Перевод: с английского на все языки

со всех языков на английский

he+became+famous

  • 101 Roebuck, John

    SUBJECT AREA: Chemical technology
    [br]
    b. 1718 Sheffield, England
    d. 17 July 1794
    [br]
    English chemist and manufacturer, inventor of the lead-chamber process for sulphuric acid.
    [br]
    The son of a prosperous Sheffield manufacturer, Roebuck forsook the family business to pursue studies in medicine at Edinburgh University. There he met Dr Joseph Black (1727–99), celebrated Professor of Chemistry, who aroused in Roebuck a lasting interest in chemistry. Roebuck continued his studies at Leyden, where he took his medical degree in 1742. He set up in practice in Birmingham, but in his spare time he continued chemical experiments that might help local industries.
    Among his early achievements was his new method of refining gold and silver. Success led to the setting up of a large laboratory and a reputation as a chemical consultant. It was at this time that Roebuck devised an improved way of making sulphuric acid. This vital substance was then made by burning sulphur and nitre (potassium nitrate) over water in a glass globe. The scale of the process was limited by the fragility of the glass. Roebuck substituted "lead chambers", or vessels consisting of sheets of lead, a metal both cheap and resistant to acids, set in wooden frames. After the first plant was set up in 1746, productivity rose and the price of sulphuric acid fell sharply. Success encouraged Roebuck to establish a second, larger plant at Prestonpans, near Edinburgh. He preferred to rely on secrecy rather than patents to preserve his monopoly, but a departing employee took the secret with him and the process spread rapidly in England and on the European continent. It remained the standard process until it was superseded by the contact process towards the end of the nineteenth century. Roebuck next turned his attention to ironmaking and finally selected a site on the Carron river, near Falkirk in Scotland, where the raw materials and water power and transport lay close at hand. The Carron ironworks began producing iron in 1760 and became one of the great names in the history of ironmaking. Roebuck was an early proponent of the smelting of iron with coke, pioneered by Abraham Darby at Coalbrookdale. To supply the stronger blast required, Roebuck consulted John Smeaton, who c. 1760 installed the first blowing cylinders of any size.
    All had so far gone well for Roebuck, but he now leased coal-mines and salt-works from the Duke of Hamilton's lands at Borrowstonness in Linlithgow. The coal workings were plagued with flooding which the existing Newcomen engines were unable to overcome. Through his friendship with Joseph Black, patron of James Watt, Roebuck persuaded Watt to join him to apply his improved steam-engine to the flooded mine. He took over Black's loan to Watt of £1,200, helped him to obtain the first steam-engine patent of 1769 and took a two-thirds interest in the project. However, the new engine was not yet equal to the task and the debts mounted. To satisfy his creditors, Roebuck had to dispose of his capital in his various ventures. One creditor was Matthew Boulton, who accepted Roebuck's two-thirds share in Watt's steam-engine, rather than claim payment from his depleted estate, thus initiating a famous partnership. Roebuck was retained to manage Borrowstonness and allowed an annuity for his continued support until his death in 1794.
    [br]
    Further Reading
    Memoir of John Roebuck in J.Roy. Soc. Edin., vol. 4 (1798), pp. 65–87.
    S.Gregory, 1987, "John Roebuck, 18th century entrepreneur", Chem. Engr. 443:28–31.
    LRD

    Biographical history of technology > Roebuck, John

  • 102 Stevenson, Robert

    [br]
    b. 8 June 1772 Glasgow, Scotland
    d. 12 July 1850 Edinburgh, Scotland
    [br]
    Scottish lighthouse designer and builder.
    [br]
    After his father's death when he was only 2 years old, Robert Stevenson was educated at a school for children from families in reduced circumstances. However, c. 1788 his mother married again, to Thomas Smith, Engineer to the Northern Lighthouse Board. Stevenson then served an apprenticeship under his new stepfather. The Board, which is still an active force in the 1990s, was founded in 1786 to oversee the lights and buoyage in some of the wildest waters in Western Europe, the seas around the coasts of Scotland and the Isle of Man.
    After studies at Andersen's College (now the University of Strathclyde) and later at Edinburgh University, Stevenson assumed responsibility in the field for much of the construction work sanctioned by the Board. After some years he succeeded Smith as Engineer to the Board and thereby the long connection between the Northern Lights and the Stevenson family commenced.
    Stevenson became Engineer to the Board when he was about 30 years old, remaining in that office for the best part of half a century. During these years he improved catoptric lighting, adopted the central lamp refracting system and invented the intermittent flashing light. While these developments were sufficient to form a just memorial to the man, he was involved in greater endeavours in the construction of around twenty lighthouses, most of which had ingenious forms of construction. The finest piece was the Bell Rock Lighthouse, built on a reef off the Scottish East Coast. This enterprise took five years to complete and can be regarded as the most important construction of his life.
    His interests fitted in with those of the other great men living in and around Edinburgh at the time, and included oceanography, astronomy, architecture and antiquarian studies. He designed several notable bridges, proposed a design for the rails for railways and also made a notable study of marine timber borers. He contributed to Encyclopaedia Britannica and to many journals.
    His grandson, born in the year of his death, was the famous author Robert Louis Stevenson (1850–94).
    [br]
    Principal Honours and Distinctions
    FRS Edinburgh.
    Further Reading
    Sir Walter Scott, 1982, Northern Lights, Hawick.
    FMW

    Biographical history of technology > Stevenson, Robert

  • 103 Sullivan, Louis Henry

    [br]
    b. 3 September 1856 Boston, Massachusetts, USA
    d. 14 April 1924 Chicago, Illinois, USA
    [br]
    American architect whose work came to be known as the "Chicago School of Architecture" and who created a new style of architecture suited specifically to steel-frame, high-rise structures.
    [br]
    Sullivan, a Bostonian, studied at the Massachusetts Institute of Technology. Soon he joined his parents, who had moved to Chicago, and worked for a while in the office of William Le Baron Jenney, the pioneer of steel-frame construction. After spending some time studying at the Ecole des Beaux Arts in Paris, in 1875 Sullivan returned to Chicago, where he later met and worked for the Danish architect Dankmar Adler, who was practising there. In 1881 the two architects became partners, and during the succeeding fifteen years they produced their finest work and the buildings for which Sullivan is especially known.
    During the early 1880s in Chicago, load-bearing, metal-framework structures that made lofty skyscrapers possible had been developed (see Jenney and Holabird). Louis H.Sullivan initiated building design to stress and complement the metal structure rather than hide it. Moving onwards from H.H.Richardson's treatment of his Marshall Field Wholesale Store in Chicago, Sullivan took the concept several stages further. His first outstanding work, built with Adler in 1886–9, was the Auditorium Building in Chicago. The exterior, in particular, was derived largely from Richardson's Field Store, and the building—now restored—is of bold but simple design, massively built in granite and stone, its form stressing the structure beneath. The architects' reputation was established with this building.
    The firm of Sullivan \& Adler established itself during the early 1890s, when they built their most famous skyscrapers. Adler was largely responsible for the structure, the acoustics and function, while Sullivan was responsible for the architectural design, concerning himself particularly with the limitation and careful handling of ornament. In 1892 he published his ideas in Ornament in Architecture, where he preached restraint in its quality and disposition. He established himself as a master of design in the building itself, producing a rhythmic simplicity of form, closely related to the structural shape beneath. The two great examples of this successful approach were the Wainwright Building in St Louis, Missouri (1890–1) and the Guaranty Building in Buffalo, New York (1894–5). The Wainwright Building was a ten-storeyed structure built in stone and brick and decorated with terracotta. The vertical line was stressed throughout but especially at the corners, where pilasters were wider. These rose unbroken to an Art Nouveau type of decorative frieze and a deeply projecting cornice above. The thirteen-storeyed Guaranty Building is Sullivan's masterpiece, a simple, bold, finely proportioned and essentially modern structure. The pilaster verticals are even more boldly stressed and decoration is at a minimum. In the twentieth century the almost free-standing supporting pillars on the ground floor have come to be called pilotis. As late as the 1920s, particularly in New York, the architectural style and decoration of skyscrapers remained traditionally eclectic, based chiefly upon Gothic or classical forms; in view of this, Sullivan's Guaranty Building was far ahead of its time.
    [br]
    Bibliography
    Article by Louis H.Sullivan. Address delivered to architectural students June 1899, published in Canadian Architecture Vol. 18(7):52–3.
    Further Reading
    Hugh Morrison, 1962, Louis Sullivan: Prophet of Modern Architecture.
    Willard Connely, 1961, Louis Sullivan as He Lived, New York: Horizon Press.
    DY

    Biographical history of technology > Sullivan, Louis Henry

  • 104 Tompion, Thomas

    SUBJECT AREA: Horology
    [br]
    baptized 25 July 1639 Ickwell Green, England
    d. 20 November 1713 London, England
    [br]
    English clock-and watchmaker of great skill and ingenuity who laid the foundations of his country's pre-eminence in that field.
    [br]
    Little is known about Tompion's early life except that he was born into a family of blacksmiths. When he was admitted into the Clockmakers' Company in 1671 he was described as a "Great Clockmaker", which meant a maker of turret clocks, and as these clocks were made of wrought iron they would have required blacksmithing skills. Despite this background, he also rapidly established his reputation as a watchmaker. In 1674 he moved to premises in Water Lane at the sign of "The Dial and Three Crowns", where his business prospered and he remained for the rest of his life. Assisted by journeymen and up to eleven apprentices at any one time, the output from his workshop was prodigious, amounting to over 5,000 watches and 600 clocks. In his lifetime he was famous for his watches, as these figures suggest, but although they are of high quality they do not differ markedly from those produced by other London watchmakers of that period. He is now known more for the limited number of elaborate clocks that he produced, such as the equation clock and the spring-driven clock of a year's duration, which he made for William III. Around 1711 he took into partnership his nephew by marriage, George Graham, who carried on the business after his death.
    Although Tompion does not seem to have been particularly innovative, he lived at a time when great advances were being made in horology, which his consummate skill as a craftsman enabled him to exploit. In this he was greatly assisted by his association with Robert Hooke, for whom Tompion constructed a watch with a balance spring in 1675; at that time Hooke was trying to establish his priority over Huygens for this invention. Although this particular watch was not successful, it made Tompion aware of the potential of the balance spring and he became the first person in England to apply Huygens's spiral spring to the balance of a watch. Although Thuret had constructed such a watch somewhat earlier in France, the superior quality of Tompion's wheel work, assisted by Hooke's wheel-cutting engine, enabled him to dominate the market. The anchor escapement (which reduced the amplitude of the pendulum's swing) was first applied to clocks around this time and produced further improvements in accuracy which Tompion and other makers were able to utilize. However, the anchor escapement, like the verge escapement, produced recoil (the clock was momentarily driven in reverse). Tompion was involved in attempts to overcome this defect with the introduction of the dead-beat escapement for clocks and the horizontal escapement for watches. Neither was successful, but they were both perfected later by George Graham.
    [br]
    Principal Honours and Distinctions
    Master of the Clockmakers' Company 1703.
    Bibliography
    1695, with William Houghton and Edward Barlow, British patent no. 344 (for a horizontal escapement).
    Further Reading
    R.W.Symonds, 1951, Thomas Tompion, His Life and Work, London (a comprehensive but now slightly dated account).
    H.W.Robinson and W.Adams (eds), 1935, The Diary of Robert Hooke (contains many references to Tompion).
    D.Howse, 1970, The Tompion clocks at Greenwich and the dead-beat escapement', Antiquarian Horology 7:18–34, 114–33.
    DV

    Biographical history of technology > Tompion, Thomas

  • 105 Vignoles, Charles Blacker

    [br]
    b. 31 May 1793 Woodbrook, Co. Wexford, Ireland
    d. 17 November 1875 Hythe, Hampshire, England
    [br]
    English surveyor and civil engineer, pioneer of railways.
    [br]
    Vignoles, who was of Huguenot descent, was orphaned in infancy and brought up in the family of his grandfather, Dr Charles Hutton FRS, Professor of Mathematics at the Royal Military Academy, Woolwich. After service in the Army he travelled to America, arriving in South Carolina in 1817. He was appointed Assistant to the state's Civil Engineer and surveyed much of South Carolina and subsequently Florida. After his return to England in 1823 he established himself as a civil engineer in London, and obtained work from the brothers George and John Rennie.
    In 1825 the promoters of the Liverpool \& Manchester Railway (L \& MR) lost their application for an Act of Parliament, discharged their engineer George Stephenson and appointed the Rennie brothers in his place. They in turn employed Vignoles to resurvey the railway, taking a route that would minimize objections. With Vignoles's route, the company obtained its Act in 1826 and appointed Vignoles to supervise the start of construction. After Stephenson was reappointed Chief Engineer, however, he and Vignoles proved incompatible, with the result that Vignoles left the L \& MR early in 1827.
    Nevertheless, Vignoles did not sever all connection with the L \& MR. He supported John Braithwaite and John Ericsson in the construction of the locomotive Novelty and was present when it competed in the Rainhill Trials in 1829. He attended the opening of the L \& MR in 1830 and was appointed Engineer to two railways which connected with it, the St Helens \& Runcorn Gap and the Wigan Branch (later extended to Preston as the North Union); he supervised the construction of these.
    After the death of the Engineer to the Dublin \& Kingstown Railway, Vignoles supervised construction: the railway, the first in Ireland, was opened in 1834. He was subsequently employed in surveying and constructing many railways in the British Isles and on the European continent; these included the Eastern Counties, the Midland Counties, the Sheffield, Ashton-under-Lyme \& Manchester (which proved for him a financial disaster from which he took many years to recover), and the Waterford \& Limerick. He probably discussed rail of flat-bottom section with R.L. Stevens during the winter of 1830–1 and brought it into use in the UK for the first time in 1836 on the London \& Croydon Railway: subsequently rail of this section became known as "Vignoles rail". He considered that a broader gauge than 4 ft 8½ in. (1.44 m) was desirable for railways, although most of those he built were to this gauge so that they might connect with others. He supported the atmospheric system of propulsion during the 1840s and was instrumental in its early installation on the Dublin \& Kingstown Railway's Dalkey extension. Between 1847 and 1853 he designed and built the noted multi-span suspension bridge at Kiev, Russia, over the River Dnieper, which is more than half a mile (800 m) wide at that point.
    Between 1857 and 1863 he surveyed and then supervised the construction of the 155- mile (250 km) Tudela \& Bilbao Railway, which crosses the Cantabrian Pyrenees at an altitude of 2,163 ft (659 m) above sea level. Vignoles outlived his most famous contemporaries to become the grand old man of his profession.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Astronomical Society 1829. FRS 1855. President, Institution of Civil Engineers 1869–70.
    Bibliography
    1830, jointly with John Ericsson, British patent no. 5,995 (a device to increase the capability of steam locomotives on grades, in which rollers gripped a third rail).
    1823, Observations upon the Floridas, New York: Bliss \& White.
    1870, Address on His Election as President of the Institution of Civil Engineers.
    Further Reading
    K.H.Vignoles, 1982, Charles Blacker Vignoles: Romantic Engineer, Cambridge: Cambridge University Press (good modern biography by his great-grandson).
    PJGR

    Biographical history of technology > Vignoles, Charles Blacker

  • 106 Waymouth, Bernard

    SUBJECT AREA: Ports and shipping
    [br]
    b. unknown
    d. 25 November 1890 London, England
    [br]
    English naval architect, ship surveyor and designer of the clipper ship Thermopylae.
    [br]
    Waymouth had initial training in shipbuilding at one of the Royal Dockyards before going on to work at a privately owned shipyard. With this all-round experience he was accepted in 1854 by Lloyd's Register of Shipping as a surveyor, and was to serve the Society well during a period of great change in ship design. In 1864 he was charged with the task of framing the Rules for the Construction of Composite Built Vessels, i.e. ships with main structural members such as keel, frames and deck beams of iron and with the hull sheathing or planking of timber. Although long superseded, these rules were of considerable consequence at the time and they were accompanied by beautiful drawings executed by Harry J.Cornish, who became Chief Ship Surveyor of Lloyd's from 1900 until 1909. In 1870 revolutionary proposals were made for iron ships that led to the adoption of a new form of rules where the scantlings or size of individual parts were related to the overall dimensions of the vessel. The symbol 100A1 was then adopted for the first time.
    Waymouth was more than a theoretical naval architect: in the late 1860s he was commissioned by the shipbuilders Walter Hood to design the famous Aberdeen Clipper Thermopylae. This was one of the fastest sailing ships of the nineteenth century and, along with its Clyde-built counterpart Cutty Sark, proved the efficacy of composite construction for these specialist vessels.
    Waymouth was appointed Principal Surveyor of Lloyd's in 1870 and was Secretary of the Society from 1872 until his death at work in 1890. He was a member of the Royal Commission on Tonnage and of the Enquiry into the loss of HMS Atlanta, and at the time of his death was Vice-President of the Institution of Naval Architects.
    [br]
    Principal Honours and Distinctions
    Vice-President, Institution of Naval Architects.
    Further Reading
    Annals of Lloyd's Register, 1934, London.
    FMW

    Biographical history of technology > Waymouth, Bernard

См. также в других словарях:

  • became famous — became a celebrity, became well known …   English contemporary dictionary

  • Famous Studios — Famous Studios, renamed Paramount Cartoon Studios in 1956, was the animation division of the Hollywood film studio Paramount Pictures from 1942 to 1967. Famous was founded as a successor company to Fleischer Studios, after Paramount acquired… …   Wikipedia

  • became a star — became a celebrity, became famous …   English contemporary dictionary

  • famous — 01. Michael Jordan is probably the most [famous] basketball player in the world. 02. She gained [fame] through her acting career, but many people didn t realize that she was also an excellent athlete. 03. Don Mee s Restaurant is [famous] for its… …   Grammatical examples in English

  • famous */*/*/ — UK [ˈfeɪməs] / US adjective Other ways of saying famous: well known fairly famous: a well known local reporter legendary very famous and greatly admired: Laurel and Hardy, the legendary comedy duo eminent famous, and respected for their… …   English dictionary

  • famous — adj. VERBS ▪ be ▪ become ▪ make sb/sth ▪ The school was made famous by its association with Charles Dickens. ADVERB ▪ …   Collocations dictionary

  • famous — fa|mous [ feıməs ] adjective *** 1. ) if someone or something is famous, a lot of people know their name or have heard about them: He dreamed of becoming a famous actor. famous for: The town of Gouda is famous for its cheese. Alexander Fleming,… …   Usage of the words and phrases in modern English

  • famous*/*/*/ — [ˈfeɪməs] adj if someone or something is famous, a lot of people know their name or have heard about them He dreamed of becoming a famous footballer.[/ex] The town of Gouda is famous for its cheese.[/ex] She became famous as a teacher and a… …   Dictionary for writing and speaking English

  • became a legend — came to be renowned, became famous …   English contemporary dictionary

  • Famous Monsters of Filmland — was a genre specific film magazine started in 1958 by publisher James Warren (see Warren Publishing) and editor Forrest J Ackerman. Magazine History (1958–1983) Famous Monsters of Filmland (which quickly became known to fans as simply FMFact|date …   Wikipedia

  • Famous Footwear — The 2005 2011 Logo Type Wholly owned subsidiary Industry Retailing Founded Madison, Wisconsin (1960) Founder(s) Neil …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»