Перевод: со всех языков на все языки

со всех языков на все языки

new+jersey+usa

  • 81 Drake, Edwin Laurentine

    [br]
    b. 29 March 1819 Greenville, New York, USA
    d. 8 November 1880 Bethlehem, Pennsylvania, USA
    [br]
    American pioneer oil driller.
    [br]
    He worked on his father's farm, was a clerk in a hotel and a store, and then became an express agent at a railway company in Springfield, Massachusetts, c.1845. After he had been working as a railway conductor in New Haven, Connecticut, for eight years, he resigned because of ill health. Owning some stocks in a Pennsylvania rock-oil company, which gathered oil from ground-level seepages mainly for medicinal use, he was engaged by this company and moved to Titusville, Pennsylvania, at the age of almost 40. After studying salt-well drilling by cable tool, which was still percussive, he became enthusiastic about the idea of using the same method to drill for oil, especially after researches in chemistry had revealed this new sort of fossil energy some years before.
    As a manager of the Seneca Oil Company, which referred to him as "Colonel" in letters of introduction simply to impress people with such titles, Drake began drilling in 1858, almost at the same time as pole-tool drilling for oil was started in Germany. His main contribution to the technology was the use of an iron pipe driven through the quicksand and the bedrock to prevent the bore-hole from filling. After nineteen months he struck oil at a depth of 21 m (69 ft) in August 1859. This was the first time that petroleum was struck at its source and the first proof of the presence of oil reservoirs within the earth's surface. Drake inaugurated the search for and the exploitation of the deep oil resources of the world and he initiated the science of petroleum engineering which became established at the beginning of the twentieth century.
    Drake failed to patent his drilling method; he was content being an oil commission merchant and Justice of the Peace in Titusville, which like other places in Pennsylvania became a boom town. Four years later he went to New York, where he lost all his money in oil speculations. He became very ill again and lived in poverty in Vermont and New Jersey until 1873, when he moved to Bethlehem, Pennsylvania, where he was pensioned by the state of Pennsylvania. The city of Titusville erected a monument to him and founded the Drake Museum.
    [br]
    Further Reading
    Dictionary of American Biography, Vol. III, pp. 427–8.
    Ida M.Tarbell, 1904, "The birth of industry", History of the Standard Oil Company, Vol. I, New York (gives a lively description of the booming years in Pennsylvania caused by Drake's successful drilling).
    H.F.Williamson and A.R.Daum, 1959, The American Petroleum Industry. The Age of Illumination, Evans ton, Ill.
    WK

    Biographical history of technology > Drake, Edwin Laurentine

  • 82 Fokker, Anthony Herman Gerard

    SUBJECT AREA: Aerospace
    [br]
    b. 6 April 1890 Kediri, Java, Dutch East Indies (now Indonesia)
    d. 23 December 1939 New York, USA
    [br]
    Dutch designer of German fighter aircraft during the First World War and of many successful airliners during the 1920s and 1930s.
    [br]
    Anthony Fokker was born in Java, where his Dutch father had a coffee plantation. The family returned to the Netherlands and, after schooling, young Anthony went to Germany to study aeronautics. With the aid of a friend he built his first aeroplane, the Spin, in 1910: this was a monoplane capable of short hops. By 1911 Fokker had improved the Spin and gained a pilot's licence. In 1912 he set up a company called Fokker Aeroplanbau at Johannistal, outside Berlin, and a series of monoplanes followed.
    When war broke out in 1914 Fokker offered his designs to both sides, and the Germans accepted them. His E I monoplane of 1915 caused a sensation with its manoeuvrability and forward-firing machine gun. Fokker and his collaborators improved on the French deflector system introduced by Raymond Saulnier by fitting an interrupter gear which synchronized the machine gun to fire between the blades of the rotating propeller. The Fokker Dr I triplane and D VII biplane were also outstanding German fighters of the First World War. Fokker's designs were often the work of an employee who received little credit: nevertheless, Fokker was a gifted pilot and a great organizer. After the war, Fokker moved back to the Netherlands and set up the Fokker Aircraft Works in Amsterdam. In 1922, however, he emigrated to the USA and established the Atlantic Aircraft Corporation in New Jersey. His first significant success there came the following year when one of his T-2 monoplanes became the first aircraft to fly non-stop across the USA, from New York to San Diego. He developed a series of civil aircraft using the well-proven method of construction he used for his fighters: fuselages made from steel tubes and thick, robust wooden wings. Of these, probably the most famous was the F VII/3m, a high-wing monoplane with three engines and capable of carrying about ten passengers. From 1925 the F VII/3m airliner was used worldwide and made many record-breaking flights, such as Lieutenant-Commander Richard Byrd's first flight over the North Pole in 1926 and Charles Kingsford-Smith's first transpacific flight in 1928. By this time Fokker had lost interest in military aircraft and had begun to see flight as a means of speeding up global communications and bringing people together. His last years were spent in realizing this dream, and this was reflected in his concentration on the design and production of passenger aircraft.
    [br]
    Principal Honours and Distinctions
    Royal Netherlands Aeronautical Society Gold Medal 1932.
    Bibliography
    1931, The Flying Dutchman: The Life of Anthony Fokker, London: Routledge \& Sons (an interesting, if rather biased, autobiography).
    Further Reading
    A.R.Weyl, 1965, Fokker: The Creative Years, London; reprinted 1988 (a very detailed account of Fokker's early work).
    Thijs Postma, 1979, Fokker: Aircraft Builders to the World, Holland; 1980, English edn, London (a well-illustrated history of Fokker and the company).
    Henri Hegener, 1961, Fokker: The Man and His Aircraft, Letchworth, Herts.
    JDS / CM

    Biographical history of technology > Fokker, Anthony Herman Gerard

  • 83 Zworykin, Vladimir Kosma

    [br]
    b. 30 July 1889 Mourum (near Moscow), Russia
    d. 29 July 1982 New York City, New York, USA
    [br]
    Russian (naturalized American 1924) television pioneer who invented the iconoscope and kinescope television camera and display tubes.
    [br]
    Zworykin studied engineering at the Institute of Technology in St Petersburg under Boris Rosing, assisting the latter with his early experiments with television. After graduating in 1912, he spent a time doing X-ray research at the Collège de France in Paris before returning to join the Russian Marconi Company, initially in St Petersburg and then in Moscow. On the outbreak of war in 1917, he joined the Russian Army Signal Corps, but when the war ended in the chaos of the Revolution he set off on his travels, ending up in the USA, where he joined the Westinghouse Corporation. There, in 1923, he filed the first of many patents for a complete system of electronic television, including one for an all-electronic scanning pick-up tube that he called the iconoscope. In 1924 he became a US citizen and invented the kinescope, a hard-vacuum cathode ray tube (CRT) for the display of television pictures, and the following year he patented a camera tube with a mosaic of photoelectric elements and gave a demonstration of still-picture TV. In 1926 he was awarded a PhD by the University of Pittsburgh and in 1928 he was granted a patent for a colour TV system.
    In 1929 he embarked on a tour of Europe to study TV developments; on his return he joined the Radio Corporation of America (RCA) as Director of the Electronics Research Group, first at Camden and then Princeton, New Jersey. Securing a budget to develop an improved CRT picture tube, he soon produced a kinescope with a hard vacuum, an indirectly heated cathode, a signal-modulation grid and electrostatic focusing. In 1933 an improved iconoscope camera tube was produced, and under his direction RCA went on to produce other improved types of camera tube, including the image iconoscope, the orthicon and image orthicon and the vidicon. The secondary-emission effect used in many of these tubes was also used in a scintillation radiation counter. In 1941 he was responsible for the development of the first industrial electron microscope, but for most of the Second World War he directed work concerned with radar, aircraft fire-control and TV-guided missiles.
    After the war he worked for a time on high-speed memories and medical electronics, becoming Vice-President and Technical Consultant in 1947. He "retired" from RCA and was made an honorary vice-president in 1954, but he retained an office and continued to work there almost up until his death; he also served as Director of the Rockefeller Institute for Medical Research from 1954 until 1962.
    [br]
    Principal Honours and Distinctions
    Zworykin received some twenty-seven awards and honours for his contributions to television engineering and medical electronics, including the Institution of Electrical Engineers Faraday Medal 1965; US Medal of Science 1966; and the US National Hall of Fame 1977.
    Bibliography
    29 December 1923, US patent no. 2,141, 059 (the original iconoscope patent; finally granted in December 1938!).
    13 July 1925, US patent no. 1,691, 324 (colour television system).
    1930, with D.E.Wilson, Photocells and Their Applications, New York: Wiley. 1934, "The iconoscope. A modern version of the electric eye". Proceedings of the
    Institute of Radio Engineers 22:16.
    1946, Electron Optics and the Electron Microscope.
    1940, with G.A.Morton, Television; revised 1954.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Zworykin, Vladimir Kosma

  • 84 Howe, Frederick Webster

    [br]
    b. 28 August 1822 Danvers, Massachusetts, USA
    d. 25 April 1891 Providence, Rhode Island, USA
    [br]
    American mechanical engineer, machine-tool designer and inventor.
    [br]
    Frederick W.Howe attended local schools until the age of 16 and then entered the machine shop of Gay \& Silver at North Chelmsford, Massachusetts, as an apprentice and remained with that firm for nine years. He then joined Robbins, Kendall \& Lawrence of Windsor, Vermont, as Assistant to Richard S. Lawrence in designing machine tools. A year later (1848) he was made Plant Superintendent. During his time with this firm, Howe designed a profiling machine which was used in all gun shops in the United States: a barrel-drilling and rifling machine, and the first commercially successful milling machine. Robbins \& Lawrence took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently in an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. From 1853 to 1856 Howe was in charge of the design and building of these machines. In 1856 he established his own armoury at Newark, New Jersey, but transferred after two years to Middletown, Connecticut, where he continued the manufacture of small arms until the outbreak of the Civil War. He then became Superintendent of the armoury of the Providence Tool Company at Providence, Rhode Island, and served in that capacity until the end of the war. In 1865 he went to Bridgeport, Connecticut, to assist Elias Howe with the manufacture of his sewing machine. After the death of Elias Howe, Frederick Howe returned to Providence to join the Brown \& Sharpe Manufacturing Company. As Superintendent of that establishment he worked with Joseph R. Brown in the development of many of the firm's products, including machinery for the Wilcox \& Gibbs sewing machine then being made by Brown \& Sharpe. From 1876 Howe was in business on his own account as a consulting mechanical engineer and in his later years he was engaged in the development of shoe machinery and in designing a one-finger typewriter, which, however, was never completed. He was granted several patents, mainly in the fields of machine tools and firearms. As a designer, Howe was said to have been a perfectionist, making frequent improvements; when completed, his designs were always sound.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York, and 1987, Bradley, 111. (provides biographical details).
    R.S.Woodbury, 1960, History of the Milling Machine, Cambridge, Mass, (describes Howe's contribution to the development of the milling machine).
    RTS

    Biographical history of technology > Howe, Frederick Webster

  • 85 Pierce, John Robinson

    [br]
    b. 27 March 1910 Des Moines, Iowa, USA
    [br]
    American scientist and communications engineer said to be the "father" of communication satellites.
    [br]
    From his high-school days, Pierce showed an interest in science and in science fiction, writing under the pseudonym of J.J.Coupling. After gaining Bachelor's, Master's and PhD degrees at the California Institute of Technology (CalTech) in Pasadena in 1933, 1934 and 1936, respectively, Pierce joined the Bell Telephone Laboratories in New York City in 1936. There he worked on improvements to the travelling-wave tube, in which the passage of a beam of electrons through a helical transmission line at around 7 per cent of the speed of light was made to provide amplification at 860 MHz. He also devised a new form of electrostatically focused electron-multiplier which formed the basis of a sensitive detector of radiation. However, his main contribution to electronics at this time was the invention of the Pierce electron gun—a method of producing a high-density electron beam. In the Second World War he worked with McNally and Shepherd on the development of a low-voltage reflex klystron oscillator that was applied to military radar equipment.
    In 1952 he became Director of Electronic Research at the Bell Laboratories' establishment, Murray Hill, New Jersey. Within two years he had begun work on the possibility of round-the-world relay of signals by means of communication satellites, an idea anticipated in his early science-fiction writings (and by Arthur C. Clarke in 1945), and in 1955 he published a paper in which he examined various possibilities for communications satellites, including passive and active satellites in synchronous and non-synchronous orbits. In 1960 he used the National Aeronautics and Space Administration 30 m (98 1/2 ft) diameter, aluminium-coated Echo 1 balloon satellite to reflect telephone signals back to earth. The success of this led to the launching in 1962 of the first active relay satellite (Telstar), which weighed 170 lb (77 kg) and contained solar-powered rechargeable batteries, 1,000 transistors and a travelling-wave tube capable of amplifying the signal 10,000 times. With a maximum orbital height of 3,500 miles (5,600 km), this enabled a variety of signals, including full bandwidth television, to be relayed from the USA to large receiving dishes in Europe.
    From 1971 until his "retirement" in 1979, Pierce was Professor of Electrical Engineering at CalTech, after which he became Chief Technologist at the Jet Propulsion Laboratories, also in Pasadena, and Emeritus Professor of Engineering at Stanford University.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1947; Edison Medal 1963; Medal of Honour 1975. Franklin Institute Stuart Ballantine Award 1960. National Medal of Science 1963. Danish Academy of Science Valdemar Poulsen Medal 1963. Marconi Award 1974. National Academy of Engineering Founders Award 1977. Japan Prize 1985. Arthur C.Clarke Award 1987. Honorary DEng Newark College of Engineering 1961. Honorary DSc Northwest University 1961, Yale 1963, Brooklyn Polytechnic Institute 1963. Editor, Proceedings of the Institute of Radio Engineers 1954–5.
    Bibliography
    23 October 1956, US patent no. 2,768,328 (his development of the travelling-wave tube, filed on 5 November 1946).
    1947, with L.M.Field, "Travelling wave tubes", Proceedings of the Institute of Radio
    Engineers 35:108 (describes the pioneering improvements to the travelling-wave tube). 1947, "Theory of the beam-type travelling wave tube", Proceedings of the Institution of
    Radio Engineers 35:111. 1950, Travelling Wave Tubes.
    1956, Electronic Waves and Messages. 1962, Symbols, Signals and Noise.
    1981, An Introduction to Information Theory: Symbols, Signals and Noise: Dover Publications.
    1990, with M.A.Knoll, Signals: Revolution in Electronic Communication: W.H.Freeman.
    KF

    Biographical history of technology > Pierce, John Robinson

  • 86 White, Canvass

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 1790 Whitesboro, New York, USA
    d. 1834 St Augustine, Florida, USA
    [br]
    American civil engineer.
    [br]
    Between 1807 and 1816 White worked for his father. He fought in the War of 1812, and worked his way to Russia and back in a merchantman; in 1817–18 he went to England and walked over 2,000 miles (3,220 km) over canal sites. After 1818 he was Principal Assistant to Benjamin Wright on the construction of the Erie Canal until its completion in 1825; he was the only one involved in this project who had any knowledge of European canal construction. He was particularly noted for the design of canal locks and their equipment; one of his main contributions was the discovery of the lime rock in New York State which could be converted into concrete, and in 1820 he obtained a patent for a waterproof cement. He supervised the Glen Falls feeder construction, and he was Chief Engineer for the Delaware and Raritan Canal in New Jersey and the Lehigh and Union canals in Pennsylvania.
    IMcN

    Biographical history of technology > White, Canvass

  • 87 Clark, Edward

    [br]
    fl. 1850s New York State, USA
    [br]
    American co-developer of mass-production techniques at the Singer sewing machine factory.
    [br]
    Born in upstate New York, where his father was a small manufacturer, Edward Clark attended college at Williams and graduated in 1831. He became a lawyer in New York City and from then on lived either in the city or on his rural estate near Cooperstown in upstate New York. After a series of share manipulations, Clark acquired a one-third interest in Isaac M. Singer's company. They soon bought out one of Singer's earlier partners, G.B.Zeiber, and in 1851, under the name of I.M.Singer \& Co., they set up a permanent sewing machine business with headquarters in New York.
    The success of their firm initially rested on marketing. Clark introduced door-to-door sales-people and hire-purchase for their sewing machines in 1856 ($50 cash down, or $100 with a cash payment of $5 and $3 a month thereafter). He also trained women to demonstrate to potential customers the capabilities of the Singer sewing machine. At first their sewing machines continued to be made in the traditional way, with the parts fitted together by skilled workers through hand filing and shaping so that the parts would fit only onto one machine. This resembled European practice rather than the American system of manufacture that had been pioneered in the armouries in that country. In 1856 Singer brought out their first machine intended exclusively for home use, and at the same time manufacturing capacity was improved. Through increased sales, a new factory was built in 1858–9 on Mott Street, New York, but it soon became inadequate to meet demand.
    In 1863 the Singer company was incorporated as the Singer Manufacturing Co. and began to modernize its production methods with special jigs and fixtures to help ensure uniformity. More and more specialized machinery was built for making the parts. By 1880 the factory, then at Elizabethport, New Jersey, was jammed with automatic and semi-automatic machine tools. In 1882 the factory was producing sewing machines with fully interchangeable parts that did not require hand fitting in assembly. Production rose from 810 machines in 1853 to half a million in 1880. A new family model was introduced in 1881. Clark had succeeded Singer, who died in 1875, as President of the company, but he retired in 1882 after he had seen through the change to mass production.
    [br]
    Further Reading
    National Cyclopaedia of American Biography.
    D.A.Hounshell, 1984, From the American System to Mass Production, 1800–1932. The Development of Manufacturing Technology in the United States, Baltimore (a thorough account of Clark's role in the development of Singer's factories).
    F.B.Jewell, 1975, Veteran Sewing Machines. A Collector's Guide, Newton Abbot.
    RLH

    Biographical history of technology > Clark, Edward

  • 88 Birdseye, Clarence

    [br]
    b. 9 December 1886 Brooklyn, New York, USA
    d. 7 October 1956 USA
    [br]
    American inventor of the fast-freezing method of food preservation.
    [br]
    Clarence Birdseye went to high school at Montclair in New Jersey, and from there to Amherst College between 1906 and 1910. He became a field naturalist on the US Department of Agriculture's survey of 1910 to 1912, and during the following five years worked as a fur trader. He was the Purchasing Agent for the US Navy Corps between 1917 and 1919, and acted as Assistant to the President of the US Fisherman's Association between 1920 and 1922.
    Birdseye was a keen fisherman, and during his time in Labrador learnt how to fast-freeze his catch in the wind. He formed the Birdseye Seafood Company in 1923 and pioneered the development of quick-freezing methods for the preservation of dressed seafood. His first company went bankrupt, but he quickly formed the General Seafoods Corporation. He filed his first patent in 1924 for the plate freezer, and in the late 1920s developed the double belt freezer. In 1929 Birdseye's company was bought out for $22 million, Birdseye himself receiving $1 million. He was an active member of the American Fisherman's Society, the American Society of Refrigeration Engineers, the American Society of Mechanical Engineers, the American Society of Mammalogists and the Institute of Food Technologists.
    [br]
    Principal Honours and Distinctions
    Nutrition Foundation Stephen M.Babcock Award 1949.
    Further Reading
    W.H.Clark and J.Moynahan, Famous Leaders of Industry (gives a brief account of Birdseye's life).
    1982, Frozen Food Age (August) (an account of the development of the industry he created).
    AP

    Biographical history of technology > Birdseye, Clarence

  • 89 Henry, Joseph

    [br]
    b. 17 December 1797 Albany, New York, USA
    d. 13 May 1878 Washington, DC, USA
    [br]
    American scientist after whom the unit of inductance is named.
    [br]
    Sent to stay with relatives at the age of 6 because of the illness of his father, when the latter died in 1811 Henry was apprenticed to a silversmith and then turned to the stage. Whilst he was ill himself, a book on science fired his interest and he began studying at Albany Academy, working as a tutor to finance his studies. Initially intending to pursue medicine, he then spent some time as a surveyor before becoming Professor of Mathematics and Natural Philosophy at Albany Academy in 1826. There he became interested in the improvement of electromagnets and discovered that the use of an increased number of turns of wire round the core greatly increased their power; by 1831 he was able to supply to Yale a magnet capable of lifting almost a ton weight. During this time he also discovered the principles of magnetic induction and self-inductance. In the same year he made, but did not patent, a cable telegraph system capable of working over a distance of 1 mile (1.6 km). It was at this time, too, that he found that adiabatic expansion of gases led to their sudden cooling, thus paving the way for the development of refrigerators. For this he was recommended for, but never received, the Copley Medal of the Royal Society. Five years later he became Professor of Natural Philosophy at New Jersey College (later Princeton University), where he deduced the laws governing the operation of transformers and observed that changes in magnetic flux induced electric currents in conductors. Later he also observed that spark discharges caused electrical effects at a distance. He therefore came close to the discovery of radio waves. In 1836 he was granted a year's leave of absence and travelled to Europe, where he was able to meet Michael Faraday. It was with his help that in 1844 Samuel Morse set up the first patented electric telegraph, but, sadly, the latter seems to have reaped all the credit and financial rewards. In 1846 he became the first secretary of the Washington Smithsonian Institute and did much to develop government support for scientific research. As a result of his efforts some 500 telegraph stations across the country were equipped with meteorological equipment to supply weather information by telegraph to a central location, a facility that eventually became the US National Weather Bureau. From 1852 he was a member of the Lighthouse Board, contributing to improvements in lighting and sound warning systems and becoming its chairman in 1871. During the Civil War he was a technical advisor to President Lincoln. He was a founder of the National Academy of Science and served as its President for eleven years.
    [br]
    Principal Honours and Distinctions
    President, American Association for the Advancement of Science 1849. President, National Academy of Science 1893–1904. In 1893, to honour his work on induction, the International Congress of Electricians adopted the henry as the unit of inductance.
    Bibliography
    1824. "On the chemical and mechanical effects of steam". 1825. "The production of cold by the rarefaction of air".
    1832, "On the production of currents \& sparks of electricity \& magnetism", American
    Journal of Science 22:403.
    "Theory of the so-called imponderables", Proceedings of the American Association for the Advancement of Science 6:84.
    Further Reading
    Smithsonian Institution, 1886, Joseph Henry, Scientific Writings, Washington DC.
    KF

    Biographical history of technology > Henry, Joseph

  • 90 Roebling, John Augustus

    SUBJECT AREA: Civil engineering
    [br]
    b. 12 July 1806 Muhlhausen, Prussia
    d. 22 July 1869 Brooklyn, New York, USA
    [br]
    German/American bridge engineer and builder.
    [br]
    The son of Polycarp Roebling, a tobacconist, he studied mathematics at Dr Unger's Pedagogium in Erfurt and went on to the Royal Polytechnic Institute in Berlin, from which he graduated in 1826 with honours in civil engineering. He spent the next three years working for the Prussian government on the construction of roads and bridges. With his brother and a group of friends, he emigrated to the United States, sailing from Bremen on 23 May 1831 and docking in Philadelphia eleven weeks later. They bought 7,000 acres (2,800 hectares) in Butler County, western Pennsylvania, and established a village, at first called Germania but later known as Saxonburg. Roebling gave up trying to establish himself as a farmer and found work for the state of Pennsylvania as Assistant Engineer on the Beaver River canal and others, then surveying a railroad route across the Allegheny Mountains. During his canal work, he noted the failings of the hemp ropes that were in use at that time, and recalled having read of wire ropes in a German journal; he built a rope-walk at his Saxonburg farm, bought a supply of iron wire and trained local labour in the method of wire twisting.
    At this time, many canals crossed rivers by means of aqueducts. In 1844, the Pennsylvania Canal aqueduct across the Allegheny River was due to be renewed, having become unsafe. Roebling made proposals which were accepted by the canal company: seven wooden spans of 162 ft (49 m) each were supported on either side by a 7 in. (18 cm) diameter cable, Roebling himself having to devise all the machinery required for the erection. He subsequently built four more suspension aqueducts, one of which was converted to a toll bridge and was still in use a century later.
    In 1849 he moved to Trenton, New Jersey, where he set up a new wire rope plant. In 1851 he started the construction (completed in 1855) of an 821 ft (250 m) long suspension railroad bridge across the Niagara River, 245 ft (75 m) above the rapids; each cable consisted of 3,640 wrought iron wires. A lower deck carried road traffic. He also constructed a bridge across the Ohio River between Cincinnati and Covington, a task which was much protracted due to the Civil War; this bridge was finally completed in 1866.
    Roebling's crowning achievement was to have been the design and construction of the bridge over the Hudson River between Brooklyn and Staten Island, New York, but he did not live to see its completion. It had a span of 1,595 ft (486 m), designed to bear a load of 18,700 tons (19,000 tonnes) with a headroom of 135 ft (41 m). The work of building had barely started when, at the Brooklyn wharf, a boat crushed Roebling's foot against the timbering and he died of tetanus three weeks later. His son, Washington Augustus Roebling, then took charge of this great work.
    [br]
    Further Reading
    D.B.Steinman and S.R.Watson, 1941, Bridges and their Builders, New York: Dover Books.
    D.McCullough, 1982, The Great Bridge: The Epic Story of the Building of the Brooklyn Bridge, New York: Simon \& Schuster.
    IMcN

    Biographical history of technology > Roebling, John Augustus

  • 91 Wilkinson, David

    [br]
    b. 5 January 1771 Smithfield (now Slatersville), Rhode Island, USA
    d. 3 February 1852 Caledonia Springs, Ontario, Canada
    [br]
    American mechanical engineer and inventor of a screw-cutting lathe.
    [br]
    David Wilkinson was the third son of Oziel Wilkinson (1744–1815), a blacksmith who c.1783 established at Pawtucket, Rhode Island, a plant for making farm tools and domestic utensils. This enterprise he steadily expanded with the aid of his sons, until by 1800 it was regarded as the leading iron and machinery manufacturing business in New England. At the age of 13, David Wilkinson entered his father's workshops. Their products included iron screws, and the problem of cutting the threads was one that engaged his attention. After working on it for some years he devised a screw-cutting lathe, for which he obtained a patent in 1798. In about 1800 David and his brother Daniel established their own factory at Pawtucket, known as David Wilkinson \& Co., where they specialized in the manufacture of textile machinery. Later they began to make cast cannon and installed a special boring machine for machining them. The firm prospered until 1829, when a financial crisis caused its collapse. David Wilkinson set up a new business in Cohoes, New York, but this was not a success and from 1836 he travelled around finding work chiefly in canal and bridge construction in New Jersey, Ohio and Canada. In 1848 he petitioned Congress for some reward for his invention of the screw-cutting lathe of 1798; he was awarded $10,000.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (provides a short account of David Wilkinson and his work).
    R.S.Woodbury, 1961, History of the Lathe to 1850, Cleveland, Ohio (includes a description of Wilkinson's screw-cutting lathe).
    RTS

    Biographical history of technology > Wilkinson, David

  • 92 United States of America

    сокр. USA общ. Соединенные Штаты Америки, США (республика; столица — Вашингтон; государственный язык английский; национальная валюта — доллар США)
    Syn:
    See:
    dollar 1) US-Canada Free Trade Agreement, US-Israel Free Trade Agreement, North American Free Trade Agreement, Hague Convention Abolishing the Requirement of Legalization for Foreign Public Documents, Wassenaar Arrangement, CONUS, OCONUS, Asian-Pacific Economic Cooperation, North American Development Bank, Group of Ten, Group of Seven, Group of Twelve, Group of Five, Group of Three а), Group of Twenty, Organization for Economic Cooperation and Development, Organization of American States, Paris Club, Structural Impediments Initiative, Transatlantic Business Dialogue, Australia Group, Colombo Plan, ASEAN Regional Forum, Pacific Economic Cooperation Council, Basel Committee on Banking Supervision, developed countries, advanced economies, high-income countries, Anglosphere, American Samoa, Virgin Islands of the United States, Guam, Northern Mariana Islands, Puerto Rico, Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, Florida, Georgia 2), Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin, Wyoming, District of Columbia

    Англо-русский экономический словарь > United States of America

  • 93 Tesla, Nikola

    SUBJECT AREA: Electricity
    [br]
    b. 9 July 1856 Smiljan, Croatia
    d. 7 January 1943 New York, USA
    [br]
    Serbian (naturalized American) engineer and inventor of polyphase electrical power systems.
    [br]
    While at the technical institute in Graz, Austria, Tesla's attention was drawn to the desirability of constructing a motor without a commutator. He considered the sparking between the commutator and brushes of the Gramme machine when run as a motor a serious defect. In 1881 he went to Budapest to work on the telegraph system and while there conceived the principle of the rotating magnetic field, upon which all polyphase induction motors are based. In 1882 Tesla moved to Paris and joined the Continental Edison Company. After building a prototype of his motor he emigrated to the United States in 1884, becoming an American citizen in 1889. He left Edison and founded an independent concern, the Tesla Electric Company, to develop his inventions.
    The importance of Tesla's first patents, granted in 1888 for alternating-current machines, cannot be over-emphasized. They covered a complete polyphase system including an alternator and induction motor. Other patents included the polyphase transformer, synchronous motor and the star connection of three-phase machines. These were to become the basis of the whole of the modern electric power industry. The Westinghouse company purchased the patents and marketed Tesla motors, obtaining in 1893 the contract for the Niagara Falls two-phase alternators driven by 5,000 hp (3,700 kW) water turbines.
    After a short period with Westinghouse, Tesla resigned to continue his research into high-frequency and high-voltage phenomena using the Tesla coil, an air-cored transformer. He lectured in America and Europe on his high-frequency devices, enjoying a considerable international reputation. The name "tesla" has been given to the SI unit of magnetic-flux density. The induction motor became one of the greatest advances in the industrial application of electricity. A claim for priority of invention of the induction motor was made by protagonists of Galileo Ferraris (1847–1897), whose discovery of rotating magnetic fields produced by alternating currents was made independently of Tesla's. Ferraris demonstrated the phenomenon but neglected its exploitation to produce a practical motor. Tesla himself failed to reap more than a small return on his work and later became more interested in scientific achievement than commercial success, with his patents being infringed on a wide scale.
    [br]
    Principal Honours and Distinctions
    American Institute of Electrical Engineers Edison Medal 1917. Tesla received doctorates from fourteen universities.
    Bibliography
    1 May 1888, American patent no. 381,968 (initial patent for the three-phase induction motor).
    1956, Nikola Tesla, 1856–1943, Lectures, Patents, Articles, ed. L.I.Anderson, Belgrade (selected works, in English).
    1977, My Inventions, repub. Zagreb (autobiography).
    Further Reading
    M.Cheney, 1981, Tesla: Man Out of Time, New Jersey (a full biography). C.Mackechnie Jarvis, 1969, in IEE Electronics and Power 15:436–40 (a brief treatment).
    T.C.Martin, 1894, The Inventions, Researches and Writings of Nikola Tesla, New York (covers his early work on polyphase systems).
    GW

    Biographical history of technology > Tesla, Nikola

  • 94 ♦ garden

    ♦ garden /ˈgɑ:dn/
    A n.
    1 giardino: rose garden, rosaio; roseto; botanic garden, orto botanico; back garden, giardino sul retro; to water the garden, innaffiare il giardino
    B a. attr.
    di (o da) giardino: a garden wall, un muro di giardino; garden plants, piante da giardino
    garden centre, vivaio; «tutto per il giardino» □ (zool.) garden chafer ( Phyllopertha horticola) carruga degli orti □ garden city, città giardino □ garden contractor, costruttore di giardini □ (bot.) garden cress ( Lepidium sativum), crescione degli orti; crescione inglese; agretto □ (lett.) garden-croft, orto □ (edil.) garden flat, appartamento con giardino privato □ garden frame, serra □ garden glass, campana di vetro per proteggere piante □ garden hose, tubo (di gomma) per irrigazione; canna (fam.) □ (org. az., fam., eufem.) garden leave = gardening leave ► gardening □ the garden of England, il giardino dell'Inghilterra ( il Kent) □ garden party, garden party; trattenimento in giardino □ garden plot, aiuola □ garden produce (o garden products), ortaggi □ garden seat, panchina, sedile di pietra □ garden shed, capanna per gli attrezzi (da giardinaggio) □ garden spot, giardinetto; (fig.) giardino, zona fertile □ ( USA) the Garden State, il New Jersey □ garden suburb, quartiere residenziale in periferia □ ( USA) garden-variety = common or garden ► sotto □ garden wedding, festa di nozze in giardino □ (zool.) garden-white ( Pieris brassicae), cavolaia □ (fam.) common or garden, comune; dozzinale; ordinario □ (pop.) to lead sb. up the garden path, menare (o portare) a spasso q. (fig.); menare q. per il naso.
    (to) garden /ˈgɑ:dn/
    A v. t.
    B v. i.
    lavorare nel (o in un) giardino; fare del giardinaggio.

    English-Italian dictionary > ♦ garden

  • 95 Bond, George Meade

    [br]
    b. 17 July 1852 Newburyport, Massachusetts, USA
    d. 6 January 1935 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and metrologist, co-developer of the Rogers- Bond Comparator.
    [br]
    After leaving school at the age of 17, George Bond taught in local schools for a few years before starting an apprenticeship in a machine shop in Grand Rapids, Michigan. He then worked as a machinist with Phoenix Furniture Company in that city until his savings permitted him to enter the Stevens Institute of Technology at Hoboken, New Jersey, in 1876. He graduated with the degree of Mechanical Engineer in 1880. In his final year he assisted William A.Rogers, Professor of Astronomy at Harvard College Observatory, Cambridge, Massachusetts, in the design of a comparator for checking standards of length. In 1880 he joined the Pratt \& Whitney Company, Hartford, Connecticut, and was Manager of the Standards and Gauge Department from then until 1902. During this period he developed cylindrical, calliper, snap, limit, thread and other gauges. He also designed the Bond Standard Measuring Machine. Bond was elected a member of the American Society of Mechanical Engineers in 1881 and of the American Society of Civil Engineers in 1887, and served on many of their committees relating to standards and units of measurement.
    [br]
    Principal Honours and Distinctions
    Vice-President, American Society of Mechanical Engineers 1908–10. Honorary degrees of DEng, Stevens Institute of Technology 1921, and MSc, Trinity College, Hartford, 1927.
    Bibliography
    Engineers 3:122.
    1886, "Standard pipe and pipe threads", Transactions of the American Society of Mechanical Engineers 7:311.
    Further Reading
    "Report of the Committee on Standards and Gauges", 1883, Transactions of the American Society of Mechanical Engineers 4:21–9 (describes the Rogers-Bond Comparator).
    RTS

    Biographical history of technology > Bond, George Meade

  • 96 Goldstine, Herman H.

    [br]
    b. 13 September 1913 USA
    [br]
    American mathematician largely responsible for the development of ENIAC, an early electronic computer.
    [br]
    Goldstine studied mathematics at the University of Chicago, Illinois, gaining his PhD in 1936. After teaching mathematics there, he moved to a similar position at the University of Michigan in 1939, becoming an assistant professor. After the USA entered the Second World War, in 1942 he joined the army as a lieutenant in the Ballistic Missile Research Laboratory at the Aberdeen Proving Ground in Maryland. He was then assigned to the Moore School of Engineering at the University of Pennsylvania, where he was involved with Arthur Burks in building the valve-based Electronic Numerical Integrator and Computer (ENIAC) to compute ballistic tables. The machine was completed in 1946, but prior to this Goldstine had met John von Neumann of the Institute for Advanced Studies (IAS) at Princeton, New Jersey, and active collaboration between them had already begun. After the war he joined von Neumann as Assistant Director of the Computer Project at the Institute of Advanced Studies, Princeton, becoming its Director in 1954. There he developed the idea of computer-flow diagrams and, with von Neumann, built the first computer to use a magnetic drum for data storage. In 1958 he joined IBM as Director of the Mathematical Sciences Department, becoming Director of Development at the IBM Data Processing Headquarters in 1965. Two years later he became a Research Consultant, and in 1969 he became an IBM Research Fellow.
    [br]
    Principal Honours and Distinctions
    Goldstine's many awards include three honorary degrees for his contributions to the development of computers.
    Bibliography
    1946, with A.Goldstine, "The Electronic Numerical Integrator and Computer (ENIAC)", Mathematical Tables and Other Aids to Computation 2:97 (describes the work on ENIAC).
    1946, with A.W.Burks and J.von Neumann, "Preliminary discussions of the logical design of an electronic computing instrument", Princeton Institute for Advanced Studies.
    1972, The Computer from Pascal to von Neumann, Princeton University Press.
    1977, "A brief history of the computer", Proceedings of the American Physical Society 121:339.
    Further Reading
    M.Campbell-Kelly \& M.R.Williams (eds), 1985, The Moore School Lectures (1946), Charles Babbage Institute Report Series for the History of Computing, Vol 9. M.R.Williams, 1985, History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Goldstine, Herman H.

  • 97 Sundback, Gideon

    SUBJECT AREA: Textiles
    [br]
    fl. 1910 USA
    [br]
    American engineer who improved zip fasteners so they became both a practical and a commercial proposition.
    [br]
    The zip fastener was originally patented in the USA in 1896 by W.L. Judson of Chicago. At first it was used only in boots and shoes and was not a success because it tended to jam or spring open. It was expensive, for it was made largely by hand. Eventually the Automatic Hook and Eye Company of Hoboken, New Jersey, took on Dr Gideon Sundback, a Swedish electrical engineer who had settled in the United States in 1905. After several years' work Sundback filed a patent application and his model was sold as a novelty item but was still unsatisfactory in use. In 1912 he invented a hookless fastener which looked promising but also was impractical in use. Finally, in 1913, he invented a fastener which in all important essentials was the modern zip fastener and, in addition, he invented the machinery to produce it. However, clothing manufacturers continued to oppose its introduction until in 1918 a contractor making flying suits for the United States Navy placed an order for 10,000 fasteners and in 1923 B.F.Goodrich \& Co. put zips in the galoshes that they manufactured. Success was assured from then on.
    [br]
    Further Reading
    J.Jewkes, D.Sawers and R.Stillerman, 1969, The Sources of Invention, 2nd edn, London (discusses the invention).
    I.McNeil (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge pp. 852–3 (for an account of the development of fastenings).
    RLH

    Biographical history of technology > Sundback, Gideon

  • 98 patroon

    patroon /pəˈtru:n/
    n.
    (stor. USA) proprietario terriero; latifondista ( sotto il governo olandese di New York e del New Jersey).

    English-Italian dictionary > patroon

  • 99 Judson, Whitcomb L.

    SUBJECT AREA: Textiles
    [br]
    fl. 1891–1905 USA
    [br]
    American inventor of the zip fastener.
    [br]
    Whitcomb Judson was a mechanical engineer by profession. He filed his first patent application for a zip fastener in 1891 and took out a fifth in 1905. His invention was originally designed for shoes and consisted of separate fasteners with two interlocking parts which could be fastened either by hand or by a movable guide. In his last patent, he clamped the fastening elements to the edge of a fabric tape and patented a machine for manufacturing this. Through an earlier exploit, the Judson Pneumatic Street Railway Company, Judson knew Colonel Lewis Walker, who helped him to organize the Universal Fastener Company of Chicago to manufacture these fasteners, which at first were made by hand. One machine invented by Judson proved to be too complicated, but Judson's later fasteners were easier to adapt to machine production. The original company was reorganized as the Automatic Hook and Eye Company of Hoboken, New Jersey, and the new fasteners were sold under the name "C-curity". However, the garment manufacturers would not use them at first because the fasteners had defects, such as springing open at unexpected moments. The Automatic Hook and Eye Company brought in Gideon Sundback, who improved Judson's work and made the zip fastener successful.
    [br]
    Further Reading
    J.Jewkes, D.Sawyers and R.Stillerman, 1969, The Sources of Invention, 2nd edn, London (for an account of the invention).
    I.McNeil (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge, pp. 852–3 (provides a brief account of fastenings).
    RLH

    Biographical history of technology > Judson, Whitcomb L.

  • 100 RBY

    1) Фирменный знак: Resort Bone Yard
    3) Образование: YMCA in Red Bank, New Jersey
    4) Аэропорты: Ruby, Alaska USA

    Универсальный англо-русский словарь > RBY

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»