Перевод: с русского на английский

с английского на русский

n+-+нулевой+рабочий+проводник

  • 1 нулевой рабочий проводник N

    1. neutral conductor

     

    нулевой рабочий проводник N
    Проводник, присоединенный к нейтральной точке системы и способствующий передаче электрической энергии.
    МЭК 60050(826-01-03).
    Примечание. В некоторых случаях и установленных условиях возможно объединение функций нулевого рабочего и защитного проводников в одном проводнике с условным обозначением PEN.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    нейтральный проводник

    нулевой рабочий проводник
    Проводник, присоединенный к нейтральной точке и используемый для распределения электрической энергии.
    [ ГОСТ Р МЭК 60050-195-2005]

    В Правилах устройства электроустановок широко используют термин «нулевой рабочий проводник». Однако в Международном электротехническом словаре (МЭС) и в других стандартах Международной электротехнической комиссии (МЭК) этот термин не применяют. Во всех стандартах МЭК употребляют термин «нейтральный проводник». Поэтому термин «нулевой рабочий проводник» следует исключить из национальной нормативной и правовой документации, распространяющейся на низковольтные электроустановки. Вместо него следует использовать термин «нейтральный проводник», который соответствует МЭС.
    [ http://www.volt-m.ru/glossary/letter/%CD/view/38/]

    EN

    neutral conductor
    conductor electrically connected to the neutral point and capable of contributing to the distribution of electric energy
    Source: 601-03-10 MOD, 826-01-03 MOD
    [IEV number 195-02-06]

    FR

    conducteur (de) neutre
    conducteur relié électriquement au point neutre et pouvant contribuer à la distribution de l'énergie électrique
    Source: 601-03-10 MOD, 826-01-03 MOD
    [IEV number 195-02-06]

    0273
    [http://bgd.alpud.ru/images/tn_s.htm]

    Электрическая сеть TN-S

    L1, L2, L3 - линейные проводники
    N - нулевой рабочий проводник
    PE - защитный проводник

     

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > нулевой рабочий проводник N

  • 2 нулевой рабочий проводник

    1. N

    3.3.76 нулевой рабочий проводник (N): Проводник, используемый для питания приемников электрической энергии и соединения одного из их выводов с заземленной нейтралью электроустановки.

    [ ГОСТ 30331.1-95/ ГОСТ Р 50571.1-93, пункт 3.9]

    Источник: СТО Газпром 2-2.3-141-2007: Энергохозяйство ОАО "Газпром". Термины и определения

    Русско-английский словарь нормативно-технической терминологии > нулевой рабочий проводник

  • 3 нулевой рабочий проводник

    rus нулевой рабочий проводник (м), нулевой провод (м)
    eng neutral conductor

    Безопасность и гигиена труда. Перевод на английский, немецкий, французский, испанский языки > нулевой рабочий проводник

  • 4 нулевой рабочий проводник

    Универсальный русско-английский словарь > нулевой рабочий проводник

  • 5 Совмещённый нулевой рабочий и защитный проводник

    Telecommunications: Protective Earth and Neutral (http://ockc.ru/wp-content/standart/45-155-00.pdf)

    Универсальный русско-английский словарь > Совмещённый нулевой рабочий и защитный проводник

  • 6 совмещённый нулевой рабочий и защитный проводник

    Telecommunications: Protective Earth and Neutral (http://ockc.ru/wp-content/standart/45-155-00.pdf)

    Универсальный русско-английский словарь > совмещённый нулевой рабочий и защитный проводник

  • 7 нулевой провод

    rus нулевой рабочий проводник (м), нулевой провод (м)
    eng neutral conductor

    Безопасность и гигиена труда. Перевод на английский, немецкий, французский, испанский языки > нулевой провод

  • 8 линейный проводник

    1. pole conductor (in DC systems) (deprecated)
    2. phase conductor (in AC systems) (deprecated)
    3. line wire
    4. line conductor

     

    линейный проводник
    Проводник, находящийся под напряжением в нормальном режиме работы электроустановки, используемый для передачи и распределения электрической энергии, но не являющийся нулевым рабочим проводником или средним проводником.
    [ ГОСТ Р МЭК 60050-195-2005]

    линейный проводник (L)
    Проводник, находящийся под напряжением при нормальном оперировании и используемый для передачи и распределения электрической энергии, но не нейтральный проводник или средний проводник.
    В электрических цепях переменного тока линейные проводники используют совместно с нейтральными проводниками и PEN-проводниками, а в электрических цепях постоянного тока – совместно со средними проводниками и PEM-проводниками для обеспечения электроэнергией электрооборудования переменного и постоянного тока, применяемого в электроустановках зданий. Линейные проводники относят к токоведущим частям. В нормальном режиме электроустановки здания они, как правило, находятся под напряжением, которое может представлять серьёзную опасность для человека и животных.
    В электроустановках зданий напряжение линейного проводника относительно нейтрального проводника, PEN-проводника и земли обычно равно 230 В. Напряжение между линейными проводниками разных фаз в трёхфазных электрических цепях равно 400 В.
    В трёхпроводных электрических цепях постоянного тока напряжение линейного проводника относительно среднего проводника, PEM-проводника и земли обычно равно 220 В, а напряжение между линейными проводниками разных полюсов равно 440 В. В двухпроводных электрических цепях постоянного тока напряжение между линейными проводниками обычно равно 220 В.
    Линейные проводники, применяемые в электрических цепях сверхнизкого напряжения, обычно не представляют опасности для человека и животных.
    [ http://www.volt-m.ru/glossary/letter/%CB/view/29/]

    EN

    line conductor
    conductor which is energized in normal operation and capable of contributing to the transmission or distribution of electric energy but which is not a neutral or mid-point conductor
    Source: 601-03-09 MOD
    [IEV number 195-02-08]

    FR

    conducteur de ligne
    conducteur sous tension en service normal et capable de participer au transport ou à la distribution de l'énergie électrique, mais qui n'est ni un conducteur de neutre ni un conducteur de point milieu
    Source: 601-03-09 MOD
    [IEV number 195-02-08]

    0273
    [http://bgd.alpud.ru/images/tn_s.htm]

    Электрическая сеть TN-S

    L1, L2, L3 - линейные проводники
    N - нулевой рабочий проводник
    PE - защитный проводник

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > линейный проводник

  • 9 токоведущая часть

    1. powered equipment part
    2. live part
    3. conductive part
    4. conducting part

     

    токоведущая часть
    Проводник или проводящая часть, находящиеся под напряжением в нормальных условиях эксплуатации, в том числе нулевой рабочий проводник, но не проводник PEN (защитный нулевой проводник).
    (МЭС 826-12-08).
    Примечание. Термин не обязательно подразумевает опасность поражения электрическим током. 
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    токоведущая часть
    Проводник или проводящая часть, предназначенный(ая) для работы под напряжением в нормальных условиях эксплуатации, включая нейтральный проводник (нулевой рабочий проводник), но, как правило, не PEN-проводник или РЕМ-проводник, или PEL-проводник.
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    токоведущая часть
    Проводник или проводящая часть, включая нейтральный провод (но не РЕМ-провод), предназначенные для пропускания тока при нормальной эксплуатации.
    Примечания.

    1. Части, соответствующие 8.1.4, независимо от того доступны они или нет, не считают токоведущими частями.
    2. PEN-провод – защитный заземляющий нейтральный провод, выполняющий комбинированные функции как защитного, так и нейтрального провода.
    [ ГОСТ Р 52161. 1-2004 ( МЭК 60335-1: 2001)]

    токоведущая часть
    Электропроводящая Проводящая часть электроустановки, находящаяся в процессе ее работы под рабочим напряжением.
    [ ГОСТ Р 50669-94]

    токоведущая часть
    Нрк. часть, находящаяся под напряжением
    Проводник или проводящая часть, предназначенный(ная) находиться под напряжением при нормальных условиях эксплуатации, включая нейтральный проводник, но, как правило, не PEN-проводник или РЕМ-проводник, или PEL-проводник.
    Примечание - Эта концепция необязательно подразумевает риск поражения электрическим током.
    [ ГОСТ Р МЭК 60050-826-2009]

    часть токоведущая
    Часть электроустановки, нормально находящаяся под напряжением.
    [ПОТ Р М-016-2001]
    [РД 153-34.0-03.150-00]

    токоведущая часть
    Провод или электропроводящая часть, находящиеся под напряжением при нормальной работе, а также нулевой провод, за исключением, при определенных условиях, провода PEN.
    Примечание.
    Этот термин не подразумевает в обязательном порядке риск поражения электрическим током.
    [ ГОСТ Р МЭК 60204-1-2007]

    токоведущая часть
    Проводящая часть, предназначенная находиться под напряжением при нормальных условиях, включая нейтральный и средний проводники, но, как правило, не PEN-проводник или PEM-проводник, или PEL-проводник.
    ПримечаниеВ Международном электротехническом словаре этот термин назван частью, находящейся под напряжением. В национальной нормативной и правовой документации, распространяющейся на низковольтные электроустановки, термин «токоведущая часть» следует заменить термином «часть, находящаяся под напряжением».
    Токоведущая часть представляет собой проводящую часть, которая находиться под напряжением в нормальном режиме электроустановки здания. К токоведущим частям относят фазные и нейтральные проводники электрических цепей переменного тока, полюсные и средние проводники электрических цепей постоянного тока, а также другие проводящие части электроустановки здания, электрически соединённые с указанными проводниками и имеющие при нормальных условиях электрический потенциал, существенно отличающийся от потенциала эталонной земли.
    Защитные проводники не относят к токоведущим частям, поскольку в нормальном режиме электроустановки здания они находятся под электрическим потенциалом, практически равным потенциалу локальной земли. PEN-проводники, PEM-проводники и PEL-проводники, обычно не рассматривают в качестве токоведущих частей несмотря на то, что эти проводники выполняют функции нейтральных проводников, средних проводников и линейных проводников.
    [ http://www.volt-m.ru/glossary/letter/%D2/view/80/]

    находящаяся под напряжением токоведущая часть
    Провод или токопроводящая часть, находящаяся под напряжением при нормальной работе, а также нулевой провод, за исключением, при определенных условиях, PEN-провод (совмещенный нулевой рабочий и защитный провод).
    Примечание - Под этим термином необязательно понимают риск от удара опасность поражения электрическим током.
    [ГОСТ ЕН 1070-2003]

    EN

    live part
    conductor or conductive part intended to be energized in normal operation, including a neutral conductor, but by convention not a PEN conductor or PEM conductor or PEL conductor
    NOTE – This concept does not necessarily imply a risk of electric shock.
    Source: 195-02-19
    [IEV number 826-12-08]

    live part
    conductor or conductive part intended to be energized in normal use, including a neutral conductor, but, by convention, not the combined protective and neutral conductor (PEN)
    NOTE – This concept does not necessarily imply a risk of electric shock.
    Source: 826-03-01 MOD
    [IEV number 442-01-40]

    FR

    partie active, f
    conducteur ou partie conductrice destiné à être sous tension en service normal, y compris le conducteur de neutre, mais par convention, excepté le conducteur PEN, le conducteur PEM ou le conducteur PEL
    NOTE – La notion n'implique pas nécessairement un risque de choc électrique.
    Source: 195-02-19
    [IEV number 826-12-08]

    partie active
    conducteur ou partie conductrice destiné à être sous tension en service normal, ainsi que le conducteur neutre mais, par convention, pas le conducteur combiné de protection et de neutre (PEN)
    NOTE – Cette notion n'implique pas nécessairement un risque de choc électrique.
    Source: 826-03-01 MOD
    [IEV number 442-01-40]

    Недопустимые, нерекомендуемые

    • часть, находящаяся под напряжением

    Тематики

    EN

    DE

    FR

    3.9.3 токоведущая часть (live part): Любой проводник или токопроводящая деталь, предназначенный(ая) для пропускания тока при обычном применении, включая нейтральный провод, но обычно это не PEN-провод.

    Примечание - PEN-провод - защитный заземляющий нейтральный провод, выполняющий комбинированные функции как защитного, так и нейтрального провода.

    Источник: ГОСТ Р МЭК 60745-1-2005: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа

    3.26 токоведущая часть (live part): Проводник или токопроводящая часть, которая при нормальном режиме эксплуатации находится под напряжением.

    Примечание - «Находится под напряжением» означает, что этот проводник или токопроводящая часть может иметь электрический потенциал по отношению к электрическому шасси.

    Источник: ГОСТ Р 54111.3-2011: Дорожные транспортные средства на топливных элементах. Требования техники безопасности. Часть 3. Защита людей от поражения электрическим током оригинал документа

    3.24 токоведущая часть (live part): Любой проводник или токопроводящая часть, предназначенная для пропускания тока при нормальной эксплуатации, включающая нейтральный провод (но в общепринятом понимании не PEN-проводник).

    Источник: ГОСТ Р МЭК 60745-1-2009: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа

    3.9.3 токоведущая часть (live part): Любой проводник или токопроводящая деталь, предназначенный(ая) для пропускания тока при обычном применении, включая нейтральный провод, но обычно это не PEN-провод.

    Примечание - PEN-провод - защитный заземляющий нейтральный провод, выполняющий комбинированные функции как защитного, так и нейтрального провода.

    Источник: ГОСТ IEC 60745-1-2011: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования

    3.6.4 токоведущая часть (live part): Проводник или проводящая часть, включая нейтральный провод (но не PEN-провод), предназначенные для пропускания тока при нормальной эксплуатации.

    Примечания

    1 Части, соответствующие 8.1.4, независимо от того доступны они или нет, не считают токоведущими частями.

    2 PEN-провод - защитный заземляющий нейтральный провод, выполняющий комбинированные функции как защитного, так и нейтрального провода.

    Источник: ГОСТ Р 52161.1-2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования оригинал документа

    3.1.10 токоведущая часть (live part): Проводник или проводящая часть, находящаяся под напряжением в нормальных условиях эксплуатации, включая нейтральный проводник, но не проводник PEN (защитный нейтральный провод).

    [МЭК 60050(826-03-01)].

    Примечание - Термин необязательно относится к опасности поражения электрическим током.

    Источник: ГОСТ Р 51731-2010: Контакторы электромеханические бытового и аналогичного назначения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > токоведущая часть

  • 10 отделять, отделение

    1. separate
    2. isolate

     

    отделять
    Полностью отсоединять устройство или электрическую цепь от других устройств или электрических цепей.
    [Перевод Интент]

    изолировать
    отделять

    -
    [IEV number 151-15-37]

    EN

    isolate (1), verb
    disconnect completely a device or an electric circuit from other devices or electric circuits
    [IEV number 151-15-37]

    FR

    isoler (2), verbe
    déconnecter complètement un dispositif ou un circuit électrique d'autres dispositifs ou circuits électriques
    [IEV number 151-15-37]

    461.1 В зависимости от предназначенной ему функции любое устройство, предназначенное для отделения, отключения или управления, должно соответствовать требованиям стандартов и технических условий на эти устройства.

    461.2 В системах TNС нулевой рабочий проводник, совмещенный с защитным, отделять или отключать не следует. В системе TNS отделять или отключать рабочий нулевой проводник не требуется.
    Во всех системах распределения электроэнергии отделять или отключать защитные проводники не допускается.

    461.3 Мероприятия, приведенные в настоящем стандарте, не заменяют меры защиты, установленные в других стандартах на электроустановки зданий.

    462 Отделение
    462.1 В каждой цепи должна быть предусмотрена возможность отделения каждого проводника от питающих проводников, находящихся под напряжением, за исключением упомянутых в 461.2.
    Допускается предусматривать отделение группы цепей общим устройством, если это позволяют условия эксплуатации.


    [ ГОСТ Р 50571. 7-94 ( МЭК 364-4-46-81)]

    Параллельные тексты EN-RU

    When the supply disconnecting device is one of the types specified in 5.3.2 a) to d) it shall fulfil all of the following requirements:
    – isolate the electrical equipment from the supply and have one OFF (isolated) and one ON position marked with "O" and "I" …;

    ...
    [IEC 60204-1-2006]

    Аппараты отключения электропитания, указанные в п. 5.3.2, в перечислениях а)...d), должны удовлетворять всем перечисленным ниже требованиям:
    - отделять электрооборудование от источника питания и иметь одно положение ОТКЛЮЧЕНО (отделенное положение) и одно положение ВКЛЮЧЕНО, обозначенные символами «О» и «I» соответственно...;

    ...
    [Перевод Интент]

    isolation
    function intended to make dead for reasons of safety all or a discrete section of the electrical installation by separating the electrical installation or section from every source of electric energy

    [IEV number 826-17-01]

    разъединение (функция)
    Действие, направленное на отключение питания всей установки или ее отдельной части путем отделения этой установки или части ее от любого источника электрической энергии по соображениям безопасности.

    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    Compact CVS circuit breakers are suitable for Isolation as defined in EC standards 60947-2. The aim of isolation is to separate a circuit or apparatus from the remainder of a system which is energized in order the personnel may carry out work on the isolated part with complete safety.
    [Schneider Electric]

    Автоматический выключатель CVS пригоден к разъединению -  функции, определенной в европейском стандарте 60947-2. Целью разъединения является отделение цепей или аппаратов от части системы, остающейся под напряжением для обеспечения полной безопасности персонала, работающего на отделенной части системы.
    [Перевод Интент]



     

    Тематики

    EN

    FR

    Русско-английский словарь нормативно-технической терминологии > отделять, отделение

  • 11 система с нулевым рабочим проводником

    1. distributed neutral

     

    система с нулевым рабочим проводником
    -

    0666        0667

    Рис. ABB
    Система ТТ

    Параллельные тексты EN-RU

    In TT systems the neutral and the exposed-conductiveparts are connected to earth electrodes electrically independent; therefore the earth fault current returns to the power supply node through the soil.
    In this type of electrical installations the neutral is usually distributed and its function is making the phase voltage (e.g. 230 V) available for the supply of the single-phase loads of civil installations.

    [ABB]

    В системах TT нулевой рабочий проводник и открытые проводящие части присоединены к разным заземляющим электродам, поэтому ток замыкания на землю возвращается к источнику питания через землю.
    В электроустановках данного типа для распределения электроэнергии обычно применяют нулевой рабочий проводник, который совместно с линейными проводниками используется для питания однофазных нагрузок электроустановок жилых и общественных зданий напряжением, например, 230 В.

    [Перевод Интент]

    For 3-pole circuit breakers used on 3-wire systems ( neutral not distributed), always set this value to 33 (see below) to avoid indications of a meaningless phase-to-neutral voltage.
    [Schneider Electric]

    Если 3-полюсный автоматический выключатель используется в 3-проводной сети (т. е. без нулевого рабочего проводника), обязательно установите для этого параметра значение 33 (порядок настройки описан ниже), это исключит отображение параметра «фазное напряжение», не имеющего смысла в данном случае.
    [Перевод Интент
    ]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > система с нулевым рабочим проводником

  • 12 трехфазный шинопровод с нулевым рабочим проводником

    1. 4 conductor power track
    2. 4 conductor busway
    3. 4 conductor busline
    4. 4 conductor busduct
    5. 4 conductor busbar trunking system
    6. 4 conductor busbar
    7. 4 conductor bus duct

     

    шинопровод трехфазный с нулевым рабочим проводником
    Шинопровод, имеющий три фазных и нулевой рабочий проводник, который может быть одновременно использован в качестве нулевого защитного проводника.
    [ОСТ 36-115-85]

    4538
    Рис. Legrand

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный шинопровод с нулевым рабочим проводником

  • 13 линейный ток

    1. phase current
    2. line current
    3. current phase

     

    линейный ток
    Ток, протекающий в линейном проводнике трехфазной электрической цепи, соединяющем источник и приемник электрической энергии.

    EN

    phase current, I
    value of the current flowing in each phase of an electrical distribution system
    [IEC 61557-12, ed. 1.0 (2007-08)]

    FR

    courant de phase, I
    valeur du courant circulant dans chaque phase d’un réseau de distribution électrique
    [IEC 61557-12, ed. 1.0 (2007-08)]

    0640_1
    Четырехпроводная система трехфазного тока

    Нейтраль - обшая точка соединенных концов фазных обмоток генератора (источника питания). То же самое относится и к потребителю (нагрузке).
    Линейные провода ( проводники) - проводники, присоединенные к началу фазных обмоток  (А, В и С).
    Звезда ( соединение звездой) - представленное на рисунке соединение, в котором начала обмоток соединены в одну общую точку.
    Нулейвой провод ( проводник) или нулевой рабочий провод (проводник) - проводник соединяющий нейтрали генератора (источника питания) и потребителя (нагрузки). Нулевой провод выполняет роль обратного провода.
    Линейное напряжение - напряжение между линейными проводами.
    Фазное напряжение - напряжение между линейным и нулевым проводом.
    Фазный ток - ток, протекающий по фазной обмотке генератора (источника питания) или потребителя.
    Линейный ток - ток, протекающий по линейному проводу.
    При соединении звездой линейный ток равен фазному.
    При работе по нулевому проводу протекает ток, равный векторной сумме трех линейных токов: IА, IB и IC.
    Если фазы нагружены равномерно, то ток нулевого провода равен нулю.

    [На основе книги Кузнецов М. И. Основы электротехники. М, "Высшая Школа", 1964]

    Тематики

    • электротехника, основные понятия

    EN

    FR

    Русско-английский словарь нормативно-технической терминологии > линейный ток

  • 14 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 15 система постоянного тока TN-C-S

    1. TN-C-S d.c. system

     

    система постоянного тока TN-C-S
    -

    0518
    Рис. ABB
    Сеть постоянного тока с системой заземления типа TN C-S
    Exposed conductive parts - открытые проводящие части; Earthing of system - заземление полюса сети

    Обозначения сети расшифровываются следующим образом (см. ГОСТ Р 50571. 2-94 ( МЭК 364-3-93)):

    Т - непосредственное присоединение одной точки токоведущих частей источника питания к земле;
    N - непосредственная связь открытых проводящих частей с точкой заземления источника питания
    S - функции нулевого защитного и нулевого рабочего проводников обеспечиваются раздельными проводниками.
    С - функции нулевого защитного и нулевого рабочего проводников объединены в одном проводнике (РЕN-проводник

    Питающие сети системы TN имеют непосредственно присоединенную к земле точку. Открытые проводящие части электроустановки присоединяются к этой точке посредством нулевых защитных проводников.
    В зависимости от устройства нулевого рабочего и нулевого защитного проводников различают следующие три типа системы TN:
    система TN-S - нулевой рабочий и нулевой защитный проводники работают раздельно по всей системе;
    система TN-C-S - функции нулевого рабочего и нулевого защитного проводников объединены в одном проводнике в части сети;
    система TN-С - функции нулевого рабочего и нулевого защитного проводников объединены в одном проводнике по всей сети.

     

    Тематики

    Синонимы

    EN

    • TN-C-S d.c. system

    Русско-английский словарь нормативно-технической терминологии > система постоянного тока TN-C-S

  • 16 сечение проводника

    1. wire section
    2. size conductor
    3. cross-sectional area of the conductor
    4. conductor cross section

     

    сечение проводника
    -
    [Интент]

    Выбор сечений проводников по нагреву

    Если сечение проводника, определенное по этим условиям, получается меньше сечения, требуемого по другим условиям (термическая и электродинамическая стойкость при токах КЗ, потери и отклонения напряжения, механическая прочность, защита от перегрузки), то должно приниматься наибольшее сечение, требуемое этими условиями.

    Сечение проводников основной системы уравнивания потенциалов должно быть не менее половины наибольшего сечения защитного проводника электроустановки, если сечение проводника уравнивания потенциалов при этом не превышает 25 мм2 по меди или равноценное ему из других материалов.
    [ПУЭ]

    В одно- или трехфазных сетях сечение нулевого рабочего проводника и PEN-проводника должно быть равным сечению фазного проводника при его сечении 16 мм2 и ниже для проводников с медной жилой и 25 мм2 и ниже - для проводников с алюминиевой жилой. При больших сечениях фазных проводников допускается снижение сечения нулевого рабочего проводника при условии, что:
    - ожидаемый максимальный рабочий ток в нулевом проводнике не превышает его длительно допустимый ток;
    - нулевой защитный проводник имеет защиту от сверхтока.

    [ ГОСТ Р 50571. 15-97 ( МЭК 364-5-52-93)]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > сечение проводника

См. также в других словарях:

  • нулевой рабочий проводник N — Проводник, присоединенный к нейтральной точке системы и способствующий передаче электрической энергии. МЭК 60050(826 01 03). Примечание. В некоторых случаях и установленных условиях возможно объединение функций нулевого рабочего и защитного… …   Справочник технического переводчика

  • нулевой рабочий проводник — 3.3.76 нулевой рабочий проводник (N): Проводник, используемый для питания приемников электрической энергии и соединения одного из их выводов с заземленной нейтралью электроустановки. [ГОСТ 30331.1 95/ГОСТ Р 50571.1 93, пункт 3.9] Источник …   Словарь-справочник терминов нормативно-технической документации

  • нулевой рабочий проводник ( N) — 3.5.6 нулевой рабочий проводник ( N): По ГОСТ 30331.1 / ГОСТ 50571.1. Источник: ГОСТ Р 51732 2001: Устройства …   Словарь-справочник терминов нормативно-технической документации

  • нулевой рабочий проводник — rus нулевой рабочий проводник (м), нулевой провод (м) eng neutral conductor fra conducteur (m) neutre, neutre (m) deu Neutralleiter (m), Nulleiter (m) spa conductor (m) neutro, neutro (m) …   Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

  • Нулевой рабочий проводник (N) — 3.9 Нулевой рабочий проводник (N) проводник, используемый для питания приемников электрической энергии и соединения одного из их выводов с заземленной нейтралью электроустановки. Источник: ГОСТ 30331.1 95: Электроустановки зданий. Основные… …   Словарь-справочник терминов нормативно-технической документации

  • нулевой рабочий проводник (условное обозначение N) — 2.1.15 нулевой рабочий проводник (условное обозначение N): Проводник, присоединенный к нейтральной точке системы и способствующий передаче электрической энергии. [МЭС 826 01 03] Примечание В некоторых случаях и в установленных условиях возможно… …   Словарь-справочник терминов нормативно-технической документации

  • нулевой рабочий проводник N — 2.6.4. нулевой рабочий проводник N : Проводник, соединенный с нейтральной точкой сети, который может быть использован для передачи электрической энергии. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Нулевой рабочий проводник (N) — English: Zero working conductor Проводник, используемый для питания приемников электрической энергии и соединения одного из их выводов с заземленной нейтралью электроустановки (по ГОСТ 30331.1 95 ГОСТ Р 50571.1 93) Источник: Термины и определения …   Строительный словарь

  • НУЛЕВОЙ ЗАЩИТНЫЙ ПРОВОДНИК — (РЕ) защитный проводник в электроустановках до 1 кВ, предназначенный для присоединения открытых проводящих частей к глухозаземленной нейтрали источника питания. Нулевой рабочий (нейтральный) проводник (N) проводник в электроустановках до 1 кВ,… …   Российская энциклопедия по охране труда

  • Нулевой рабочий (нейтральный) проводник — 1.7.35. Нулевой рабочий (нейтральный) проводник (N) проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с… …   Официальная терминология

  • Совмещенный нулевой рабочий и защитный проводник — 2.2.11 Совмещенный нулевой рабочий и защитный проводник (PEN проводник) проводник, сочетающий функции защитного и нулевого рабочего проводников. Примечание Сокращение PEN получается из сочетания символов; РЕ защитный проводник и N нулевой рабочий …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»