Перевод: с английского на все языки

со всех языков на английский

field+studies

  • 81 chuck up

    I phrvi infml II phrvt infml
    1)
    2)

    He decided to chuck her up when he had found out that she was playing the field — Он решил бросить ее, когда узнал, что она встречается не только с ним

    3)

    The new dictionary of modern spoken language > chuck up

  • 82 ecological statistics

    Stats
    statistical studies in the field of ecology using such techniques as distance sampling

    The ultimate business dictionary > ecological statistics

  • 83 Lewin, Kurt

    (1890–1947) Gen Mgt
    Germanborn social psychologist. Known for studies of leadership styles and group decision making, developer of force field analysis with a linked change management model, pioneer of action research and the T-Group (see sensitivity training) approach.
    Lewin was a professor of philosophy and psychology at Berlin University until 1932 when he fled from the Nazis to the United States. He was professor of child psychology at the Child Welfare Research Station in Iowa until 1944. After leaving Iowa, Lewin worked at MIT, with Douglas McGregor among others, founding a research center for group dynamics.

    The ultimate business dictionary > Lewin, Kurt

  • 84 Abel, John Jacob

    SUBJECT AREA: Medical technology
    [br]
    b. 19 May 1857 near Cleveland, Ohio, USA
    d. 26 May 1938 Baltimore, Maryland, USA
    [br]
    American pharmacologist and physiologist, proponent of the "artificial kidney" and the isolator of pure insulin.
    [br]
    Born of German immigrant farming stock, his early scientific education at the University of Michigan, where he graduated PhB in 1883, suffered from a financially dictated interregnum of three years. In 1884 he moved to Leipzig and worked under Ludwig, moving to Strasbourg where he obtained his MD in 1888. In 1891 he was able to return to the University of Michigan as Lecturer in Materia Medica and Therapeutics, and in 1893 he was offered the first Chair of Pharmacology at Johns Hopkins University, a position he occupied until 1932. He was a pioneer in emphasizing the importance of chemistry, in its widest sense, in medicine and physiology. In his view, "the investigator must associate himself with those who have laboured in fields where molecules and atoms rather than multi-cellular tissues or even unicellular organisms are the units of study".
    Soon after coming to Baltimore he commenced work on extracts from the adrenal medulla and in 1899 published his work on epinephrine. In later years he developed an "artificial kidney" which could be used to remove diffusible substances from the blood. In 1913 he was able to demonstrate the existence of free amino-acids in the blood and his investigations in this field foreshadowed not only the developments of blood and plasma transfusion but also the possibility of the management of renal failure.
    From 1917 to 1924 he moved to a study of the hormone content of pituitary extracts, but in 1924 he suddenly transferred his attention to the study of insulin. In 1925 he announced the discovery of pure crystalline hormone. This work at first failed to gain full acceptance, but as late as 1955 the full elucidation of the protein structure of insulin proved the final culmination of his studies.
    Abel's dedication to laboratory research and his disdain for matters of administration may explain the relative paucity of worldy honours awarded to such an outstanding figure.
    [br]
    Principal Honours and Distinctions
    FRS.
    Bibliography
    1913, "On the removal of diffusible substances from the circulating blood by means of dialysis", Transactions of the Association of American Physiologists.
    Further Reading
    1939, Obituary Notices, Fellows of the Royal Society, London: Royal Society.
    1946, Biographical Memoir: John Jacob Abel. 1857–1938, Washington, DC: National Academy of Sciences.
    MG

    Biographical history of technology > Abel, John Jacob

  • 85 Abel, Sir Frederick August

    [br]
    b. 17 July 1827 Woolwich, London, England
    d. 6 September 1902 Westminster, London, England
    [br]
    English chemist, co-inventor of cordite find explosives expert.
    [br]
    His family came from Germany and he was the son of a music master. He first became interested in science at the age of 14, when visiting his mineralogist uncle in Hamburg, and studied chemistry at the Royal Polytechnic Institution in London. In 1845 he became one of the twenty-six founding students, under A.W.von Hofmann, of the Royal College of Chemistry. Such was his aptitude for the subject that within two years he became von Hermann's assistant and demonstrator. In 1851 Abel was appointed Lecturer in Chemistry, succeeding Michael Faraday, at the Royal Military Academy, Woolwich, and it was while there that he wrote his Handbook of Chemistry, which was co-authored by his assistant, Charles Bloxam.
    Abel's four years at the Royal Military Academy served to foster his interest in explosives, but it was during his thirty-four years, beginning in 1854, as Ordnance Chemist at the Royal Arsenal and at Woolwich that he consolidated and developed his reputation as one of the international leaders in his field. In 1860 he was elected a Fellow of the Royal Society, but it was his studies during the 1870s into the chemical changes that occur during explosions, and which were the subject of numerous papers, that formed the backbone of his work. It was he who established the means of storing gun-cotton without the danger of spontaneous explosion, but he also developed devices (the Abel Open Test and Close Test) for measuring the flashpoint of petroleum. He also became interested in metal alloys, carrying out much useful work on their composition. A further avenue of research occurred in 1881 when he was appointed a member of the Royal Commission set up to investigate safety in mines after the explosion that year in the Sealham Colliery. His resultant study on dangerous dusts did much to further understanding on the use of explosives underground and to improve the safety record of the coal-mining industry. The achievement for which he is most remembered, however, came in 1889, when, in conjunction with Sir James Dewar, he invented cordite. This stable explosive, made of wood fibre, nitric acid and glycerine, had the vital advantage of being a "smokeless powder", which meant that, unlike the traditional ammunition propellant, gunpowder ("black powder"), the firer's position was not given away when the weapon was discharged. Although much of the preliminary work had been done by the Frenchman Paul Vieille, it was Abel who perfected it, with the result that cordite quickly became the British Army's standard explosive.
    Abel married, and was widowed, twice. He had no children, but died heaped in both scientific honours and those from a grateful country.
    [br]
    Principal Honours and Distinctions
    Grand Commander of the Royal Victorian Order 1901. Knight Commander of the Most Honourable Order of the Bath 1891 (Commander 1877). Knighted 1883. Created Baronet 1893. FRS 1860. President, Chemical Society 1875–7. President, Institute of Chemistry 1881–2. President, Institute of Electrical Engineers 1883. President, Iron and Steel Institute 1891. Chairman, Society of Arts 1883–4. Telford Medal 1878, Royal Society Royal Medal 1887, Albert Medal (Society of Arts) 1891, Bessemer Gold Medal 1897. Hon. DCL (Oxon.) 1883, Hon. DSc (Cantab.) 1888.
    Bibliography
    1854, with C.L.Bloxam, Handbook of Chemistry: Theoretical, Practical and Technical, London: John Churchill; 2nd edn 1858.
    Besides writing numerous scientific papers, he also contributed several articles to The Encyclopaedia Britannica, 1875–89, 9th edn.
    Further Reading
    Dictionary of National Biography, 1912, Vol. 1, Suppl. 2, London: Smith, Elder.
    CM

    Biographical history of technology > Abel, Sir Frederick August

  • 86 Agricola, Georgius (Georg Bauer)

    SUBJECT AREA: Metallurgy
    [br]
    b. 24 March 1494 Glauchau, Saxony
    d. 21 November 1555 Chemnitz, Germany
    [br]
    German metallurgist, who wrote the book De Re Metallica under the latinized version of his name.
    [br]
    Agricola was a physician, scientist and metallurgist of note and it was this which led to the publication of De Re Metallica. He studied at Leipzig University and between 1518 and 1522 he was a school teacher in Zwickau. Eventually he settled as a physician in Chemnitz. Later he continued his medical practice at Joachimstal in the Erzgebirge. This town was newly built to serve the mining community in what was at the time the most important ore-mining field in both Germany and Europe.
    As a physician in the sixteenth century he would naturally have been concerned with the development of medicines, which would have led him to research the medical properties of ores and base metals. He studied the mineralogy of his area, and the mines, and the miners who were working there. He wrote several books in Latin on geology and mineralogy. His important work during that period was a glossary of mineralogical and mining terms in both Latin and German. It is, however, De Re Metallica for which he is best known. This large volume contains twelve books which deal with mining and metallurgy, including an account of glassmaking. Whilst one can understand the text of this book very easily, the quality of the illustrative woodcuts should not be neglected. These illustrations detail the mines, furnaces, forges and the plant associated with them, unfortunately the name of the artist is unknown. The importance of the work lies in the fact that it is an assemblage of information on all the methods and practices current at that time. The book was clearly intended as a textbook of mining and mineralogy and as such it would have been brought to England by German engineers when they were employed by the Mines Royal in the Keswick area in the late sixteenth century. In addition to his studies in preparation for De Re Metallica, Agricola was an "adventurer" holding shares in the Gottesgab mine in the Erzegebirge.
    [br]
    Principal Honours and Distinctions Bibliography
    1556, De Re Metallica, Basel; 1912, trans. H. Hoover and L.H.Hoover, London.
    KM

    Biographical history of technology > Agricola, Georgius (Georg Bauer)

  • 87 Ayre, Sir Amos Lowrey

    SUBJECT AREA: Ports and shipping
    [br]
    b. 23 July 1885 South Shields, England
    d. 13 January 1952 London, England
    [br]
    English shipbuilder and pioneer of the inter-war "economy" freighters; Chairman of the Shipbuilding Conference.
    [br]
    Amos Ayre grew up on the Tyne with the stimulus of shipbuilding and seafaring around him. After an apprenticeship as a ship draughtsman and distinction in his studies, he held responsible posts in the shipyards of Belfast and later Dublin. His first dramatic move came in 1909 when he accepted the post of Manager of the new Employment Exchange at Govan, then just outside Glasgow. During the First World War he was in charge of fleet coaling operations on the River Forth, and later was promoted Admiralty District Director for shipyard labour in Scotland.
    Before the conclusion of hostilities, with his brother Wilfrid (later Sir Wilfrid Ayre) he founded the Burntisland Shipbuilding Company in Fife. Setting up on a green field site allowed the brothers to show innovation in design, production and marketing. Such was their success that the new yard was busy throughout the Depression, building standard ships which incorporated low operating costs with simplicity of construction.
    Through public service culminating in the 1929 Safety of Life at Sea Conference, Amos Ayre became recognized not only as an eminent naval architect, but also as a skilled negotiator. In 1936 he was invited to become Chairman of the Shipbuilding Conference and thereby virtual leader of the industry. As war approached he planned with meticulous care the rearrangement of national shipbuilding capacity, enabling Britain to produce standard hulls ranging from the legendary TID tugs to the standard freighters built in Sunderland or Port Glasgow. In 1939 he became Director of Merchant Shipbuilding, a position he held until 1944, when with typical foresight he asked to be released to plan for shipbuilding's return to normality.
    [br]
    Principal Honours and Distinctions
    Knighted 1937. KBE 1943. Officer of the Order of Orange-Nassau.
    Bibliography
    1919, "The theory and design of British shipbuilding", The Syren and Shipping, London.
    Further Reading
    Wilfrid Ayre, 1968, A Shipbuilders Yesterdays, Fife (published privately). James Reid, 1964, James Lithgow, Master of Work, London.
    Maurice E.Denny, 1955, "The man and his work" (First Amos Ayre Lecture), Transactions of the Institution of Naval Architects vol. 97.
    FMW

    Biographical history of technology > Ayre, Sir Amos Lowrey

  • 88 Cushing, Harvey Williams

    SUBJECT AREA: Medical technology
    [br]
    b. 8 April 1869 Cleveland, Ohio, USA
    d. 7 October 1939 New Haven, Connecticut, USA
    [br]
    American neurosurgeon and innovator of antihaemorrhagic techniques including the use of electrocoagulation.
    [br]
    Cushing graduated in medicine from Harvard University in 1895, having already acquired an arts degree at Yale (1891). He held posts in Boston and at Johns Hopkins Hospital, Baltimore, from 1897 until 1890, and then travelled abroad. After studying in Germany and England he returned to Baltimore to become Assistant Professor of Surgery in 1903 working under W.S. Halsted, a post he held until 1912. In 1905 he started specializing in neurosurgery, undertaking much experimental work and developing new instruments and techniques, such as spinal anaesthesia and in particular the electrosurgical methods pioneered by W.T. Bovie.
    Returning to Harvard as Professor of Surgery, he established a renowned school of neurosurgery. He retired from Harvard in 1932, becoming Stirling Professor of Neurosurgery until 1937 and then Director of Studies in the History of Medicine at Yale.
    His researches in neurophysiology were extensive and the eponymous pituitary syndrome is only one of a large number of discoveries in the field. He was awarded numerous honours, both American and international. He was a noted bibliophile, particularly of medical books and manuscripts, and his own extensive collection was bequeathed to Yale, becoming an important part of the Historical Medical Library.
    [br]
    Bibliography
    1928, "Electrosurgery as an aid to the removal of intracranial tumours", Surg. Gynec. Obstet.
    Further Reading
    J.F.Fulton, 1946, Harvey Cushing: A Biography.
    MG

    Biographical history of technology > Cushing, Harvey Williams

  • 89 Domagk, Gerhard Johannes Paul

    SUBJECT AREA: Medical technology
    [br]
    b. 30 October 1895 Lagow, Brandenburg, Germany
    d. 24 April 1964 Burgberg, Germany
    [br]
    German physician, biochemist and pharmacologist, pioneer of antibacterial chemotherapy.
    [br]
    Domagk's studies in medicine were interrupted by the outbreak of the First World War and his service in the Army, delaying his qualification at Kiel until 1921. For a short while he worked at the University of Greifswald, but in 1925 he was appointed Reader in Pathology at the University of Munster, where he remained as Extraordinary Professor of General Pathology and Pathological Anatomy (1928) and Professor (1958).
    In 1924 he published a paper on the role of the reticulo-endothelial system against infection. This led to his appointment as Director of Research by IG Farbenindustrie in their laboratory for experimental pathology and bacteriology. The planned programme of research into potential antibacterial chemotherapeutic drugs led, via the discovery of the dye Prontosil rubrum by his colleagues, to his reporting in 1936 the clinical antistreptococcal effects of the sulphonamide drugs. These results were confirmed in other countries, but owing to problems with the Nazi authorities he was unable to receive until 1947 the Nobel Prize that he was awarded in 1939.
    Domagk turned his interest to the chemotherapy of tuberculosis, and in 1946 he was able to report the therapeutic activity of the thiosemicarbazones, which, although too toxic for general use, in their turn led to the discovery of the potent and effective isoniazid. In his later years he moved into the field of cancer chemotherapy, but interestingly he wrote, "One should not have too great expectations of the future of cytostatic agents." His only daughter was one of the first patients to have a severe streptococcal infection successfully treated with Prontosil rubrum.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Medicine 1939. Foreign Member of the Royal Society. Paul Ehrlich Gold Medal.
    Bibliography
    1935, "Ein Beitrag zur Chemotherapie der bakteriellen Infektionen", Deutsche med. Woch.
    1924, Virchows Archiv für Path. Anat. und Physiol. u.f. klin. Med. 253:294–638.
    Further Reading
    1964, Biographical Memoirs of the Royal Society: Gerhard Domagk, London.
    MG

    Biographical history of technology > Domagk, Gerhard Johannes Paul

  • 90 Forsmann, Werner Theodor Otto

    SUBJECT AREA: Medical technology
    [br]
    b. 29 August 1904 Berlin, Germany
    d. 1 June 1979 Schofheim, Germany
    [br]
    German cardiologist and surgeon, pioneer of cardiac catheterization in humans.
    [br]
    Forsmann studied medicine at the University of Berlin, graduating in 1929. He later became chief of the surgical clinic in Dresden-Friedrichstadt, and in 1958 he became head of the surgical division of the Evangelical Hospital in Düsseldorf.
    Intravascular catheterization had been undertaken in research with animals by Marey in 1861, and had been used in 1912 by Unger et al. in the treatment of puerperal sepsis. In 1929 Forsmann inserted a catheter into his own cubital vein and up into the heart, monitoring its position with X-rays. Continuing experiments demonstrated that it was possible to undertake radiographic studies of the heart using contrast media. Despite the outstanding potential of the technique, its immediate adoption was held to present unacceptable dangers; it was not until developments in anaesthesia and antibiotics that the technique achieved its present position as a routine investigation permitting the widespread practice of angiocardiography. Deterred by criticism, Forsmann turned his energies to urology, gaining much distinction in this field.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Medicine or Physiology (jointly with A.F.Cournand and D.W.Richards) 1956.
    Bibliography
    1929, "Die Sonderung des rechten Herzens", Klin. Woch.
    Further Reading
    J.A.Meyer, 1990, "Werner Forsmann and the catheterisation of the heart", Ann. Thorac. Surg.
    MG

    Biographical history of technology > Forsmann, Werner Theodor Otto

  • 91 Gabor, Dennis (Dénes)

    [br]
    b. 5 June 1900 Budapest, Hungary
    d. 9 February 1979 London, England
    [br]
    Hungarian (naturalized British) physicist, inventor of holography.
    [br]
    Gabor became interested in physics at an early age. Called up for military service in 1918, he was soon released when the First World War came to an end. He then began a mechanical engineering course at the Budapest Technical University, but a further order to register for military service prompted him to flee in 1920 to Germany, where he completed his studies at Berlin Technical University. He was awarded a Diploma in Engineering in 1924 and a Doctorate in Electrical Engineering in 1927. He then went on to work in the physics laboratory of Siemens \& Halske. He returned to Hungary in 1933 and developed a new kind of fluorescent lamp called the plasma lamp. Failing to find a market for this device, Gabor made the decision to abandon his homeland and emigrate to England. There he joined British Thompson-Houston (BTH) in 1934 and married a colleague from the company in 1936. Gabor was also unsuccessful in his attempts to develop the plasma lamp in England, and by 1937 he had begun to work in the field of electron optics. His work was interrupted by the outbreak of war in 1939, although as he was not yet a British subject he was barred from making any significant contribution to the British war effort. It was only when the war was near its end that he was able to return to electron optics and begin the work that led to the invention of holography. The theory was developed during 1947 and 1948; Gabor went on to demonstrate that the theories worked, although it was not until the invention of the laser in 1960 that the full potential of his invention could be appreciated. He coined the term "hologram" from the Greek holos, meaning complete, and gram, meaning written. The three-dimensional images have since found many applications in various fields, including map making, medical imaging, computing, information technology, art and advertising. Gabor left BTH to become an associate professor at the Imperial College of Science and Technology in 1949, a position he held until his retirement in 1967. In 1971 he was awarded the Nobel Prize for Physics for his work on holography.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1968. Franklin Institute Michelson Medal 1968. CBE 1970. Nobel Prize for Physics 1971.
    Bibliography
    1948. "A new microscopic principle", Nature 161:777 (Gabor's earliest publication on holography).
    1949. "Microscopy by reconstructed wavefronts", Proceedings of the Royal Society A197: 454–87.
    1951, "Microscopy by reconstructed wavefronts II", Proc. Phys. Soc. B, 64:449–69. 1966, "Holography or the “Whole Picture”", New Scientist 29:74–8 (an interesting account written after laser beams were used to produce optical holograms).
    Further Reading
    T.E.Allibone, 1980, contribution to Biographical Memoirs of Fellows of the Royal Society 26: 107–47 (a full account of Gabor's life and work).
    JW

    Biographical history of technology > Gabor, Dennis (Dénes)

  • 92 Glenck, Karl Christian Friedrich

    [br]
    b. 13 April 1779 Schwäbisch Hall, Germany
    d. 21 November 1845 Gotha, Germany
    [br]
    German salt-mining expert who introduced large-scale salt explorations.
    [br]
    Having studied law at the University of Erlangen, he became Confidential Secretary to the Prince of Hohenlohe-Ingelfingen, in whose territory his father had been in charge of a saltworks. When this small country fell to Württemberg in 1806, Glenck continued his mineralogical and geological studies in order to develop methods of finding deposits of salt. He was the first to carry out systematic large-scale salt explorations in Germany, mostly in southern and central parts, and achieved remarkable results that far exceeded former non-systematic findings. He worked either on behalf of governments or companies or at his own risk, and in the early 1820s he settled in Gotha to live in the centre of the regions of greatest interest to him.
    His career began in 1819 with the discovery of the deposits of Ludwigshall near Wimpfen, Neckar, and prospecting salt near Basel in 1836 was his greatest success: Schweizerhall, opened one year later, made Switzerland self-sufficient in salt production. For fifteen years he had invested large sums into this project, which became the fifth salt-works to come into existence due to his drilling. Glenck worked with stir rods and he developed several new technical devices, such as casing the bore holes with iron pipes instead of wood (1830), and using wooden instead of iron rods to reduce the weight (1834). A flexible connection between rod and drill was to be introduced later by Karl von Oeynhausen. One of Glenck's most important followers in the field of deep-drilling was K.G. Kind.
    [br]
    Further Reading
    W.Carlé, 1969, "Die Salinistenfamilie Glenck", Lebensbilder aus Schwaben und Franken 11: 118–49 (with substantial biographical information).
    D.Hoffmann, 1959, 150 Jahre Tiefbobrungen in Deutschland, Vienna and Hamburg, (provides an evaluation of his technological developments).
    WK

    Biographical history of technology > Glenck, Karl Christian Friedrich

  • 93 Kilby, Jack St Clair

    [br]
    b. 8 November 1923 Jefferson City, Missouri, USA
    [br]
    American engineer who filed the first patents for micro-electronic (integrated) circuits.
    [br]
    Kilby spent most of his childhood in Great Bend, Kansas, where he often accompanied his father, an electrical power engineer, on his maintenance rounds. Working in the blizzard of 1937, his father borrowed a "ham" radio, and this fired Jack to study for his amateur licence (W9GTY) and to construct his own equipment while still a student at Great Bend High School. In 1941 he entered the University of Illinois, but four months later, after the attack on Pearl Harbor, he was enlisted in the US Army and found himself working in a radio repair workshop in India. When the war ended he returned to his studies, obtaining his BSEE from Illinois in 1947 and his MSEE from the University of Wisconsin. He then joined Centralab, a small electronics firm in Milwaukee owned by Globe-Union. There he filed twelve patents, including some for reduced titanate capacitors and for Steatite-packing of transistors, and developed a transistorized hearing-aid. During this period he also attended a course on transistors at Bell Laboratories. In May 1958, concerned to gain experience in the field of number processing, he joined Texas Instruments in Dallas. Shortly afterwards, while working alone during the factory vacation, he conceived the idea of making monolithic, or integrated, circuits by diffusing impurities into a silicon substrate to create P-N junctions. Within less than a month he had produced a complete oscillator on a chip to prove that the technology was feasible, and the following year at the 1ERE Show he demonstrated a germanium integrated-circuit flip-flop. Initially he was granted a patent for the idea, but eventually, after protracted litigation, priority was awarded to Robert Noyce of Fairchild. In 1965 he was commissioned by Patrick Haggerty, the Chief Executive of Texas Instruments, to make a pocket calculator based on integrated circuits, and on 14 April 1971 the world's first such device, the Pocketronic, was launched onto the market. Costing $150 (and weighing some 2½ lb or 1.1 kg), it was an instant success and in 1972 some 5 million calculators were sold worldwide. He left Texas Instruments in November 1970 to become an independent consultant and inventor, working on, amongst other things, methods of deriving electricity from sunlight.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. Institute of Electrical and Electronics Engineers David Sarnoff Award 1966; Cledo Brunetti Award (jointly with Noyce) 1978; Medal of Honour 1986. National Academy of Engineering 1967. National Science Medal 1969. National Inventors Hall of Fame 1982. Honorary DEng Miami 1982, Rochester 1986. Honorary DSc Wisconsin 1988. Distinguished Professor, Texas A \& M University.
    Bibliography
    6 February 1959, US patent no. 3,138,743 (the first integrated circuit (IC); initially granted June 1964).
    US patent no. 3,819,921 (the Pocketronic calculator).
    Further Reading
    T.R.Reid, 1984, Microchip. The Story of a Revolution and the Men Who Made It, London: Pan Books (for the background to the development of the integrated circuit). H.Queisser, 1988, Conquest of the Microchip, Cambridge, Mass.: Harvard University Press.
    KF

    Biographical history of technology > Kilby, Jack St Clair

  • 94 Krylov, Alexei Nicolaevitch

    SUBJECT AREA: Ports and shipping
    [br]
    b. 15 August 1863 Visyoger, Siberia
    d. 26 October 1945 Leningrad (now St Petersburg), Russia
    [br]
    Russian academician and naval architect) exponent of a rigorous mathematical approach to the study of ship motions.
    [br]
    After schooling in France and Germany, Krylov returned to St Petersburg (as it then was) and in 1878 entered the Naval College. Upon graduating, he started work with the Naval Hydrographic Department; the combination of his genius and breadth of interest became apparent, and from 1888 until 1890 he undertook simultaneously a two-year university course in mathematics and a naval architecture course at his old college. On completion of his formal studies, Krylov commenced fifty years of service to the academic bodies of St Petersburg, including eight years as Superintendent of the Russian Admiralty Ship Model Experiment Tank. For many years he was Professor of Naval Architecture in the city, reorganizing the methods of teaching of his profession in Russia. It was during this period that he laid the foundations of his remarkable research and published the first of his many books destined to become internationally accepted in the fields of waves, rolling, ship motion and vibration. Practical work was not overlooked: he was responsible for the design of many vessels for the Imperial Russian Navy, including the battleships Sevastopol and Petropavlovsk, and went on, as Director of Naval Construction, to test anti-rolling tanks aboard military vessels in the North Atlantic in 1913. Following the Revolution, Krylov was employed by the Soviet Union to re-establish scientific links with other European countries, and on several occasions he acted as Superintendent in the procurement of important technical material from overseas. In 1919 he was appointed Head of the Marine Academy, and from then on participated in many scientific conferences and commissions, mainly in the shipbuilding field, and served on the Editorial Board of the well-respected Russian periodical Sudostroenie (Shipbuilding). The breadth of his personal research was demonstrated by the notable contributions he made to the Russian development of the gyro compass.
    [br]
    Principal Honours and Distinctions
    Member, Russian Academy of Science 1814. Royal Institution of Naval Architects Gold Medal 1898. State Prize of the Soviet Union (first degree). Stalin Premium for work on compass deviation.
    Bibliography
    Krylov published more than 500 books, papers and articles; these have been collected and published in twelve volumes by the Academy of Sciences of the USSR. 1942, My Memories (autobiography).
    AK / FMW

    Biographical history of technology > Krylov, Alexei Nicolaevitch

  • 95 Lister, Joseph, Baron Lister

    SUBJECT AREA: Medical technology
    [br]
    b. 5 April 1827 Upton, Essex, England
    d. 10 February 1912 Walmer, Kent, England
    [br]
    English surgeon, founder of the antiseptic and aseptic principles of surgical practice.
    [br]
    Of Quaker stock, his father also being a Fellow of the Royal Society, he studied medicine at University College, London. He qualified, and became a Fellow of the Royal College of Surgeons, in 1852. Wishing to pursue a surgical career, he moved to Edinburgh to study surgery under William Syme, whose daughter he married in 1852, the same year he was appointed Assistant Surgeon to the Edinburgh Royal Infirmary.
    Until his appointment as Regius Professor of Surgery at Glasgow University and Glasgow Royal Infirmary in 1861, he was engaged in a wide variety of investigations into the nature of inflammation and the effects of irritants on wounds. Following his move to Glasgow, he became particularly involved in the major problems arising out of the vast increase in the number of surgical procedures brought about by the recent introduction of general anaesthesia. By 1865 his continuing study of wound inflammation and the microbial studies of Pasteur had led him to institute in the operating theatre a regime of surgical antisepsis involving the use of a carbolic acid spray coupled with the sterilization of instruments, the site of operation and the hands of the operator. Increasingly it was appreciated that the air was the least important origin of infection, and by 1887 the antiseptic approach had been superseded by the aseptic.
    In 1869 he succeeded Syme in the Chair at Edinburgh and his methods were widely accepted abroad. In 1877 he moved to the Chair of Surgery at King's College Hospital, London, in the hope of encouraging acceptance of his work in the metropolis. As well as developing a variety of new surgical procedures, he was engaged for many years in the development of surgical ligatures, which had always been a potent stimulant of infection. His choice of catgut as a sterilizable, absorbable material paved the way for major developments in this field. The Lister Institute of Preventive Medicine was named in his honour in 1903.
    [br]
    Principal Honours and Distinctions
    Created Baronet 1883. Baron 1897. Order of Merit 1902. President, Royal Society 1895– 1900.
    Bibliography
    1870, "On the effects of the antiseptic system of treatment upon the salubrity of a surgical hospital", Lancet.
    1859, Philosophical Transactions of the Royal Society.
    1863, Croonian Lecture.
    1881, 1900, Transactions of the International Medical Congress.
    Further Reading
    R.J.Godlee, 1924, Lord Lister.
    1927, Lister Centenary Handbook, London: Wellcome Historical Medical Museum. H.C.Cameron, 1948, Joseph Lister, the Friend of Man.
    MG

    Biographical history of technology > Lister, Joseph, Baron Lister

  • 96 Malouin, Paul-Jacques

    SUBJECT AREA: Metallurgy
    [br]
    b. 29 June 1701 Caen, France
    d. 3 January 1778 Versailles, France
    [br]
    French medical practitioner who suggested producing tin plate with zinc.
    [br]
    Setting out to study law, Malouin turned to scientific studies, settling in Paris to teach and practice medicine. He retained his scientific interest in the field of chemistry, producing memoirs on zinc and tin, and. as early as 1742 suggested that a type of tin plate might instead be produced with zinc. A method of zinc-coating hammered-iron saucepans was introduced briefly at Rouen in the early 1780s.
    His contribution to early volumes of Diderot's Encyclopédie included those on "Alchemy", "Antimony", "Acid" and "Alkali". Malouin also applied his scientific knowledge to articles on milling and baking for the Academy in Descriptions des arts et métiers.
    [br]
    Principal Honours and Distinctions
    Elected to Academy 1742. FRS 1753.
    Further Reading
    J.R.Partington, 1961, A History of Chemistry, Vol. III (refers to Malouin's work in chemistry).
    John Percy, 1864, Metallurgy: Iron and Steel, London: John Murray, 155 (provides brief references to his theories on zinc coatings).
    JD

    Biographical history of technology > Malouin, Paul-Jacques

  • 97 Mitscherlich, Alexander

    SUBJECT AREA: Paper and printing
    [br]
    b. 28 May 1836 Berlin, Germany
    d. 31 May 1918 Oberstdorf, Germany
    [br]
    German inventor of sulphite wood pulp for papermaking.
    [br]
    Mitscherlich had an impeccable scientific background; his father was the celebrated chemist Eilhardt Mitscherlich, discoverer of the law of isomorphism, and his godfather was Alexander von Humboldt. At first his progress at school failed to live up to this auspicious beginning and his father would only sanction higher studies if he first qualified as a teacher so as to assure a means of livelihood. Alexander rose to the occasion and went on to gain his doctorate at the age of 25 in the field of mineralogical chemistry. He worked for a few years as Assistant to the distinguished chemists Wöhler in Göttingen and Wurtz in Paris. On his father's death in 1863, he succeeded him as teacher of chemistry in the University of Berlin. In 1868 he accepted a post in the newly established Forest Academy in Hannoversch-Munden, teaching chemistry, physics and geology. The post offered little financial advantage, but it left him more time for research. It was there that he invented the process for producing sulphite wood pulp.
    The paper industry was seeking new raw materials. Since the 1840s pulp had been produced mechanically from wood, but it was unsuitable for making fine papers. From the mid-1860s several chemists began tackling the problem of separating the cellulose fibres from the other constituents of wood by chemical means. The American Benjamin C.Tilghman was granted patents in several countries for the treatment of wood with acid or bisulphite. Carl Daniel Ekman in Sweden and Karl Kellner in Austria also made sulphite pulp, but the credit for devising the process that came into general use belongs to Mitscherlich. His brother Oskar came to him at the Academy with plans for producing pulp by the action of soda, but the results were inferior, so Mitscherlich substituted calcium bisulphite and in the laboratory obtained good results. To extend this to a large-scale process, he was forced to set up his own mill, where he devised the characteristic towers for making the calcium bisulphite, in which water trickling down through packed lime met a rising current of sulphur dioxide. He was granted a patent in Luxembourg in 1874 and a German one four years later. The sulphite process did not make him rich, for there was considerable opposition to it; government objected to the smell of sulphur dioxide, forestry authorities were anxious about the inroads that might be made into the forests and his patents were contested. In 1883, with the support of an inheritance from his mother, Mitscherlich resigned his post at the Academy to devote more time to promoting his invention. In 1897 he at last succeeded in settling the patent disputes and achieving recognition as the inventor of sulphite pulp. Without this raw material, the paper industry could never have satisfied the insatiable appetite of the newspaper presses.
    [br]
    Further Reading
    H.Voorn "Alexander Mitscherlich, inventor of sulphite wood pulp", Paper Maker 23(1): 41–4.
    LRD

    Biographical history of technology > Mitscherlich, Alexander

  • 98 Monro, Philip Peter

    SUBJECT AREA: Chemical technology
    [br]
    b. 27 May 1946 London, England
    [br]
    English biologist, inventor of a water-purification process by osmosis.
    [br]
    Monro's whole family background is engineering, an interest he did not share. Instead, he preferred biology, an enthusiasm aroused by reading the celebrated Science of Life by H.G. and G.P.Wells and Julian Huxley. Educated at a London comprehensive school, Monro found it necessary to attend evening classes while at school to take his advanced level science examinations. Lacking parental support, he could not pursue a degree course until he was 21 years old, and so he gained valuable practical experience as a research technician. He resumed his studies and took a zoology degree at Portsmouth Polytechnic. He then worked in a range of zoology and medical laboratories, culminating after twelve years as a Senior Experimental Officer at Southampton Medical School. In 1989 he relinquished his post to devote himself fall time to developing his inventions as Managing Director of Hampshire Advisory and Technical Services Ltd (HATS). Also in 1988 he obtained his PhD from Southampton University, in the field of embryology.
    Monro had meanwhile been demonstrating a talent for invention, mainly in microscopy. His most important invention, however, is of a water-purification system. The idea for it came from Michael Wilson of the Institute of Dental Surgery in London, who evolved a technique for osmotic production of sterile oral rehydration solutions, of particular use in treating infants suffering from diarrhoea in third-world countries. Monro broadened the original concept to include dried food, intravenous solutions and even dried blood. The process uses simple equipment and no external power and works as follows: a dry sugar/salts mixture is sealed in one compartment of a double bag, the common wall of which is a semipermeable membrane. Impure water is placed in the empty compartment and the water transfers across the membrane by the osmotic force of the sugar/salts. As the pores in the membrane exclude all viruses, bacteria and their toxins, a sterile solution is produced.
    With the help of a research fellowship granted for humanitarian reasons at King Alfred College, Winchester, the invention was developed to functional prototype stage in 1993, with worldwide patent protection. Commercial production was expected to follow, if sufficient financial backing were forthcoming. The process is not intended to replace large installations, but will revolutionize the small-scale production of sterile water in scattered third-world communities and in disaster areas where normal services have been disrupted.
    HATS was awarded First Prize in the small business category and was overall prize winner in the Toshiba Year of Invention, received a NatWest/BP award for technology and a Prince of Wales Award for Innovation.
    [br]
    Bibliography
    1993, with M.Wilson and W.A.M.Cutting, "Osmotic production of sterile oral rehydration solutions", Tropical Doctor 23:69–72.
    LRD

    Biographical history of technology > Monro, Philip Peter

  • 99 Poncelet, Jean Victor

    [br]
    b. 1 July 1788 Metz, France
    d. 22 December 1867 Paris, France
    [br]
    French mathematician and military and hydraulic engineer.
    [br]
    Poncelet studied mathematics at the Ecole Polytechnique in Paris from 1807 to 1810. He joined the Army, gaining admission to the Corps of Engineers. He worked on the fortifications on the Isle of Walcheren in Holland, and in 1812 he found himself on the Russian front, engulfed in the disastrous defeat of the French at Krasnoi. Poncelet was left for dead on the field, but he was found by the Russians and taken to Saratov, where he was imprisoned for two years. He had ample opportunity there to ponder mathematical problems, a mental process from which stemmed his pioneering advances in projective geometry.
    After his release he returned to this native city of Metz, where he undertook routine military engineering and teaching tasks. These left him time to pursue his mathematical studies in projective geometry. This bore fruit in a series of publications, most notably the first volume of his Traité des propriétés projectives des figures (1822, Paris), the first book to be devoted to the new discipline of projective geometry. With his election to the Académie des Sciences in 1834, Poncelet moved to Paris and devoted much of his time to developing courses in applied mechanics in the Faculty of Science, resulting in a number of books, especially the Introduction à la mécanique industrielle, physique ou expérimentale (1841, Paris: Metz). In 1848 he had attained the rank of general and was made Commandant of the Ecole Polytechnique, a post he held for two years. After his retirement in 1850 he was deeply involved in the industrial machines and tools division at both the Great Exhibition in London in 1851 and the similar exhibition in Paris in 1855.
    Most of Poncelet's work in applied mechanics and technology was conceived during the period 1825–40. His technological innovations were centred on hydraulic engineering, and in 1826 he invented an inward-flow turbine. At the same time he directed his attention to the vertical undershot water-wheel, with wooden blades set radially and substituted curved metal blades: he used tight-fitting masonry and floors in the wheel pits so that all the water would be swept into the spaces between the blades. In addition, he ensured that the water flowing from the blades fell clear of the wheel and did not run in tail water. This greatly improved the efficiency of the water-wheel.
    [br]
    Bibliography
    H.Tribout, 1936, Un Grand Savant: le général Jean-Victor Poncelet, Paris, pp. 204–20 (the most complete list of his published works).
    Further Reading
    I.Didion, 1870, "Notice sur la vie et les ouvrages du général J.-V.Poncelet", Mémoires de l'Académie de Metz 50:101–59.
    M.Daumas (ed), 1968, Histoire des techniques, Vol. 3, Paris (briefly describes his technological work).
    LRD

    Biographical history of technology > Poncelet, Jean Victor

  • 100 Schrötter, Anton von

    SUBJECT AREA: Chemical technology
    [br]
    b. 26 November 1802 Olmütz, Austria (now Olomouc, Czech Republic)
    d. 15 April 1875 Vienna, Austria
    [br]
    Austrian scientist known particularly for his discovery in 1845 of red phosphorus, which led to the later development of the safety match.
    [br]
    Anton von Schrötter was the son of an apothecary. At the age of 20 he began his studies at the University of Vienna, first in medicine but later in science and mathematics. He specialized in chemistry and then set up a laboratory in Graz. From 1843 he was a professor of chemistry at the Technische Hochschule in Vienna. Von Schrötter published many papers on various aspects of chemistry, particularly in the field of metallurgy, but it was his demonstration at the Vienna Academy in 1847, which showed that red phosphorus was truly an allotropie form of the element phosphorus, that made him best known. His suggestion that it would be advisable to use such amorphous phosphorus in match manufacture led to Lundström's later development of the safety match and ended the appalling toll that had long been taken on the health of match-factory workers, many of whom had suffered maiming and even death caused by white phosphorus entering the body via defective teeth when they sucked match-heads.
    [br]
    Principal Honours and Distinctions
    Académie Française Prix Montyon 1856. Légion d'Honneur at Paris Exhibition 1855. General Secretary, Vienna Academy of Sciences 1850–75.
    Further Reading
    Moritz Kohn, 1944, "The discovery of red phosphorus (1847)", Journal of Chemical Education 21.
    1975, Dictionary of Science Biography, New York: Charles Scribner.
    DY

    Biographical history of technology > Schrötter, Anton von

См. также в других словарях:

  • Field Studies — For other uses, see Field Studies (disambiguation). Field Studies Studio album by Quasi …   Wikipedia

  • Field Studies Council — The Field Studies Council (FSC) is an educational charity based in the UK. It opened its first Field Centre in 1947 at Flatford Mill, and now operates 17 Field Centres in various locations in England, Wales, Northern Ireland and Scotland offering …   Wikipedia

  • The School for Field Studies — (SFS) is the USA s oldest and largest undergraduate environmental study abroad program. [http://www.petersons.com/stdyabrd/select/f1311250.asp] Through its network of field stations, SFS has been teaching students how to address critical… …   Wikipedia

  • Jupiter Environmental Research and Field Studies Academy — Infobox Secondary school name = Jupiter Environmental Research and Field Studies Academy [JERFSA] dean = Mr. Neal White city = Jupiter state = Florida, country = United States established = 1993 campus = Suburban type = Magnet school grades =… …   Wikipedia

  • Malham Tarn Field Studies Centre — Coordinates: 54°06′04″N 2°09′50″W / 54.101°N 2.164°W / 54.101; 2.164 …   Wikipedia

  • field — ▪ I. field field 1 [fiːld] noun [countable] 1. a subject that people study or are involved in as part of their work: • We are looking for graduates with degrees in artificial intelligence, languages and related fields. • Until recently, NEC was… …   Financial and business terms

  • Field guide — A field guide Bold textis a book designed to help the reader identify wildlife (plants or animals) or other objects of natural occurrence (e.g. minerals). It is generally designed to be brought into the field or local area where such objects… …   Wikipedia

  • Field trip — A field trip is a journey by a group of people to a place away from their normal environment.The purpose of the trip is usually observation for education, non experimental research or to provide students with experiences outside their everyday… …   Wikipedia

  • Field emission — (FE) is the emission of electrons from the surface of a condensed phase into another phase due to the presence of high electric fields. In this phenomenon, electrons with energies below the Fermi level tunnel through the potential barrier at the… …   Wikipedia

  • Studies in Slavic and General Linguistics — (SSGL) is an academic book series that was founded in 1980 and is published by Rodopi. SSGL is mainly devoted to the field of descriptive linguistics. Although SSGL is primarily intended to be a means of publication for linguists from the Low… …   Wikipedia

  • field theorist — field theorist, a person who studies field theory: »Field theorists like to start work by writing down a mathematical summary…which expresses the energies of a general group of particles under the influence of whatever force is being considered… …   Useful english dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»