomas Highs to construct his spinning machine, but lack of success made them abandon their attempts. Kay first met Richard Arkwright in March 1767 and six months later was persuaded by Arkwright to make one or more models of the roller spinning machine he had built under Highs's supervision. Kay went with Arkwright to Preston, where they continued working on the machine. Kay also went with Arkwright when he moved to Nottingham. It was around this time that he entered into an agreement with Arkwright to serve him for twenty-one years and was bound not to disclose any details of the machines. Presumably Kay helped to set up the first spinning machines at Arkwright's Nottingham mill as well as at Cromford. Despite their agreement, he seems to have left after about five years and may have disclosed the secret of Arkwright's crank and comb on the carding engine to others. Kay was later to give evidence against Arkwright during the trial of his patent in 1785.
    [br]
    Further Reading
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (the most detailed account of Kay's connections with Arkwright and his evidence during the later patent trials).
    A.P.Wadsworth and J. de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, Manchester (mentions Kay's association with Arkwright).
    RLH

    Biographical history of technology > Kay (of Warrington), John

  • 71 Kay, Robert

    SUBJECT AREA: Textiles
    [br]
    b. probably before 1747
    d. 1801 Bury, Lancashire, England
    [br]
    English inventor of the drop box, whereby shuttles with different wefts could be stored and selected when needed.
    [br]
    Little is known about the early life of Robert Kay except that he may have moved to France with his father, John Kay of Bury in 1747 but must have returned to England and their home town of Bury soon after. He may have been involved with his father in the production of a machine for making the wire covering for hand cards to prepare cotton for spinning. However, John Aikin, writing in 1795, implies that this was a recent invention. Kay's machine could pierce the holes in the leather backing, cut off a length of wire, bend it and insert it through the holes, row after row, in one operation by a person turning a shaft. The machine preserved in the Science Museum, in London's South Kensington, is more likely to be one of Robert's machine than his father's, for Robert carried on business as a cardmaker in Bury from 1791 until his death in 1801. The flying shuttle, invented by his father, does not seem to have been much used by weavers of cotton until Robert invented the drop box in 1760. Instead of a single box at the end of the sley, Robert usually put two, but sometimes three or four, one above another; the boxes could be raised or lowered. Shuttles with either different colours or different types of weft could be put in the boxes and the weaver could select any one by manipulating levers with the left hand while working the picking stick with the right to drive the appropriate shuttle across the loom. Since the selection could be made without the weaver having to pick up a shuttle and place it in the lath, this invention helped to speed up weaving, especially of multi-coloured checks, which formed a large part of the Lancashire output.
    Between 1760 and 1763 Robert Kay may have written a pamphlet describing the invention of the flying shuttle and the attack on his father, pointing out how much his father had suffered and that there had been no redress. In February 1764 he brought to the notice of the Society of Arts an improvement he had made to the flying shuttle by substituting brass for wood, which enabled a larger spool to be carried.
    [br]
    Further Reading
    A.P.Wadsworth and J. de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, Manchester.
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; and R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (for details about the drop box).
    RLH

    Biographical history of technology > Kay, Robert

  • 72 Kelly, William

    SUBJECT AREA: Textiles
    [br]
    b. 1790s Lanark, Scotland
    [br]
    Scottish pioneer in attempts to make Crompton 's spinning mule work automatically.
    [br]
    William Kelly, a Larnack clockmaker, was Manager of David Dale's New Lanark cotton-spinning mills. He was writing to Boulton \& Watt in 1796 about the different ways in which he heated the mills and the New Institution. He must also have been responsible for supervising the millwrights' and mechanics' shops where much of the spinning machinery for the mills was constructed. At one time there were eighty-seven men employed in these shops alone. He devised a better method of connecting the water wheel to the line shafting which he reckoned would save a quarter of the water power required. Kelly may have been the first to apply power to the mule, for in 1790 he drove the spinning sequence from the line shafting, which operated the gear mechanism to turn the rollers and spindles as well as draw out the carriage. The winding on of the newly spun yarn still had to be done by hand. Then in 1792 he applied for a patent for a self-acting mule in which all the operations would be carried out by power. However, winding the yarn on in a conical form was a problem; he tried various ways of doing this, but abandoned his attempts because the mechanism was cumbersome and brought no economic advantage as only a comparatively small number of spindles could be operated. Even so, his semi-automatic mule became quite popular and was exported to America in 1803. Kelly was replaced as Manager at New Lanark by Robert Owen in 1800.
    [br]
    Bibliography
    1792, British patent no. 1,879 (semi-automatic mule).
    Further Reading
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (includes Kelly's own account of his development of the self-acting mule).
    H.Catling, 1970, The Spinning Mule, Newton Abbot (describes some of Kelly's mule mechanisms).
    J.Butt (ed.), 1971, Robert Owen, Prince of Cotton Spinners, Newton Abbot (provides more details about the New Lanark mills).
    RLH

    Biographical history of technology > Kelly, William

  • 73 Kennedy, John

    SUBJECT AREA: Textiles
    [br]
    b. 4 July 1769 Knocknalling, Kirkcudbrightshire, Scotland
    d. 30 October 1855 Ardwick Hall, Manchester, England
    [br]
    Scottish cotton spinner and textile machine maker.
    [br]
    Kennedy was the third son of his father, Robert, and went to the village school in Dalry. On his father's death, he was sent at the age of 14 to Chowbent, Lancashire, where he was apprenticed to William Cannan, a maker of textile machines such as carding frames, Hargreaves's jennies and Arkwright's waterframes. On completion of his apprenticeship in 1791, he moved to Manchester and entered into partnership with Benjamin and William Sandford and James M'Connel, textile machine makers and mule spinners. In 1795 this partnership was terminated and one was made with James M'Connel to form the firm M'Connel \& Kennedy, cotton spinners.
    Kennedy introduced improvements for spinning fine yarns and the firm of M'Connel \& Kennedy became famous for the quality of these products, which were in great demand. He made the spindles turn faster during the second part of the mule carriage's outward draw, and from 1793 onwards he experimented with driving mules by steam engines. Like William Kelly at New Lanark, he succeeded in making the spinning sequences power-operated by 1800, although the spinner had to take over the winding on. This made the mule into a factory machine, but it still required skilled operators. He was also involved with Henry Houldsworth, Junior, in the improvement of the roving frame. In 1803 Kennedy joined the Manchester Literary \& Philosophical Society, to which he presented several papers, including one in 1830 on "A memoir of Samuel Crompton". He retired from the spinning business in 1826, but continued his technical and mechanical pursuits. He was consulted about whether the Liverpool \& Manchester Railway should have moving or stationary steam engines and was an umpire at the Rainhill Trials in 1829.
    [br]
    Further Reading
    Dictionary of National Biography.
    W.Fairbairn, obituary, Manchester Memoirs, Manchester Literary and Philosophical Society.
    C.H.Lee, 1972, A Cotton Enterprise 1795–1840. A History of M'Connel \& Kennedy, Fine
    Cotton Spinners, Manchester (an account of Kennedy's spinning business). R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (provides details of Kennedy's inventions on the mule).
    RLH

    Biographical history of technology > Kennedy, John

  • 74 Laval, Carl Gustaf Patrik de

    [br]
    b. 9 May 1845 Orsa, Sweden
    d. 2 February 1913 Stockholm, Sweden
    [br]
    Swedish inventor of an advanced cream separator and a steam turbine.
    [br]
    Gustaf de Laval was educated at the Stockholm Technical Institute and Uppsala University. He proved to have an unfailing vigour and variety in his inventive talent, for his interests ranged from electric lighting and electrometallurgy to aerodynamics. In the 1890s he employed over one hundred engineers to develop his inventions, but he was best known for two: the cream separator and a steam turbine. In 1877 he invented the high-speed centrifugal cream separator, which was probably the greatest advance in butter-making up to that time. By 1880 the separators were being successfully marketed all over the world, for they were quickly adopted in larger dairies where they effected enormous savings in labour and space. He followed this with various devices for the dairy industry, including a vacuum milking machine perfected in 1913. In c. 1882, de Laval invented a turbine on the principle of Hero's engine, but he quickly turned his attention to the impulse type, which was like Branca's, with a jet of steam impinging on a set of blades around the periphery of a wheel. He applied for a British patent in 1889. The steam was expanded in a single stage from the initial to the final pressure: to secure economy with the steam issuing at high velocity, the blades also had to rotate at high velocity. An early 5 hp (3.7 kW) turbine rotated at 30,000 rpm, so reduction gearing had to be introduced. Production started in Sweden in 1893 and in other countries at about the same time. In 1892 de Laval proposed employing one of his turbines of 15 hp (11 kW) in an experimental launch, but there is no evidence that it was ever actually installed in a vessel. However, his turbines were popular for powering electric generating sets for lighting textile mills and ships, and by 1900 were available in sizes up to 300 bhp (224 kW).
    [br]
    Bibliography
    1889, British patent no. 7,143 (steam turbine).
    Further Reading
    T.Althin, 1943, Life of de Laval, Stockholm (a full biography).
    T.I.Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C. Black (contains a brief biography).
    R.M.Neilson, 1902, The Steam Turbine, London: Longmans, Green \& Co. (fully covers the development of de Laval's steam turbine).
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (contains a short account of the development of the steam turbine).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (contains a short account).
    RLH

    Biographical history of technology > Laval, Carl Gustaf Patrik de

  • 75 Lee, Revd William

    SUBJECT AREA: Textiles
    [br]
    d. c. 1615
    [br]
    English inventor of the first knitting machine, called the stocking frame.
    [br]
    It would seem that most of the stories about Lee's invention of the stocking frame cannot be verified by any contemporary evidence, and the first written accounts do not appear until the second half of the seventeenth century. The claim that he was Master of Arts from St John's College, Cambridge, was first made in 1607 but cannot be checked because the records have not survived. The date for the invention of the knitting machine as being 1589 was made at the same time, but again there is no supporting evidence. There is no evidence that Lee was Vicar of Calverton, nor that he was in Holy Orders at all. Likewise there is no evidence for the existence of the woman, whether she was girlfriend, fiancée or wife, who is said to have inspired the invention, and claims regarding the involvement of Queen Elizabeth I and her refusal to grant a patent because the stockings were wool and not silk are also without contemporary foundation. Yet the first known reference shows that Lee was the inventor of the knitting machine, for the partnership agreement between him and George Brooke dated 6 June 1600 states that "William Lee hath invented a very speedy manner of making works usually wrought by knitting needles as stockings, waistcoats and such like". This agreement was to last for twenty-two years, but terminated prematurely when Brooke was executed for high treason in 1603. Lee continued to try and exploit his invention, for in 1605 he described himself as "Master of Arts" when he petitioned the Court of Aldermen of the City of London as the first inventor of an engine to make silk stockings. In 1609 the Weavers' Company of London recorded Lee as "a weaver of silk stockings by engine". These petitions suggest that he was having difficulty in establishing his invention, which may be why in 1612 there is a record of him in Rouen, France, where he hoped to have better fortune. If he had been invited there by Henry IV, his hopes were dashed by the assassination of the king soon afterwards. He was to supply four knitting machines, and there is further evidence that he was in France in 1615, but it is thought that he died in that country soon afterwards.
    The machine Lee invented was probably the most complex of its day, partly because the need to use silk meant that the needles were very fine. Henson (1970) in 1831 took five pages in his book to describe knitting on a stocking frame which had over 2,066 pieces. To knit a row of stitches took eleven separate stages, and great care and watchfulness were required to ensure that all the loops were equal and regular. This shows how complex the machines were and points to Lee's great achievement in actually making one. The basic principles of its operation remained unaltered throughout its extraordinarily long life, and a few still remained in use commercially in the early 1990s.
    [br]
    Further Reading
    J.T.Millington and S.D.Chapman (eds), 1989, Four Centuries of Machine Knitting, Commemorating William Lee's Invention of the Stocking Frame in 1589, Leicester (N.Harte examines the surviving evidence for the life of William Lee and this must be considered as the most up-to-date biographical information).
    Dictionary of National Biography (this contains only the old stories).
    Earlier important books covering Lee's life and invention are G.Henson, 1970, History of the Framework Knitters, reprint, Newton Abbot (orig. pub. 1831); and W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867).
    M.Palmer, 1984, Framework Knitting, Aylesbury (a simple account of the mechanism of the stocking frame).
    R.L.Hills, "William Lee and his knitting machine", Journal of the Textile Institute 80(2) (a more detailed account).
    M.Grass and A.Grass, 1967, Stockings for a Queen. The Life of William Lee, the Elizabethan Inventor, London.
    RLH

    Biographical history of technology > Lee, Revd William

  • 76 Levers (Leavers), John

    SUBJECT AREA: Textiles
    [br]
    fl. 1812–21 England
    d. after 1821 Rouen, France
    [br]
    English improver of lace-making machines that formed the basis for many later developments.
    [br]
    John Heathcote had shown that it was possible to make lace by machine with his patents of 1808 and 1809. His machines were developed and improved by John Levers. Levers was originally a hosiery frame-smith and setter-up at Sutton-in-Ashfield but moved to Nottingham, where he extended his operations to the construction of point-net and warp-lace machinery. In the years 1812 and 1813 he more or less isolated himself in the garret of a house in Derby Road, where he assembled his lacemaking machine by himself. He was helped by two brothers and a nephew who made parts, but they saw it only when it was completed. Financial help for making production machines came from the firm of John Stevenson \& Skipwith, lace manufacturers in Nottingham. Levers never sought a patent, as he was under the mistaken impression that additions or improvements to an existing patented machine could not be protected. An early example of the machine survives at the Castle Museum in Nottingham. Although his prospects must have seemed good, for some reason Levers dissolved his partnership with Stevenson \& Co. and continued to work on improving his machine. In 1817 he altered it from the horizontal to the upright position, building many of the machines each year. He was a friendly, kind-hearted man, but he seems to have been unable to apply himself to his business, preferring the company of musicians—he was a bandmaster of the local militia—and was soon frequently without money, even to buy food for his family. He emigrated in 1821 to Rouen, France, where he set up his lace machines and where he subsequently died; when or in what circumstances is unknown. His machine continued to be improved and was adapted to work with the Jacquard mechanism to select the pattern.
    [br]
    Further Reading
    W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867) (the main account of the Levers machine).
    W.English, 1969, The Textile Industry, London (a brief account of the Levers lace machine).
    D.M.Smith, 1965, Industrial Archaeology of the East Midlands, Dawlish (includes an illustration of Levers's machine).
    RLH

    Biographical history of technology > Levers (Leavers), John

  • 77 Lewis, John

    SUBJECT AREA: Textiles
    [br]
    fl. c. 1815 England
    [br]
    English developer of a machine for shearing woollen cloth with rotary cutters.
    [br]
    To give a smooth surface to cloth such as the old English broadcloth, the nap was raised and then sheared off. Hand-operated shears of enormous size were used to cut the fibres that stuck up when the cloth was laid over a curved table top. Great skill was required to achieve a smooth finish. Various attempts, such as that in 1784 by James Harmer, a clergyman of Sheffield, were made to mechanize the process by placing several pairs of shears in a frame and operating them by cranks, but success was not achieved. Samuel G. Dow of Albany, New York, patented a rotary shearer in England in 1794, and there was Samuel Dore in the same year too. John Lewis never claimed that he invented the rotary cutter, and it is possible that he made have seen drawings or actual examples of these earlier machines. His claim in his patent of 1815 was that, for the first time, he brought together a number of desirable features in one machine for shearing cloth to achieve the first really successful example. The local story in the Stroudwater district in Gloucestershire is that Lewis obtained this idea from Budding, who as a lad worked for the Lewis family, clothiers at Brinscombe Mills; Budding invented a lawn mower with rotary barrel blades that works on the same principle, patenting it in 1830. In the shearing machine, the cloth was moved underneath the blades, which could be of the same width so that only one operation was needed for each side. Other inventors had similar ideas, and a Stroud engineer, Stephen Price, took out a patent a month after Lewis did. These machines spread quickly in the Gloucestershire textile industry, and by 1830 hand-shearing was extinct. John Lewis was the son of Joseph, who had inherited the Brinscombe Mills in 1790 but must have died before 1815, when his children mortgaged the property for £12,000. Joseph's three sons, George, William and John, worked the mill for a time, but in 1840 William was there alone.
    [br]
    Bibliography
    1815, British patent no. 3,945 (rotary shearing machine).
    Further Reading
    J. de L.Mann, 1971, The Cloth Industry in the West of England from 1660 to 1880, Oxford (the best account of the introduction of the shearing machines).
    J.Tann, 1967, Gloucestershire Woollen Mills, Newton Abbot (includes notes about the Brinscombe Mills).
    K.G.Ponting, 1971, The Woollen Industry of South-West England, Bath; and H.A.Randall, 1965–6, "Some mid-Gloucestershire engineers and inventors", Transactions of the Newcomen Society 38 (both mention Lewis's machine).
    RLH

    Biographical history of technology > Lewis, John

  • 78 Lister, Samuel Cunliffe, 1st Baron Masham

    SUBJECT AREA: Textiles
    [br]
    b. 1 January 1815 Calverly Hall, Bradford, England
    d. 2 February 1906 Swinton Park, near Bradford, England
    [br]
    English inventor of successful wool-combing and waste-silk spinning machines.
    [br]
    Lister was descended from one of the old Yorkshire families, the Cunliffe Listers of Manningham, and was the fourth son of his father Ellis. After attending a school on Clapham Common, Lister would not go to university; his family hoped he would enter the Church, but instead he started work with the Liverpool merchants Sands, Turner \& Co., who frequently sent him to America. In 1837 his father built for him and his brother a worsted mill at Manningham, where Samuel invented a swivel shuttle and a machine for making fringes on shawls. It was here that he first became aware of the unhealthy occupation of combing wool by hand. Four years later, after seeing the machine that G.E. Donisthorpe was trying to work out, he turned his attention to mechanizing wool-combing. Lister took Donisthorpe into partnership after paying him £12,000 for his patent, and developed the Lister-Cartwright "square nip" comber. Until this time, combing machines were little different from Cartwright's original, but Lister was able to improve on this with continuous operation and by 1843 was combing the first fine botany wool that had ever been combed by machinery. In the following year he received an order for fifty machines to comb all qualities of wool. Further combing patents were taken out with Donisthorpe in 1849, 1850, 1851 and 1852, the last two being in Lister's name only. One of the important features of these patents was the provision of a gripping device or "nip" which held the wool fibres at one end while the rest of the tuft was being combed. Lister was soon running nine combing mills. In the 1850s Lister had become involved in disputes with others who held combing patents, such as his associate Isaac Holden and the Frenchman Josué Heilmann. Lister bought up the Heilmann machine patents and afterwards other types until he obtained a complete monopoly of combing machines before the patents expired. His invention stimulated demand for wool by cheapening the product and gave a vital boost to the Australian wool trade. By 1856 he was at the head of a wool-combing business such as had never been seen before, with mills at Manningham, Bradford, Halifax, Keighley and other places in the West Riding, as well as abroad.
    His inventive genius also extended to other fields. In 1848 he patented automatic compressed air brakes for railways, and in 1853 alone he took out twelve patents for various textile machines. He then tried to spin waste silk and made a second commercial career, turning what was called "chassum" and hitherto regarded as refuse into beautiful velvets, silks, plush and other fine materials. Waste silk consisted of cocoon remnants from the reeling process, damaged cocoons and fibres rejected from other processes. There was also wild silk obtained from uncultivated worms. This is what Lister saw in a London warehouse as a mass of knotty, dirty, impure stuff, full of bits of stick and dead mulberry leaves, which he bought for a halfpenny a pound. He spent ten years trying to solve the problems, but after a loss of £250,000 and desertion by his partner his machine caught on in 1865 and brought Lister another fortune. Having failed to comb this waste silk, Lister turned his attention to the idea of "dressing" it and separating the qualities automatically. He patented a machine in 1877 that gave a graduated combing. To weave his new silk, he imported from Spain to Bradford, together with its inventor Jose Reixach, a velvet loom that was still giving trouble. It wove two fabrics face to face, but the problem lay in separating the layers so that the pile remained regular in length. Eventually Lister was inspired by watching a scissors grinder in the street to use small emery wheels to sharpen the cutters that divided the layers of fabric. Lister took out several patents for this loom in his own name in 1868 and 1869, while in 1871 he took out one jointly with Reixach. It is said that he spent £29,000 over an eleven-year period on this loom, but this was more than recouped from the sale of reasonably priced high-quality velvets and plushes once success was achieved. Manningham mills were greatly enlarged to accommodate this new manufacture.
    In later years Lister had an annual profit from his mills of £250,000, much of which was presented to Bradford city in gifts such as Lister Park, the original home of the Listers. He was connected with the Bradford Chamber of Commerce for many years and held the position of President of the Fair Trade League for some time. In 1887 he became High Sheriff of Yorkshire, and in 1891 he was made 1st Baron Masham. He was also Deputy Lieutenant in North and West Riding.
    [br]
    Principal Honours and Distinctions
    Created 1st Baron Masham 1891.
    Bibliography
    1849, with G.E.Donisthorpe, British patent no. 12,712. 1850, with G.E. Donisthorpe, British patent no. 13,009. 1851, British patent no. 13,532.
    1852, British patent no. 14,135.
    1877, British patent no. 3,600 (combing machine). 1868, British patent no. 470.
    1868, British patent no. 2,386.
    1868, British patent no. 2,429.
    1868, British patent no. 3,669.
    1868, British patent no. 1,549.
    1871, with J.Reixach, British patent no. 1,117. 1905, Lord Masham's Inventions (autobiography).
    Further Reading
    J.Hogg (ed.), c. 1888, Fortunes Made in Business, London (biography).
    W.English, 1969, The Textile Industry, London; and C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (both cover the technical details of Lister's invention).
    RLH

    Biographical history of technology > Lister, Samuel Cunliffe, 1st Baron Masham

  • 79 Lombe, John

    SUBJECT AREA: Textiles
    [br]
    b. c. 1693 probably Norwich, England
    d. 20 November 1722 Derby, England
    [br]
    English creator of the first successful powered textile mill in Britain.
    [br]
    John Lombe's father, Henry Lombe, was a worsted weaver who married twice. John was the second son of the second marriage and was still a baby when his father died in 1695. John, a native of the Eastern Counties, was apprenticed to a trade and employed by Thomas Cotchett in the erection of Cotchett's silk mill at Derby, which soon failed however. Lombe went to Italy, or was sent there by his elder half-brother, Thomas, to discover the secrets of their throwing machinery while employed in a silk mill in Piedmont. He returned to England in 1716 or 1717, bringing with him two expert Italian workmen.
    Thomas Lombe was a prosperous London merchant who financed the construction of a new water-powered silk mill at Derby which is said to have cost over £30,000. John arranged with the town Corporation for the lease of the island in the River Derwent, where Cotchett had erected his mill. During the four years of its construction, John first set up the throwing machines in other parts of the town. The machines were driven manually there, and their product helped to defray the costs of the mill. The silk-throwing machine was very complex. The water wheel powered a horizontal shaft that was under the floor and on which were placed gearwheels to drive vertical shafts upwards through the different floors. The throwing machines were circular, with the vertical shafts running through the middle. The doubled silk threads had previously been wound on bobbins which were placed on spindles with wire flyers at intervals around the outer circumference of the machine. The bobbins were free to rotate on the spindles while the spindles and flyers were driven by the periphery of a horizontal wheel fixed to the vertical shaft. Another horizontal wheel set a little above the first turned the starwheels, to which were attached reels for winding the silk off the bobbins below. Three or four sets of these spindles and reels were placed above each other on the same driving shaft. The machine was very complicated for the time and must have been expensive to build and maintain.
    John lived just long enough to see the mill in operation, for he died in 1722 after a painful illness said to have been the result of poison administered by an Italian woman in revenge for his having stolen the invention and for the injury he was causing the Italian trade. The funeral was said to have been the most superb ever known in Derby.
    [br]
    Further Reading
    Samuel Smiles, 1890, Men of Invention and Industry, London (probably the only biography of John Lombe).
    Rhys Jenkins, 1933–4, "Historical notes on some Derbyshire industries", Transactions of the Newcomen Society 14 (provides an acount of John Lombe and his part in the enterprise at Derby).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (briefly covers the development of early silk-throwing mills).
    W.English, 1969, The Textile Industry, London (includes a chapter on "Lombe's Silk Machine").
    P.Barlow, 1836, Treatise of Manufactures and Machinery of Great Britain, London (describes Lombe's mill and machinery, but it is not known how accurate the account may be).
    RLH

    Biographical history of technology > Lombe, John

  • 80 Macintosh, Charles

    [br]
    b. 29 December 1766 Glasgow, Scotland
    d. 25 July 1843 Dunchattan, near Glasgow, Scotland
    [br]
    Scottish inventor of rubberized waterproof clothing.
    [br]
    As the son of the well-known and inventive dyer George Macintosh, Charles had an early interest in chemistry. At the age of 19 he gave up his work as a clerk with a Glasgow merchant to manufacture sal ammoniac (ammonium chloride) and developed new processes in dyeing. In 1797 he started the first Scottish alum works, finding the alum in waste shale from coal mines. His first works was at Hurlet, Renfrewshire, and was followed later by others. He then formed a partnership with Charles Tennant, the proprietor of a chemical works at St Rollox, near Glasgow, and sold "lime bleaching liquor" made with chlorine and milk of lime from their bleach works at Darnley. A year later the use of dry lime to make bleaching powder, a process worked out by Macintosh, was patented. Macintosh remained associated with Tennant's St Rollox chemical works until 1814. During this time, in 1809, he had set up a yeast factory, but it failed because of opposition from the London brewers.
    There was a steady demand for the ammonia that gas works produced, but the tar was often looked upon as an inconvenient waste product. Macintosh bought all the ammonia and tar that the Glasgow works produced, using the ammonia in his establishment to produce cudbear, a dyestuff extracted from various lichens. Cudbear could be used with appropriate mordants to make shades from pink to blue. The tar could be distilled to produce naphtha, which was used as a flare. Macintosh also became interested in ironmaking. In 1825 he took out a patent for converting malleable iron into steel by taking it to white heat in a current of gas with a carbon content, such as coal gas. However, the process was not commercially successful because of the difficulty keeping the furnace gas-tight. In 1828 he assisted J.B. Neilson in bringing hot blast into use in blast furnaces; Neilson assigned Macintosh a share in the patent, which was of dubious benefit as it involved him in the tortuous litigation that surrounded the patent until 1843.
    In June 1823, as a result of experiments into the possible uses of naphtha obtained as a by-product of the distillation of coal tar, Macintosh patented his process for waterproofing fabric. This comprised dissolving rubber in naphtha and applying the solution to two pieces of cloth which were afterwards pressed together to form an impermeable compound fabric. After an experimental period in Glasgow, Macintosh commenced manufacture in Manchester, where he formed a partnership with H.H.Birley, B.Kirk and R.W.Barton. Birley was a cotton spinner and weaver and was looking for ways to extend the output of his cloth. He was amongst the first to light his mills with gas, so he shared a common interest with Macintosh.
    New buildings were erected for the production of waterproof cloth in 1824–5, but there were considerable teething troubles with the process, particularly in the spreading of the rubber solution onto the cloth. Peter Ewart helped to install the machinery, including a steam engine supplied by Boulton \& Watt, and the naphtha was supplied from Macintosh's works in Glasgow. It seems that the process was still giving difficulties when Thomas Hancock, the foremost rubber technologist of that time, became involved in 1830 and was made a partner in 1834. By 1836 the waterproof coat was being called a "mackintosh" [sic] and was gaining such popularity that the Manchester business was expanded with additional premises. Macintosh's business was gradually enlarged to include many other kinds of indiarubber products, such as rubber shoes and cushions.
    [br]
    Principal Honours and Distinctions
    FRS 1823.
    Further Reading
    G.Macintosh, 1847, Memoir of Charles Macintosh, London (the fullest account of Charles Macintosh's life).
    H.Schurer, 1953, "The macintosh: the paternity of an invention", Transactions of the Newcomen Society 28:77–87 (an account of the invention of the mackintosh).
    RLH / LRD

    Biographical history of technology > Macintosh, Charles

См. также в других словарях:

  • RLH — may stand for: * Run Like Hell (video game) * Run Like Hell Pink Floyd song * Regent Low Height AEC Regent III London bus …   Wikipedia

  • RLH — Run Like Hell (Business » General) Run Like Hell (Governmental » Military) Run Like Hell (Community » Sports) * Pearson Reid London House (Business » Firms) * Robert L. Handwerk & Associates, L. L. C. (Business » Firms) …   Abbreviations dictionary

  • RLH — abbr. Run Like Hell …   Dictionary of abbreviations

  • Unitrans RLH21 & RLH34 — Unitrans RLH 21 and RLH 34 were ex London Transport double decker buses owned by Unitrans in Davis, California. These buses were purchased by Unitrans only for spare parts and were never used in regular service. Having been sold in 1981, they are …   Wikipedia

  • Hackney Wick — infobox UK place official name= Hackney Wick map type= Greater London region= London country= England london borough= Hackney constituency westminster= Hackney South and Shoreditch post town= LONDON postcode area= E postcode district= E9,E15 dial …   Wikipedia

  • Run Like Hell (video game) — Infobox VG title = Run Like Hell: Hunt or Be Hunted developer = Digital Mayhem publisher = Interplay Capcom (JPN) distributor = designer = engine = RenderWare version = released = PlayStation 2 [http://www.gamefaqs.com/console/ps2/data/339445.html… …   Wikipedia

  • Riordan, Lewis & Haden — Infobox Company company company name = Riordan, Lewis Haden company type = Private Ownership founder = Richard Riordan, Chris Lewis and Pat Haden foundation = 1988 location = industry = Private Equity products = Private equity funds, Growth… …   Wikipedia

  • Peak District National Park — Der Peak District Nationalpark (engl. Peak District National Park) ist ein Naturpark in Nordengland. Man unterscheidet zwischen dem nördlichen Dark Peak, der den größten Teil der unbewohnten Hochmoore umfasst und dem südlichen White Peak, in dem… …   Deutsch Wikipedia

  • AEC Regent III — The AEC Regent III (also known as Regent 3 or Regent Mark III) was a type of double decker bus chassis manufactured by AEC.It was mainly built for operation outside London and the overseas. It could be fitted with AEC s 9.6 litre diesel engine… …   Wikipedia

  • Metro Cammell Weymann — Super Metrobus von Weymann Die Metro Cammell Weymann, kurz MCW war einer der bedeutendsten Herstellern in der britischen Transportindustrie. Das Unternehmen wurde 1932 gegründet und bestand bis 1989. Inhaltsverzeichnis 1 Geschichte …   Deutsch Wikipedia

  • Timebus Travel — is a bus operator based just North of London, United Kingdom specializing only in heritage ex London buses for private hire. History Timebus Travel began in October 1987 solely to operate a 1952 Regent Low Height bus (fleet number RLH 23) in… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»