Перевод: с английского на все языки

со всех языков на английский

he+was+educated+in+england

  • 41 Froude, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1810 Dartington, Devon, England
    d. 4 May 1879 Simonstown, South Africa
    [br]
    English naval architect; pioneer of experimental ship-model research.
    [br]
    Froude was educated at a preparatory school at Buckfastleigh, and then at Westminster School, London, before entering Oriel College, Oxford, to read mathematics and classics. Between 1836 and 1838 he served as a pupil civil engineer, and then he joined the staff of Isambard Kingdom Brunel on various railway engineering projects in southern England, including the South Devon Atmospheric Railway. He retired from professional work in 1846 and lived with his invalid father at Dartington Parsonage. The next twenty years, while apparently unproductive, were important to Froude as he concentrated his mind on difficult mathematical and scientific problems. Froude married in 1839 and had five children, one of whom, Robert Edmund Froude (1846–1924), was to succeed him in later years in his research work for the Admiralty. Following the death of his father, Froude moved to Paignton, and there commenced his studies on the resistance of solid bodies moving through fluids. Initially these were with hulls towed through a house roof storage tank by wires taken over a pulley and attached to falling weights, but the work became more sophisticated and was conducted on ponds and the open water of a creek near Dartmouth. Froude published work on the rolling of ships in the second volume of the Transactions of the then new Institution of Naval Architects and through this became acquainted with Sir Edward Reed. This led in 1870 to the Admiralty's offer of £2,000 towards the cost of an experimental tank for ship models at Torquay. The tank was completed in 1872 and tests were carried out on the model of HMS Greyhound following full-scale towing trials which had commenced on the actual ship the previous year. From this Froude enunciated his Law of Comparisons, which defines the rules concerning the relationship of the power required to move geometrically similar floating bodies across fluids. It enabled naval architects to predict, from a study of a much less expensive and smaller model, the resistance to motion and the power required to move a full-size ship. The work in the tank led Froude to design a model-cutting machine, dynamometers and machinery for the accurate ruling of graph paper. Froude's work, and later that of his son, was prodigious and covered many fields of ship design, including powering, propulsion, rolling, steering and stability. In only six years he had stamped his academic authority on the new science of hydrodynamics, served on many national committees and corresponded with fellow researchers throughout the world. His health suffered and he sailed for South Africa to recuperate, but he contracted dysentery and died at Simonstown. He will be remembered for all time as one of the greatest "fathers" of naval architecture.
    [br]
    Principal Honours and Distinctions
    FRS. Honorary LLD Glasgow University.
    Bibliography
    1955, The Papers of William Froude, London: Institution of Naval Architects (the Institution also published a memoir by Sir Westcott Abell and an evaluation of his work by Dr R.W.L. Gawn of the Royal Corps of Naval Constructors; this volume reprints all Froude's papers from the Institution of Naval Architects and other sources as diverse as the British Association, the Royal Society of Edinburgh and the Institution of Civil Engineers.
    Further Reading
    A.T.Crichton, 1990, "William and Robert Edmund Froude and the evolution of the ship model experimental tank", Transactions of the Newcomen Society 61:33–49.
    FMW

    Biographical history of technology > Froude, William

  • 42 Guest, James John

    [br]
    b. 24 July 1866 Handsworth, Birmingham, England
    d. 11 June 1956 Virginia Water, Surrey, England
    [br]
    English mechanical engineer, engineering teacher and researcher.
    [br]
    James John Guest was educated at Marlborough in 1880–4 and at Trinity College, Cambridge, graduating as fifth wrangler in 1888. He received practical training in several workshops and spent two years in postgraduate work at the Engineering Department of Cambridge University. After working as a draughtsman in the machine-tool, hydraulic and crane departments of Tangyes Ltd at Birmingham, he was appointed in 1896 Assistant Professor of Engineering at McGill University in Canada. After a short time he moved to the Polytechnic Institute at Worcester, Massachusetts, where he was for three years Professor of Mechanical Engineering and Head of the Engineering Department. In 1899 he returned to Britain and set up as a consulting engineer in Birmingham, being a partner in James J.Guest \& Co. For the next fifteen years he combined this work with research on grinding phenomena. He also developed a theory of grinding which he first published in a paper at the British Association for the Advancement of Science in 1914 and elaborated in a paper to the Institution of Mechanical Engineers and in his book Grinding Machinery (1915). During the First World War, in 1916–17, he was in charge of inspection in the Staffordshire and Shropshire Area, Ministry of Munitions. In 1917 he returned to teaching as Reader in Graphics and Structural Engineering at University College London. His final appointment was about 1923 as Professor of Mechanical and Electrical Engineering, Artillery College, Woolwich, which later became the Military College of Science.
    He carried out research on the strength of materials and contributed many articles on the subject to the technical press. He originated Guest's Law for a criterion of failure of materials under combined stresses, first published in 1900. He was a Member of the Institution of Mechanical Engineers in 1900–6 and from 1919 and contributed to their proceedings in many discussions and two major papers.
    [br]
    Bibliography
    Of many publications by Guest, the most important are: 1900, "Ductile materials under combined stress", Proceedings of the Physical Society 17:202.
    1915, Grinding Machinery, London.
    1915, "Theory of grinding, with reference to the selection of speeds in plain and internal work", Proceedings of the Institution of Mechanical Engineers 89:543.
    1917. "Torsional hysteresis of mild steel", Proceedings of the Royal Society A93:313.
    1918. with F.C.Lea, "Curved beams", Proceedings of the Royal Society A95:1. 1930, "Effects of rapidly acting stress", Proceedings of the Institution of Mechanical
    Engineers 119:1,273.
    RTS

    Biographical history of technology > Guest, James John

  • 43 Mansfield, Charles Blachford

    SUBJECT AREA: Chemical technology
    [br]
    b. 8 May 1819 Rowner, Hampshire, England
    d. 26 February 1855 London, England
    [br]
    English chemist, founder of coal-tar chemistry.
    [br]
    Mansfield, the son of a country clergyman, was educated privately at first, then at Winchester College and at Cambridge; ill health, which dogged his early years, delayed his graduation until 1846. He was first inclined to medicine, but after settling in London, chemistry seemed to him to offer the true basis of the grand scheme of knowledge he aimed to establish. After completing the chemistry course at the Royal College of Chemistry in London, he followed the suggestion of its first director, A.W.von Hofmann, of investigating the chemistry of coal tar. This work led to a result of great importance for industry by demonstrating the valuable substances that could be extracted from coal tar. Mansfield obtained pure benzene, and toluene by a process for which he was granted a patent in 1848 and published in the Chemical Society's journal the same year The following year he published a pamphlet on the applications of benzene.
    Blessed with a private income, Mansfield had no need to support himself by following a regular profession. He was therefore able to spread his brilliant talents in several directions instead of confining them to a single interest. During the period of unrest in 1848, he engaged in social work with a particular concern to improve sanitation. In 1850, a description of a balloon machine in Paris led him to study aeronautics for a while, which bore fruit in an influential book, Aerial Navigation (London, 1851). He then visited Paraguay, making a characteristically thorough and illuminating study of conditions there. Upon his return to London in 1853, Mansfield resumed his chemical studies, especially on salts. He published his results in 1855 as Theory of Salts, his most important contribution to chemical theory.
    Mansfield was in the process of preparing specimens of benzene for the Paris Exhibition of 1855 when a naphtha still overflowed and caught fire. In carrying it to a place of safety, Mansfield sustained injuries which unfortunately proved fatal.
    [br]
    Bibliography
    1851, Aerial Navigation, London. 1855, Theory of Salts, London.
    Further Reading
    E.R.Ward, 1969, "Charles Blachford Mansfield, 1819–1855, coal tar chemist and social reformer", Chemistry and Industry 66:1,530–7 (offers a good and well-documented account of his life and achievements).
    LRD

    Biographical history of technology > Mansfield, Charles Blachford

  • 44 Tull, Jethro

    [br]
    b. 30 March 1674 Basildon, Essex, England
    d. February 1741 Hungerford, Berkshire, England
    [br]
    English farmer who developed and publicized a system of row crop husbandry.
    [br]
    Jethro Tull was born into an English landowning family. He was educated at St John's College, Oxford, but left without a degree at the age of 17. He then spent three years on the Grand Tour before returning to study law at Gray's Inn in London. After six years he was admitted to the Bar, but he never practised, moving instead to one of his father's farms near Oxford.
    Because of labour problems he chose to plant sainfoin (Onobrychis viciaefolia) as a forage crop because it required less frequent reseeding than grass. The seed itself was expensive and of poor fertility, so he began to experiment. He discovered that the depth of sowing as well as the planting rate influenced germination and the rate of growth, he found the optimum rate could be gained with one plant per ft2, a much lower density than could be achieved by broadcasting. His experiments created labour problems. He is traditionally and incorrectly credited with the invention of the seed drill, but he did develop and use a drill on his own farm to achieve the planting rate and depth he needed without having to rely on his workforce.
    In 1711 Tull became ill and went to France, having first sold his original farm and moved to "Properous", near Hungerford. In France he developed a husbandry technique that used a horse hoe to stir the soil between the rows of plants achieved with his drill. He incorrectly believed that his increased yields were the result of nutrients released from the soil by this method, whereas they were more likely to have been the result of a reduction in weed competition as a result of the repeated cultivation.
    [br]
    Bibliography
    1731, The New Horse-Hoeing Husbandry, or an Essay on the Principals of Tillage and Vegetation (sets out the ideas and innovations for which he was already well known).
    Further Reading
    T.H.Marshall, 1929, "Jethro Tull and the new husbandry of the 18th century", Economic History Review 11:41–60 (the relevance and significance of Tull's work was already under discussion before his death; Marshall discusses the controversy).
    G.E.Fussell, 1973, Jethro Tull. His Influence on Mechanised Agriculture (presents a pro- Tull account).
    AP

    Biographical history of technology > Tull, Jethro

  • 45 Whinfield, John Rex

    [br]
    b. 16 February 1901 Sutton, Surrey, England
    d. 6 July 1955 Dorking, Surrey, England
    [br]
    English inventor ofTerylene.
    [br]
    Whinfield was educated at Merchant Taylors' School and Caius College, Cambridge, where he studied chemistry. Before embarking on his career as a research chemist, he worked as an un-paid assistant to the chemist C.F. Cross, who had taken part in the discovery of rayon. Whinfield then joined the Calico Printers' Association. There his interest was aroused by the discovery of nylon by W.H. Carothers to seek other polymers which could be produced in fibre form, usable by the textile industries. With his colleague J.T. Dickson, he discovered in 1941 that a polymerized condensate of terephthalic acid and ethylene glycol, polyethylene terephthgal-late, could be drawn into strong fibres. Whinfield and Dickson filed a patent application in the same year, but due to war conditions it was not published until 1946. The Ministry of Supply considered that the new material might have military applications and undertook further research and development. Its industrial and textile possibilities were evaluated by Imperial Chemical Industries (ICI) in 1943 and "Terylene", as it came to be called, was soon recognized as being as important as nylon.
    In 1946, Dupont acquired rights to work the Calico Printers' Association patent in the USA and began large-scale manufacture in 1954, marketing the product under the name "Dacron". Meanwhile ICI purchased world rights except for the USA and reached the large-scale manufacture stage in 1955. A new branch of the textile industry has grown up from Whinfield's discovery: he lived to see most people in the western world wearing something made of Terylene. It was one of the major inventions of the twentieth century, yet Whinfield, perhaps because he published little, received scant recognition, apart from the CBE in 1954.
    [br]
    Principal Honours and Distinctions
    CBE 1954.
    Further Reading
    Obituary, 1966, The Times (7 July).
    Obituary, 1967, Chemistry in Britain 3:26.
    J.Jewkes, D.Sawers and R.Stillerman, 1969, The Sources of Invention, 2nd edn, London: Macmillan.
    LRD

    Biographical history of technology > Whinfield, John Rex

  • 46 Blickensderfer, George Canfield

    SUBJECT AREA: Paper and printing
    [br]
    b. 1850 Erie, Pennsylvania, USA
    d. 14 August 1917
    [br]
    American maker of the first successful portable typewriter and the first electric typewriter.
    [br]
    Blickensderfer was educated at the academy in Erie and at Allegheny College. He seems to have followed a business career, and in the course of his travels he became aware of the need for a simple, durable, but portable typewriter. He was in business in Stanford, Connecticut, where he developed but did not patent a number of typewriters, including a machine in which a type wheel could print short words such as "an" and "as" by depressing a single key. In 1889 he set up the Blickensderfer Manufacturing Company to perfect and mass-produce the machine he had in mind. He needed two years to test and perfect the model, and in 1891 work started on the factory that was to manufacture it. On the verge of mass-production in 1893, he produced a few machines for the Chicago World Exhibition in that year. Their success was sensational, and the "Blickensderfer" received the highest accolades from the judges, who hailed it as "extraordinary progress in the art of typewriting". The "Blickensderfer" appeared with successive modifications in the following years: they were durable, lightweight machines, with interchangeable type wheels, and were the first widely-used readily-portable typewriters.
    Around 1902 Blickensderfer produced the first electric typewriter. A few electric machines were produced and some were sent to Europe, including England, but they are now very rare. One Blick Electric has been preserved in the Beeching Typewriter Collection in Bournemouth, England.
    [br]
    Further Reading
    M.H.Adler, 1973, The Writing Machine, London: Allen \& Unwin.
    Historische Burowelt 10 (July 1985):11 (provides brief biographical details in German with an English summary).
    LRD

    Biographical history of technology > Blickensderfer, George Canfield

  • 47 Gascoigne, William

    [br]
    b. 1612 (?) near Leeds, Yorkshire, England
    d. 2 July 1644 Marston Moor, Yorkshire, England
    [br]
    English astronomer and inventor of the micrometer.
    [br]
    As the son of a country gentleman, William Gascoigne would have had opportunities to receive reasonable schooling, but there is no record of how or where he was educated. However, by the late 1630s he had acquired a considerable knowledge of astronomy and was in correspondence with other scholars. About 1638 he invented an instrument to measure small angles in a telescope, consisting of two parallel wires in the eye piece moved by a calibrated screw. His invention remained unknown until it was reinvented thirty years later. He is said to have left the manuscript of a treatise on optics, but this did not survive. He was killed fighting for the royalist side at the battle of Marston Moor.
    [br]
    Further Reading
    C.C.Gillespie (ed.), 1970–6, Dictionary of Scientific Biography, New York, s.v.Gascoigne; Towneley.
    A.F.Burstall, 1963, A History of Mechanical Engineering, London, p. 159 (includes a drawing of Gascoigne's micrometer).
    RTS

    Biographical history of technology > Gascoigne, William

  • 48 Plimsoll, Samuel

    SUBJECT AREA: Ports and shipping
    [br]
    b. 10 February 1824 Bristol, England
    d. 8 June 1898 Folkestone, Kent, England
    [br]
    English inventor of the Plimsoll Line on ships.
    [br]
    Plimsoll was educated privately and at Dr Eadon's school in Sheffield. On leaving school he became Clerk to a solicitor and then to a brewery, where he rose to become Manager. In 1851 he acted as an honorary secretary to the Great Exhibition. Two years later he went to London and set up as a coal merchant: he published two pamphlets on the coal trade in 1862. After several unsuccessful attempts, he managed to be elected as Member of Parliament for Derby in 1868, in the Radical interest. He concerned himself with mercantile shipping and in 1870 he began his campaign to improve safety at sea, particularly by the imposition of a load-line on vessels to prevent dangerous overloading. In 1871 he introduced a resolution into the House of Commons and also a bill, the Government also having proposed one on the same subject, but strong opposition from the powerful shipping-business interest forced a withdrawal. Plimsoll published a pamphlet, Our Seamen, bitterly attacking the shipowners. This aroused public feeling and controversy, and under pressure the Government appointed a Royal Commission in 1873, under the chairmanship of the Duke of Somerset, to examine the matter. Their report did not support Plimsoll's proposal for a load-line, but that did not prevent him from bringing forward his own bill, which was narrowly defeated by only three votes. The Government then introduced its own merchant shipping bill in 1875, but it was so mauled by the Opposition that the Prime Minister, Disraeli, threatened to withdraw it. That provoked a violent protest from Plimsoll in the House, including a description of the shipowners which earned him temporary suspension from the House. He was allowed to return after an apology, but the incident served to heighten public feeling for the seamen. The Government were obliged to hustle through the Merchant Shipping Act 1876, which ensured, among other things, that ships should be marked with what has become universally known as the Plimsoll Line; Plimsoll himself became known as "The Seamen's Friend".
    In 1880 he relinquished his parliamentary seat at Derby, but he continued his campaign to improve conditions for seamen and to ensure that the measures in the Act were properly carried out.
    LRD

    Biographical history of technology > Plimsoll, Samuel

  • 49 Woolrich, John Stephen

    SUBJECT AREA: Electricity, Metallurgy
    [br]
    b. 1821 Birmingham, England
    d. 27 February 1850 King's Norton, England
    [br]
    English chemist who found in the electroplating process one of the earliest commercial applications of the magneto-electric generator.
    [br]
    The son of a Birmingham chemist, Woolrich was educated at King Edward's Grammar School, Birmingham, and later became a lecturer in chemistry. As an alternative to primary cells for the supply of current for electroplating, he devised a magneto generator.
    His original machine had a single compound permanent magnet; the distance between the revolving armature and the magnet could be varied to adjust the rate of deposition of metal. A more ambitious machine designed by Woolrich was constructed by Thomas Prime \& Sons in 1844 and for many years was used at their Birmingham electroplating works. Faraday, on a visit to see the machine at work, is said to have expressed delight at his discovery of electromagnetic induction being put to practical use so soon. Similar machines were in use by Elkington's, Fern and others in Birmingham and Sheffield. One of Woolrich's machines is preserved in the Birmingham Science Museum.
    [br]
    Bibliography
    1 August 1842, British patent no. 9,431 (the electroplating process; describes the magnetic apparatus and the electroplating chemicals).
    Further Reading
    1843, Mechanics Magazine 38:145–9 (fully describes the Woolrich machine). 1889, The Electrician 23:548 (a short account of a surviving Woolrich machine constructed in 1844 and its subsequent history).
    S.Timmins, 1866, Birmingham and the Midland Hardware District, London, pp. 488– 94.
    GW

    Biographical history of technology > Woolrich, John Stephen

  • 50 Lesseps, Ferdinand de

    SUBJECT AREA: Canals
    [br]
    b. 19 November 1805 Versailles, France
    d. 7 December 1894 La Chesnaye, near Paris, France
    [br]
    French diplomat and canal entrepreneur.
    [br]
    Ferdinand de Lesseps was born into a family in the diplomatic service and it was intended that his should be his career also. He was educated at the Lycée Napoléon in Paris. In 1825, aged 20, he was appointed an attaché to the French consulate in Lisbon. In 1828 he went to the Consulate-General in Tunis and in 1831 was posted from there to Egypt, becoming French Consul in Cairo two years later. For his work there during the plague in 1836 he was awarded the Croix de Chevalier in the Légion d'honneur. During this time he became very friendly with Said Mohammed and the friendship was maintained over the years, although there were no expectations then that Said would occupy any great position of authority.
    De Lesseps then served in other countries. In 1841 he had thought about a canal from the Mediterranean to the Red Sea, and he brooded over the idea until 1854. In October of that year, having retired from the diplomatic service, he returned to Egypt privately. His friend Said became Viceroy and he readily agreed to the proposal to cut the canal. At first there was great international opposition to the idea, and in 1855 de Lesseps travelled to England to try to raise capital. Work finally started in 1859, but there were further delays following the death of Said Pasha in 1863. The work was completed in 1869 and the canal was formally opened by the Empress Eugenic on 20 November 1869. De Lesseps was fêted in France and awarded the Grand Croix de la Légion d'honneur.
    He subsequently promoted the project of the Corinth Canal, but his great ambition in his later years was to construct a canal across the Isthmus of Panama. This idea had been conceived by Spanish adventurers in 1514, but everyone felt the problems and cost would be too great. De Lesseps, riding high in popularity and with his charismatic character, convinced the public of the scheme's feasibility and was able to raise vast sums for the enterprise. He proposed a sea-level canal, which required the excavation of a 350 ft (107 m) cut through terrain; this eventually proved impossible, but work nevertheless started in 1881.
    In 1882 de Lesseps became first President d'-Honneur of the Syndicat des Entrepreneurs de Travaux Publics de France and was elected to the Chair of the French Academy in 1884. By 1891 the Panama Canal was in a disastrous financial crisis: a new company was formed, and because of the vast sums expended a financial investigation was made. The report led to de Lesseps, his son and several high-ranking government ministers and officials being charged with bribery and corruption, but de Lesseps was a very sick man and never appeared at the trial. He was never convicted, although others were, and he died soon after, at the age of 89, at his home.
    [br]
    Principal Honours and Distinctions
    Croix de Chevalier de la Légion d'honneur 1836; Grand Croix 1869.
    Further Reading
    John S.Pudney, 1968, Suez. De Lesseps' Canal, London: Dent.
    John Marlowe, 1964, The Making of the Suez Canal, London: Cresset.
    JHB

    Biographical history of technology > Lesseps, Ferdinand de

  • 51 Watt, James

    [br]
    b. 19 January 1735 Greenock, Renfrewshire, Scotland
    d. 19 August 1819 Handsworth Heath, Birmingham, England
    [br]
    Scottish engineer and inventor of the separate condenser for the steam engine.
    [br]
    The sixth child of James Watt, merchant and general contractor, and Agnes Muirhead, Watt was a weak and sickly child; he was one of only two to survive childhood out of a total of eight, yet, like his father, he was to live to an age of over 80. He was educated at local schools, including Greenock Grammar School where he was an uninspired pupil. At the age of 17 he was sent to live with relatives in Glasgow and then in 1755 to London to become an apprentice to a mathematical instrument maker, John Morgan of Finch Lane, Cornhill. Less than a year later he returned to Greenock and then to Glasgow, where he was appointed mathematical instrument maker to the University and was permitted in 1757 to set up a workshop within the University grounds. In this position he came to know many of the University professors and staff, and it was thus that he became involved in work on the steam engine when in 1764 he was asked to put in working order a defective Newcomen engine model. It did not take Watt long to perceive that the great inefficiency of the Newcomen engine was due to the repeated heating and cooling of the cylinder. His idea was to drive the steam out of the cylinder and to condense it in a separate vessel. The story is told of Watt's flash of inspiration as he was walking across Glasgow Green one Sunday afternoon; the idea formed perfectly in his mind and he became anxious to get back to his workshop to construct the necessary apparatus, but this was the Sabbath and work had to wait until the morrow, so Watt forced himself to wait until the Monday morning.
    Watt designed a condensing engine and was lent money for its development by Joseph Black, the Glasgow University professor who had established the concept of latent heat. In 1768 Watt went into partnership with John Roebuck, who required the steam engine for the drainage of a coal-mine that he was opening up at Bo'ness, West Lothian. In 1769, Watt took out his patent for "A New Invented Method of Lessening the Consumption of Steam and Fuel in Fire Engines". When Roebuck went bankrupt in 1772, Matthew Boulton, proprietor of the Soho Engineering Works near Birmingham, bought Roebuck's share in Watt's patent. Watt had met Boulton four years earlier at the Soho works, where power was obtained at that time by means of a water-wheel and a steam engine to pump the water back up again above the wheel. Watt moved to Birmingham in 1774, and after the patent had been extended by Parliament in 1775 he and Boulton embarked on a highly profitable partnership. While Boulton endeavoured to keep the business supplied with capital, Watt continued to refine his engine, making several improvements over the years; he was also involved frequently in legal proceedings over infringements of his patent.
    In 1794 Watt and Boulton founded the new company of Boulton \& Watt, with a view to their retirement; Watt's son James and Boulton's son Matthew assumed management of the company. Watt retired in 1800, but continued to spend much of his time in the workshop he had set up in the garret of his Heathfield home; principal amongst his work after retirement was the invention of a pantograph sculpturing machine.
    James Watt was hard-working, ingenious and essentially practical, but it is doubtful that he would have succeeded as he did without the business sense of his partner, Matthew Boulton. Watt coined the term "horsepower" for quantifying the output of engines, and the SI unit of power, the watt, is named in his honour.
    [br]
    Principal Honours and Distinctions
    FRS 1785. Honorary LLD, University of Glasgow 1806. Foreign Associate, Académie des Sciences, Paris 1814.
    Further Reading
    H.W.Dickinson and R Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    L.T.C.Rolt, 1962, James Watt, London: B.T. Batsford.
    R.Wailes, 1963, James Watt, Instrument Maker (The Great Masters: Engineering Heritage, Vol. 1), London: Institution of Mechanical Engineers.
    IMcN

    Biographical history of technology > Watt, James

  • 52 Ewart, Peter

    SUBJECT AREA: Textiles
    [br]
    b. 14 May 1767 Traquair, near Peebles, Scotland
    d. September 1842 London, England
    [br]
    Scottish pioneer in the mechanization of the textile industry.
    [br]
    Peter Ewart, the youngest of six sons, was born at Traquair manse, where his father was a clergyman in the Church of Scotland. He was educated at the Free School, Dumfries, and in 1782 spent a year at Edinburgh University. He followed this with an apprenticeship under John Rennie at Musselburgh before moving south in 1785 to help Rennie erect the Albion corn mill in London. This brought him into contact with Boulton \& Watt, and in 1788 he went to Birmingham to erect a waterwheel and other machinery in the Soho Manufactory. In 1789 he was sent to Manchester to install a steam engine for Peter Drinkwater and thus his long connection with the city began. In 1790 Ewart took up residence in Manchester as Boulton \& Watt's representative. Amongst other engines, he installed one for Samuel Oldknow at Stockport. In 1792 he became a partner with Oldknow in his cotton-spinning business, but because of financial difficulties he moved back to Birmingham in 1795 to help erect the machines in the new Soho Foundry. He was soon back in Manchester in partnership with Samuel Greg at Quarry Bank Mill, Styal, where he was responsible for developing the water power, installing a steam engine, and being concerned with the spinning machinery and, later, gas lighting at Greg's other mills.
    In 1798, Ewart devised an automatic expansion-gear for steam engines, but steam pressures at the time were too low for such a device to be effective. His grasp of the theory of steam power is shown by his paper to the Manchester Literary and Philosophical Society in 1808, On the Measure of Moving Force. In 1813 he patented a power loom to be worked by the pressure of steam or compressed air. In 1824 Charles Babbage consulted him about automatic looms. His interest in textiles continued until at least 1833, when he obtained a patent for a self-acting spinning mule, which was, however, outclassed by the more successful one invented by Richard Roberts. Ewart gave much help and advice to others. The development of the machine tools at Boulton \& Watt's Soho Foundry has been mentioned already. He also helped James Watt with his machine for copying sculptures. While he continued to run his own textile mill, Ewart was also in partnership with Charles Macintosh, the pioneer of rubber-coated cloth. He was involved with William Fairbairn concerning steam engines for the boats that Fairbairn was building in Manchester, and it was through Ewart that Eaton Hodgkinson was introduced to Fairbairn and so made the tests and calculations for the tubes for the Britannia Railway Bridge across the Menai Straits. Ewart was involved with the launching of the Liverpool \& Manchester Railway as he was a director of the Manchester Chamber of Commerce at the time.
    In 1835 he uprooted himself from Manchester and became the first Chief Engineer for the Royal Navy, assuming responsibility for the steamboats, which by 1837 numbered 227 in service. He set up repair facilities and planned workshops for overhauling engines at Woolwich Dockyard, the first establishment of its type. It was here that he was killed in an accident when a chain broke while he was supervising the lifting of a large boiler. Engineering was Ewart's life, and it is possible to give only a brief account of his varied interests and connections here.
    [br]
    Further Reading
    Obituary, 1843, "Institution of Civil Engineers", Annual General Meeting, January. Obituary, 1843, Manchester Literary and Philosophical Society Memoirs (NS) 7. R.L.Hills, 1987–8, "Peter Ewart, 1767–1843", Manchester Literary and Philosophical
    Society Memoirs 127.
    M.B.Rose, 1986, The Gregs of Quarry Bank Mill The Rise and Decline of a Family Firm, 1750–1914, Cambridge (covers E wart's involvement with Samuel Greg).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester; R.L.Hills, 1989, Power
    from Steam, Cambridge (both look at Ewart's involvement with textiles and steam engines).
    RLH

    Biographical history of technology > Ewart, Peter

  • 53 Gresley, Sir Herbert Nigel

    [br]
    b. 19 June 1876 Edinburgh, Scotland
    d. 5 April 1941 Hertford, England
    [br]
    English mechanical engineer, designer of the A4-class 4–6–2 locomotive holding the world speed record for steam traction.
    [br]
    Gresley was the son of the Rector of Netherseale, Derbyshire; he was educated at Marlborough and by the age of 13 was skilled at making sketches of locomotives. In 1893 he became a pupil of F.W. Webb at Crewe works, London \& North Western Railway, and in 1898 he moved to Horwich works, Lancashire \& Yorkshire Railway, to gain drawing-office experience under J.A.F.Aspinall, subsequently becoming Foreman of the locomotive running sheds at Blackpool. In 1900 he transferred to the carriage and wagon department, and in 1904 he had risen to become its Assistant Superintendent. In 1905 he moved to the Great Northern Railway, becoming Superintendent of its carriage and wagon department at Doncaster under H.A. Ivatt. In 1906 he designed and produced a bogie luggage van with steel underframe, teak body, elliptical roof, bowed ends and buckeye couplings: this became the prototype for East Coast main-line coaches built over the next thirty-five years. In 1911 Gresley succeeded Ivatt as Locomotive, Carriage \& Wagon Superintendent. His first locomotive was a mixed-traffic 2–6–0, his next a 2–8–0 for freight. From 1915 he worked on the design of a 4–6–2 locomotive for express passenger traffic: as with Ivatt's 4 4 2s, the trailing axle would allow the wide firebox needed for Yorkshire coal. He also devised a means by which two sets of valve gear could operate the valves on a three-cylinder locomotive and applied it for the first time on a 2–8–0 built in 1918. The system was complex, but a later simplified form was used on all subsequent Gresley three-cylinder locomotives, including his first 4–6–2 which appeared in 1922. In 1921, Gresley introduced the first British restaurant car with electric cooking facilities.
    With the grouping of 1923, the Great Northern Railway was absorbed into the London \& North Eastern Railway and Gresley was appointed Chief Mechanical Engineer. More 4–6– 2s were built, the first British class of such wheel arrangement. Modifications to their valve gear, along lines developed by G.J. Churchward, reduced their coal consumption sufficiently to enable them to run non-stop between London and Edinburgh. So that enginemen might change over en route, some of the locomotives were equipped with corridor tenders from 1928. The design was steadily improved in detail, and by comparison an experimental 4–6–4 with a watertube boiler that Gresley produced in 1929 showed no overall benefit. A successful high-powered 2–8–2 was built in 1934, following the introduction of third-class sleeping cars, to haul 500-ton passenger trains between Edinburgh and Aberdeen.
    In 1932 the need to meet increasing road competition had resulted in the end of a long-standing agreement between East Coast and West Coast railways, that train journeys between London and Edinburgh by either route should be scheduled to take 8 1/4 hours. Seeking to accelerate train services, Gresley studied high-speed, diesel-electric railcars in Germany and petrol-electric railcars in France. He considered them for the London \& North Eastern Railway, but a test run by a train hauled by one of his 4–6–2s in 1934, which reached 108 mph (174 km/h), suggested that a steam train could better the railcar proposals while its accommodation would be more comfortable. To celebrate the Silver Jubilee of King George V, a high-speed, streamlined train between London and Newcastle upon Tyne was proposed, the first such train in Britain. An improved 4–6–2, the A4 class, was designed with modifications to ensure free running and an ample reserve of power up hill. Its streamlined outline included a wedge-shaped front which reduced wind resistance and helped to lift the exhaust dear of the cab windows at speed. The first locomotive of the class, named Silver Link, ran at an average speed of 100 mph (161 km/h) for 43 miles (69 km), with a maximum speed of 112 1/2 mph (181 km/h), on a seven-coach test train on 27 September 1935: the locomotive went into service hauling the Silver Jubilee express single-handed (since others of the class had still to be completed) for the first three weeks, a round trip of 536 miles (863 km) daily, much of it at 90 mph (145 km/h), without any mechanical troubles at all. Coaches for the Silver Jubilee had teak-framed, steel-panelled bodies on all-steel, welded underframes; windows were double glazed; and there was a pressure ventilation/heating system. Comparable trains were introduced between London Kings Cross and Edinburgh in 1937 and to Leeds in 1938.
    Gresley did not hesitate to incorporate outstanding features from elsewhere into his locomotive designs and was well aware of the work of André Chapelon in France. Four A4s built in 1938 were equipped with Kylchap twin blast-pipes and double chimneys to improve performance still further. The first of these to be completed, no. 4468, Mallard, on 3 July 1938 ran a test train at over 120 mph (193 km/h) for 2 miles (3.2 km) and momentarily achieved 126 mph (203 km/h), the world speed record for steam traction. J.Duddington was the driver and T.Bray the fireman. The use of high-speed trains came to an end with the Second World War. The A4s were then demonstrated to be powerful as well as fast: one was noted hauling a 730-ton, 22-coach train at an average speed exceeding 75 mph (120 km/h) over 30 miles (48 km). The war also halted electrification of the Manchester-Sheffield line, on the 1,500 volt DC overhead system; however, anticipating eventual resumption, Gresley had a prototype main-line Bo-Bo electric locomotive built in 1941. Sadly, Gresley died from a heart attack while still in office.
    [br]
    Principal Honours and Distinctions
    Knighted 1936. President, Institution of Locomotive Engineers 1927 and 1934. President, Institution of Mechanical Engineers 1936.
    Further Reading
    F.A.S.Brown, 1961, Nigel Gresley, Locomotive Engineer, Ian Allan (full-length biography).
    John Bellwood and David Jenkinson, Gresley and Stanier. A Centenary Tribute (a good comparative account).
    PJGR

    Biographical history of technology > Gresley, Sir Herbert Nigel

  • 54 Pasley, General Sir Charles William

    SUBJECT AREA: Civil engineering
    [br]
    b. 8 September 1780 Eskdalemuir, Dumfriesshire, Scotland
    d. 19 April 1861 London, England
    [br]
    Scottish Colonel-Commandant, Royal Engineers.
    [br]
    At first he was educated by Andrew Little of Lan-gholm. At the age of 14 he was sent to school at Selkirk, where he stayed for two years until joining the Royal Military Academy at Woolwich in August 1796. He was commissioned as Second Lieutenant in the Royal Artillery and transferred to the Royal Engineers on 1 April 1798. He served at Minorca, Malta, Naples, Sicily, Calabria and in the siege of Copenhagen and in other campaigns. He was promoted First Captain in 1807, and was on the staff of Sir John Moore at the battle of Coruna. He was wounded at the siege of Flushing in 1809 and was invalided for a year, employing his time in learning German.
    In November 1810 he published his Essay on Military Policy and Institutions of the British Empire, which ran through four editions. In 1811 he was in command of a company of Royal Military Artificers at Plymouth and there he devised a method of education by which the NCOs and troops could teach themselves without "mathematical masters". His system was a great success and was adopted at Chatham and throughout the corps. In 1812 he was appointed Director of the School of Military Engineering at Chatham. He remained at Chatham until 1841, when he was appointed Inspector-General of Railways. During this period he organized improved systems of sapping, mining, telegraphing, pontooning and exploding gunpowder on land or under water, and prepared pamphlets and courses of instruction in these and other subjects. In May 1836 he started what is probably the most important work for which he is remembered. This, was a book on Limes, Calcareous Cements, Mortar, Stuccos and Concretes. The general adoption of Joseph Aspdin's Portland Cement was largely due to Pasley's recommendation of the material.
    He was married twice: first in 1814 at Chatham to Harriet Cooper; and then on 30 March 1819 at Rochester to Martha Matilda Roberts, with whom he had six children— she died in 1881.
    [br]
    Principal Honours and Distinctions
    KGB 1846. FRS 1816. Honorary DCL, Oxford University 1844.
    Bibliography
    1810, Essay on Military Policy and Institutions of the British Empire. Limes, Calcareous Cements, Mortar, Stuccos and Concretes.
    Further Reading
    Porter, History of the Corps of Royal Engineers. DNB. Proceedings of the Royal Society.
    IMcN

    Biographical history of technology > Pasley, General Sir Charles William

  • 55 Senefelder, Alois

    SUBJECT AREA: Paper and printing
    [br]
    b. 6 November 1771 Prague, Bohemia (now Czech Republic)
    d. 26 February 1834 Munich, Germany
    [br]
    German inventor of lithography.
    [br]
    Soon after his birth, Senefelder's family moved to Mannheim, where his father, an actor, had obtained a position in the state theatre. He was educated there, until he gained a scholarship to the university of Ingolstadt. The young Senefelder wanted to follow his father on to the stage, but the latter insisted that he study law. He nevertheless found time to write short pieces for the theatre. One of these, when he was 18 years old, was an encouraging success. When his father died in 1791, he gave up his studies and took to a new life as poet and actor. However, the wandering life of a repertory actor palled after two years and he settled for the more comfortable pursuit of playwriting. He had some of his work printed, which acquainted him with the art of printing, but he fell out with his bookseller. He therefore resolved to carry out his own printing, but he could not afford the equipment of a conventional letterpress printer. He began to explore other ways of printing and so set out on the path that was to lead to an entirely new method.
    He tried writing in reverse on a copper plate with some acid-resisting material and etching the plate, to leave a relief image that could then be inked and printed. He knew that oily substances would resist acid, but it required many experiments to arrive at a composition of wax, soap and charcoal dust dissolved in rainwater. The plates wore down with repeated polishing, so he substituted stone plates. He continued to etch them and managed to make good prints with them, but he went on to make the surprising discovery that etching was unnecessary. If the image to be printed was made with the oily composition and the stone moistened, he found that only the oily image received the ink while the moistened part rejected it. The printing surface was neither raised (as in letterpress printing) nor incised (as in intaglio printing): Senefelder had discovered the third method of printing.
    He arrived at a workable process over the years 1796 to 1799, and in 1800 he was granted an English patent. In the same year, lithography (or "writing on stone") was introduced into France and Senefelder himself took it to England, but it was some time before it became widespread; it was taken up by artists especially for high-quality printing of art works. Meanwhile, Senefelder improved his techniques, finding that other materials, even paper, could be used in place of stone. In fact, zinc plates were widely used from the 1820s, but the name "lithography" stuck. Although he won world renown and was honoured by most of the crowned heads of Europe, he never became rich because he dissipated his profits through restless experimenting.
    With the later application of the offset principle, initiated by Barclay, lithography has become the most widely used method of printing.
    [br]
    Bibliography
    1911, Alois Senefelder, Inventor of Lithography, trans. J.W.Muller, New York: Fuchs \& Line (Senefelder's autobiography).
    Further Reading
    W.Weber, 1981, Alois Senefelder, Erfinder der Lithographie, Frankfurt-am-Main: Polygraph Verlag.
    M.Tyman, 1970, Lithography 1800–1950, London: Oxford University Press (describes the invention and its development; with biographical details).
    LRD

    Biographical history of technology > Senefelder, Alois

  • 56 Cockerell, Christopher Sydney

    [br]
    b. 4 June 1910 Cambridge, England
    [br]
    British designer and engineer who invented the hovercraft.
    [br]
    He was educated at Gresham's School in Holt and at Peterhouse College, Cambridge, where he graduated in engineering in 1931; he was made an Honorary Fellow in 1974. Cockerell entered the engineering firm of W.H.Allen \& Sons of Bedford as a pupil in 1931, and two years later he returned to Cambridge to engage in radio research for a further two years. In 1935 he joined Marconi Wireless Telegraph Company, working on very high frequency (VHF) transmitters and direction finders. During the Second World War he worked on airborne navigation and communication equipment, and later he worked on radar. During this period he filed thirty six patents in the fields of radio and navigational systems.
    In 1950 Cockerell left Marconi to set up his own boat-hire business on the Norfolk Broads. He began to consider how to increase the speed of boats by means of air lubrication. Since the 1870s engineers had at times sought to reduce the drag on a boat by means of a thin layer of air between hull and water. After his first experiments, Cockerell concluded that a significant reduction in drag could only be achieved with a thick cushion of air. After experimenting with several ways of applying the air-cushion principle, the first true hovercraft "took off" in 1955. It was a model in balsa wood, 2 ft 6 in. (762 mm) long and weighing 4½ oz. (27.6 g); it was powered by a model-aircraft petrol engine and could travel over land or water at 13 mph (20.8 km/h). Cockerell filed his first hovercraft patent on 12 December 1955. The following year he founded Hovercraft Ltd and began the search for a manufacturer. The government was impressed with the invention's military possibilities and placed it on the secret list. The secret leaked out, however, and the project was declassified. In 1958 the National Research and Development Corporation decided to give its backing, and the following year Saunders Roe Ltd with experience of making flying boats, produced the epoch-making SR N1, a hovercraft with an air cushion produced by air jets directed downwards and inwards arranged round the periphery of the craft. It made a successful crossing of the English Channel, with the inventor on board.
    Meanwhile Cockerell had modified the hovercraft so that the air cushion was enclosed within flexible skirts. In this form it was taken up by manufacturers throughout the world and found wide application as a passenger-carrying vehicle, for military transport and in scientific exploration and survey work. The hover principle found other uses, such as for air-beds to relieve severely burned patients and for hover mowers.
    The development of the hovercraft has occupied Cockerell since then and he has been actively involved in the several companies set up to exploit the invention, including Hovercraft Development Ltd and British Hovercraft Corporation. In the 1970s and 1980s he took up the idea of the generation of electricity by wavepower; he was Founder of Wavepower Ltd, of which he was Chairman from 1974 to 1982.
    [br]
    Principal Honours find Distinctions
    Knighted 1969. CBE 1955. FRS 1967.
    LRD

    Biographical history of technology > Cockerell, Christopher Sydney

  • 57 Ferranti, Sebastian Ziani de

    [br]
    b. 9 April 1864 Liverpool, England
    d. 13 January 1930 Zurich, Switzerland
    [br]
    English manufacturing engineer and inventor, a pioneer and early advocate of high-voltage alternating-current electric-power systems.
    [br]
    Ferranti, who had taken an interest in electrical and mechanical devices from an early age, was educated at St Augustine's College in Ramsgate and for a short time attended evening classes at University College, London. Rather than pursue an academic career, Ferranti, who had intense practical interests, found employment in 1881 with the Siemens Company (see Werner von Siemens) in their experimental department. There he had the opportunity to superintend the installation of electric-lighting plants in various parts of the country. Becoming acquainted with Alfred Thomson, an engineer, Ferranti entered into a short-lived partnership with him to manufacture the Ferranti alternator. This generator, with a unique zig-zag armature, had an efficiency exceeding that of all its rivals. Finding that Sir William Thomson had invented a similar machine, Ferranti formed a company with him to combine the inventions and produce the Ferranti- Thomson machine. For this the Hammond Electric Light and Power Company obtained the sole selling rights.
    In 1885 the Grosvenor Gallery Electricity Supply Corporation was having serious problems with its Gaulard and Gibbs series distribution system. Ferranti, when consulted, reviewed the design and recommended transformers connected across constant-potential mains. In the following year, at the age of 22, he was appointed Engineer to the company and introduced the pattern of electricity supply that was eventually adopted universally. Ambitious plans by Ferranti for London envisaged the location of a generating station of unprecedented size at Deptford, about eight miles (13 km) from the city, a departure from the previous practice of placing stations within the area to be supplied. For this venture the London Electricity Supply Corporation was formed. Ferranti's bold decision to bring the supply from Deptford at the hitherto unheard-of pressure of 10,000 volts required him to design suitable cables, transformers and generators. Ferranti planned generators with 10,000 hp (7,460 kW)engines, but these were abandoned at an advanced stage of construction. Financial difficulties were caused in part when a Board of Trade enquiry in 1889 reduced the area that the company was able to supply. In spite of this adverse situation the enterprise continued on a reduced scale. Leaving the London Electricity Supply Corporation in 1892, Ferranti again started his own business, manufacturing electrical plant. He conceived the use of wax-impregnated paper-insulated cables for high voltages, which formed a landmark in the history of cable development. This method of flexible-cable manufacture was used almost exclusively until synthetic materials became available. In 1892 Ferranti obtained a patent which set out the advantages to be gained by adopting sector-shaped conductors in multi-core cables. This was to be fundamental to the future design and development of such cables.
    A total of 176 patents were taken out by S.Z. de Ferranti. His varied and numerous inventions included a successful mercury-motor energy meter and improvements to textile-yarn produc-tion. A transmission-line phenomenon where the open-circuit voltage at the receiving end of a long line is greater than the sending voltage was named the Ferranti Effect after him.
    [br]
    Principal Honours and Distinctions
    FRS 1927. President, Institution of Electrical Engineers 1910 and 1911. Institution of Electrical Engineers Faraday Medal 1924.
    Bibliography
    18 July 1882, British patent no. 3,419 (Ferranti's first alternator).
    13 December 1892, British patent no. 22,923 (shaped conductors of multi-core cables). 1929, "Electricity in the service of man", Journal of the Institution of Electrical Engineers 67: 125–30.
    Further Reading
    G.Z.de Ferranti and R. Ince, 1934, The Life and Letters of Sebastian Ziani de Ferranti, London.
    A.Ridding, 1964, S.Z.de Ferranti. Pioneer of Electric Power, London: Science Museum and HMSO (a concise biography).
    R.H.Parsons, 1939, Early Days of the Power Station Industry, Cambridge, pp. 21–41.
    GW

    Biographical history of technology > Ferranti, Sebastian Ziani de

  • 58 Marsden, Samuel

    [br]
    b. 1764 Parsley, Yorkshire, England
    d. 1838 Australia
    [br]
    English farmer whose breeding programme established the Australian wool industry.
    [br]
    Although his father was a farmer, at the age of 10 Samuel Marsden went to work as a blacksmith, and continued in that trade for ten years. He then decided to go into the Church, was educated at Hull Grammar School and Cambridge, and was ordained in 1793. He then emigrated to Australia, where he took up an appointment as Assistant Chaplain to the Colony. He was stationed at Parramatta, where he was granted 100 acres and bought a further 128 acres himself. In 1800 he became Principal Chaplain, and by 1802 he farmed the third largest farm in the colony. Initially he was able to obtain only two Marino rams and was forced to crossbreed with imported Indian stock. However, with this combination he was able to improve wool quality dramatically, and this stock provided the basis of his breeding stock. In 1807 he returned to Britain, taking 160 lb of wool with him. This was woven into 40 yards (36.5 m) of cloth in a mill near Leeds, and from this Marsden had a suit made which he wore when he visited George III. The latter was so impressed with the cloth that he presented Marsden with five Marino ewes in lamb, with which he returned to Australia. By 1811 he was sending more than 5,000 lb of wool back to the UK each year. In 1814 Marsden concentrated more on Church matters and made the first of seven missionary visits to New Zealand. He made the last of these excursions the year before his death.
    [br]
    Principal Honours and Distinctions
    Vice-President, New South Wales Agricultural Society (on its foundation) 1821.
    Further Reading
    Michael Ryder, 1983, Sheep and Man, Duckworth (a definitive study on sheep history that deals in detail with Marsden's developments).
    AP

    Biographical history of technology > Marsden, Samuel

  • 59 McNaught, William

    [br]
    b. 27 May 1813 Sneddon, Paisley, Scotland
    d. 8 January 1881 Manchester, England
    [br]
    Scottish patentee of a very successful form of compounding beam engine with a high-pressure cylinder between the fulcrum of the beam and the connecting rod.
    [br]
    Although born in Paisley, McNaught was educated in Glasgow where his parents had moved in 1820. He followed in his father's footsteps and became an engineer through an apprenticeship with Robert Napier at the Vulcan Works, Washington Street, Glasgow. He also attended science classes at the Andersonian University in the evenings and showed such competence that at the age of 19 he was offered the position of being in charge of the Fort-Gloster Mills on the Hoogly river in India. He remained there for four years until 1836, when he returned to Scotland because the climate was affecting his health.
    His father had added the revolving cylinder to the steam engine indicator, and this greatly simplified and extended its use. In 1838 William joined him in the business of manufacturing these indicators at Robertson Street, Glasgow. While advising textile manufacturers on the use of the indicator, he realized the need for more powerful, smoother-running and economical steam engines. He provided the answer by placing a high-pressure cylinder midway between the fulcrum of the beam and the connecting rod on an ordinary beam engine. The original cylinder was retained to act as the low-pressure cylinder of what became a compound engine. This layout not only reduced the pressures on the bearing surfaces and gave a smoother-running engine, which was one of McNaught's aims, but he probably did not anticipate just how much more economical his engines would be; they often gave a saving of fuel up to 40 per cent. This was because the steam pipe connecting the two cylinders acted as a receiver, something lacking in the Woolf compound, which enabled the steam to be expanded properly in both cylinders. McNaught took out his patent in 1845, and in 1849 he had to move to Manchester because his orders in Lancashire were so numerous and the scope was much greater there than in Glasgow. He took out further patents for equalizing the stress on the working parts, but none was as important as his original one, which was claimed to have been one of the greatest improvements since the steam engine left the hands of James Watt. He was one of the original promoters of the Boiler Insurance and Steam Power Company and was elected Chairman in 1865, a position he retained until a short time before his death.
    [br]
    Bibliography
    1845, British patent no. 11,001 (compounding beam engine).
    Further Reading
    Obituary, Engineer 51.
    Obituary, Engineering 31.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (the fullest account of McNaught's proposals for compounding).
    RLH

    Biographical history of technology > McNaught, William

  • 60 Railton, Reid Anthony

    [br]
    b. 24 June 1895 Alderley Edge, Cheshire, England
    d. 1 September 1977 Berkeley, California, USA.
    [br]
    English designer of record-breaking automobiles and motor boats.
    [br]
    Railton was educated at Rugby School and Manchester University. From 1915 to 1917 he served an apprenticeship with Leyland Motors, after which he served in the Motor Boat Section of the Royal Naval Volunteer Reserve (RNVR). Having obtained his Royal Aeronautical Club (RAeC) pilot's certificate in 1918, he went to the United States to study factory layout. He was Assistant to the Chief Engineer of Leyland Motors from 1921 to 1923, when he became Managing Director of Arab Motors Limited of Letchworth, Hertfordshire.
    Railton was engineering consultant to Sir Malcolm Campbell, and was responsible for Campbell's Bluebird II boat which set a water speed record of 228.1 km/h (141.7 mph) in 1939. He was the designer of John R.Cobb's Napier Railton car which broke the speed record for automobiles on 16 September 1947 with an average speed of 634.3 km/h (394.2 mph); this record stood until 1964, when it was broken by Sir Malcolm Campbell's son Donald. Railton was also responsible for Cobb's boat, Crusader, which was the first to exceed 200 mph (322 km/h).
    Railton presented many papers to the Institution of Automobile Engineers, the Institution of Mechanical Engineers and the Society of Automotive Engineers in the United States. In his later years, he lived in Berkeley, California.
    [br]
    Further Reading
    1971–80, Who Was Who, London: A. \& C.Black.
    IMcN

    Biographical history of technology > Railton, Reid Anthony

См. также в других словарях:

  • England, John — • First Bishop of Charleston, S.C (1786 1842) Catholic Encyclopedia. Kevin Knight. 2006. England, John     John England …   Catholic encyclopedia

  • ENGLAND — The British Isles were unknown to the Jews until a late date, and the settlement of the Jews in medieval England was among the latest in Europe. It is possible that a small nucleus was to be found there under the Romans and that in the Saxon… …   Encyclopedia of Judaism

  • England (Since the Reformation) —     England (Since the Reformation)     † Catholic Encyclopedia ► England (Since the Reformation)     The Protestant Reformation is the great dividing line in the history of England, as of Europe generally. This momentous Revolution, the outcome… …   Catholic encyclopedia

  • England — For other uses, see England (disambiguation). England …   Wikipedia

  • England — /ing gleuhnd/ or, often, / leuhnd/, n. the largest division of the United Kingdom, constituting, with Scotland and Wales, the island of Great Britain. 45,870,062; 50,327 sq. mi. (130,347 sq. km) Cap.: London. * * * I Southern part of the island… …   Universalium

  • Educated Rapper — Infobox musical artist Name = Educated Rapper Background = solo singer Alias = E.M.D. The Brainiac Origin = flagicon|England Hammersmith, London, England flagicon|United States Brooklyn, New York, U.S. Genre = Old school hip hop Hip hop… …   Wikipedia

  • Henry VIII of England — Henry VIII redirects here. For other uses, see Henry VIII (disambiguation). Henry VIII …   Wikipedia

  • Elizabeth I of England — Infobox British Royalty|majesty name = Elizabeth I title = Queen of England and Ireland caption = Elizabeth I , Darnley Portrait , c. 1575 reign = 17 November 1558 – 24 March 1603 coronation = 15 January 1559 predecessor = Mary I successor =… …   Wikipedia

  • Richard I of England — Richard I redirects here. For others of the same name, see Richard I (disambiguation). Richard the Lionheart King of England (more..) Reign 6 July 1189 – 6 April 1199 Coronation 3 September 1 …   Wikipedia

  • History of the Jews in England — The first written records of Jewish settlement in England date from the time of the Norman Conquest, mentioning Jews who arrived with William the Conqueror in 1066 although it is believed that there were Jews present in Great Britain since Roman… …   Wikipedia

  • History of New England — This article presents the History of New England, the oldest clearly defined region of the United States, unique among U.S. geographic regions in that it is also a former political entity. While New England was originally inhabited by indigenous… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»