Перевод: со всех языков на все языки

со всех языков на все языки

northumberland

  • 81 Northd

    English-german dictionary > Northd

  • 82 Northumbrian

    North·um·brian
    [nɔ:ˈθʌmbriən, AM nɔ:rˈ-]
    I. n Bewohner(in) m(f) Northumberlands
    II. adj aus Northumberland nach n

    English-german dictionary > Northumbrian

  • 83 Northd

    ( BRIT) abbr (POST)
    = Northumberland

    English-Polish dictionary > Northd

  • 84 Northd

    s abrev Northumberland comtat anglès

    English-Catalan dictionary > Northd

  • 85 Нортамберленд

    пролив (Канада) Northumberland Strait

    Русско-английский географический словарь > Нортамберленд

  • 86 Northumb

    Northumb( ABBR OF Northumberland)

    English-French dictionary > Northumb

  • 87 Syon House

    ['saɪən,haus]
    Са́йон-Ха́ус (богатый загородный особняк на западной окраине Лондона; резиденция герцогов Нортумберлендских [Dukes of Northumberland]. Построен в середине 16 в.; интерьеры работы Р.Адама [Robert Adam, 1728-92]; см. тж. Adam style)

    English-Russian Great Britain dictionary (Великобритания. Лингвострановедческий словарь) > Syon House

  • 88 Нортамберленд

    м.; = Норту́мберленд

    Новый большой русско-английский словарь > Нортамберленд

  • 89 Northumb.

    сокр. от Northumberland; геогр.

    Англо-русский современный словарь > Northumb.

  • 90 Northumbrian

    adj koji se odnosi na pokrajinu Northumberland; [hist] koji se odnosi na pokrajinu Northumbriju (sjeverno od rijeke Humber u Engleskoj)

    English-Croatian dictionary > Northumbrian

  • 91 Northumbrian

    s stanovnik (ili narječje) pokrajine Northumberland; [hist] stanovnik (ili narječje) pokrajine Northumbrije (sjeverno od rijeke Humber u Engleskoj).

    English-Croatian dictionary > Northumbrian

  • 92 Northd

    Big English-French dictionary > Northd

  • 93 ნორტუმბერლენდი

    n
    Northumberland

    Georgian-English dictionary > ნორტუმბერლენდი

  • 94 Bewick, Thomas

    SUBJECT AREA: Paper and printing
    [br]
    b. August 1753 Cherryburn House, Ovingham, Northumberland, England
    d. 8 November 1828 Gateshead, England
    [br]
    English perfecter of wood-engraving.
    [br]
    The son of a farmer, Bewick was educated locally, but his progress was unremarkable save for demonstrating an intense love of nature and of drawing. In 1767 he was apprenticed to Ralph Beilby, an engraver in Newcastle. Wood-engraving at that time was at a low ebb, restricted largely to crude decorative devices, and Hogarth, commenting on a recent book on the art, doubted whether it would ever recover. Beilby's business was of a miscellaneous character, but Bewick's interest in wood-engraving was noticed and encouraged: Beilby submitted several of his engravings to the Royal Society of Arts, which awarded a premium of £80 for them. His apprenticeship ended in 1774 and he went to London, where he readily found employment with several printers. The call of the north was too strong, however, and two years later he returned to Newcastle, entering into partnership with Beilby. With the publication of Select Fables in 1784, Bewick really showed both his expertise in the art of wood-engraving as a medium for book illustration and his talents as an artist. His engravings for the History of British Birds mark the high point of his achievement. The second volume of this work appeared in 1804, the year in which his partnership with Beilby was dissolved.
    The essential feature of Bewick's wood-engravings involved cutting across the grain of the wood instead of along it, as in the old woodcut technique. The wood surface thus obtained offered a much more sensitive medium for engraving than before. It paved the way for the flowering of engraving on wood, and then on steel, for the production of illustrated material for an ever wider public through the Victorian age.
    [br]
    Bibliography
    1864, Memoir of Thomas Bewick (autobiography, completed by his daughter). 1784, Select Fables.
    Further Reading
    M.Weekley, 1963, Thomas Bewick, Oxford: Oxford University Press.
    LRD

    Biographical history of technology > Bewick, Thomas

  • 95 Buckle, William

    [br]
    b. 29 July 1794 Alnwick, Northumberland, England
    d. 30 September 1863 London, England
    [br]
    English mechanical engineer who introduced the first large screw-cutting lathe to Boulton, Watt \& Co.
    [br]
    William Buckle was the son of Thomas Buckle (1759–1849), a millwright who later assisted the 9th Earl of Dundonald (1749–1831) in his various inventions, principally machines for the manufacture of rope. Soon after the birth of William, the family moved from Alnwick to Hull, Yorkshire, where he received his education. The family again moved c.1808 to London, and William was apprenticed to Messrs Woolf \& Edwards, millwrights and engineers of Lambeth. During his apprenticeship he attended evening classes at a mechanical drawing school in Finsbury, which was then the only place of its kind in London.
    After completing his apprenticeship, he was sent by Messrs Humphrys to Memel in Prussia to establish steamboats on the rivers and lakes there under the patronage of the Prince of Hardenburg. After about four years he returned to Britain and was employed by Boulton, Watt \& Co. to install the engines in the first steam mail packet for the service between Dublin and Holyhead. He was responsible for the engines of the steamship Lightning when it was used on the visit of George IV to Ireland.
    About 1824 Buckle was engaged by Boulton, Watt \& Co. as Manager of the Soho Foundry, where he is credited with introducing the first large screw-cutting lathe. At Soho about 700 or 800 men were employed on a wide variety of engineering manufacture, including coining machinery for mints in many parts of the world, with some in 1826 for the Mint at the Soho Manufactory. In 1851, following the recommendations of a Royal Commission, the Royal Mint in London was reorganized and Buckle was asked to take the post of Assistant Coiner, the senior executive officer under the Deputy Master. This he accepted, retaining the post until the end of his life.
    At Soho, Buckle helped to establish a literary and scientific institution to provide evening classes for the apprentices and took part in the teaching. He was an original member of the Institution of Mechanical Engineers, which was founded in Birmingham in January 1847, and a member of their Council from then until 1855. He contributed a number of papers in the early years, including a memoir of William Murdock whom he had known at Soho; he resigned from the Institution in 1856 after his move to London. He was an honorary member of the London Association of Foreman Engineers.
    [br]
    Bibliography
    1850, "Inventions and life of William Murdock", Proceedings of the Institution of Mechanical Engineers 2 (October): 16–26.
    RTS

    Biographical history of technology > Buckle, William

  • 96 Coade, Eleanor

    [br]
    b. 24 June 1733 Exeter, Devon, England
    d. 18 November 1821 Camberwell, London, England
    [br]
    English proprietor of the Coade Factory, making artificial stone.
    [br]
    Born Elinor Coade, she never married but adopted, as was customary in business in the eighteenth century, the courtesy title of Mrs. Following the bankruptcy and death of her father, George Coade, in Exeter, Eleanor and her mother (also called Eleanor) moved to London and founded the works at Lambeth, South London, in 1769 that later became famous as the Coade factory. The factory was located at King's Arms Stairs, Narrow Wall. During the eighteenth century, several attempts had been made in other businesses to manufacture a durable, malleable artificial stone that would be acceptable to architects for decorative use. These substances were not very successful, but Coade stone was different. Although stories are legion about the secret formula supposedly used in this artificial stone, modern methods have established the exact formula.
    Coade stone was a stoneware ceramic material fired in a kiln. The body was remarkable in that it shrank only 8 per cent in drying and firing: this was achieved by using a combination of china clay, sand, crushed glass and grog (i.e. crushed and ground, previously fired stoneware). The Coade formula thus included a considerable proportion of material that, having been fired once already, was unshrinkable. Mrs Coade's name for the firm, Coade's Lithodipyra Terra-Cotta or Artificial Stone Manufactory (where "Lithodipyra" is a term derived from three Greek words meaning "stone", "twice" and "fire"), made reference to the custom of including such material (such as in Josiah Wedgwood's basalt and jasper ware). The especially low rate of shrinkage rendered the material ideal for making extra-life-size statuary, and large architectural, decorative features to be incorporated into stone buildings.
    Coade stone was widely used for such purposes by leading architects in Britain and Ireland from the 1770s until the 1830s, including Robert Adam, Sir Charles Barry, Sir William Chambers, Sir John Soane, John Nash and James Wyatt. Some architects introduced the material abroad, as far as, for example, Charles Bulfinch's United States Bank in Boston, Massachusetts, and Charles Cameron's redecoration for the Empress Catherine of the great palace Tsarkoe Selo (now Pushkin), near St Petersburg. The material so resembles stone that it is often mistaken for it, but it is so hard and resistant to weather that it retains sharpness of detail much longer than the natural substance. The many famous British buildings where Coade stone was used include the Royal Hospital, Chelsea, Carlton House and the Sir John Soane Museum (all of which are located in London), St George's Chapel at Windsor, Alnwick Castle in Northumberland, and Culzean Castle in Ayrshire, Scotland.
    Apart from the qualities of the material, the Coade firm established a high reputation for the equally fine quality of its classical statuary. Mrs Coade employed excellent craftsmen such as the sculptor John Bacon (1740–99), whose work was mass-produced by the use of moulds. One famous example which was widely reproduced was the female caryatid from the south porch of the Erechtheion on the acropolis of Athens. A drawing of this had appeared in the second edition of Stuart and Revett's Antiquities of Athens in 1789, and many copies were made from the original Coade model; Soane used them more than once, for example on the Bank of England and his own houses in London.
    Eleanor Coade was a remarkable woman, and was important and influential on the neo-classical scene. She had close and amicable relations with leading architects of the day, notably Robert Adam and James Wyatt. The Coade factory was enlarged and altered over the years, but the site was finally cleared during 1949–50 in preparation for the establishment of the 1951 Festival of Britain.
    [br]
    Further Reading
    A.Kelly, 1990, Mrs Coade's Stone, pub. in conjunction with the Georgian Group (an interesting, carefully written history; includes a detailed appendix on architects who used Coade stone and buildings where surviving work may be seen).
    DY

    Biographical history of technology > Coade, Eleanor

  • 97 Davy, Sir Humphry

    [br]
    b. 17 December 1778 Penzance, Cornwall, England
    d. 29 May 1829 Geneva, Switzerland
    [br]
    English chemist, discoverer of the alkali and alkaline earth metals and the halogens, inventor of the miner's safety lamp.
    [br]
    Educated at the Latin School at Penzance and from 1792 at Truro Grammar School, Davy was apprenticed to a surgeon in Penzance. In 1797 he began to teach himself chemistry by reading, among other works, Lavoisier's elementary treatise on chemistry. In 1798 Dr Thomas Beddoes of Bristol engaged him as assistant in setting up his Pneumatic Institution to pioneer the medical application of the newly discovered gases, especially oxygen.
    In 1799 he discovered the anaesthetic properties of nitrous oxide, discovered not long before by the chemist Joseph Priestley. He also noted its intoxicating qualities, on account of which it was dubbed "laughing-gas". Two years later Count Rumford, founder of the Royal Institution in 1800, appointed Davy Assistant Lecturer, and the following year Professor. His lecturing ability soon began to attract large audiences, making science both popular and fashionable.
    Davy was stimulated by Volta's invention of the voltaic pile, or electric battery, to construct one for himself in 1800. That enabled him to embark on the researches into electrochemistry by which is chiefly known. In 1807 he tried decomposing caustic soda and caustic potash, hitherto regarded as elements, by electrolysis and obtained the metals sodium and potassium. He went on to discover the metals barium, strontium, calcium and magnesium by the same means. Next, he turned his attention to chlorine, which was then regarded as an oxide in accordance with Lavoisier's theory that oxygen was the essential component of acids; Davy failed to decompose it, however, even with the aid of electricity and concluded that it was an element, thus disproving Lavoisier's view of the nature of acids. In 1812 Davy published his Elements of Chemical Philosophy, in which he presented his chemical ideas without, however, committing himself to the atomic theory, recently advanced by John Dalton.
    In 1813 Davy engaged Faraday as Assistant, perhaps his greatest service to science. In April 1815 Davy was asked to assist in the development of a miner's lamp which could be safely used in a firedamp (methane) laden atmosphere. The "Davy lamp", which emerged in January 1816, had its flame completely surrounded by a fine wire mesh; George Stephenson's lamp, based on a similar principle, had been introduced into the Northumberland pits several months earlier, and a bitter controversy as to priority of invention ensued, but it was Davy who was awarded the prize for inventing a successful safety lamp.
    In 1824 Davy was the first to suggest the possibility of conferring cathodic protection to the copper bottoms of naval vessels by the use of sacrificial electrodes. Zinc and iron were found to be equally effective in inhibiting corrosion, although the scheme was later abandoned when it was found that ships protected in this way were rapidly fouled by weeds and barnacles.
    [br]
    Principal Honours and Distinctions
    Knighted 1812. FRS 1803; President, Royal Society 1820. Royal Society Copley Medal 1805.
    Bibliography
    1812, Elements of Chemical Philosophy.
    1839–40, The Collected Works of Sir Humphry Davy, 9 vols, ed. John Davy, London.
    Further Reading
    J.Davy, 1836, Memoirs of the Life of Sir Humphry Davy, London (a classic biography). J.A.Paris, 1831, The Life of Sir Humphry Davy, London (a classic biography). H.Hartley, 1967, Humphry Davy, London (a more recent biography).
    J.Z.Fullmer, 1969, Cambridge, Mass, (a bibliography of Davy's works).
    ASD

    Biographical history of technology > Davy, Sir Humphry

  • 98 Donkin, Bryan I

    [br]
    b. 22 March 1768 Sandoe, Northumberland, England
    d. 27 February 1855 London, England
    [br]
    English mechanical engineer and inventor.
    [br]
    It was intended that Bryan Donkin should follow his father's profession of surveyor and land agent, so he spent a year or so in that occupation before he was apprenticed to John Hall, millwright of Dartford, Kent. Donkin remained with the firm after completing his apprenticeship, and when the Fourdrinier brothers in 1802 introduced from France an invention for making paper in continuous lengths they turned to John Hall for help in developing the machine: Donkin was chosen to undertake the work. In 1803 the Fourdriniers established their own works in Bermondsey, with Bryan Donkin in charge. By 1808 Donkin had acquired the works, but he continued to manufacture paper-making machines, paying a royalty to the patentees. He also undertook other engineering work including water-wheels for driving paper and other mills. He was also involved in the development of printing machinery and the preservation of food in airtight containers. Some of these improvements were patented, and he also obtained patents relating to gearing, steel pens, paper-making and railway wheels. Other inventions of Bryan Donkin that were not patented concerned revolution counters and improvements in accurate screw threads for use in graduating mathematical scales. Donkin was elected a member of the Society of Arts in 1803 and was later Chairman of the Society's Committee of Mechanics and a Vice-President of the society. He was also a member of the Royal Astronomical Society. In 1818 a group of eight young men founded the Institution of Civil Engineers; two of them were apprentices of Bryan Donkin and he encouraged their enterprise. After a change in the rules permitted the election of members over the age of 35, he himself became a member in 1821. He served on the Council and became a Vice- President, but he resigned from the Institution in 1848.
    [br]
    Principal Honours and Distinctions
    FRS 1838. Vice-President, Institution of Civil Engineers 1826–32, 1835–45. Member, Smeatonian Society of Civil Engineers 1835; President 1843. Society of Arts Gold Medal 1810, 1819.
    Further Reading
    S.B.Donkin, 1949–51, "Bryan Donkin, FRS, MICE 1768–1855", Transactions of the Newcomen Society 27:85–95.
    RTS

    Biographical history of technology > Donkin, Bryan I

  • 99 Fairbairn, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 19 February 1789 Kelso, Roxburghshire, Scotland
    d. 18 August 1874 Farnham, Surrey, England
    [br]
    Scottish engineer and shipbuilder, pioneer in the use of iron in structures.
    [br]
    Born in modest circumstances, Fairbairn nevertheless enjoyed a broad and liberal education until around the age of 14. Thereafter he served an apprenticeship as a millwright in a Northumberland colliery. This seven-year period marked him out as a man of determination and intellectual ability; he planned his life around the practical work of pit-machinery maintenance and devoted his limited free time to the study of mathematics, science and history as well as "Church, Milton and Recreation". Like many before and countless thousands after, he worked in London for some difficult and profitless years, and then moved to Manchester, the city he was to regard as home for the rest of his life. In 1816 he was married. Along with a workmate, James Lillie, he set up a general engineering business, which steadily enlarged and ultimately involved both shipbuilding and boiler-making. The partnership was dissolved in 1832 and Fairbairn continued on his own. Consultancy work commissioned by the Forth and Clyde Canal led to the construction of iron steamships by Fairbairn for the canal; one of these, the PS Manchester was lost in the Irish Sea (through the little-understood phenomenon of compass deviation) on her delivery voyage from Manchester to the Clyde. This brought Fairbairn to the forefront of research in this field and confirmed him as a shipbuilder in the novel construction of iron vessels. In 1835 he operated the Millwall Shipyard on the Isle of Dogs on the Thames; this is regarded as one of the first two shipyards dedicated to iron production from the outset (the other being Tod and MacGregor of Glasgow). Losses at the London yard forced Fairbairn to sell off, and the yard passed into the hands of John Scott Russell, who built the I.K. Brunel -designed Great Eastern on the site. However, his business in Manchester went from strength to strength: he produced an improved Cornish boiler with two firetubes, known as the Lancashire boiler; he invented a riveting machine; and designed the beautiful swan-necked box-structured crane that is known as the Fairbairn crane to this day.
    Throughout his life he advocated the widest use of iron; he served on the Admiralty Committee of 1861 investigating the use of this material in the Royal Navy. In his later years he travelled widely in Europe as an engineering consultant and published many papers on engineering. His contribution to worldwide engineering was recognized during his lifetime by the conferment of a baronetcy by Queen Victoria.
    [br]
    Principal Honours and Distinctions
    Created Baronet 1869. FRS 1850. Elected to the Academy of Science of France 1852. President, Institution of Mechnical Engineers 1854. Royal Society Gold Medal 1860. President, British Association 1861.
    Bibliography
    Fairbairn wrote many papers on a wide range of engineering subjects from water-wheels to iron metallurgy and from railway brakes to the strength of iron ships. In 1856 he contributed the article on iron to the 8th edition of Encyclopaedia Britannica.
    Further Reading
    W.Pole (ed.), 1877, The Life of Sir William Fairbairn Bart, London: Longmans Green; reprinted 1970, David and Charles Reprints (written in part by Fairbairn, but completed and edited by Pole).
    FMW

    Biographical history of technology > Fairbairn, William

  • 100 Gooch, Sir Daniel

    [br]
    b. 24 August 1816 Bedlington, Northumberland, England
    d. 15 October 1889 Clewer Park, Berkshire, England
    [br]
    English engineer, first locomotive superintendent of the Great Western Railway and pioneer of transatlantic electric telegraphy.
    [br]
    Gooch gained experience as a pupil with several successive engineering firms, including Vulcan Foundry and Robert Stephenson \& Co. In 1837 he was engaged by I.K. Brunel, who was then building the Great Western Railway (GWR) to the broad gauge of 7 ft 1/4 in. (2.14 m), to take charge of the railway's locomotive department. He was just 21 years old. The initial locomotive stock comprised several locomotives built to such extreme specifications laid down by Brunel that they were virtually unworkable, and two 2–2–2 locomotives, North Star and Morning Star, which had been built by Robert Stephenson \& Co. but left on the builder's hands. These latter were reliable and were perpetuated. An enlarged version, the "Fire Fly" class, was designed by Gooch and built in quantity: Gooch was an early proponent of standardization. His highly successful 4–2–2 Iron Duke of 1847 became the prototype of GWR express locomotives for the next forty-five years, until the railway's last broad-gauge sections were narrowed. Meanwhile Gooch had been largely responsible for establishing Swindon Works, opened in 1843. In 1862 he designed 2–4–0 condensing tank locomotives to work the first urban underground railway, the Metropolitan Railway in London. Gooch retired in 1864 but was then instrumental in arranging for Brunel's immense steamship Great Eastern to be used to lay the first transatlantic electric telegraph cable: he was on board when the cable was successfully laid in 1866. He had been elected Member of Parliament for Cricklade (which constituency included Swindon) in 1865, and the same year he had accepted an invitation to become Chairman of the Great Western Railway Company, which was in financial difficulties; he rescued it from near bankruptcy and remained Chairman until shortly before his death. The greatest engineering work undertaken during his chairmanship was the boring of the Severn Tunnel.
    [br]
    Principal Honours and Distinctions
    Knighted 1866 (on completion of transatlantic telegraph).
    Bibliography
    1972, Sir Daniel Gooch, Memoirs and Diary, ed. R.B.Wilson, with introd. and notes, Newton Abbot: David \& Charles.
    Further Reading
    A.Platt, 1987, The Life and Times of Daniel Gooch, Gloucester: Alan Sutton (puts Gooch's career into context).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Ian Allan (contains a good short biography).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles, pp. 112–5.
    PJGR

    Biographical history of technology > Gooch, Sir Daniel

См. также в других словарях:

  • Northumberland — Geografie Status Unitary Authority Zeremonielle Grafschaft Region North East England Fläche 5.013 …   Deutsch Wikipedia

  • Northumberland — Condado de Inglaterra …   Wikipedia Español

  • Northumberland — es un condado de Inglaterra, en el Reino Unido. Está situado en la frontera con Escocia. El límite más extenso del condado se extiende a lo largo del río Humber al norte, al igual que el antiguo reino de Northumbria del rey Edwin. En la… …   Enciclopedia Universal

  • Northumberland — Northumberland, PA U.S. borough in Pennsylvania Population (2000): 3714 Housing Units (2000): 1772 Land area (2000): 1.568288 sq. miles (4.061848 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 1.568288 sq.… …   StarDict's U.S. Gazetteer Places

  • Northumberland, PA — U.S. borough in Pennsylvania Population (2000): 3714 Housing Units (2000): 1772 Land area (2000): 1.568288 sq. miles (4.061848 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 1.568288 sq. miles (4.061848 sq. km) …   StarDict's U.S. Gazetteer Places

  • Northumberland [1] — Northumberland (spr. thömberländ, Northumbrĭen), engl. Grafschaft, wird im O. von der Nordsee, im Norden und NW. von Schottland, im W. von der Grafschaft Cumberland, im S. von Durham begrenzt und umfaßt 5226 qkm (94,9 QM.) mit (1901) 603,498 Einw …   Meyers Großes Konversations-Lexikon

  • Northumberland [1] — Northumberland (spr. Nohrshömberl nd, Northumbrien), 1) nördlichste Grafschaft in England, am Deutschen Meere u. Schottland gelegen; 90,98 QM., theils wellenförmig, theils gebirgig durch die Cheviot Hills (im Nord Westen).; felsige Küsten; Flüsse …   Pierer's Universal-Lexikon

  • Northumberland [2] — Northumberland, Titel mehrer berühmter Geschlechter Englands, bes. der Familie Percy; diese ist normannischen Ursprungs u. ihr Ahnherr kam mit Wilhelm dem Eroberer nach England; ihre Glieder gehörten bald zu den mächtigsten Edelleuten in York u.… …   Pierer's Universal-Lexikon

  • Northumberland [2] — Northumberland (spr. thömberländ), engl. Grafen und Herzogstitel, war zunächst an das alte Geschlecht der Percys geknüpft, dessen Ahnherr William de Percy (gest. um 1096), mit Wilhelm dem Eroberer nach England gekommen, weite Ländereien in den… …   Meyers Großes Konversations-Lexikon

  • Northumberland — (spr. nohrthömmb rländ), nördlichste Grafsch. Englands, 5219 qkm, (1901) 602.859 E.; Hauptstadt Newcastle (on Tyne) …   Kleines Konversations-Lexikon

  • Northumberland [2] — Northumberland (spr. nohrthömmb rländ), Grafen und Herzogstitel mehrerer berühmter Geschlechter Englands, bes. der Familie Percy. – Henry, Lord Percy, 1377 Graf von N., erst Anhänger, dann Feind Heinrichs IV., suchte diesen mit Hilfe der Schotten …   Kleines Konversations-Lexikon

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»