Перевод: со всех языков на все языки

со всех языков на все языки

Halske

  • 1 Halske, Johann Georg

    [br]
    b. 30 July 1814 Hamburg, Germany
    d. 18 March 1890 Berlin, Germany
    [br]
    German engineer who introduced precision methods into the manufacture of electrical equipment; co-founder of Siemens \& Halske.
    [br]
    Halske moved to Berlin when he was a young man, and in 1844 was working for the university, at first independently and then jointly with F. Bötticher, developing and building electric medical appliances. In 1845 he met Werner von Siemens and together they became founder members of the Berlin Physics Society. It was in Halske's workshop that Siemens, assisted by the skill of the former, was able to work out his inventions in telegraphy. In 1847 the two men entered into partnership to manufacture telegraph equipment, laying the foundations of the successful firm of Siemens \& Halske. At the outset, before Werner von Siemens gave up his army career, Halske acted as the sole manager of the firm and was also involved in testing the products. Inventions they developed included electric measuring instruments and railway signalling equipment, and they installed many telegraph lines, notably those for the Russian Government. When gutta-percha became available on the market, the two men soon developed an extrusion process for applying this new material to copper conductors. To the disappointment of Halske, who was opposed to mass production, the firm introduced series production and piece wages in 1857. The expansion of the business, particularly into submarine cable laying, caused some anxiety to Halske, who left the firm on amicable terms in 1867. He then worked for a few years developing the Arts and Crafts Museum in Berlin and became a town councillor.
    [br]
    Further Reading
    S. von Weihr and H.Götzeler, 1983, The Siemens Company. Its Historical Role in the Progress of Electrical Engineering 1847–1983, Berlin (provides a full account).
    Neue Deutsche Biographie, 1966, Vol. 7, Berlin, pp. 572–3.
    S.von Weiher, 1972–3, "The Siemens brothers, pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45:1–11.
    GW

    Biographical history of technology > Halske, Johann Georg

  • 2 Siemens, Dr Ernst Werner von

    [br]
    b. 13 December 1816 Lenthe, near Hanover, Germany
    d. 6 December 1892 Berlin, Germany
    [br]
    German pioneer of the dynamo, builder of the first electric railway.
    [br]
    Werner von Siemens was the eldest of a large family and after the early death of his parents took his place at its head. He served in the Prussian artillery, being commissioned in 1839, after which he devoted himself to the study of chemistry and physics. In 1847 Siemens and J.G. Halske formed a company, Telegraphen-Bauanstalt von Siemens und Halske, to manufacture a dial telegraph which they had developed from an earlier instrument produced by Charles Wheatstone. In 1848 Siemens obtained his discharge from the army and he and Halske constructed the first long-distance telegraph line on the European continent, between Berlin and Frankfurt am Main.
    Werner von Siemens's younger brother, William Siemens, had settled in Britain in 1844 and was appointed agent for the Siemens \& Halske company in 1851. Later, an English subsidiary company was formed, known from 1865 as Siemens Brothers. It specialized in manufacturing and laying submarine telegraph cables: the specialist cable-laying ship Faraday, launched for the purpose in 1874, was the prototype of later cable ships and in 1874–5 laid the first cable to run direct from the British Isles to the USA. In charge of Siemens Brothers was another brother, Carl, who had earlier established a telegraph network in Russia.
    In 1866 Werner von Siemens demonstrated the principle of the dynamo in Germany, but it took until 1878 to develop dynamos and electric motors to the point at which they could be produced commercially. The following year, 1879, Werner von Siemens built the first electric railway, and operated it at the Berlin Trades Exhibition. It comprised an oval line, 300 m (985 it) long, with a track gauge of 1 m (3 ft 3 1/2 in.); upon this a small locomotive hauled three small passenger coaches. The locomotive drew current at 150 volts from a third rail between the running rails, through which it was returned. In four months, more than 80,000 passengers were carried. The railway was subsequently demonstrated in Brussels, and in London, in 1881. That same year Siemens built a permanent electric tramway, 1 1/2 miles (2 1/2 km) long, on the outskirts of Berlin. In 1882 in Berlin he tried out a railless electric vehicle which drew electricity from a two-wire overhead line: this was the ancestor of the trolleybus.
    In the British Isles, an Act of Parliament was obtained in 1880 for the Giant's Causeway Railway in Ireland with powers to work it by "animal, mechanical or electrical power"; although Siemens Brothers were electrical engineers to the company, of which William Siemens was a director, delays in construction were to mean that the first railway in the British Isles to operate regular services by electricity was that of Magnus Volk.
    [br]
    Principal Honours and Distinctions
    Honorary doctorate, Berlin University 1860. Ennobled by Kaiser Friedrich III 1880, after which he became known as von Siemens.
    Further Reading
    S.von Weiher, 1972, "The Siemens brothers, pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45 (describes the Siemens's careers). C.E.Lee, 1979, The birth of electric traction', Railway Magazine (May) (describes Werner Siemens's introduction of the electric railway).
    Transactions of the Newcomen Society (1979) 50: 82–3 (describes Siemens's and Halske's early electric telegraph instruments).
    Transactions of the Newcomen Society (1961) 33: 93 (describes the railless electric vehicle).
    PJGR

    Biographical history of technology > Siemens, Dr Ernst Werner von

  • 3 Detektei

    f; -, -en detective agency, private investigators Pl.
    * * *
    De|tek|tei [detɛk'tai]
    f -, -en
    (private) detective agency, firm of (private) investigators

    "Detektei R. B. von Halske" — "R.B. von Halske, private investigator"

    * * *
    De·tek·tei
    <-, -en>
    [detɛkˈtai]
    f [private] detective agency, firm of [private] investigators
    „\Detektei Schlupps & Partner“ “Schlupps & Partners, Private Investigators”
    * * *
    die; Detektei, Detekteien [private] detective agency
    * * *
    Detektei f; -, -en detective agency, private investigators pl
    * * *
    die; Detektei, Detekteien [private] detective agency

    Deutsch-Englisch Wörterbuch > Detektei

  • 4 Siemens AG Österreich

    f
    крупная фирма, сферы деятельности: информатика и связь, автоматизация и управление, транспорт, энергетика, промышленное оборудование, медицинская, бытовая техника и др. Имеет исследовательские центры в Вене, Граце и Зальцбурге, центр по разработке программного обеспечения (один из крупнейших в Европе), заводы в гг. Вена, Дойчландсберг (Deutschlandsberg) и Вайдхофен-ан-дер-Тайа (Waidhofen a. d. Thaya). Австрийский филиал немецкой фирмы "Сименс и Хальске" (Siemens & Halske) основан в 1879, в 1946 предприятия национализированы, в 1971 произошло слияние с немецкой фирмой "Сименс АГ" (Siemens AG) и приватизация большей части капитала. Сегодня Республике Австрия (Австрийскому индустриальному холдингу) принадлежит 26% акций

    Австрия. Лингвострановедческий словарь > Siemens AG Österreich

  • 5 locket

    [-kit]
    noun (a little ornamental case hung round the neck: a gold locket containing a piece of his hair.) nisti (í hálskeðju)

    English-Icelandic dictionary > locket

  • 6 Anschütz, Ottomar

    [br]
    b. 1846 Lissa, Prussia (now Leszno, Poland) d. 1907
    [br]
    German photographer, chronophotographer ana inventor.
    [br]
    The son of a commercial photographer, Anschütz entered the business in 1868 and developed an interest in the process of instantaneous photography. The process was very difficult with the contemporary wet-plate process, but with the introduction of the much faster dry plates in the late 1870s he was able to make progress. Anschütz designed a focal plane shutter capable of operating at speeds up to 1/1000 of a second in 1883, and patented his design in 1888. it involved a vertically moving fabric roller-blind that worked at a fixed tension but had a slit the width of which could be adjusted to alter the exposure time. This design was adopted by C.P.Goerz, who from 1890 manufactures a number of cameras that incorporated it.
    Anschütz's action pictures of flying birds and animals attracted the attention of the Prussian authorities, and in 1886 the Chamber of Deputies authorized financial support for him to continue his work, which had started at the Hanover Military Institute in October 1885. Inspired by the work of Eadweard Muybridge in America, Anschütz had set up rows of cameras whose focal-plane shutters were released in sequence by electromagnets, taking twenty-four pictures in about three-quarters of a second. He made a large number of studies of the actions of people, animals and birds, and at the Krupp artillery range at Meppen, near Essen, he recorded shells in flight. His pictures were reproduced, and favourably commented upon, in scientific and photographic journals.
    To bring the pictures to the public, in 1887 he created the Electro-Tachyscope. The sequence negatives were printed as 90 x 120 mm transparencies and fixed around the circumference of a large steel disc. This was rotated in front of a spirally wound Geissler tube, which produced a momentary brilliant flash of light when a high voltage from an induction coil was applied to it, triggered by contacts on the steel disc. The flash duration, about 1/1000 of a second, was so short that it "froze" each picture as it passed the tube. The pictures succeeded each other at intervals of about 1/30 of a second, and the observer saw an apparently continuously lit moving picture. The Electro-Tachyscope was shown publicly in Berlin at the Kulturministerium from 19 to 21 March 1887; subsequently Siemens \& Halske manufactured 100 machines, which were shown throughout Europe and America in the early 1890s. From 1891 his pictures were available for the home in the form of the Tachyscope viewer, which used the principle of the zoetrope: sequence photographs were printed on long strips of thin card, perforated with narrow slots between the pictures. Placed around the circumference of a shallow cylinder and rotated, the pictures could be seen in life-like movement when viewed through the slots.
    In November 1894 Anschütz displayed a projector using two picture discs with twelve images each, which through a form of Maltese cross movement were rotated intermittently and alternately while a rotating shutter allowed each picture to blend with the next so that no flicker occurred. The first public shows, given in Berlin, were on a screen 6×8 m (20×26 ft) in size. From 22 February 1895 they were shown regularly to audiences of 300 in a building on the Leipzigstrasse; they were the first projected motion pictures seen in Germany.
    [br]
    Further Reading
    J.Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris. B.Coe, 1992, Muybridge and the Chronophotographers, London.
    BC

    Biographical history of technology > Anschütz, Ottomar

  • 7 Electricity

    [br]
    Thomson, Sir William

    Biographical history of technology > Electricity

  • 8 Gabor, Dennis (Dénes)

    [br]
    b. 5 June 1900 Budapest, Hungary
    d. 9 February 1979 London, England
    [br]
    Hungarian (naturalized British) physicist, inventor of holography.
    [br]
    Gabor became interested in physics at an early age. Called up for military service in 1918, he was soon released when the First World War came to an end. He then began a mechanical engineering course at the Budapest Technical University, but a further order to register for military service prompted him to flee in 1920 to Germany, where he completed his studies at Berlin Technical University. He was awarded a Diploma in Engineering in 1924 and a Doctorate in Electrical Engineering in 1927. He then went on to work in the physics laboratory of Siemens \& Halske. He returned to Hungary in 1933 and developed a new kind of fluorescent lamp called the plasma lamp. Failing to find a market for this device, Gabor made the decision to abandon his homeland and emigrate to England. There he joined British Thompson-Houston (BTH) in 1934 and married a colleague from the company in 1936. Gabor was also unsuccessful in his attempts to develop the plasma lamp in England, and by 1937 he had begun to work in the field of electron optics. His work was interrupted by the outbreak of war in 1939, although as he was not yet a British subject he was barred from making any significant contribution to the British war effort. It was only when the war was near its end that he was able to return to electron optics and begin the work that led to the invention of holography. The theory was developed during 1947 and 1948; Gabor went on to demonstrate that the theories worked, although it was not until the invention of the laser in 1960 that the full potential of his invention could be appreciated. He coined the term "hologram" from the Greek holos, meaning complete, and gram, meaning written. The three-dimensional images have since found many applications in various fields, including map making, medical imaging, computing, information technology, art and advertising. Gabor left BTH to become an associate professor at the Imperial College of Science and Technology in 1949, a position he held until his retirement in 1967. In 1971 he was awarded the Nobel Prize for Physics for his work on holography.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1968. Franklin Institute Michelson Medal 1968. CBE 1970. Nobel Prize for Physics 1971.
    Bibliography
    1948. "A new microscopic principle", Nature 161:777 (Gabor's earliest publication on holography).
    1949. "Microscopy by reconstructed wavefronts", Proceedings of the Royal Society A197: 454–87.
    1951, "Microscopy by reconstructed wavefronts II", Proc. Phys. Soc. B, 64:449–69. 1966, "Holography or the “Whole Picture”", New Scientist 29:74–8 (an interesting account written after laser beams were used to produce optical holograms).
    Further Reading
    T.E.Allibone, 1980, contribution to Biographical Memoirs of Fellows of the Royal Society 26: 107–47 (a full account of Gabor's life and work).
    JW

    Biographical history of technology > Gabor, Dennis (Dénes)

  • 9 Ilgner, Karl

    SUBJECT AREA: Electricity
    [br]
    b. 27 July 1862 Neisse, Upper Silesia (now Nysa, Poland)
    d. 18 January 1921 Berthelsdorf, Silesia
    [br]
    German electrical engineer, inventor of a transformer for electromotors.
    [br]
    Ilgner graduated from the Gewerbeakademie (the forerunner of the Technical University) in Berlin. As the representative of an electric manufacturing company in Breslau (now Wroclaw, Poland) from 1897, he was confronted with the fact that there were no appropriate drives for hoisting-engines or rolling-plants in steelworks. Two problems prevented the use of high-capacity electric motors in the mining as well as in the iron and steel industry: the reactions of the motors on the circuit at the peak point of stress concentration; and the complicated handling of the control system which raised the risks regarding safety. Having previously been head of the department of electrical power transmission in Hannover, he was concerned with the development of low-speed direct-current motors powered by gas engines.
    It was Harry Ward Leonard's switchgear for direct-current motors (USA, 1891) that permitted sudden and exact changes in the speed and direction of rotation without causing power loss, as demonstrated in the driving of a rolling sidewalk at the Paris World Fair of 1900. Ilgner connected this switchgear to a large and heavy flywheel which accumulated the kinetic energy from the circuit in order to compensate shock loads. With this combination, electric motors did not need special circuits, which were still weak, because they were working continuously and were regulated individually, so that they could be used for driving hoisting-engines in mines, rolling-plants in steelworks or machinery for producing tools and paper. Ilgner thus made a notable advance in the general progress of electrification.
    His transformer for hoisting-engines was patented in 1901 and was commercially used inter alia by Siemens \& Halske of Berlin. Their first electrical hoisting-engine for the Zollern II/IV mine in Dortmund gained international reputation at the Düsseldorf exhibition of 1902, and is still preserved in situ in the original machine hall of the mine, which is now a national monument in Germany. Ilgner thereafter worked with several companies to pursue his conception, became a consulting engineer in Vienna and Breslau and had a government post after the First World War in Brussels and Berlin until he retired for health reasons in 1919.
    [br]
    Bibliography
    1901, DRP no. 138, 387 1903, "Der elektrische Antrieb von Reversier-Walzenstraßen", Stahl und Eisen 23:769– 71.
    Further Reading
    W.Kroker, "Karl Ilgner", Neue Deutsche Biographie, Vol. X, pp. 134–5. W.Philippi, 1924, Elektrizität im Bergbau, Leipzig (a general account).
    K.Warmbold, 1925, "Der Ilgner-Umformer in Förderanlagen", Kohle und Erz 22:1031–36 (a detailed description).
    WK

    Biographical history of technology > Ilgner, Karl

  • 10 Marcus, Siegfried

    [br]
    b. 18 September 1831 Malchin, Mecklenburg
    d. 30 June 1898 Vienna, Austria
    [br]
    German inventor, builder of the world's first self-propelled vehicle driven by an internal combustion engine.
    [br]
    Marcus was apprenticed as a mechanic and was employed in the newly founded enterprise of Siemens \& Halske in Berlin. He then went to Vienna and, from 1853, was employed in the workshop of the Imperial Court Mechanic, Kraft, and in the same year he was a mechanic in the Royal and Imperial Institute of Physics of the University of Vienna. In 1860 he became independent of the Imperial Court, but he installed an electrical bell system for the Empress Elizabeth and instructed the Crown Prince Rudolf in natural science.
    Marcus was granted thirty-eight patents in Austria, as well as many foreign patents. The magnetic electric ignition engine, for which he was granted a patent in 1864, brought him the biggest financial reward; it was introduced as the "Viennese Ignition" engine by the Austrian Navy and the pioneers of the Prussian and Russian armies. The engine was exhibited at the World Fair in Paris in 1867 together with the "Thermoscale" which was also constructed by Marcus; this was a magnetic/electric rotative engine for electric lighting and field telegraphy.
    Marcus's reputation is due mainly to his attempts to build a new internal combustion engine. By 1870 he had assembled a simple, direct-working internal combustion engine on a primitive chassis. This was, in fact, the first petrol-engined vehicle with electric ignition, and tradition records that when Marcus drove the vehicle in the streets of Vienna it made so much noise that the police asked him to remove it; this he did and did not persist with his experiments. Thus ended the trials of the world's first petrol-engined vehicle; it was running in 1875, ten years before Daimler and Benz were carrying out their early trials in Stuttgart.
    [br]
    Further Reading
    Austrian Dictionary of National Biography.
    IMcN

    Biographical history of technology > Marcus, Siegfried

  • 11 Siemens, Sir Charles William

    [br]
    b. 4 April 1823 Lenthe, Germany
    d. 19 November 1883 London, England
    [br]
    German/British metallurgist and inventory pioneer of the regenerative principle and open-hearth steelmaking.
    [br]
    Born Carl Wilhelm, he attended craft schools in Lübeck and Magdeburg, followed by an intensive course in natural science at Göttingen as a pupil of Weber. At the age of 19 Siemens travelled to England and sold an electroplating process developed by his brother Werner Siemens to Richard Elkington, who was already established in the plating business. From 1843 to 1844 he obtained practical experience in the Magdeburg works of Count Stolburg. He settled in England in 1844 and later assumed British nationality, but maintained close contact with his brother Werner, who in 1847 had co-founded the firm Siemens \& Halske in Berlin to manufacture telegraphic equipment. William began to develop his regenerative principle of waste-heat recovery and in 1856 his brother Frederick (1826–1904) took out a British patent for heat regeneration, by which hot waste gases were passed through a honeycomb of fire-bricks. When they became hot, the gases were switched to a second mass of fire-bricks and incoming air and fuel gas were led through the hot bricks. By alternating the two gas flows, high temperatures could be reached and considerable fuel economies achieved. By 1861 the two brothers had incorporated producer gas fuel, made by gasifying low-grade coal.
    Heat regeneration was first applied in ironmaking by Cowper in 1857 for heating the air blast in blast furnaces. The first regenerative furnace was set up in Birmingham in 1860 for glassmaking. The first such furnace for making steel was developed in France by Pierre Martin and his father, Emile, in 1863. Siemens found British steelmakers reluctant to adopt the principle so in 1866 he rented a small works in Birmingham to develop his open-hearth steelmaking furnace, which he patented the following year. The process gradually made headway; as well as achieving high temperatures and saving fuel, it was slower than Bessemer's process, permitting greater control over the content of the steel. By 1900 the tonnage of open-hearth steel exceeded that produced by the Bessemer process.
    In 1872 Siemens played a major part in founding the Society of Telegraph Engineers (from which the Institution of Electrical Engineers evolved), serving as its first President. He became President for the second time in 1878. He built a cable works at Charlton, London, where the cable could be loaded directly into the holds of ships moored on the Thames. In 1873, together with William Froude, a British shipbuilder, he designed the Faraday, the first specialized vessel for Atlantic cable laying. The successful laying of a cable from Europe to the United States was completed in 1875, and a further five transatlantic cables were laid by the Faraday over the following decade.
    The Siemens factory in Charlton also supplied equipment for some of the earliest electric-lighting installations in London, including the British Museum in 1879 and the Savoy Theatre in 1882, the first theatre in Britain to be fully illuminated by electricity. The pioneer electric-tramway system of 1883 at Portrush, Northern Ireland, was an opportunity for the Siemens company to demonstrate its equipment.
    [br]
    Principal Honours and Distinctions
    Knighted 1883. FRS 1862. Institution of Civil Engineers Telford Medal 1853. President, Institution of Mechanical Engineers 1872. President, Society of Telegraph Engineers 1872 and 1878. President, British Association 1882.
    Bibliography
    27 May 1879, British patent no. 2,110 (electricarc furnace).
    1889, The Scientific Works of C.William Siemens, ed. E.F.Bamber, 3 vols, London.
    Further Reading
    W.Poles, 1888, Life of Sir William Siemens, London; repub. 1986 (compiled from material supplied by the family).
    S.von Weiher, 1972–3, "The Siemens brothers. Pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45:1–11 (a short, authoritative biography). S.von Weihr and H.Goetler, 1983, The Siemens Company. Its Historical Role in the
    Progress of Electrical Engineering 1847–1980, English edn, Berlin (a scholarly account with emphasis on technology).
    GW

    Biographical history of technology > Siemens, Sir Charles William

  • 12 Telecommunications

    [br]
    Reis, Philipp
    Thomson, Sir William

    Biographical history of technology > Telecommunications

См. также в других словарях:

  • Halske — Halske, Joh. Georg, Ingenieur, geb. 30. Juli 1814 zu Hamburg, gründete 1844 in Berlin mit Bötticher eine mechan. Werkstatt (Bötticher & Halske) zum Bau chem. Apparate, 1847 mit Werner Siemens die Telegraphenbauanstalt Siemens & Halske (s.d.), aus …   Kleines Konversations-Lexikon

  • Halske — Halske, Johann Georg, Mitbegründer der Firma Siemens u. H., geb. 30. Juli 1814 in Hamburg, gest. 11. März 1890 in Berlin, erlernte in Berlin das Gewerbe eines Mechanikers, war bei Repsold in Hamburg Werkführer, gründete 1844 in Berlin eine… …   Meyers Großes Konversations-Lexikon

  • Halske — Johann Georg Halske (* 30. Juli 1814 in Hamburg; † 18. März 1890 in Berlin) war ein deutscher Unternehmer. Leben Johann Georg Halske Halske war Sohn des Zuckermaklers und ehrenamtlichen Stadtrats …   Deutsch Wikipedia

  • Halske — Hạlske,   Johann Georg, Elektrotechniker, * Hamburg 30. 7. 1814, ✝ Berlin 18. 3. 1890; gründete 1847 mit W. Siemens die »Telegraphenbauanstalt von Siemens und Halske«, Berlin. Halske leitete v. a. die Werkstatt, wo er die Grundsätze der… …   Universal-Lexikon

  • Johann Georg Halske — (* 30. Juli 1814 in Hamburg; † 18. März 1890 in Berlin) war ein deutscher Unternehmer. Johann Georg Halske …   Deutsch Wikipedia

  • Siemens & Halske AG — Информация о компании Siemens AG, начиная с 1966 года, содержится в соответствующей статье. Siemens Halske Год основания 1847 год, Упразднена …   Википедия

  • Siemens & Halske — Информация о компании Siemens AG, начиная с 1966 года, содержится в соответствующей статье. Siemens Halske Год основания 1847 год …   Википедия

  • Siemens \x26 Halske AG — Siemens Halske AG Информация о компании Siemens AG, начиная с 1966 года содержится в соответствующей статье. Siemens Halske Причина завершения деятельности: слияние c Siemens Schuckertwerke AG Дата завершения деятельности: 1966 год Преемник:… …   Википедия

  • Siemens & Halske — Siemens AG Unternehmensform Aktiengesellschaft ISIN …   Deutsch Wikipedia

  • Siemens & Halske AG — Siemens AG Unternehmensform Aktiengesellschaft ISIN …   Deutsch Wikipedia

  • Telegraphen-Bauanstalt von Siemens & Halske — Siemens AG Unternehmensform Aktiengesellschaft ISIN …   Deutsch Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»