Перевод: со всех языков на все языки

со всех языков на все языки

it+became+known+that

  • 41 Shillibeer, George

    SUBJECT AREA: Land transport
    [br]
    fl. early nineteenth century
    [br]
    English coachbuilder who introduced the omnibus to London.
    [br]
    Little is known of Shillibeer's early life except that he was for some years resident in France. He served as a midshipman in the Royal Navy before joining the firm of Hatchetts in Long Acre, London, to learn coachbuilding. He set up as a coachbuilder in Paris soon after the end of the Napoleonic Wars, and prospered. Early in the 1820s Jacques Laffite ordered two improved buses from Shillibeer. Their success prompted Shillibeer to sell up his business and return to London to start a similar service. His first two buses in London ran for the first time on 4 July 1829, from the Yorkshire Stingo at Paddington to the Bank, a distance of 9 miles (14 km) which had taken three hours by the existing short-stagecoaches. Shillibeer's vehicle was drawn by three horses abreast, carried twenty-two passengers at a charge of one shilling for the full journey or sixpence for a part-journey. These fares were a third of that charged for an inside seat on a short-stagecoach. The conductors were the sons of friends of Shillibeer from his naval days. He was soon earning £1,000 per week, each bus making twelve double journeys a day. Dishonesty was rife among the conductors, so Shillibeer fitted a register under the entrance step to count the passengers; two of the conductors who had been discharged set out to wreck the register and its inventor. Expanded routes were soon being travelled by a larger fleet but the newly formed Metropolitan Police force complained that the buses were too wide, so the next buses had only two horses and carried sixteen passengers inside with two on top. Shillibeer's partner, William Morton, failed as competition grew. Shillibeer sold out in 1834 when he had sixty buses, six hundred horses and stabling for them. He started a long-distance service to Greenwich, but a competing railway opened in 1835 and income declined; the Official Stamp and Tax Offices seized the omnibuses and the business was bankrupted. Shillibeer then set up as an undertaker, and prospered with a new design of hearse which became known as a "Shillibeer".
    [br]
    Further Reading
    A.Bird, 1969, Road Vehicles, London: Longmans Industrial Archaeology Series.
    IMcN

    Biographical history of technology > Shillibeer, George

  • 42 Siemens, Dr Ernst Werner von

    [br]
    b. 13 December 1816 Lenthe, near Hanover, Germany
    d. 6 December 1892 Berlin, Germany
    [br]
    German pioneer of the dynamo, builder of the first electric railway.
    [br]
    Werner von Siemens was the eldest of a large family and after the early death of his parents took his place at its head. He served in the Prussian artillery, being commissioned in 1839, after which he devoted himself to the study of chemistry and physics. In 1847 Siemens and J.G. Halske formed a company, Telegraphen-Bauanstalt von Siemens und Halske, to manufacture a dial telegraph which they had developed from an earlier instrument produced by Charles Wheatstone. In 1848 Siemens obtained his discharge from the army and he and Halske constructed the first long-distance telegraph line on the European continent, between Berlin and Frankfurt am Main.
    Werner von Siemens's younger brother, William Siemens, had settled in Britain in 1844 and was appointed agent for the Siemens \& Halske company in 1851. Later, an English subsidiary company was formed, known from 1865 as Siemens Brothers. It specialized in manufacturing and laying submarine telegraph cables: the specialist cable-laying ship Faraday, launched for the purpose in 1874, was the prototype of later cable ships and in 1874–5 laid the first cable to run direct from the British Isles to the USA. In charge of Siemens Brothers was another brother, Carl, who had earlier established a telegraph network in Russia.
    In 1866 Werner von Siemens demonstrated the principle of the dynamo in Germany, but it took until 1878 to develop dynamos and electric motors to the point at which they could be produced commercially. The following year, 1879, Werner von Siemens built the first electric railway, and operated it at the Berlin Trades Exhibition. It comprised an oval line, 300 m (985 it) long, with a track gauge of 1 m (3 ft 3 1/2 in.); upon this a small locomotive hauled three small passenger coaches. The locomotive drew current at 150 volts from a third rail between the running rails, through which it was returned. In four months, more than 80,000 passengers were carried. The railway was subsequently demonstrated in Brussels, and in London, in 1881. That same year Siemens built a permanent electric tramway, 1 1/2 miles (2 1/2 km) long, on the outskirts of Berlin. In 1882 in Berlin he tried out a railless electric vehicle which drew electricity from a two-wire overhead line: this was the ancestor of the trolleybus.
    In the British Isles, an Act of Parliament was obtained in 1880 for the Giant's Causeway Railway in Ireland with powers to work it by "animal, mechanical or electrical power"; although Siemens Brothers were electrical engineers to the company, of which William Siemens was a director, delays in construction were to mean that the first railway in the British Isles to operate regular services by electricity was that of Magnus Volk.
    [br]
    Principal Honours and Distinctions
    Honorary doctorate, Berlin University 1860. Ennobled by Kaiser Friedrich III 1880, after which he became known as von Siemens.
    Further Reading
    S.von Weiher, 1972, "The Siemens brothers, pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45 (describes the Siemens's careers). C.E.Lee, 1979, The birth of electric traction', Railway Magazine (May) (describes Werner Siemens's introduction of the electric railway).
    Transactions of the Newcomen Society (1979) 50: 82–3 (describes Siemens's and Halske's early electric telegraph instruments).
    Transactions of the Newcomen Society (1961) 33: 93 (describes the railless electric vehicle).
    PJGR

    Biographical history of technology > Siemens, Dr Ernst Werner von

  • 43 Taylor, Frederick Winslow

    [br]
    b. 20 March 1856 Germantown, Pennsylvania, USA
    d. 21 March 1915 Philadelphia, Pennsylvania, USA
    [br]
    American mechanical engineer and pioneer of scientific management.
    [br]
    Frederick W.Taylor received his early education from his mother, followed by some years of schooling in France and Germany. Then in 1872 he entered Phillips Exeter Academy, New Hampshire, to prepare for Harvard Law School, as it was intended that he should follow his father's profession. However, in 1874 he had to abandon his studies because of poor eyesight, and he began an apprenticeship at a pump-manufacturing works in Philadelphia learning the trades of pattern-maker and machinist. On its completion in 1878 he joined the Midvale Steel Company, at first as a labourer but then as Shop Clerk and Foreman, finally becoming Chief Engineer in 1884. At the same time he was able to resume study in the evenings at the Stevens Institute of Technology, and in 1883 he obtained the degree of Mechanical Engineer (ME). He also found time to take part in amateur sport and in 1881 he won the tennis doubles championship of the United States.
    It was while with the Midvale Steel Company that Taylor began the systematic study of workshop management, and the application of his techniques produced significant increases in the company's output and productivity. In 1890 he became Manager of a company operating large paper mills in Maine and Wisconsin, until 1893 when he set up on his own account as a consulting engineer specializing in management organization. In 1898 he was retained exclusively by the Bethlehem Steel Company, and there continued his work on the metal-cutting process that he had started at Midvale. In collaboration with J.Maunsel White (1856–1912) he developed high-speed tool steels and their heat treatment which increased cutting capacity by up to 300 per cent. He resigned from the Bethlehem Steel Company in 1901 and devoted the remainder of his life to expounding the principles of scientific management which became known as "Taylorism". The Society to Promote the Science of Management was established in 1911, renamed the Taylor Society after his death. He was an active member of the American Society of Mechanical Engineers and was its President in 1906; his presidential address "On the Art of Cutting Metals" was reprinted in book form.
    [br]
    Principal Honours and Distinctions
    Paris Exposition Gold Medal 1900. Franklin Institute Elliott Cresson Gold Medal 1900. President, American Society of Mechanical Engineers 1906. Hon. ScD, University of Pennsylvania 1906. Hon. LLD, Hobart College 1912.
    Bibliography
    F.W.Taylor was the author of about 100 patents, several papers to the American Society of Mechanical Engineers, On the Art of Cutting Metals (1907, New York) and The Principles of Scientific Management (1911, New York) and, with S.E.Thompson, 1905 A Treatise on Concrete, New York, and Concrete Costs, 1912, New York.
    Further Reading
    The standard biography is Frank B.Copley, 1923, Frederick W.Taylor, Father of Scientific Management, New York (reprinted 1969, New York) and there have been numerous commentaries on his work: see, for example, Daniel Nelson, 1980, Frederick W.Taylor and the Rise of Scientific Management, Madison, Wis.
    RTS

    Biographical history of technology > Taylor, Frederick Winslow

  • 44 Johnson, Clarence Leonard (Kelly)

    SUBJECT AREA: Aerospace
    [br]
    b. 27 February 1910 Michigan, USA
    d. 21 December 1990 Burbank County, California, USA
    [br]
    American aircraft designer responsible for many outstanding Lockheed aircraft over a period of almost forty-eight years.
    [br]
    The large and successful Lockheed Aircraft Corporation grew out of a small company founded by Allan and Malcolm Loughhead (pronounced "Lockheed") in 1913. The company employed many notable designers such as Jack Northrop, Jerry Vultee and Lloyd Stearman, but the most productive was "Kelly" Johnson. After studying aeronautical engineering at the University of Michigan, Johnson joined Lockheed in 1933 and gained experience in all the branches of the design department. By 1938 he had been appointed Chief Research Engineer and became involved with the design of the P-38 Lightning twin-boom fighter and the Constellation airliner. In 1943 he set up a super-secret research and development organization called Advanced Development Projects, but this soon became known as the "Skunk Works": the name came from a very mysterious factory which made potions from skunks in the popular comic strip Li'lAbner. The first aircraft designed and built by Johnson's small hand-picked team was the XP-80 Shooting Star prototype jet fighter, which was produced in just 143 days: it became the United States' first production jet fighter. At this stage the Skunk Works produced a prototype, then the main Lockheed factories took over the production run. The F-104 Starfighter and the C-130 Hercules transport were produced in this way and became widely used in many countries. In 1954 work began on the U-2 reconnaissance aircraft which was so secret that production was carried out within the Skunk Works. This made the headlines in 1960 when one was shot down over Russia. Probably the most outstanding of Johnson's designs was the SR-71 Blackbird of 1964, a reconnaissance aircraft capable of flying at Mach 3 (three times the speed of sound). Johnson was not only a great designer, he was also an outstanding manager, and his methods—including his "14 Rules"—have been widely followed. He retired from the Lockheed board in 1980, having been involved in the design of some forty aircraft.
    [br]
    Principal Honours and Distinctions
    National Medal of Freedom (the highest United States award for a civilian) 1964.
    Further Reading
    Obituary, 1991, Aerospace (Royal Aeronautical Society) (March).
    B.R.Rich, 1989, "The Skunk Works" management style: it's no secret', Aerospace (Royal Aeronautical Society) (March) (Rich was Johnson's successor).
    Details of Lockheed aircraft can be found in several publications, e.g.: R.J.Francillon, 1982, Lockheed Aircraft since 1913, London.
    JDS

    Biographical history of technology > Johnson, Clarence Leonard (Kelly)

  • 45 Zeppelin, Count Ferdinand von

    SUBJECT AREA: Aerospace
    [br]
    b. 8 July 1838 Konstanz, Germany
    d. 8 March 1917 Berlin, Germany
    [br]
    German designer of rigid airships, which became known as Zeppelins.
    [br]
    Zeppelin served in the German Army and retired with the rank of General in 1890. While in the army, he was impressed by the use of balloons in the American Civil War and during the Siege of Paris. By the time he retired, non-rigid airships were just beginning to make their mark. Zeppelin decided to build an airship with a rigid framework to support the gas bags. Plans were drawn up in 1893 with the assistance of Theodore Kober, an engineer, but the idea was rejected by the authorities. A company was founded in 1898 and construction began. The Luftschiff Zeppelin No. 1 (LZ1) made its first flight on 2 July 1900. Modifications were needed and the second flight took place in October. A reporter called Hugo Eckener covered this and later flights: his comments and suggestions so impressed Zeppelin that Eckener eventually became his partner, publicist, fund-raiser and pilot.
    The performance of the subsequent Zeppelins gradually improved, but there was limited military interest. In November 1909 a company with the abbreviated name DELAG was founded to operate passenger-carrying Zeppelins. The service was opened by LZ 7 Deutschland in mid-June 1910, and the initial network of Frankfurt, Baden- Baden and Düsseldorf was expanded. Eckener became a very efficient Director of Flight Operations, and by the outbreak of war in 1914 some 35,000 passengers had been carried without any fatalities. During the First World War many Zeppelins were built and they carried out air-raids on Britain. Despite their menacing reputation, they were very vulnerable to attack by fighters. Zeppelin, now in his seventies, turned his attention to large bombers, following the success of Sikorsky's Grand, but he died in 1917. Eckener continued to instruct crews and improve the Zeppelin designs. When the war ended Eckener arranged to supply the Americans with an airship as part of German reparations: this became the Los Angeles. In 1928 a huge new airship, the Graf Zeppelin, was completed and Eckener took command. He took the Graf Zeppelin on many successful flights, including a voyage around the world in 1929.
    [br]
    Bibliography
    Further Reading
    There are many books on the history of airships, and on Graf von Zeppelin in particular. Of note are: H.Eckener, 1938, Count Zeppelin: The Man and His Work, London.
    ——1958, My Zeppelins, London.
    P.W.Brooks, 1992, Zeppelin: Rigid Airships 1893–1940, London.
    T.Nielson, 1955, The Zeppelin Story: The Life of Hugo Eckener, English edn, London (written as a novel in direct speech).
    M.Goldsmith, 1931, Zeppelin: A Biography, New York.
    W.R.Nitshe, 1977, The Zeppelin Story, New York.
    F.Gütschow, 1985, Das Luftschiff, Stuttgart (a record of all the airships).
    JDS

    Biographical history of technology > Zeppelin, Count Ferdinand von

  • 46 известно


    1. предик.;
    безл. it is (well) known насколько мне известноas far as know стало известно ≈ it became known ему известно, что ≈ he knows that как известно одному Богу известно ≈ God alone knows
    2. прил.;
    кратк. форма от известный
    3. частица;
    разг. of course, certainly

    Большой англо-русский и русско-английский словарь > известно

  • 47 Alcoforado, Sister Mariana

    (1640-1723)
       A Portuguese nun living in the Convento de Nossa Senhora da Conceição in Beja who was the supposed author of the Letters of a Portuguese Nun, written to her lover the French officer Noel Bouton, Marquis de Cha-milly and later marshal of France. Alcoforado was the daughter of a wealthy Alentejano family. She was sent to the Convento de Nossa Senhor da Conceição to be educated. At 16, she took vows and lived the life of a nun until she purportedly met and fell in love with Noel Bouton, a French nobleman serving under the Duke of Schomberg, one of the mercenary captains fighting on the Portuguese side during the War of Restoration (1641-68). Bouton became acquainted with Mariana through her brother, also a soldier, and, taking advantage of the custom that allowed nuns to receive visitors, started an affair with her. When their affair became known, it caused a scandal, and Bouton deserted Mariana to return to France. Some literary scholars consider the letters she wrote to Bouton after he returned to France a work of fiction that was actually written by Gabriel-Joseph de La Vergne, the Comte de Guilleragues (1628-85). Nonetheless, a nun named Mariana Alcoforado did in fact live in the Convento de Nossa Senhora de Conceição during the period when the affair was suppose to have taken place.

    Historical dictionary of Portugal > Alcoforado, Sister Mariana

  • 48 Longbotham, John

    SUBJECT AREA: Canals
    [br]
    b. mid-seventeenth century Halifax (?), Yorkshire, England d. 1801
    [br]
    English canal engineer.
    [br]
    The nature of Longbotham's career before 1766 is unknown, although he was associated with Smeaton as a pupil and thus became acquainted with canal engineering. In 1766 he suggested a canal linking Leeds and Liverpool across the Pennines. The suggestion was accepted and in 1767–8 he surveyed the line of the Leeds \& Liverpool Canal. This was approved by the promoters and by Brindley, who had been called in as an assessor. The Act was obtained in 1770 and Longbotham was first appointed as Clerk of Works under Brindley as Chief Engineer. As the latter did not take up the appointment, Longbotham became Chief Engineer and from 1770 to 1775 was responsible for the design of locks and aqueducts. He also prepared contracts and supervised construction. Meanwhile, in 1768 he had proposed a canal from the Calder and Hebble to Halifax. In 1773 he was elected to the Smeatonian Society of Civil Engineers. As soon as a part of the Leeds and Liverpool Canal was opened he started a passenger packet service, but in 1775, after completing both 50 miles (80 km) of the canal and the Bradford Canal, he was dismissed from his post because of discrepancies in his accounts. However, in the early 1790s he again advised the Leeds and Liverpool proprietors, who were in difficulties on the summit level. Longbotham had colliery interests in the Uphol-land area of Wigan, and in 1787 he surveyed a proposed route for the Lancaster Canal. In 1792 he was also associated with the Grand Western Canal. Details of his later life are scarce, but it is known that he died in poverty in 1801 and that the Leeds \& Liverpool company paid his funeral expenses.
    JHB

    Biographical history of technology > Longbotham, John

  • 49 Volta, Alessandro Giuseppe Antonio Anastasio

    SUBJECT AREA: Electricity
    [br]
    b. 18 February 1745 Como, Italy
    d. 5 March 1827 Como, Italy
    [br]
    Italian physicist, discoverer of a source of continuous electric current from a pile of dissimilar metals.
    [br]
    Volta had an early command of English, French and Latin, and also learned to read Dutch and Spanish. After completing studies at the Royal Seminary in Como he was involved in the study of physics, chemistry and electricity. He became a teacher of physics in his native town and in 1779 was appointed Professor of Physics at the University of Pavia, a post he held for forty years.
    With a growing international reputation and a wish to keep abreast of the latest developments, in 1777 he began the first of many travels abroad. A journey started in 1781 to Switzerland, Germany, Belgium, Holland, France and England lasted about one year. By 1791 he had been elected to membership of many learned societies, including those in Zurich, Berlin, Berne and Paris. Volta's invention of his pile resulted from a controversy with Luigi Galvani, Professor of Anatomy at the University of Bologna. Galvani discovered that the muscles of frogs' legs contracted when touched with two pieces of different metals and attributed this to a phenomenon of the animal tissue. Volta showed that the excitation was due to a chemical reaction resulting from the contact of the dissimilar metals when moistened. His pile comprised a column of zinc and silver discs, each pair separated by paper moistened with brine, and provided a source of continuous current from a simple and accessible source. The effectiveness of the pile decreased as the paper dried and Volta devised his crown of cups, which had a longer life. In this, pairs of dissimilar metals were placed in each of a number of cups partly filled with an electrolyte such as brine. Volta first announced the results of his experiments with dissimilar metals in 1800 in a letter to Sir Joseph Banks, President of the Royal Society. This letter, published in the Transactions of the Royal Society, has been regarded as one of the most important documents in the history of science. Large batteries were constructed in a number of laboratories soon after Volta's discoveries became known, leading immediately to a series of developments in electrochemistry and eventually in electromagnetism. Volta himself made little further contribution to science. In recognition of his achievement, at a meeting of the International Electrical Congress in Paris in 1881 it was agreed to name the unit of electrical pressure the "volt".
    [br]
    Principal Honours and Distinctions
    FRS 1791. Royal Society Copley Medal 1794. Knight of the Iron Crown, Austria, 1806. Senator of the Realm of Lombardy 1809.
    Bibliography
    1800, Philosophical Transactions of the Royal Society 18:744–6 (Volta's report on his discovery).
    Further Reading
    G.Polvani, 1942, Alessandro Volta, Pisa (the best account available).
    B.Dibner, 1964, Alessandro Volta and the Electric Battery, New York (a detailed account).
    C.C.Gillispie (ed.), 1976, Dictionary of Scientific Biography, Vol. XIV, New York, pp.
    66–82 (includes an extensive biography).
    F.Soresni, 1988, Alessandro Volta, Milan (includes illustrations of Volta's apparatus, with brief text).
    GW

    Biographical history of technology > Volta, Alessandro Giuseppe Antonio Anastasio

  • 50 The Lusitano

       The Portuguese breed of horse known as Lusitano has a history of at least a thousand years. Other noted Portuguese horse breeds are the Garrano and Sorraia, which evolved from ancient Iberian ponies and horses. Some authorities believe that the Lusitano breed evolved from the ancient Sorraia. The breed's name derives from Lusitania, the name the Romans gave to a portion of southwestern Iberia, a section of which became known in later centuries as Portugal. The breed's name also could be related to the name Luso, in ancient mythology a son of Bacchus, the god of wine and merriment. In recent decades, the Lusitano breed has become fashionable again in equestrian circles that participate in international riding competitions, as well as in producing mounts for the Portuguese bullfight. Despite a declining economy, less public interest and higher expenses in the bull- fighting industry, more opposition from animal rights advocates, and the constraints of European Union regulations, the bull-fight has endured as a sport. Breeding such horses has become a growing business not only for competitive riding, especially dressage, and an increasingly popular equestrian tourism, but also for bull-fighting. Lusitano breeding farms are located mainly in two provinces in Ribatejo, part of the Tagus River valley, and in Alentejo.

    Historical dictionary of Portugal > The Lusitano

  • 51 Woods, Granville

    [br]
    b. 1856 Columbus, Ohio, USA
    d. 1919 New York (?), USA
    [br]
    African-American inventor of electrical equipment.
    [br]
    He was first apprenticed in Columbus as a machinist and blacksmith. In 1872 he moved to Missouri, where he was engaged as a fireman and then engine-driver on the Iron Mountain Railroad. In his spare time he devoted much time to the study of electrical engineering. In 1878 he went to sea for two years as engineer on a British vessel. He returned to Ohio, taking up his previous occupation as engine-driver, and in 1884 he achieved his first patent, for a locomotive firebox. However, the drive towards things electrical was too strong and he set up the Woods Electric Company in Cincinnati, Ohio, to develop and market electrical inventions. Woods gained some fame as an inventor and became known as the "black Edison ". His first device, a telephone transmitter, was patented in December 1884 but faced stiff competition from similar inventions by Alexander Graham Bell and others. The following year he patented a device for transmitting messages in Morse code or by voice that was valuable enough to be bought up by the Bell Telephone Company. A stream of inventions followed, particularly for railway telegraph and electrical systems. This brought him into conflict with Edison, who was working in the same field. The US Patent Office ruled in Woods's favour; as a result of the ensuing publicity, one newspaper hailed Woods as the "greatest electrician in the world". In 1890 Woods moved to New York, where the opportunities for an electrical engineer seemed more favourable. He turned his attention to inventions that would improve the tram-car. One device enabled electric current to be transferred to the car with less friction than previously, incorporating a grooved wheel known as a "troller", whence came the popular term "trolley car".
    [br]
    Further Reading
    P.P.James, 1989, The Real McCoy: African-American Invention and Innovation 1619– 1930, Washington, DC: Smithsonian Institution, pp. 94–5.
    LRD

    Biographical history of technology > Woods, Granville

  • 52 Essen, Louis

    SUBJECT AREA: Horology
    [br]
    b. 6 September 1908 Nottingham, England
    [br]
    English physicist who produced the first practical caesium atomic clock, which was later used to define the second.
    [br]
    Louis Essen joined the National Physical Laboratory (NPL) at Teddington in 1927 after graduating from London University. He spent his whole working life at the NPL and retired in 1972; his research there was recognized by the award of a DSc in 1948. At NPL he joined a team working on the development of frequency standards using quartz crystals and he designed a very successful quartz oscillator, which became known as the "Essen ring". He was also involved with radio frequency oscillators. His expertise in these fields was to play a crucial role in the development of the caesium clock. The idea of an atomic clock had been proposed by I.I.Rabbi in 1945, and an instrument was constructed shortly afterwards at the National Bureau of Standards in the USA. However, this device never realized the full potential of the concept, and after seeing it on a visit to the USA Essen was convinced that a more successful instrument could be built at Teddington. Assisted by J.V.L.Parry, he commenced work in the spring of 1953 and by June 1955 the clock was working reliably, with an accuracy that was equivalent to one second in three hundred years. This was significantly more accurate than the astronomical observations that were used at that time to determine the second: in 1967 the second was redefined in terms of the value for the frequency of vibration of caesium atoms that had been obtained with this clock.
    [br]
    Principal Honours and Distinctions
    FRS 1960. Clockmakers' Company Tompion Gold Medal 1957. Physical Society C.V.Boys Prize 1957. USSR Academy of Science Popov Gold Medal 1959.
    Bibliography
    1957, with J.V.L.Parry, "The caesium resonator as a standard of frequency and time", Philosophical Transactions of the Royal Society (Series A) 25:45–69 (the first comprehensive description of the caesium clock).
    Further Reading
    P.Forman, 1985, "Atomichron: the atomic clock from concept to commercial product", Proceedings of the IEEE 75:1,181–204 (an authoritative critical review of the development of the atomic clock).
    N.Cessons (ed.), 1992, The Making of the Modern World, London: Science Museum, pp.
    190–1 (contains a short account).
    DV

    Biographical history of technology > Essen, Louis

  • 53 Heaviside, Oliver

    [br]
    b. 18 May 1850 London, England
    d. 2 February 1925 Torquay, Devon, England
    [br]
    English physicist who correctly predicted the existence of the ionosphere and its ability to reflect radio waves.
    [br]
    Brought up in poor, almost Dickensian, circumstances, at the age of 13 years Heaviside, a nephew by marriage of Sir Charles Wheatstone, went to Camden House Grammar School. There he won a medal for science, but he was forced to leave because his parents could not afford the fees. After a year of private study, he began his working life in Newcastle in 1870 as a telegraph operator for an Anglo-Dutch cable company, but he had to give up after only four years because of increasing deafness. He therefore proceeded to spend his time studying theoretical aspects of electrical transmission and communication, and moved to Devon with his parents in 1889. Because the operation of many electrical circuits involves transient phenomena, he found it necessary to develop what he called operational calculus (which was essentially a form of the Laplace transform calculus) in order to determine the response to sudden voltage and current changes. In 1893 he suggested that the distortion that occurred on long-distance telephone lines could be reduced by adding loading coils at regular intervals, thus creating a matched-transmission line. Between 1893 and 1912 he produced a series of writings on electromagnetic theory, in one of which, anticipating a conclusion of Einstein's special theory of relativity, he put forward the idea that the mass of an electric charge increases with its velocity. When it was found that despite the curvature of the earth it was possible to communicate over very great distances using radio signals in the so-called "short" wavebands, Heaviside suggested the presence of a conducting layer in the ionosphere that reflected the waves back to earth. Since a similar suggestion had been made almost at the same time by Arthur Kennelly of Harvard, this layer became known as the Kennelly-Heaviside layer.
    [br]
    Principal Honours and Distinctions
    FRS 1891. Institution of Electrical Engineers Faraday Medal 1924. Honorary PhD Gottingen. Honorary Member of the American Association for the Advancement of Science.
    Bibliography
    1872. "A method for comparing electro-motive forces", English Mechanic (July).
    1873. Philosophical Magazine (February) (a paper on the use of the Wheatstone Bridge). 1889, Electromagnetic Waves.
    Further Reading
    I.Catt (ed.), 1987, Oliver Heaviside, The Man, St Albans: CAM Publishing.
    P.J.Nahin, 1988, Oliver Heaviside, Sage in Solitude: The Life and Works of an Electrical Genius of the Victorian Age, Institute of Electrical and Electronics Engineers, New York.
    J.B.Hunt, The Maxwellians, Ithaca: Cornell University Press.
    KF

    Biographical history of technology > Heaviside, Oliver

  • 54 Vignoles, Charles Blacker

    [br]
    b. 31 May 1793 Woodbrook, Co. Wexford, Ireland
    d. 17 November 1875 Hythe, Hampshire, England
    [br]
    English surveyor and civil engineer, pioneer of railways.
    [br]
    Vignoles, who was of Huguenot descent, was orphaned in infancy and brought up in the family of his grandfather, Dr Charles Hutton FRS, Professor of Mathematics at the Royal Military Academy, Woolwich. After service in the Army he travelled to America, arriving in South Carolina in 1817. He was appointed Assistant to the state's Civil Engineer and surveyed much of South Carolina and subsequently Florida. After his return to England in 1823 he established himself as a civil engineer in London, and obtained work from the brothers George and John Rennie.
    In 1825 the promoters of the Liverpool \& Manchester Railway (L \& MR) lost their application for an Act of Parliament, discharged their engineer George Stephenson and appointed the Rennie brothers in his place. They in turn employed Vignoles to resurvey the railway, taking a route that would minimize objections. With Vignoles's route, the company obtained its Act in 1826 and appointed Vignoles to supervise the start of construction. After Stephenson was reappointed Chief Engineer, however, he and Vignoles proved incompatible, with the result that Vignoles left the L \& MR early in 1827.
    Nevertheless, Vignoles did not sever all connection with the L \& MR. He supported John Braithwaite and John Ericsson in the construction of the locomotive Novelty and was present when it competed in the Rainhill Trials in 1829. He attended the opening of the L \& MR in 1830 and was appointed Engineer to two railways which connected with it, the St Helens \& Runcorn Gap and the Wigan Branch (later extended to Preston as the North Union); he supervised the construction of these.
    After the death of the Engineer to the Dublin \& Kingstown Railway, Vignoles supervised construction: the railway, the first in Ireland, was opened in 1834. He was subsequently employed in surveying and constructing many railways in the British Isles and on the European continent; these included the Eastern Counties, the Midland Counties, the Sheffield, Ashton-under-Lyme \& Manchester (which proved for him a financial disaster from which he took many years to recover), and the Waterford \& Limerick. He probably discussed rail of flat-bottom section with R.L. Stevens during the winter of 1830–1 and brought it into use in the UK for the first time in 1836 on the London \& Croydon Railway: subsequently rail of this section became known as "Vignoles rail". He considered that a broader gauge than 4 ft 8½ in. (1.44 m) was desirable for railways, although most of those he built were to this gauge so that they might connect with others. He supported the atmospheric system of propulsion during the 1840s and was instrumental in its early installation on the Dublin \& Kingstown Railway's Dalkey extension. Between 1847 and 1853 he designed and built the noted multi-span suspension bridge at Kiev, Russia, over the River Dnieper, which is more than half a mile (800 m) wide at that point.
    Between 1857 and 1863 he surveyed and then supervised the construction of the 155- mile (250 km) Tudela \& Bilbao Railway, which crosses the Cantabrian Pyrenees at an altitude of 2,163 ft (659 m) above sea level. Vignoles outlived his most famous contemporaries to become the grand old man of his profession.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Astronomical Society 1829. FRS 1855. President, Institution of Civil Engineers 1869–70.
    Bibliography
    1830, jointly with John Ericsson, British patent no. 5,995 (a device to increase the capability of steam locomotives on grades, in which rollers gripped a third rail).
    1823, Observations upon the Floridas, New York: Bliss \& White.
    1870, Address on His Election as President of the Institution of Civil Engineers.
    Further Reading
    K.H.Vignoles, 1982, Charles Blacker Vignoles: Romantic Engineer, Cambridge: Cambridge University Press (good modern biography by his great-grandson).
    PJGR

    Biographical history of technology > Vignoles, Charles Blacker

  • 55 laganap

    Active Verb: lumaganap
    English Definition: (adj) scattered, well-known (verb) to be scattered, to be well-known
    Examples: Lumaganap na ang balita na siya ang ama ng bata. (It became well-known that he was the father of the child.)

    Tagalog-English dictionary > laganap

  • 56 Röntgen, Wilhelm Conrad

    [br]
    b. 27 March 1845 Lennep, Prussia (now Remscheid, Germany)
    d. 10 February 1923 Munich, Germany
    [br]
    German physicist who discovered X-rays.
    [br]
    Expelled from school and so unable to attend university, Röntgen studied engineering at Zurich Polytechnic. After graduation he obtained a post as assistant to the distinguished German physicist Kundt and eventually secured an appointment at the University of Würzburg in Bavaria. He was successively Professor of Physics at the universities of Strasbourg (1876), Giessen (1879), Würzburg (1888) and Munich (1900–20), but he died in abject poverty. At various times he studied piezo-electricity; heat absorption by and the specific heat of gases; heat conduction in crystals; elasticity; and the capillary action of fluids. In 1895, whilst experimenting with the Crookes tube, a partially evacuated tube invented some seven years earlier, he observed that when a high voltage was applied across the tube, a nearby piece of barium platinocyanide produced light. He theorized that when the so-called cathode rays produced by the tube (electrons, as we now know) struck the glass wall, some unknown radiation occurred that was able to penetrate light materials and affect photographic plates. These he called X-rays (they also became known as Röntgen rays), but he believed (erroneously) that they bore no relation to light rays. For this important discovery he was awarded the Nobel Prize for Physics, but, sadly, he died in abject poverty during the hyperinflation of the 1920s.
    [br]
    Principal Honours and Distinctions
    First Nobel Prize for Physics 1901.
    Bibliography
    1895, "A new kind of radiation", Meeting of the Würzburg Physical-Medical Society (December) (reported Röntgen's discovery of X-rays).
    Further Reading
    O.Glasser, 1945, Dr. W.C.Röntgen (biography).
    KF

    Biographical history of technology > Röntgen, Wilhelm Conrad

  • 57 autonomation

    Ops
    a production system in which workers are allowed, and machines are equipped with a mechanism, to stop production if a defect in a product is detected during the production process. Autonomation became known through the Toyota production system. The concept evolved from braking devices on machines that automatically stop if a problem occurs. Within Toyota, the concept has been carried forward so that all machines are equipped with various safety devices to prevent defective products, and production workers are allowed to stop the production line if a problem occurs. The problem is then properly explored in order to find a solution and to ensure that everyone understands the underlying reasons for the problem. In the long term, this creates a more efficient production line.

    The ultimate business dictionary > autonomation

  • 58 Fox, Samuel

    [br]
    b. 1815 Bradfield, near Sheffield, England
    d. February 1887 Sheffield, England
    [br]
    English inventor of the curved steel umbrella frame.
    [br]
    Samuel Fox was the son of a weaver's shuttle maker in the hamlet of Bradwell (probably Bradfield, near Sheffield) in the remote hills. He went to Sheffield and served an apprenticeship in the steel trade. Afterwards, he worked with great energy and industry until he acquired sufficient capital to start in business on his own account at Stocksbridge, near Sheffield. It was there that he invented what became known as "Fox's Paragon Frame" for umbrellas. Whalebone or solid steel had previously been used for umbrella ribs, but whalebone was unreliable and steel was heavy. Fox realized that if he grooved the ribs he could make them both lighter and more elastic. In his first patent, taken out in 1852, he described making the ribs and stretchers of parasols and umbrellas from a narrow strip of steel plate partially bent into a trough-like form. He took out five more patents. The first, in 1853, was for strengthening the joints. His next two, in 1856 and 1857, were more concerned with preparing the steel for making the ribs. Another patent in 1857 was basically for improving the formation of the bit at the end of the rib where it was fixed to the stretcher and where the end of the rib has to be formed into a boss: this was so it could have a pin fixed through it to act as a pivot when the umbrella has to be opened or folded and yet support the rib and stretcher. The final patent, in 1865, reverted once more to improving the manufacture of the ribs. He made a fortune before other manufacturers knew what he was doing. Fox established a works at Lille when he found that the French import duties and other fiscal arrangements hindered exporting umbrellas and successful trading there, and was thereby able to develop a large and lucrative business.
    [br]
    Bibliography
    1852. British patent no. 14,055 (curved steel ribs and stretchers for umbrellas). 1853. British patent no. 739 (strengthened umbrella joints).
    1856. British patent no. 2,741 (ribs and stretchers for umbrellas). 1857. British patent no. 1,450 (steel wire for umbrellas).
    1857, British patent no. 1,857 (forming the bit attached to the ribs). 1865, British patent no. 2,348 (improvements in making the ribs).
    Further Reading
    Obituary, 1887, Engineer 63.
    Obituary, 1887, Iron 29.
    RLH

    Biographical history of technology > Fox, Samuel

  • 59 Noyce, Robert

    [br]
    b. 12 December 1927 Burlington, Iowa, USA
    [br]
    American engineer responsible for the development of integrated circuits and the microprocessor chip.
    [br]
    Noyce was the son of a Congregational minister whose family, after a number of moves, finally settled in Grinnell, some 50 miles (80 km) east of Des Moines, Iowa. Encouraged to follow his interest in science, in his teens he worked as a baby-sitter and mower of lawns to earn money for his hobby. One of his clients was Professor of Physics at Grinnell College, where Noyce enrolled to study mathematics and physics and eventually gained a top-grade BA. It was while there that he learned of the invention of the transistor by the team at Bell Laboratories, which included John Bardeen, a former fellow student of his professor. After taking a PhD in physical electronics at the Massachusetts Institute of Technology in 1953, he joined the Philco Corporation in Philadelphia to work on the development of transistors. Then in January 1956 he accepted an invitation from William Shockley, another of the Bell transistor team, to join the newly formed Shockley Transistor Company, the first electronic firm to set up shop in Palo Alto, California, in what later became known as "Silicon Valley".
    From the start things at the company did not go well and eventually Noyce and Gordon Moore and six colleagues decided to offer themselves as a complete development team; with the aid of the Fairchild Camera and Instrument Company, the Fairchild Semiconductor Corporation was born. It was there that in 1958, contemporaneously with Jack K. Wilby at Texas Instruments, Noyce had the idea for monolithic integration of transistor circuits. Eventually, after extended patent litigation involving study of laboratory notebooks and careful examination of the original claims, priority was assigned to Noyce. The invention was most timely. The Apollo Moon-landing programme announced by President Kennedy in May 1961 called for lightweight sophisticated navigation and control computer systems, which could only be met by the rapid development of the new technology, and Fairchild was well placed to deliver the micrologic chips required by NASA.
    In 1968 the founders sold Fairchild Semicon-ductors to the parent company. Noyce and Moore promptly found new backers and set up the Intel Corporation, primarily to make high-density memory chips. The first product was a 1,024-bit random access memory (1 K RAM) and by 1973 sales had reached $60 million. However, Noyce and Moore had already realized that it was possible to make a complete microcomputer by putting all the logic needed to go with the memory chip(s) on a single integrated circuit (1C) chip in the form of a general purpose central processing unit (CPU). By 1971 they had produced the Intel 4004 microprocessor, which sold for US$200, and within a year the 8008 followed. The personal computer (PC) revolution had begun! Noyce eventually left Intel, but he remained active in microchip technology and subsequently founded Sematech Inc.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. National Academy of Engineering 1969. National Academy of Science. Institute of Electrical and Electronics Engineers Medal of Honour 1978; Cledo Brunetti Award (jointly with Kilby) 1978. Institution of Electrical Engineers Faraday Medal 1979. National Medal of Science 1979. National Medal of Engineering 1987.
    Bibliography
    1955, "Base-widening punch-through", Proceedings of the American Physical Society.
    30 July 1959, US patent no. 2,981,877.
    Further Reading
    T.R.Reid, 1985, Microchip: The Story of a Revolution and the Men Who Made It, London: Pan Books.
    KF

    Biographical history of technology > Noyce, Robert

  • 60 Te Uri O Hau

    Hapu of the Ngati Whatua
    The people of Te Uri O Hau were among the first Maori to populate Aotearoa, descending from the Waka - Mahuhu (one of the pre-hekenui waka of 1350 circa & one out of a few to bring a colonizing capacity [one other being the waka - Mamaari]) In those earlier days it was said that the people lived at Muriwhenua (in the North) that there were other people here on our arrival (the patupaiarehe) life continued harmoniously until the murder of a patupaiarehe occurred causing upheaval & fighting amongst the people of Muriwhenua who then all went their separate ways... in those days the people were more nomadic & raw they moved about & it wasn't until after the eponymous ancestor of Te Uri O Hau settled at Pouto that Te Uri O Hau became known as such.

    Maori-English dictionary > Te Uri O Hau

См. также в других словарях:

  • known — [[t]no͟ʊn[/t]] 1) Known is the past participle of know. 2) ADJ: ADJ n, v link ADJ prep, v link adv ADJ You use known to describe someone or something that is clearly recognized by or familiar to all people or to a particular group of people.… …   English dictionary

  • known — known1 [ noun ] adjective only before noun ** 1. ) used for describing something that people know about or have discovered: a theory that fits the known facts The documents were delivered to his last known address. a disease with no known cure He …   Usage of the words and phrases in modern English

  • known — I UK [nəʊn] / US [noʊn] adjective [only before noun] ** 1) used for describing something that people know about or have discovered a theory that fits the known facts The documents were delivered to his last known address. a disease with no known… …   English dictionary

  • That's So Raven — Format Family Teen sitcom Fantasy Created by Michael Poryes Susan Sherman …   Wikipedia

  • Known Space — is the fictional setting of several science fiction novels and short stories written by author Larry Niven. It has also in part been used as a shared universe in the Man Kzin Wars spin off anthologies sub series.The epithet Known Space is an in… …   Wikipedia

  • That Was The Week That Was — also known as TW3, was a satirical television comedy programme that aired on BBC Television in 1962 and 1963. Devised, produced and directed by Ned Sherrin, the programme was fronted by David Frost and cast members included improvising cartoonis …   Wikipedia

  • That Thing You Do! — Theatrical release poster Directed by Tom Hanks Produced by …   Wikipedia

  • That Was the Year That Was — Live album by Tom Lehrer Released 1965 …   Wikipedia

  • That Time — is a one act play by Samuel Beckett, written in English between 8 June 1974 and August 1975. It was specially written for actor Patrick Magee, who delivered its first performance, on the occasion of Beckett s seventieth birthday celebration, at… …   Wikipedia

  • That Peter Kay Thing — Format Sitcom Created by Peter Kay Written by Neil Fitzmaurice Peter Kay Dave Spikey Gareth Hughes Directed by Andrew Gillman Starring …   Wikipedia

  • That's What Friends Are For — is a 1982 song written by Burt Bacharach and Carole Bayer Sager and introduced by Rod Stewart for the soundtrack of the film Night Shift . The song is far better known for its cover version by Dionne Warwick and Friends. A one off collaboration… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»