Перевод: с русского на английский

с английского на русский

primary+line

  • 41 род занятий

    Русско-английский большой базовый словарь > род занятий

  • 42 ток

    1. м. current, flow; stream
    2. м. с. -х. thrashing floor

    ток анода — anode current; plate current

    ток возбуждения — exciting current; drive current

    зарядный ток — charging current; charge rate

    линейный ток — linear current; line current

    ток отпускания — drop-out current; turn-off current

    ток покоя — quiescent current; spacing current

    постоянный ток — constant current; direct current

    Русско-английский большой базовый словарь > ток

  • 43 обслуживание


    servicing
    (заправка, дозаправка, очистка)
    - (поддержание техники в исправном состоянии)maintenance
    - (подзаголовок разд. рэ "технология обслуживания") — servicing
    -, базовое техническое — base maintenance
    -,внерегламентное — unscheduled maintenance
    - в рейсеenroute maintenance
    -, календарное техническое — calendar maintenance
    - на кратковременной стоянке (kbc)transit maintenance and servicing
    - на стоянке — ramfl) /apron/ maintenance
    - на стоянке, техническое — line maintenance
    -, оперативное техническое — line maintenance
    включает: внерегламентные осмотры, предполетную подготовку, текущий (ежедневный) осмотр и т.п. — includes: unscheduled, preflight, postflight, enroute, daily, etc. maintenance checks.
    -, основное (первоочередное) — primary maintenance
    -, периодическое — periodic maintenance
    - no договору, техническое — contract /pool/ maintenance
    - no mеpe необходимости (no состоянию) — on-condition maintenance, ос maintenance
    - по налету, техническое — maintenance by flight hour(s)
    - по необходимостиcondition-monitoring maintenance

    condition monitoring is an after-the-fact maintenance process.
    -, послеполетное — post-flight maintenance
    - no соглашению, техническое (no договору между авиакомпаниями) — pool maintenance
    - no состоянию, техническое — on-condition maintenance, ос maintenance
    периодические профилактические осмотры, проверки изделий (агрегатов ла) для определения их работоспособности и возможности дальнейшей эксплуатации, — а failure preventive maintenance process which requires that the item be periodically inspected, checked or tested to determine whether the item can continue in service.
    - no форме ("a", "в", "с"), периодическое техническое — periodic maintenance ("a", "в", "с") check
    -, предполетное — pre-flight maintenance
    - при хранении — maintenance in store engines are maintained in store.
    -, профилактическое техническое (пто) — preventive maintenance
    -, регламентное — scheduled maintenance
    - самолета, находящегося вне эксплуатации — maintenance of inactive aircraft maintenance of the aircraft of i month in inactive period.
    - своими (собственными) силами — "in-house" maintenance
    -, стояночное — ramp /apron/ maintenance
    -, текущее (оперативное) — (on-) line maintenance
    -, текущее (плановое) — routine maintenance
    -, техническое — maintenance
    -, техническое (заправка, очистка) — servicing
    -, транзитное техническое — enroute /transit/ maintenance
    - туалетов (очистка, заправка) — lavatory servicing
    выполнение технического о. — maintenance performance
    технология 0. — maintenance practices
    выполнять 0. — perform maintenance, service

    Русско-английский сборник авиационно-технических терминов > обслуживание

  • 44 ответвление

    Русско-английский новый политехнический словарь > ответвление

  • 45 присоединение (в электроэнергетике)

    1. bay

     

    присоединение (в электроэнергетике)
    Совокупность коммутационных аппаратов, обеспечивающих соединение линии электропередачи, трансформатора или другого оборудования со сборными шинами.
    Примечание. Коммутационные аппараты, принадлежащие одному присоединению, характеризуются общностью управления в нормальных, аварийных и ремонтных режимах, включая управление, защиту и оперативные блокировки. Уровень присоединения в системе автоматизации подстанции представляет собой уровень управления, находящийся ниже общего станционного уровня.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    присоединение
    Электрическая цепь (оборудование и шины) одного назначения, наименования и напряжения, присоединенная к шинам РУ, генератора, щита, сборки и находящаяся в пределах электростанции, подстанции и т.п. Электрические цепи разного напряжения одного силового трансформатора (независимо от числа обмоток), одного двухскоростного электродвигателя считаются одним присоединением. В схемах многоугольников, полуторных и т.п. схемах к присоединению линии, трансформатора относятся все коммутационные аппараты и шины, посредством которых эта линия или трансформатор присоединены к РУ
    [ПОТ Р М-016-2001 РД 153-34.0-03.150-00]

    EN

    bay
    a substation consists of closely connected sub parts with some common functionality. Examples are the switchgear between an incoming or outgoing line, and the busbar, the bus coupler with its circuit breaker and related isolators and earthing switches, the transformer with its related switchgear between the two busbars representing the two voltage levels. The bay concept may be applied to 1½ breaker and ring bus substation arrangements by grouping the primary circuit breakers and associated equipment into a virtual bay. These bays comprise a power system subset to be protected, for example a transformer or a line end, and the control of its switchgear that has some common restrictions such as mutual interlocking or well-defined operation sequences. The identification of such subparts is important for maintenance purposes (what parts may be switched off at the same time with minimum impact on the rest of the substation) or for extension plans (what has to be added if a new line is to be linked in). These subparts are called ‘bays’ and may be managed by devices with the generic name ’bay controller’ and have protection systems called ‘bay protection’.

    The concept of a bay is not commonly used in North America. The bay level represents an additional control level below the overall station level
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > присоединение (в электроэнергетике)

  • 46 исходные данные

    2) Computers: input data
    3) Biology: base line
    5) Engineering: initial data, source data
    10) Telecommunications: initial conditions
    11) Information technology: master data
    14) Geophysics: prestack data
    15) Ecology: baseline, baseline data
    17) Business: base value
    18) Sakhalin energy glossary: background data, basic engineering design data, design basis (для проектирования)
    19) Quality control: initial value
    20) Chemical weapons: source (preliminary) data
    21) Makarov: basic data (исследования), entering wedge, input data (исследования), raw data (исследования)
    22) Gold mining: (необработанные) raw data
    24) Combustion gas turbines: initial condition
    25) Research and development: baseline information

    Универсальный русско-английский словарь > исходные данные

  • 47 облучатель

    feeding antenna, ( антенны) feed element, exciter радио, feed, illuminator, irradiator, primary radiator
    * * *
    облуча́тель м.
    radiation source
    анте́нный облуча́тель — antenna feed, excitation source
    анте́нный, лине́йный облуча́тель — line-source feed
    анте́нный, многору́порный облуча́тель — multiple-horn feed
    анте́нный, напра́вленный облуча́тель — directive feed
    анте́нный, перви́чный облуча́тель — primary feed
    анте́нный, ру́порный облуча́тель — horn feed, feed horn
    анте́нный, смещё́нный облуча́тель — offset feed
    анте́нный, то́чечный облуча́тель — point-source feed
    промы́шленный облуча́тель (для облучения материалов, управления реакциями и т. п.) — (materials-)processing radiation source
    * * *

    Русско-английский политехнический словарь > облучатель

  • 48 батарея

    battery, grid, ( печей) range метал., pile эл., row, stack
    * * *
    батаре́я ж.
    законсерви́ровать батаре́ю — lay up a battery, put a battery into storage
    батаре́я обеспе́чивает непреры́вную рабо́ту в тече́ние … часо́в — battery capacity is adequate to maintain … hours of operation
    пита́емый от батаре́и — battery-powered
    рабо́тающий от батаре́и — battery-operated
    расконсерви́ровать батаре́ю — put a battery back in(to) operation [service]
    с при́водом от батаре́и — battery-driven
    2. (совокупность однотипных приборов, устройств и т. п.) bank, battery, gang
    авари́йная батаре́я — emergency battery
    аккумуля́торная батаре́я — storage battery
    аккумуля́торная батаре́я не заряжа́ется [не поддаё́тся заря́ду] — the (storage) battery will not take (a) charge
    аккумуля́торная батаре́я пло́хо де́ржит заря́д — the (storage) battery will not hold its charge
    аккумуля́торная батаре́я рабо́тает в режи́ме заря́д-разря́д — a (storage) battery is cycled, a (storage) battery is used in cycle service
    включа́ть аккумуля́торную батаре́ю на заря́д — put a (storage) battery on charge
    включа́ть аккумуля́торную батаре́ю на разря́д — put a (storage) battery on discharge
    гото́вить но́вую аккумуля́торную батаре́я к эксплуата́ции — process a new battery for service
    допуска́ть сульфата́цию аккумуля́торной батаре́и — let a (storage) battery develop sulphated plates
    испо́льзовать аккумуля́торную батаре́ю в бу́ферном режи́ме (в сочетании с генератором, сетью и т. п.) — float a (storage) battery on (e. g., a generator, the mains, etc.)
    испо́льзовать аккумуля́торную батаре́ю в режи́ме глубо́кого разря́да и непреры́вного заря́да — subject a (storage) battery to deep cycling
    «сажа́ть» аккумуля́торную батаре́ю — run down a (storage) battery
    аккумуля́торная, автомоби́льная батаре́я — automobile (storage) battery
    аккумуля́торная, аэродро́мная батаре́я — battery (storage) cart
    аккумуля́торная, бу́ферная батаре́я — buffer [floating] (storage) battery
    аккумуля́торная, возду́шно-ци́нковая батаре́я — zinc-air (storage) battery
    аккумуля́торная, железони́келевая батаре́я — nickel-iron (storage) battery
    аккумуля́торная, ка́дмиево-ни́келевая батаре́я — nickel-cadmium (storage) battery
    аккумуля́торная, свинцо́вая батаре́я — lead-acid (storage) battery
    аккумуля́торная, сере́бряная батаре́я — silver (storage) battery
    аккумуля́торная, сухозаря́женная батаре́я ( для хранения без электролита) — dry-charged (storage) battery
    аккумуля́торная, у́гольно-ци́нковая батаре́я — zinc-carbon (storage) battery
    аккумуля́торная, щелочна́я батаре́я — alkaline (storage) battery
    а́мпульная батаре́я — self-activating [ampule] battery
    ано́дная батаре́я — брит. B-battery, anode battery; амер. plate battery
    а́томная батаре́я — nuclear [atomic] battery
    батаре́я бесто́ковых посы́лок телегр.spacing battery
    бу́ферная батаре́я — buffer [floating] battery
    батаре́я возду́шной деполяриза́ции — air-depolarized battery
    вспомога́тельная батаре́я — auxiliary battery
    втори́чная батаре́я — secondary battery
    вызывна́я батаре́я тлф. — ringing [signalling] battery
    выпарна́я батаре́я тепл. — multieffect evaporator, evaporator plant
    гале́тная батаре́я — disk [pancake] battery
    гальвани́ческая батаре́я — primary-cell battery
    ди́сковая батаре́я с.-х.disk gang
    диффузио́нная батаре́я пищ. — diffusion battery, batch-type diffuser
    диффузио́нная, кольцева́я батаре́я пищ.circular diffusion battery
    диффузио́нная, цепна́я батаре́я пищ.straight diffusion battery
    батаре́я жидкостны́х элеме́нтов — wet(-cell) battery
    кислоро́дная распредели́тельная батаре́я свар.battery of oxygen cylinders
    ко́ксовая батаре́я — coke-oven battery
    ко́ксовая батаре́я с перекидны́м хо́дом то́почных га́зов — crossover-flued coke-oven battery
    конденса́торная батаре́я — bank of capacitors, capacitor bank
    лине́йная батаре́я тлг., тлф.line battery
    ме́стная батаре́я тлф.local battery
    микрофо́нная батаре́я тлф. — microphone [speaking] battery
    батаре́я нака́ла — A-battery, filament battery
    батаре́я непосре́дственного охлажде́ния — direct-expansion cooling battery
    охлажда́ющая батаре́я — cooling battery
    перви́чная батаре́я — primary battery
    переносна́я батаре́я — portable battery
    рассо́льная батаре́я хол. — brine pipe battery, brine pipe grid
    резе́рвная батаре́я — stand-by battery
    самолё́тная батаре́я — aircraft-type [airborne] battery
    се́точная батаре́я — C-battery, grid(-bias) battery
    со́лнечная батаре́я — solar battery
    ста́ртерная батаре́я — starter [starting] battery
    стациона́рная батаре́я — stationary battery
    теплова́я батаре́я — thermal battery
    термоэлектри́ческая батаре́я — thermo(electric) battery, thermo(electric) pile
    термоя́дерная батаре́я — thermonuclear battery
    батаре́я то́ковых посы́лок телегр.marking battery
    батаре́я то́пливных элеме́нтов — fuel(-cell) battery
    батаре́я то́пливных элеме́нтов с ионообме́нной мембра́ной — ion-exchange (fuel-cell) battery
    батаре́я труб-распыли́телей — bank of Venturi tubes
    тя́говая батаре́я — traction battery
    центра́льная батаре́я тлф.брит. central battery; амер. common battery
    я́дерная батаре́я — nuclear [atomic] battery

    Русско-английский политехнический словарь > батарея

  • 49 основной

    ( основополагающий) fundamental, basic; ( главный) cardinal, principal, main

    основно́й вид хозя́йственной де́ятельности эк.main line of business

    основно́й зако́н — basic law

    основно́й исто́чник дохо́да фин. — principal source of income / earnings

    основно́й капита́л эк.fixed capital

    основна́я ма́сса (рд.)main bulk (of)

    основна́я мысль — message; keynote

    основна́я причи́на — principal cause

    основна́я часть расхо́дов — main / most expenditures

    основная су́мма до́лга фин.principal

    основно́е значе́ние лингв.primary meaning

    основны́е ви́ды проду́кции — principal / major items of production

    основны́е направле́ния — guidelines

    основны́е о́трасли промы́шленности — main branches of industry

    основны́е профе́ссии — essential trades

    основны́е уче́бные предме́ты — core subjects

    основны́е цвета́ — primary colours

    основные сре́дства эк.fixed assets

    ••

    в основно́м — on the whole; basically, mainly

    Новый большой русско-английский словарь > основной

  • 50 автомагистраль

    Универсальный русско-английский словарь > автомагистраль

  • 51 геометрическая ось

    1) General subject: axis
    3) Physics: center line
    4) Cartography: geometric axis
    5) Makarov: centre line

    Универсальный русско-английский словарь > геометрическая ось

  • 52 линейный реактор

    1) Engineering: line choking coil (электрический), line reactor
    2) Electrical engineering: feed reactor, feeder reactor, primary reactor

    Универсальный русско-английский словарь > линейный реактор

  • 53 магистраль

    Русско-английский автомобильный словарь > магистраль

  • 54 напряжение

    напряже́ние с.
    1. мех. stress
    напряже́ние возника́ет — a stress arises
    вызыва́ть напряже́ние — generate a stress
    концентри́ровать напряже́ния — concentrate stresses
    распределя́ть напряже́ние — distribute a stress
    скла́дывать напряже́ния — combine stresses
    снима́ть напряже́ние — relieve [relax] a stress
    2. эл. voltage, tension
    выключа́ть напряже́ние — deenergize
    гаси́ть напряже́ние на рези́сторе — drop (some) voltage across a resistor
    компенси́ровать напряже́ние противонапряже́нием — buck [back off, back out] a voltage
    наводи́ть напряже́ние — induce voltage
    повыша́ть напряже́ние — step up voltage
    под напряже́нием — alive, live, energized
    понижа́ть напряже́ние — step down voltage
    преобразо́вывать напряже́ние в код — convert voltage to number
    прикла́дывать напряже́ние — apply voltage to, impress voltage on
    проверя́ть нали́чие напряже́ния на зажи́мах — check that voltage exists at terminals
    снима́ть ( выключать) [m2]напряже́ние — deenergize
    снима́ть напряже́ние (для использования, измерения и т. п.; не путать с выключа́ть напряже́ние) — tap off voltage
    стабилизи́ровать напряже́ние элк.брит. stabilize a voltage; амер. regulate a voltage
    амплиту́дное напряже́ние — peak voltage
    напряже́ние ано́да — ( радиолампы) брит. anode voltage; амер. plate voltage; (электроннолучевой трубки, кинескопа) anode voltage
    безопа́сное напряже́ние — safe stress
    бланки́рующее напряже́ние — blanking voltage
    напряже́ние бортово́й се́ти — ав. airborne [airplane-system] voltage; мор. ships system voltage; авто car-system voltage
    вну́треннее напряже́ние — internal [locked-up] stress
    напряже́ние возбужде́ния — excitation voltage
    напряже́ние вольтодоба́вки тлв.boost voltage
    напряже́ние впа́дины ( в туннельных диодах) — valley voltage
    напряже́ние в рабо́чей то́чке — quiescent [Q-point] voltage
    напряже́ние в то́чке максима́льной крутизны́ ( в туннельных диодах) — inflection-point voltage
    напряже́ние в то́чке ма́ксимума то́ка ( в туннельных диодах) — peak(-point) voltage
    входно́е напряже́ние — input voltage
    вы́прямленное напряже́ние — rectified voltage
    высо́кое напряже́ние — high voltage
    выходно́е напряже́ние — output voltage
    вя́зкостное напряже́ние — viscous stress
    напряже́ние гаше́ния — blanking voltage
    генера́торное напряже́ние — generator voltage
    напряже́ние гетероди́на — local-oscillator signal, local-oscillator frequency
    гетероди́нное напряже́ние ( не путать с напряже́нием гетероди́на) — injection [conversion] frequency (signal)
    гла́вное напряже́ние — principal stress
    напряже́ние двойникова́ния — twinning stress
    действи́тельное напряже́ние — true [actual] stress
    де́йствующее напряже́ние — r.m.s. voltage (effective voltage — уст.)
    динами́ческое напряже́ние — dynamic stress
    диффузио́нное напряже́ние — diffusion voltage
    напряже́ние доли́ны ( в туннельных диодах) — valley voltage
    едини́чное напряже́ние
    1. unit stress
    2. unit voltage
    напряже́ние зажига́ния (в газоразрядных приборах, напр. тиратроне) — firing potential, firing voltage
    зака́лочное напряже́ние — cooling [quenching] stress
    замедля́ющее напряже́ние — decelerating [retarding] voltage
    напряже́ние запира́ния — (в радиолампах, полупроводниковых приборах) cut-off voltage; ( в схемах) disabling voltage
    заря́дное напряже́ние — charging voltage
    напряже́ние зе́ркала испаре́ния тепл. — rate or evaporation per sq.m. of water surface
    знакопереме́нное напряже́ние — alternate stress
    напряже́ние и́мпульса обра́тного хо́да — flyback [retrace] pulse voltage
    напряже́ние искре́ния — ( без перехода в дуговой разряд) sparking voltage; ( с переходом в дуговой разряд) arcing voltage
    испыта́тельное напряже́ние — test voltage
    каса́тельное напряже́ние — tangential stress
    кольцево́е напряже́ние ( в тонких оболочках) мор.hoop stress
    напряже́ние коро́ткого замыка́ния — short-circuit voltage
    напряже́ние коро́ткого замыка́ния трансформа́тора — impedance voltage of a transformer
    лине́йное напряже́ние
    1. мех. linear stress
    2. эл. line voltage
    магни́тное напряже́ние — magnetic difference of potential m.d.p.
    напряже́ние на ано́де, като́де, ба́зе, колле́кторе и т. п. — plate, cathode, base, collector, etc. voltage
    напряже́ние нагру́зки — load voltage
    напряже́ние на зажи́мах исто́чника эдс — terminal voltage
    напряже́ние нака́ла — ( прямого) filament voltage; ( косвенного) beater voltage (допустимо filament voltage в обоих случаях)
    напряже́ние нака́чки (в лазерах, параметрических усилителях) — pump(ing) voltage
    напряже́ние насыще́ния ( в транзисторах) — saturation voltage
    номина́льное напряже́ние — rated [nominal] voltage
    напряже́ние обра́тного зажига́ния — fire-back voltage
    обра́тное напряже́ние полупр. — reverse [inverse] voltage
    объё́мное напряже́ние — volumetric stress
    одноо́сное напряже́ние — uniaxial stress
    окружно́е напряже́ние — hoop [tangential] stress
    операти́вное напряже́ние ( на станциях или подстанциях для управления переключением) — control voltage
    опо́рное напряже́ние — reference voltage, voltage reference
    осево́е напряже́ние — axial stress
    осесимметри́чное напряже́ние — axisymmetrical stress
    основно́е напряже́ние — basic stress
    оста́точное напряже́ние
    1. мех. residual stress
    2. эл. residual voltage
    отклоня́ющее напряже́ние ( в ЭЛТ) — deflection voltage
    напряже́ние относи́тельно земли́ — voltage to earth
    напряже́ние отпира́ния ла́мпы элк.cut-on voltage
    напряже́ние отпира́ния по пе́рвой, второ́й или тре́тьей се́тке элк. — control, screen or suppressor grid base
    напряже́ние отпира́ния по се́тке элк.grid base
    напряже́ние отража́теля ( в клистроне) — repeller voltage
    напряже́ние от самокомпенса́ции — extension stress
    напряже́ние отсе́чки — cut-off voltage; ( в полевом транзисторе) pinch-off voltage
    напряже́ние от торможе́ния — braking stress
    напряже́ние парово́го объё́ма — rate of evaporation per cu.m. of steam space
    перви́чное напряже́ние — primary voltage
    напряже́ние перебро́са — turnover voltage
    переключа́ющее напряже́ние — switching voltage
    напряже́ние перекры́тия изоля́ции — flashover voltage
    напряже́ние переме́нного то́ка — alternating [a.c.] voltage
    напряже́ние перехо́дного проце́сса — transient voltage
    напряже́ние пи́ка ( в туннельных диодах) — peak point voltage
    пи́ковое напряже́ние — peak voltage
    пилообра́зное напряже́ние — sawtooth voltage
    напряже́ние пита́ния — supply voltage
    пла́вающее напряже́ние ( в биполярных транзисторах) — floating voltage
    напряже́ние пове́рхности нагре́ва тепл.rate of evaporation
    напряже́ние пове́рхности нагре́ва по испарё́нной вла́ге тепл.overall rate of evaporation
    пове́рхностное напряже́ние — surface stress
    напряже́ние погаса́ния ( в газоразрядных приборах) — extinction potential, extinction voltage
    напряже́ние под нагру́зкой — load stress
    напряже́ние подсве́тки — intensifier voltage
    подфокуси́рующее напряже́ние элк.focusing voltage
    по́лное напряже́ние
    1. мех. combined [compound, composite] stress
    2. эл. total voltage
    поро́говое напряже́ние — threshold voltage
    напряже́ние постоя́нного то́ка — direct [d.c.] voltage
    постоя́нное напряже́ние ( неизменной величины) — constant [fixed] voltage
    предвари́тельное напряже́ние (напр. арматуры, бетона) — prestresing
    преде́льное напряже́ние — ultimate [limit, breaking] stress
    напряже́ние при изги́бе — bending stress
    напряже́ние при круче́нии — torsional [twisting] stress
    напряже́ние при переги́бе ( в корпусе судна) — hogging stress
    напряже́ние при проги́бе ( в корпусе судна) — sagging stress
    напряже́ние при разры́ве — rupture stress
    напряже́ние при растяже́нии — tensile stress
    напряже́ние при сдви́ге — shear(ing) stress
    напряже́ние при сжа́тии — compressive stress
    напряже́ние при скру́чивании — torsional stress
    напряже́ние при сре́зе — shearing stress
    напряже́ние при уда́ре — impact stress
    пробивно́е напряже́ние ( изоляции) — breakdown [disruptive, puncture] voltage
    напряже́ние пробо́я (в полупроводниковых приборах, разрядниках) — break-down voltage
    напряже́ние пробо́я, динами́ческое — dynamic break-down voltage
    напряже́ние пробо́я, стати́ческое — static break-down voltage
    напряже́ние проко́ла ( в микросплавных транзисторах) — punch-through [reach-through] voltage
    напряже́ние промы́шленной частоты́ — commercial-frequency [power-frequency] voltage
    просто́е напряже́ние — simple stress
    прямо́е напряже́ние полупр.forward voltage
    псофометри́ческое напряже́ние — psophometric voltage
    напряже́ние развё́ртки — sweep voltage
    разруша́ющее напряже́ние — breaking stress
    разрывно́е напряже́ние — rupture stress
    напряже́ние разря́да, коне́чное (в аккумуляторах, элементах) — final voltage
    напряже́ние рассогласова́ния ( в системах регулирования) — error voltage
    расчё́тное напряже́ние — design stress
    реакти́вное напряже́ние — reactive voltage
    напряже́ние сби́вки нуля́ ( в сельсинах) — anti-stickoff voltage
    напряже́ние се́ти — брит. mains voltage; амер. supply-line voltage
    напряже́ние се́тки ( в радиолампах) — grid potential, grid voltage
    рабо́тать при положи́тельном напряже́нии се́тки — operate [run] a tube with the grid positive
    напряже́ние сигна́ла — signal voltage
    напряже́ние [m2]сигна́ла выделя́ется на сопротивле́нии нагру́зки RHthe signal voltage is developed across the load resistor RL
    синфа́зное напряже́ние ( в дифференциальных усилителях) — common-mode voltage
    напряже́ние синхрониза́ции — sync voltage
    ска́лывающее напряже́ние — cleavage stress
    сло́жное напряже́ние — combined stress
    напряже́ние смеще́ния — bias voltage
    получа́ть напряже́ние смеще́ния за счёт протека́ния като́дного то́ка че́рез рези́стор — derive [develop] bias voltage by the passage of cathode current through a resistor
    напряже́ние смыка́ния ( в транзисторах) — punch-through [reach-through] voltage
    напряже́ние сраба́тывания ре́ле — operate voltage (не путать с рабо́чим напряже́нием)
    средневы́прямленное напряже́ние (напр. синусоидального тока) — half-period average voltage
    напряже́ние стабилиза́ции ( в рабочем диапазоне тока) — stabilizing voltage
    напряже́ние сцепле́ния — bond stress
    напряже́ние та́ктовой частоты́ — clock voltage
    тангенциа́льное напряже́ние — tangential stress
    температу́рное напряже́ние — temperature stress
    теплово́е напряже́ние — beat [thermal, temperature] stress
    терми́ческое напряже́ние — thermal [temperature, beat] stress
    напряже́ние то́почного простра́нства — beat liberated (by fuel) per cu.m. per hour
    тормозя́щее напряже́ние — breaking [retarding] voltage
    напряже́ние трениро́вки
    1. ( в радиолампах) pre-burn [ageing] voltage
    2. т. над. burn-in voltage
    напряже́ние тро́гания ( в электрической машине) — breakaway voltage
    уде́льное напряже́ние — specific stress
    управля́ющее напряже́ние — control voltage
    упру́гое напряже́ние — elastic stress
    уса́дочное напряже́ние — shrinkage stress
    ускоря́ющее напряже́ние — accelerating voltage
    уста́лостное напряже́ние — fatigue stress
    напряже́ние устране́ния ло́жного нуля́ ( в сельсинах) — anti-stickoff voltage
    фа́зовое напряже́ние — phase voltage
    фокуси́рующее напряже́ние — focusing voltage
    напряже́ние формова́ния напряже́ние — forming voltage
    напряже́ние холосто́го хо́да — ( между двумя зажимами электрической цепи) open-circuit voltage; ( электрооборудования) no-load voltage
    хрони́рующее напряже́ние — timing voltage
    цепно́е напряже́ние — membrane stress
    цикли́ческое напряже́ние — cyclic(al) stress
    ша́говое напряже́ние
    напряже́ние шу́мов — noise voltage
    напряже́ние электро́нного лу́ча — beam voltage
    электростати́ческое напряже́ние — electrostatic pressure
    электрострикцио́нное напряже́ние — piezoelectric stress
    эффекти́вное напряже́ние — r.m.s. [effective] voltage

    Русско-английский политехнический словарь > напряжение

  • 55 ток

    ( солодовни) growing floor
    * * *
    ток м.
    1. эл. current
    вызыва́ть ток — cause a current to flow
    выпрямля́ть ток — rectify current
    ток замыка́ется по це́пи че́рез … — the current takes the path through …
    наводи́ть [индуци́ровать] ток — induce a current
    ток напра́влен к узлу́ — current enters a node
    ток напра́влен от узла́ — current leaves a node
    ток ответвля́ется — the current divides
    под то́ком — (to be) alive
    (по ла́мпе) протека́ет ток в … мА — (the tube) draws a current of … mA
    потребля́ть ток — draw current
    преобразо́вывать переме́нный ток в постоя́нный — convert alternating to direct current
    преобразо́вывать постоя́нный ток в переме́нный — invert direct to alternating current
    трансформи́ровать ток из перви́чной во втори́чную обмо́тку ( трансформатора) — induce secondary current
    2. (течение, поток) current, flow; stream
    3. ( площадка для молотьбы) с.-х. thrashing floor
    ток абсо́рбции ( диэлектрика) — absorption current
    акти́вный ток — active current
    ток ано́да — брит. anode current; амер. plate current
    безопа́сный ток ( для человека) — let-go current
    ток бе́лого по́ля ( в фототелеграфии) — white current
    блужда́ющий ток — stray [vagabond] current
    вихрево́й ток — eddy current
    ток во вне́шней цепи́ — external current
    ток во втори́чной обмо́тке — secondary current
    ток возбужде́ния — ( в электромашинах) exciting [excitation, field] current; ( радиосхемы) drive current
    ток вольтме́тра, нача́льный — residual [standing] (meter) current
    компенси́ровать нача́льный ток вольтме́тра — balance out [back off, buck] the residual [standing] current
    ток в перви́чной обмо́тке — primary current
    встре́чный ток — back [reverse] current
    входно́й ток — input current
    ток вы́борки ( матричной памяти) вчт. — drive [selection] current
    вызывно́й ток тлф.ringing current
    вы́прямленный ток — rectified current
    ток высо́кой частоты́ — r.f. current
    выходно́й ток — output current
    де́йствующий ток — root-mean-square [rms] current
    ток дре́йфа — drift current
    ды́рочный ток — hole current
    ё́мкостный ток — capacitive current
    ток замыка́ния на зе́млю — fault-to-earth current
    ток за́писи вчт.write current
    ток запре́та вчт.inhibit current
    заря́дный ток — charging current; ( режим заряда батареи) charge rate
    затуха́ющий ток — decaying current
    земно́й ток — telluric [earth, terrestrial] current
    инжекцио́нный ток — injection current
    ионизацио́нный ток — ionization current
    ио́нный ток — ion current
    испыта́тельный ток — test current
    като́дный ток — cathode current
    колеба́тельный ток — oscillating current
    конвекцио́нный ток — convection current
    ко́нтурный ток — loop [mesh] current
    ток коро́ткого замыка́ния — short-circuit current
    коррозио́нный ток — corrosion current
    крити́ческий ток — critical current
    лави́нный ток — avalanche current
    лине́йный ток — ( с линейной зависимостью) linear current; ( в многофазных цепях) line current
    максима́льный ток — peak current
    мгнове́нный ток — instantaneous current
    многофа́зный ток — polyphase current
    ток нагру́зки — load current
    ток нака́ла — filament [heater] current
    намагни́чивающий ток — magnetizing current
    ток насыще́ния — saturation current
    несинусоида́льный ток — non-sinusoidal current
    несу́щий ток — carrier current
    ток неустанови́вшегося режи́ма — transient current
    номина́льный ток — rated [nominal] current
    номина́льный ток автомати́ческого выключа́теля — current rating
    обме́нный ток — exchange current
    ток обра́тной свя́зи — feedback current
    обра́тный ток — back [reverse] current
    о́бщий ток ( в анализе цепей) — line current
    объё́мный ток — steady volume current
    ток, ограни́ченный простра́нственным заря́дом — space-charge-limited [SCL] current
    однофа́зный ток — single-phase current
    операти́вный ток ( используемый в цепях управления) — control current
    оста́точный ток — residual current
    ток отключе́ния автомати́ческого выключа́теля — interrupting (current) rating
    ток отпуска́ния — ( реле) drop-out [release] current; ( электронных схем или устройств) turn-off current
    парази́тный ток — spurious [parasitic, stray, sneak] current
    паралле́льный ток — parallel flow
    ток перегру́зки — overload current
    переме́нный ток — alternating current, a.c.
    перехо́дный ток — transient current
    периоди́ческий ток — periodic current
    пилообра́зный ток — saw-tooth current
    пироэлектри́ческий ток — pyroelectric current
    ток пита́ния — feed [supply] current
    пла́вящий ток — fusing current
    ток пла́змы — plasma current
    пове́рхностный ток — surface current
    ток поврежде́ния ( в электроустановках) — fault current
    размыка́ть ток поврежде́ния — interrupt [switch] the fault current
    ток подмагни́чивания — bias current
    ток поко́я — ( в радиолампах) quiescent current; ( в телеграфии) spacing current
    ток по́лной вы́борки вчт.full-select current
    по́лный ток — total current
    положи́тельный ток — positive current
    ток полувы́борки вчт.half-select current
    ток поляриза́ции — polarization current
    постоя́нный ток — ( по величине) constant current; ( по знаку) direct current, d.c.
    ток поте́рь — loss current
    потребля́емый ток — consumption current
    предпробо́йный ток — prebreak-down current
    предразря́дный ток ( газоразрядной лампы) — preconduction current
    ток предыониза́ции — preionization current
    преры́вистый ток — intermittent current
    принуждё́нный ток — forced [steady-state] current
    ток проводи́мости — conduction current
    ток простра́нственного заря́да — space-charge current
    прямо́й ток — forward current
    пульси́рующий ток — pulsating current
    пусково́й ток — starting current
    ток пучка́ — beam current
    рабо́чий ток
    1. телегр. mark(ing) current
    2. эл. ( не путать с то́ком сраба́тывания) operating current (not to be confused with operate current)
    устана́вливать рабо́чий ток компенса́тора изм.standardize the potentiometer
    ток развё́ртки — sweep current
    разгово́рный ток тлф.speaking current
    разря́дный ток
    1. discharge current
    2. вчт. digit current
    реакти́вный ток — reactive current
    ток рекомбина́ции — recombination current
    ток самоинду́кции — self-inductance current
    сва́рочный ток — welding current
    свобо́дный ток — free current
    се́точный ток — grid current
    си́льный ток — strong [heavy] current
    синусоида́льный ток — sinusoidal [harmonic] current
    синфа́зный ток — in-phase current
    синхронизи́рующий ток — synchronizing current
    сквозно́й ток ( диэлектрика) — steady leakage current
    сла́бый ток — weak current
    ток смеще́ния
    1. (физическая величина, характеризующая магнитное действие переменного электрического поля) displacement current
    ток сраба́тывания — operate current
    ста́ртовый ток — starting current
    сторо́нний ток — extraneous current
    ток счи́тывания вчт.read current
    теллури́ческий ток — telluric [earth, terrestrial] current
    темново́й ток — dark current
    ток теплово́го возбужде́ния — thermal agitation current
    термоэлектри́ческий ток — thermocurrent
    термоэлектро́нный ток — thermionic current
    трёхфа́зный ток — three-phase current
    тунне́льный ток — tunnel current
    ток управле́ния, неотпира́ющий ( симистора) — gate non-trigger current
    ток управле́ния, отпира́ющий ( симистора) — gate trigger current
    уравни́тельный ток — circulating current
    усло́вный ток (условное направление тока; в анализе цепей) — conventional current, conventional flow
    ток установи́вшегося режи́ма — steady-state current; ( в анализе цепей) steady-state [forced] current
    ток уте́чки — leakage current
    фа́зовый ток — phase current
    флуктуацио́нный ток — random current
    ток фотокато́да — photocathode current
    фотоэлектри́ческий ток — photo (electric) current
    то́ки Фуко́ — Foucault [eddy] currents
    ток холосто́го хо́да — ( без нагрузки) no-load current; ( в анализе цепей) open-circuit current
    ток части́чной вы́борки вчт.partial-select current
    ток чё́рного по́ля ( в фототелеграфии) — black current
    числово́й ток вчт.word current
    шумово́й ток ( полевого транзистора) — noise current
    электри́ческий ток — electric current
    подводи́ть электри́ческий ток к сва́риваемым дета́лям — convey (welding) current to the workpieces
    электро́нный ток — electron(ic) current
    ток эми́ссии — emission current
    ток я́коря — armature current

    Русско-английский политехнический словарь > ток

  • 56 луч

    1. м. ray
    2. м. beam

    луч света искривляется в сторону …light bends towards

    смещённый луч — shifted beam; offset beam

    Русско-английский большой базовый словарь > луч

  • 57 поверхность


    surface
    -, аэродинамическая (профиль) — airfoil
    -, аэродинамическая компенсированная (уравновешенная) — aerodynamically balanced surface
    - без покрытияbare surface
    нанести тонкий слой масла на стальную поверхность, не имеющую (защитного) покрытия. — apply а light coat of oil to any bare steel surfaces
    -, блестящая (после зачистки) — luster surface
    зачистить лакокрасочное покрытие до появления металпического блеска. — clean off paint coating until luster surface appears.
    - бонки, опорная (под болт) — bolt boss abutment face
    -, влажная (впп) — (runway) wet surface
    - водная (моря)water surface

    water-surface condition scale.
    -, вспомогательная несущая — auxiliary lifting surface
    -, гладкая — smooth surface
    -, граничная — boundary surface
    -, земная — surface of the earth
    - зуба замка лопатки, силовая — blade serration load face
    -, компенсированная (руля или элерона) — balanced control surface
    - крылаwing surface
    - крыла, верхняя — upper wing surface
    - крыла, нижняя — lower wing surface
    -, мирового океана в состоянии равновесия воды, уровенная — sea-level gravity equipotential
    -, не имеющая металлического блеска — lusterless surface
    -, нерабочая — nоn-working surface
    -, несущая — lifting surface
    часть летательного аппарата, предназначенная для создания аэродинамической (в частности, подъемной) силы при движении аппарата в воздухе. — an airfoil that provides an outer contour or plane to perform a function as in "lifting surface" or "control surfасе".
    - обода колеса для монтажа шиныtire bed seat
    -, окружающая — surrounding surface
    зачищать края забоины с плавным переходом на окружающую поверхность, — smoothly blend the edges of а damage (nick) into the surrounding surface.
    -, опорная (монтажная) — bearing surface
    -, ответная — mating face
    - перехода (см. переход) — fillet surface
    -, посадочная (для сопряжения деталей, узлов) — mounting face, fit
    -, посадочная (напр., воздушнаго стартера, насоса) — (air starter, pump) mounting face

    the fuel pump mounting face is on the accessory drive gear box.
    -, посадочная (стык) — joint face
    поверхность разъема между двумя частями (половинами) узла. — joint face is parting surfaces between two halves of assembly.
    -, привалочная (детали) — mounting face
    -, притертая (прикатанная, пришлифованная) — surface of contact
    -, рабочая — working surface
    -, рулевая — control surface
    подвижные несущие поверхности, предназначенные дпя управления самолетом: руль высоты, элероны, руль направления, триммеры, сервокомпенсаторы. — the airfoil shaped surfaces which control the flight attitudes of an aircraft, i.e., the elevators, ailerons, rudder, and auxiliary controls such as tabs.
    - с аэродинамической компенсацией, рулевая (управления) — aerodynamically balanced control surface
    поверхность управления, часть которой вынесена по всей длине вперед (по полету) от оси вращения (подвески). компенсация служит для уменьшения усилий летчика, потребных для отклонения поверхности управления в полете (рис. 18). — а control surface is balanced aerodynamically when а рогtion of the surface is ahead of the hinge line. control surfaces are balanced aerodynamically to make them more easify manipulated by the pilot and assist in avoiding flutter conditions.
    - с весовой компенсацией, рулевая (управления) — statically /mass/ balanced control surface
    поверхность управления с центром массы, совмещенным с осью вращения, часто обеспечиваемым установкой грузов-балансиров в носовой части профиля. препятствует возникновению флаттера поверхности (рис. 18). — а control surface is statically balanced when it is mass balanced about the hinge line, i.e., it is hinged at its center of gravity or, as is more often the case, when а weight is fastened to the surface and counter balances the weight of the control surface, to prevent flutter of the surface.
    -, скользкая (впп, рулежной дорожки) — slick /slippery/ surface. on slick surfaces (slick runway or taxiway) the optimum applied brake pressure is appreciably reduced.
    - с роговой компенсацией, рулевая (рис. 18) — horn-balanced control surface
    - соприкосновенияcontact surface
    -, трущаяся — surface subject to friction
    - управленияcontrol surface
    подвижная (управляемая) аэродинамически профилированная поверхность, служащая для управления поломением самолета в пространстве (относительно трех осей). к основным поверхностям управления относятся: рули высоты и направления, элероны. — control surface is a device movable in flight, primary function of which is to govern motion of the aircraft in pitch, roll or yaw. control surfaces include: ailerons, elevator and rudder.
    - управления с аэродинамической компенсациейaerodynamically-balanced control surface
    - управления с весовой компенсацией — statically /mass/ balanced control surface
    - управления с роговой компенсациейhorn-balanced control surface
    -, фрикционная (тормозного диска) — friction face the three rotor discs afford six friction faces.
    - шины, монтажная (на ободе) — tire bed seat
    - шланга (герметизации), уплотняющая — sealing strip nib
    балансировать п. управления — balance the control surface
    нивелировать п. управления — adjust the control surface
    отклонять п. управления — deflect the control surface
    подвешивать п. управления — hinge the control surface

    Русско-английский сборник авиационно-технических терминов > поверхность

  • 58 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 59 номинальное напряжение

    1. Un
    2. rated voltage
    3. nominal voltage
    4. design voltage

     

    номинальное напряжение
    Напряжение, установленное изготовителем для прибора
    [ ГОСТ Р 52161. 1-2004 ( МЭК 60335-1: 2001)]

    номинальное напряжение Uном, кВ
    Номинальное междуфазное напряжение электрической сети, для работы в которой предназначены коммутационные аппараты.
    [ ГОСТ Р 52726-2007]

    номинальное напряжение

    Un
    Напряжение, применяемое для обозначения или идентификации системы электроснабжения.
    [ ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008)]

    EN

    rated voltage
    voltage assigned to the appliance by the manufacturer
    [IEC 60335-1, ed. 4.0 (2001-05)]

    rated voltage
    quantity value assigned, generally by the manufacturer, for a specified operating condition of a machine
    [IEC 60034-18-41, ed. 1.0 (2006-10)]

    rated voltage
    input or output supply voltage for which equipment is designed or specified
    [IEC 88528-11, ed. 1.0 (2004-03)]

    rated voltage
    specified value of the voltage at the terminals of the machine when operating at a rating. If unidirectional, the voltage is the arithmetic mean of the recurring waveform and if alternating it is the root mean square value of the fundamental frequency component of the recurring waveform
    NOTE - In the case of a machine with a protective resistor permanently in series, the resistor is considered as an integral part of the machine
    [IEC 60349-1, ed. 1.0 (1999-11)]

    rated voltage
    the value of voltage assigned by the manufacturer to a component, device or equipment and to which operation and performance characteristics are referred
    NOTE - Equipment may have more than one rated voltage value or may have a rated voltage range.
    [IEC 62497-1, ed. 1.0 (2010-02)]

    rated voltage
    reference voltage for which the cable is designed, and which serves to define the electrical tests
    NOTE 1 - The rated voltage is expressed by the combination of two values: Uo/U expressed in volts (V):
    Uo being the r.m.s. value between any insulated conductor and "earth" (metal covering of the cable or the surrounding medium);
    U being the r.m.s. value between any two phase conductors of a multicore cable or of a system of single-core cables.
    In an alternating-current system, the rated voltage of a cable is at least equal to the nominal voltage of the system for which it is intended.
    This condition applies both to the value Uo and to the value U.
    In a direct current system, the nominal voltage of the system is not higher than 1,5 times the rated voltage of the cable.
    NOTE 2 - The operating voltage of a system may permanently exceed the nominal voltage of such a system by 10 %. A cable can be used at a 10 % higher operating voltage than its rated voltage if the latter is at least equal to the nominal voltage of the system
    [IEC 60245-1, ed. 4.0 (2003-12)]

    rated voltage
    highest allowable voltage between the conductors in a twin and multi conductor cable, or between one conductor and an electrical conductive screen, or between the two ends of a single core cable, or earth in unscreened cables
    [IEC 60800, ed. 3.0 (2009-07)]

    rated voltage
    the r.m.s. line-to-line voltage under rated conditions
    Primary side of input transformer: ULN
    Converter input: UVN
    Converter output: UaN
    Motor voltage: UAN
    [IEC 61800-4, ed. 1.0 (2002-09)]

    rated voltage
    input or output voltage (for three-phase supply, the phase-to-phase voltage) as declared by the manufacturer
    [IEC 62040-1, ed. 1.0 (2008-06)]

    nominal voltage, Un
    voltage by which a system is designated or identified
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    FR

    tension assignée
    tension attribuée à l'appareil par le fabricant
    [IEC 60335-1, ed. 4.0 (2001-05)]

    tension nominale
    tension assignée, généraleme<>value of voltage assigned by the manufacturer, to a componentnt par le constructeur pour des conditions spécifiées de fonctionnement de la machine
    [IEC 60034-18-41, ed. 1.0 (2006-10)]

    tension assignée
    tension spécifiée aux bornes de la machine quand celle-ci fonctionne au régime assigné. Dans le cas d'une tension redressée, sa valeur est égale à la valeur moyenne de l'onde périodique. Dans le cas d'une tension alternative, sa valeur est égale à la valeur efficace de la composante fondamentale de l'onde périodique
    NOTE - Dans le cas d'une machine équipée d'une résistance de protection connectée en permanence en série, la résistance est considérée comme faisant partie intégrante de la machine
    [IEC 60349-1, ed. 1.0 (1999-11)]

    tension assignée
    valeur de la tension, assignée par le constructeur à un composant, à un dispositif ou à un matériel, et à laquelle on se réfère pour le fonctionnement et pour les caractéristiques fonctionnelles
    NOTE - Les matériels peuvent avoir plusieurs valeurs ou une plage de tensions assignées.
    [IEC 62497-1, ed. 1.0 (2010-02)]

    tension assignée
    tension de référence pour laquelle le conducteur ou le câble est prévu et qui sert à définir les essais électriques
    NOTE 1 - La tension assignée est exprimée par la combinaison de deux valeurs Uo /U, exprimées en volts (V):
    Uo étant la valeur efficace entre l'âme d'un conducteur isolé quelconque et la «terre» (revêtement métallique du câble au milieu environnant);
    U étant la valeur efficace entre les âmes conductrices de deux conducteurs de phase quelconques d'un câble multiconducteur ou d'un système de câbles monoconducteurs ou de conducteurs.
    Dans un système à courant alternatif, la tension assignée d'un conducteur ou d’un câble est au moins égale à la tension nominale du système pour lequel il est prévu.
    Cette condition s'applique à la fois à la valeur Uo et à la valeur U.
    Dans un système à courant continu, la tension nominale admise du système n’est pas supérieure à 1,5 fois la tension assignée du conducteur ou du câble.
    NOTE 2 - La tension de service d'un système peut en permanence dépasser la tension nominale dudit système de 10 %. Un conducteur ou un câble peut être utilisé à une tension de service supérieure de 10 % à sa tension assignée si cette dernière est au moins égale à la tension nominale du système
    [IEC 60245-1, ed. 4.0 (2003-12)]

    tension assignée
    tension maximale admissible entre les âmes dans un câble ayant une paire ou multi conducteur ou entre une âme et un écran conducteur électrique ou avec la terre pour un câble non écranté ou encore entre les deux extrémités d’un câble à âme unique
    [IEC 60800, ed. 3.0 (2009-07)]

    tension assignée
    valeur efficace de la tension de ligne (entre phases) dans les conditions assignées
    Primaire du transformateur d’entrée: ULN
    Entrée du convertisseur: UVN
    Sortie du convertisseur: UaN
    Moteur: UAN
    [IEC 61800-4, ed. 1.0 (2002-09)]

    tension assignée
    tension d’alimentation d’entrée ou de sortie (dans le cas d’une alimentation triphasée, tension entre phases) déclarée par le constructeur
    [IEC 62040-1, ed. 1.0 (2008-06)]

    tension nominale, Un
    tension par laquelle un réseau est désigné ou identifié
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    Тематики

    Синонимы

    • Un

    EN

    FR

    1.5.10 номинальное напряжение (rated voltage): Номинальное напряжение - это либо эффективное значение рабочего напряжения номинальной частоты, либо рабочее постоянное напряжение, которое можно длительно подавать на выводы конденсатора при любой температуре между нижней и верхней температурами категории. Это означает, что у конденсаторов, на которые распространяется настоящий стандарт, напряжение категории равно номинальному напряжению.

    Источник: ГОСТ Р МЭК 60384-14-2004: Конденсаторы постоянной емкости для электронной аппаратуры. Часть 14. Групповые технические условия на конденсаторы постоянной емкости для подавления электромагнитных помех и соединения с питающими магистралями оригинал документа

    3.2.1 номинальное напряжение (rated voltage): Напряжение, указанное изготовителем для этой машины, или напряжение между фазами (линейное) - при трехфазном питании.

    Источник: ГОСТ Р МЭК 60745-1-2005: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа

    3.25 номинальное напряжение (rated voltage): Напряжение, установленное изготовителем соединителей, которое указывается в стандартах или технических условиях.

    Источник: ГОСТ Р 51322.1-2011: Соединители электрические штепсельные бытового и аналогичного назначения. Часть 1. Общие требования и методы испытаний оригинал документа

    3.4 номинальное напряжение (nominal voltage): Подходящее приблизительное значение напряжения, используемое для идентификации напряжения аккумулятора или батареи.

    Примечания

    1. Номинальное напряжение литиевых аккумуляторов указано в таблице 1.

    2. Номинальное напряжение батареи, состоящей из n соединенных последовательно аккумуляторов, равно номинальному напряжению отдельного аккумулятора, увеличенному в n раз.

    Источник: ГОСТ Р МЭК 61960-2007: Аккумуляторы и аккумуляторные батареи, содержащие щелочной и другие некислотные электролиты. Аккумуляторы и аккумуляторные батареи литиевые для портативного применения оригинал документа

    3.23 номинальное напряжение (rated voltage): Значение напряжения, на которое рассчитаны рабочие и эксплуатационные характеристики распределенных электронагревателей.

    Источник: ГОСТ Р МЭК 60079-30-1-2009: Взрывоопасные среды. Резистивный распределенный электронагреватель. Часть 30-1. Общие технические требования и методы испытаний оригинал документа

    1.5.9 номинальное напряжение (rated voltage): Напряжение или диапазон напряжения, заданное(ый) в соответствии с настоящим стандартом.

    Примечание - Если в маркировке на лампе приведен диапазон напряжения, это значит, что возможна эксплуатация ламп при любом значении напряжения в пределах этого диапазона.

    Источник: ГОСТ Р 52706-2007: Лампы накаливания вольфрамовые для бытового и аналогичного общего освещения. Эксплуатационные требования оригинал документа

    1.2.1.1. номинальное напряжение (rated voltage): Указанное изготовителем напряжение источника сетевого электропитания (для трехфазного источника электропитания принимают линейное напряжение).

    Источник: ГОСТ Р МЭК 60950-1-2009: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    1.2.1.1 номинальное напряжение (rated voltage): Указанное изготовителем напряжение источника сетевого электропитания (для трехфазного источника электропитания принимают линейное напряжение).

    Источник: ГОСТ Р МЭК 60950-1-2005: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    3.37 номинальное напряжение (rated voltage): Значение напряжения для заданных условий эксплуатации.

    Значение и условия должны быть указаны в соответствующем стандарте или изготовителем, или ответственным поставщиком.

    Примечание - Номинальное напряжение выражают в вольтах (В).

    Источник: ГОСТ Р 54814-2011: Светодиоды и светодиодные модули для общего освещения. Термины и определения оригинал документа

    1.3.4 номинальное напряжение (rated voltage): Напряжение или диапазон напряжения, заданное(ый) в соответствии с настоящим стандартом.

    Примечание - Если в маркировке на лампе приведен диапазон напряжения, это значит, что возможна эксплуатация ламп при любом значении напряжения в пределах этого диапазона.

    Источник: ГОСТ Р 52712-2007: Требования безопасности для ламп накаливания. Часть 1. Лампы накаливания вольфрамовые для бытового и аналогичного общего освещения оригинал документа

    3.15 номинальное напряжение (nominal voltage): Соответствующее приблизительное значение напряжения, которое используют при проектировании или идентификации элемента, батареи или электрохимической системы.

    [IEV 482-03-31:2004]

    Источник: ГОСТ Р МЭК 60086-4-2009: Батареи первичные. Часть 4. Безопасность литиевых батарей оригинал документа

    3.10 номинальное напряжение (nominal voltage): Соответствующее приблизительное значение напряжения, которое используют для идентификации первичной батареи.

    Источник: ГОСТ Р МЭК 60086-5-2009: Батареи первичные. Часть 5. Безопасность батарей с водным электролитом оригинал документа

    3.40 номинальное напряжение (rated voltage): Напряжение, установленное для машины изготовителем. При трехфазном питании - напряжение между фазами.

    Источник: ГОСТ Р МЭК 60745-1-2009: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа

    3.2.1 номинальное напряжение (rated voltage): Напряжение, указанное изготовителем для этой машины, или напряжение между фазами (линейное) - при трехфазном питании.

    Источник: ГОСТ IEC 60745-1-2011: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования

    3.11 номинальное напряжение (rated voltage), UH (UN): Напряжение при номинальной частоте, прикладываемое между линейными выводами обмотки.

    Источник: ГОСТ Р 54801-2011: Трансформаторы тяговые и реакторы железнодорожного подвижного состава. Основные параметры и методы испытаний оригинал документа

    3.7 номинальное напряжение (design voltage): Объявленное изготовителем напряжение, к которому относятся все характеристики устройства управления лампами и которое должно быть не менее 85 % наибольшего значения диапазона нормируемого напряжения.

    Источник: ГОСТ Р МЭК 61347-1-2011: Устройства управления лампами. Часть 1. Общие требования и требования безопасности оригинал документа

    3.103 номинальное напряжение (rated voltage): Напряжение, указанное изготовителем, для конкретного корпуса.

    Источник: ГОСТ Р 50827.5-2009: Коробки и корпусы для электрических аппаратов, устанавливаемые в стационарные электрические установки бытового и аналогичного назначения. Часть 24. Специальные требования к коробкам и корпусам, предназначенным для установки защитных и аналогичных аппаратов с большой рассеиваемой мощностью оригинал документа

    3.2.1 номинальное напряжение (rated voltage); Ur:Междуфазное напряжение на выводах генератора при номинальных частоте и мощности.

    Примечание - Номинальное напряжение генератора для рабочих и эксплуатационных характеристик устанавливает изготовитель.

    Источник: ГОСТ Р 53986-2010: Электроагрегаты генераторные переменного тока с приводом от двигателя внутреннего сгорания. Часть 3. Генераторы переменного тока оригинал документа

    3.2.1. номинальное напряжение (rated voltage):

    Напряжение, для которого сконструирована установка (или ее часть).

    Источник: ГОСТ Р МЭК 60519-1-2005: Безопасность электротермического оборудования. Часть 1. Общие требования оригинал документа

    2.3 номинальное напряжение (rated voltage): Стандартное напряжение, на которое рассчитан кабель и которое служит для определения параметров электрических испытаний.

    Источник: ГОСТ Р МЭК 60245-1-2006: Кабели с резиновой изоляцией на номинальное напряжение до 450/750 В включительно. Часть 1. Общие требования оригинал документа

    2.3 номинальное напряжение (rated voltage): Стандартное напряжение, на которое рассчитан кабель и которое служит для определения параметров электрических испытаний.

    Примечание 1 - Номинальное напряжение выражается сочетанием двух значений U0/U, выраженных в вольтах (В):

    U0 - среднеквадратическое значение между любой изолированной жилой и «землей» (металлическим покрытием кабеля или окружающей средой);

    U - среднеквадратическое значение между любыми двумя фазными жилами многожильного кабеля или системы одножильных кабелей.

    В системе переменного тока номинальное напряжение кабеля должно быть не менее номинального напряжения системы, для которой он предназначен.

    Это условие относится как к значению U0, так и к значению U.

    В системе постоянного тока номинальное напряжение системы должно быть не более полуторного значения номинального напряжения кабеля.

    Примечание 2 - Рабочее напряжение системы может постоянно превышать номинальное напряжение такой системы до 10 %. Кабель можно использовать при рабочем напряжении на 10 % выше его номинального напряжения, если последнее по крайней мере равно номинальному напряжению системы.

    Источник: ГОСТ Р МЭК 60245-1-2009: Кабели с резиновой изоляцией на номинальное напряжение до 450/750 В включительно. Часть 1. Общие требования оригинал документа

    2.3 номинальное напряжение (rated voltage): Стандартное напряжение, на которое рассчитан кабель, служащее для определения параметров электрических испытаний.

    Номинальное напряжение выражают сочетанием двух значений - U0/U, выраженных в вольтах:

    U0- среднеквадратическое значение между любой изолированной жилой и «землей» (металлическим покрытием кабеля или окружающей средой);

    U - среднеквадратическое значение между любыми двумя фазными жилами многожильного кабеля или системы одножильных кабелей.

    В системе переменного тока номинальное напряжение кабеля должно быть не менее номинального напряжения системы, для которого он предназначен.

    Это требование относится как к значению U0, так и к значению U.

    В системе постоянного тока номинальное напряжение системы должно быть не более полуторного значения номинального напряжения кабеля.

    Примечание - Рабочее напряжение системы может постоянно превышать номинальное напряжение этой системы до 10 %. Кабель можно использовать при рабочем напряжении, на 10 % превышающем номинальное напряжение, если последнее по крайней мере равно номинальному напряжению системы.

    Источник: ГОСТ Р МЭК 60227-1-2009: Кабели с поливинилхлоридной изоляцией на номинальное напряжение до 450/750 В включительно. Часть 1. Общие требования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > номинальное напряжение

  • 60 добротность

    Русско-английский технический словарь > добротность

См. также в других словарях:

  • Primary State Highway 6 (Washington) — Primary State Highway 6 Pend Oreille Highway, Newport Highway PSH 6 highlighted in red …   Wikipedia

  • Primary poverty — is a categorisation of poverty created by Seebohm Rowntree. Primary poverty is the name given to a group of people who lived below Seebohm Rowntree s poverty line. To live in primary poverty is to have insufficient income to afford basic needs.… …   Wikipedia

  • Primary source — [ [http://www.lib.umd.edu/guides/primary sources.html Primary, Secondary and Tertiary Sources, UM Libraries] ] [ [http://www.library.jcu.edu.au/LibraryGuides/primsrcs.shtml JCU Primary, Secondary Tertiary Sources] ] is a term used in a number of… …   Wikipedia

  • Primary (LDS Church) — Primary Motto Faith and Service. Formation 11 August 1878 Type Non profit Purpose/focus religious instruction; personal standards and development; child/family support Headquarters …   Wikipedia

  • Primary immunodeficiency — Primary immunodeficiencies are disorders in which part of the body s immune system is missing or does not function properly. To be considered a primary immunodeficiency, the cause of the immune deficiency must not be secondary in nature (i.e.,… …   Wikipedia

  • primary — primary, primal, primordial, primitive, pristine, primeval, prime mean first in some respect (as order, character, or importance). Something primary comes first in the order of development or of progression. Sometimes the term means little more… …   New Dictionary of Synonyms

  • LINE (combat system) — LINE Combat System Also known as Linear Infighting Neural Override Engagement, 7 Deadly Moves of Combat philosophy Focus Hybrid Country of origin United States …   Wikipedia

  • primary — / prime [adj1] best, principal capital, cardinal, chief, crackerjack*, dominant, excellent, fab*, first, first class*, greatest, heavy, highest, hot*, leading, main, number one*, paramount, primo*, state of the art*, stellar, top, top of the… …   New thesaurus

  • Line Renaud — is a popular French singer, actress and activist (born Jacqueline Ente, on July 2 1928 in Pont de Nieppe). Early life Line Renaud was born in Pont de Nieppe on July,2 1928. Her mother Simone was a shorthand typist and father, a truck driver… …   Wikipedia

  • primary protection — Introduced by the Finance Act 2004, one of the forms of transitional protection that is available for members of registered pension schemes who accrued pension rights before 6 April 2006. A member whose rights are valued at more than £1.5 million …   Law dictionary

  • Primary rate interface — The primary rate interface (PRI) is a telecommunications standard for carrying multiple DS0 voice and data transmissions between two physical locations.All data and voice channels are ISDN and operate at 64 kbit/s.T1 vs. E1 SystemsNorth America… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»