Перевод: со всех языков на все языки

со всех языков на все языки

før+1961

  • 121 Chain, Ernst Boris

    SUBJECT AREA: Medical technology
    [br]
    b. 19 June 1906 Berlin, Germany
    d. 12 August 1979 Ireland
    [br]
    Anglo-German biochemist and physiologist, co-worker with Florey in the isolation of sufficient supplies of the antibiotic penicillin for clinical use during wartime.
    [br]
    Chain graduated in Berlin at the Charite Hospital in 1930. A refugee from political persecution, in 1933 he went to the School of Biochemistry in Cambridge, and in 1935 moved to the School of Pathology at Oxford. He became a British subject in 1939. His interests had involved the study of enzymes and the isolation of physiologically active substances from natural sources. In 1938 he drew Florey's attention to Fleming's note of 1929 reporting the bacterial growth inhibiting qualities of Penicillium mould. Using makeshift equipment and with little initial support, they isolated small quantities of penicillin, which they were then able to use clinically with dramatic effect.
    Chain had always hoped for adequate resources to develop penicillin and other antibiotics in Britain. This was not forthcoming, however, and in 1948 a research chair and institute was created for him in Rome, at the International Research Centre for Chemical Microbiology. In 1961 he returned to London to the Chair of Biochemistry at Imperial College. There, with the help of a large donation from the Wolfson Foundation, an appropriate building with facilities for the large-scale development and production of biochemical substances was finally made available. His co-equal part in the development of penicillin was recognized by the sharing of the Nobel Prize for Medicine between Florey, Fleming and himself, and he received numerous honours and honorary degrees from a large number of governments and international institutions.
    [br]
    Principal Honours and Distinctions
    Knighted 1944. Nobel Prize for Medicine (jointly with H.W.Florey and A.Fleming) 1945. Fellow of the Royal Society 1949. Ehrlich Prize 1954.
    Bibliography
    1941, "Penicillin as a chemotherapeutic agent", Lancet (with Florey). 1941, "Further observations on penicillin", Lancet.
    1949, Antibiotics, Oxford, (with Florey et al.) MG

    Biographical history of technology > Chain, Ernst Boris

  • 122 Dickson, William Kennedy Laurie

    [br]
    b. August 1860 Brittany, France
    d. 28 September 1935 Twickenham, England
    [br]
    Scottish inventor and photographer.
    [br]
    Dickson was born in France of English and Scottish parents. As a young man of almost 19 years, he wrote in 1879 to Thomas Edison in America, asking for a job. Edison replied that he was not taking on new staff at that time, but Dickson, with his mother and sisters, decided to emigrate anyway. In 1883 he contacted Edison again, and was given a job at the Goerk Street laboratory of the Edison Electric Works in New York. He soon assumed a position of responsibility as Superintendent, working on the development of electric light and power systems, and also carried out most of the photography Edison required. In 1888 he moved to the Edison West Orange laboratory, becoming Head of the ore-milling department. When Edison, inspired by Muybridge's sequence photographs of humans and animals in motion, decided to develop a motion picture apparatus, he gave the task to Dickson, whose considerable skills in mechanics, photography and electrical work made him the obvious choice. The first experiments, in 1888, were on a cylinder machine like the phonograph, in which the sequence pictures were to be taken in a spiral. This soon proved to be impractical, and work was delayed for a time while Dickson developed a new ore-milling machine. Little progress with the movie project was made until George Eastman's introduction in July 1889 of celluloid roll film, which was thin, tough, transparent and very flexible. Dickson returned to his experiments in the spring of 1891 and soon had working models of a film camera and viewer, the latter being demonstrated at the West Orange laboratory on 20 May 1891. By the early summer of 1892 the project had advanced sufficiently for commercial exploitation to begin. The Kinetograph camera used perforated 35 mm film (essentially the same as that still in use in the late twentieth century), and the kinetoscope, a peep-show viewer, took fifty feet of film running in an endless loop. Full-scale manufacture of the viewers started in 1893, and they were demonstrated on a number of occasions during that year. On 14 April 1894 the first kinetoscope parlour, with ten viewers, was opened to the public in New York. By the end of that year, the kinetoscope was seen by the public all over America and in Europe. Dickson had created the first commercially successful cinematograph system. Dickson left Edison's employment on 2 April 1895, and for a time worked with Woodville Latham on the development of his Panoptikon projector, a projection version of the kinetoscope. In December 1895 he joined with Herman Casier, Henry N.Marvin and Elias Koopman to form the American Mutoscope Company. Casier had designed the Mutoscope, an animated-picture viewer in which the sequences of pictures were printed on cards fixed radially to a drum and were flipped past the eye as the drum rotated. Dickson designed the Biograph wide-film camera to produce the picture sequences, and also a projector to show the films directly onto a screen. The large-format images gave pictures of high quality for the period; the Biograph went on public show in America in September 1896, and subsequently throughout the world, operating until around 1905. In May 1897 Dickson returned to England and set up as a producer of Biograph films, recording, among other subjects, Queen Victoria's Diamond Jubilee celebrations in 1897, Pope Leo XIII in 1898, and scenes of the Boer War in 1899 and 1900. Many of the Biograph subjects were printed as reels for the Mutoscope to produce the "what the butler saw" machines which were a feature of fairgrounds and seaside arcades until modern times. Dickson's contact with the Biograph Company, and with it his involvement in cinematography, ceased in 1911.
    [br]
    Further Reading
    Gordon Hendricks, 1961, The Edison Motion Picture Myth.
    —1966, The Kinetoscope.
    —1964, The Beginnings of the Biograph.
    BC

    Biographical history of technology > Dickson, William Kennedy Laurie

  • 123 Dolby, Ray M.

    [br]
    b. 1933 Portland, Oregon, USA
    [br]
    American electronics engineer who developed professional systems for noise reduction.
    [br]
    He was employed by Ampex Corporation from 1949 to 1957 and received a BSc in electrical engineering from Stanford University in 1957. He studied in England and received a PhD in physics from Cambridge University in 1961. He was a United Nations adviser in India 1963–5 and established the Dolby Laboratories in London in 1965. The Dolby Laboratories continuously developed systems for background-noise reduction, and in 1966 introduced Dolby A for professional tape and film formats. In 1968 Dolby B was developed and quickly found its use in the Philips Compact Cassette, which had become the new consumer medium for music. In 1981 Dolby C was an improvement designed for the consumer market, but it also was used in professional video equipment. In 1986 Dolby SR was introduced for professional sound recording. It is a common feature that the equipment has to be in a good state of calibration in order to obtain the advantages of these compander systems.
    [br]
    Principal Honours and Distinctions
    OBE 1986.
    GB-N

    Biographical history of technology > Dolby, Ray M.

  • 124 Forrester, Jay Wright

    [br]
    b. 14 July 1918 Anselmo, Nebraska, USA
    [br]
    American electrical engineer and management expert who invented the magnetic-core random access memory used in most early digital computers.
    [br]
    Born on a cattle ranch, Forrester obtained a BSc in electrical engineering at the University of Nebraska in 1939 and his MSc at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, where he remained to teach and carry out research. Becoming interested in computing, he established the Digital Computer Laboratory at MIT in 1945 and became involved in the construction of Whirlwind I, an early general-purpose computer completed in March 1951 and used for flight-simulation by the US Army Air Force. Finding the linear memories then available for storing data a major limiting factor in the speed at which computers were able to operate, he developed a three-dimensional store based on the binary switching of the state of small magnetic cores that could be addressed and switched by a matrix of wires carrying pulses of current. The machine used parallel synchronous fixed-point computing, with fifteen binary digits and a plus sign, i.e. 16 bits in all, and contained 5,000 vacuum tubes, eleven semiconductors and a 2 MHz clock for the arithmetic logic unit. It occupied a two-storey building and consumed 150kW of electricity. From his experience with the development and use of computers, he came to realize their great potential for the simulation and modelling of real situations and hence for the solution of a variety of management problems, using data communications and the technique now known as interactive graphics. His later career was therefore in this field, first at the MIT Lincoln Laboratory in Lexington, Massachusetts (1951) and subsequently (from 1956) as Professor at the Sloan School of Management at the Massachusetts Institute of Technology.
    [br]
    Principal Honours and Distinctions
    National Academy of Engineering 1967. George Washington University Inventor of the Year 1968. Danish Academy of Science Valdemar Poulsen Gold Medal 1969. Systems, Man and Cybernetics Society Award for Outstanding Accomplishments 1972. Computer Society Pioneer Award 1972. Institution of Electrical Engineers Medal of Honour 1972. National Inventors Hall of Fame 1979. Magnetics Society Information Storage Award 1988. Honorary DEng Nebraska 1954, Newark College of Engineering 1971, Notre Dame University 1974. Honorary DSc Boston 1969, Union College 1973. Honorary DPolSci Mannheim University, Germany. Honorary DHumLett, State University of New York 1988.
    Bibliography
    1951, "Data storage in three dimensions using magnetic cores", Journal of Applied Physics 20: 44 (his first description of the core store).
    Publications on management include: 1961, Industrial Dynamics, Cambridge, Mass.: MIT Press; 1968, Principles of Systems, 1971, Urban Dynamics, 1980, with A.A.Legasto \& J.M.Lyneis, System Dynamics, North Holland. 1975, Collected Papers, Cambridge, Mass.: MIT.
    Further Reading
    K.C.Redmond \& T.M.Smith, Project Whirlwind, the History of a Pioneer Computer (provides details of the Whirlwind computer).
    H.H.Goldstine, 1993, The Computer from Pascal to von Neumann, Princeton University Press (for more general background to the development of computers).
    Serrell et al., 1962, "Evolution of computing machines", Proceedings of the Institute of
    Radio Engineers 1,047.
    M.R.Williams, 1975, History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Forrester, Jay Wright

  • 125 Haddy, Arthur Charles

    [br]
    b. 16 May 1906 Newbury, Berkshire, England
    d. December 1989
    [br]
    English electronics engineer who developed Full Frequency Range Recording for the Decca Record Company and was instrumental in the development of stereo records.
    [br]
    He developed recording equipment for. the Crystallate Gramophone Company, becoming Chief Recording Engineer at Decca when Crystallate was taken over. Eventually he was made Technical Director of Decca Record Company Ltd, a position he held until 1980. The developments of good cutterheads accelerated due to contract work for the armed services during the Second World War, because an extended frequency range was needed. This necessitated the solution of the problem of surface noise, and the result became known publicly as the ffrr system. The experience gained enabled Haddy to pioneer European Long Play recording. Haddy started development of a practical stereo record system within the Decca group, and for economic reasons he eventually chose a solution developed outside his direct surveillance by Teldec. The foresight of Decca made the company an equal partner in the standards discussions during the late 1950s, when it was decided to use the American 45/45 system, which utilized the two side walls of the groove. The same foresight had led Decca to record their repertoire in stereo from 1954 in order to prepare for any commercialized distribution system. In 1967 Haddy also became responsible for cassette manufacture, which meant organizing the logistics of a tape-duplication plant.
    [br]
    Principal Honours and Distinctions
    OBE 1976.
    Bibliography
    Haddy's patents are a good description of some of his technical achievements; for example: UK patent no. 770,465 (greater playing time from a record by changing the groove pitch); UK patent no. 807,301 (using feedback to linearize a cutterhead); UK patent no. 810,106 (two-channel by simultaneous vertical and lateral modulation).
    Further Reading
    G.A.Briggs (ed.), 1961, Audio Biographies, Wharfedale Wireless Works, pp. 157–63. H.E.Roys, "The coming of stereo", Jour. AES 25 (10/11):824–7 (an appreciation of Haddy's role in the standardization of stereo recording).
    GB-N

    Biographical history of technology > Haddy, Arthur Charles

  • 126 Héroult, Paul Louis Toussaint

    SUBJECT AREA: Metallurgy
    [br]
    b. 1863 Thury-Harcourt, Caen, France
    d. 9 May 1914 Antibes, France
    [br]
    French metallurigst, inventor of the process of aluminium reduction by electrolysis.
    [br]
    Paul Héroult, the son of a tanner, at the age of 16, while still at school in Caen, read Deville's book on aluminium and became obsessed with the idea of developing a cheap way of producing this metal. After his family moved to Gentillysur-Bièvre he studied at the Ecole Sainte-Barbe in Paris and then returned to Caen to work in the laboratory of his father's tannery. His first patent, filed in February and granted on 23 April 1886, described an invention almost identical to that of C.M. Hall: "the electrolysis of alumina dissolved in molten cryolite into which the current is introduced through suitable electrodes. The cryolite is not consumed." Early in 1887 Héroult attempted to obtain the support of Alfred Rangod Pechiney, the proprietor of the works at Salindres where Deville's process for making sodium-reduced aluminium was still being operated. Pechiney persuaded Héroult to modify his electrolytic process by using a cathode of molten copper, thus making it possible produce aluminium bronze rather than pure aluminium. Héroult then approached the Swiss firm J.G.Nehe Söhne, ironmasters, whose works at the Falls of Schaffhausen obtained power from the Rhine. They were looking for a new metallurgical process requiring large quantities of cheap hydroelectric power and Héroult's process seemed suitable. In 1887 they established the Société Metallurgique Suisse to test Héroult's process. Héroult became Technical Director and went to the USA to defend his patents against those of Hall. During his absence the Schaffhausen trials were successfully completed, and on 18 November 1888 the Société Metallurgique combined with the German AEG group, Oerlikon and Escher Wyss, to establish the Aluminium Industrie Aktiengesellschaft Neuhausen. In the early electrolytic baths it was occasionally found that arcs between the bath surface and electrode could develop if the electrodes were inadvertently raised. From this observation, Héroult and M.Killiani developed the electric arc furnace. In this, arcs were intentionally formed between the surface of the charge and several electrodes, each connected to a different pole of the AC supply. This furnace, the prototype of the modern electric steel furnace, was first used for the direct reduction of iron ore at La Praz in 1903. This work was undertaken for the Canadian Government, for whom Héroult subsequently designed a 5,000-amp single-phase furnace which was installed and tested at Sault-Sainte-Marie in Ontario and successfully used for smelting magnetite ore.
    [br]
    Further Reading
    Aluminium Industrie Aktiengesellschaft Neuhausen, 1938, The History of the Aluminium-Industrie-Aktien-Gesellschaft Neuhausen 1888–1938, 2 vols, Neuhausen.
    C.J.Gignoux, Histoire d'une entreprise française. "The Hall-Héroult affair", 1961, Metal Bulletin (14 April):1–4.
    ASD

    Biographical history of technology > Héroult, Paul Louis Toussaint

  • 127 Oberth, Hermann Julius

    SUBJECT AREA: Aerospace
    [br]
    b. 25 June 1894 Nagyszeben, Transylvania (now Sibiu, Romania)
    d. 29 December 1989 Nuremberg, Germany
    [br]
    Austro-Hungarian lecturer who is usually regarded, with Robert Goddard, as one of the "fathers" of modern astronautics.
    [br]
    The son of a physician, Oberth originally studied medicine in Munich, but his education was interrupted by the First World War and service in the Austro-Hungarian Army. Wounded, he passed the time by studying astronautics. He apparently simulated weightlessness and worked out the design for a long-range liquid-propelled rocket, but his ideas were rejected by the War Office; after the war he submitted them as a dissertation for a PhD at Heidelberg University, but this was also rejected. Consequently, in 1923, whilst still an unknown mathematics teacher, he published his ideas at his own expense in the book The Rocket into Interplanetary Space. These included a description of how rockets could achieve a sufficient velocity to escape the gravitational field of the earth. As a result he gained international prestige almost overnight and learned of the work of Robert Goddard and Konstantin Tsiolkovsky. After correspondence with the Goddard and Tsiolkovsky, Oberth published a further work in 1929, The Road to Space Travel, in which he acknowledged the priority of Goddard's and Tsiolkovski's calculations relating to space travel; he went on to anticipate by more than thirty years the development of electric and ionic propulsion and to propose the use of giant mirrors to control the weather. For this he was awarded the annual Hirsch Prize of 10,000 francs. From 1925 to 1938 he taught at a college in Mediasch, Transylvania, where he carried out experiments with petroleum and liquid-air rockets. He then obtained a lecturing post at Vienna Technical University, moving two years later to Dresden University and becoming a German citizen. In 1941 he became assistant to the German rocket engineer Werner von Braun at the rocket development centre at Peenemünde, and in 1943 he began work on solid propellants. After the Second World War he spent a year in Switzerland as a consultant, then in 1950 he moved to Italy to develop solid-propellant anti-aircraft rockets for the Italian Navy. Five years later he moved to the USA to carry out advanced rocket research for the US Army at Huntsville, Alabama, and in 1958 he retired to Feucht, near Nuremberg, Germany, where he wrote his autobiography.
    [br]
    Principal Honours and Distinctions
    French Astronautical Society REP-Hirsch Prize 1929. German Society for Space Research Medal 1950. Diesel German Inventors Medal 1954. American Astronautical Society Award 1955. German Federal Republic Award 1961. Institute of Aviation and Astronautics Medal 1969.
    Bibliography
    1923, Die Rakete zu den Planetenraumen; repub. 1934 as The Rocket into Interplanetary Space (autobiography).
    1929, Wege zur Raumschiffahrt [Road to Space Travel].
    1959, Stoff und Leben [Material and Life].
    Further Reading
    R.Spangenburg and D.Moser, 1990, Space People from A to Z, New York: Facts on File. H.Wulforst, 1991, The Rocketmakers: The Dreamers who made Spaceflight a Reality, New York: Crown Publishers.
    KF / IMcN

    Biographical history of technology > Oberth, Hermann Julius

  • 128 Poniatoff, Alexander Mathew

    [br]
    b. 25 March 1892 Kazan District, Russia
    d. 24 October 1980
    [br]
    Russian (naturalized American in 1932) electrical engineer responsible for the development of the professional tape recorder and the first commercially-successful video tape recorder (VTR).
    [br]
    Poniatoff was educated at the University of Kazan, the Imperial College in Moscow, and the Technische Hochschule in Karlsruhe, gaining degrees in mechanical and electrical engineering. He was in Germany when the First World War broke out, but he managed to escape back to Russia, where he served as an Air Force pilot with the Imperial Russian Navy. During the Russian Revolution he was a pilot with the White Russian Forces, and escaped into China in 1920; there he found work as an assistant engineer in the Shanghai Power Company. In 1927 he immigrated to the USA, becoming a US citizen in 1932. He obtained a post in the research and development department of the General Electric Company in Schenectady, New York, and later at Dalmo Victor, San Carlos, California. During the Second World War he was involved in the development of airborne radar for the US Navy.
    In 1944, taking his initials to form the title, Poniatoff founded the AMPEX Corporation to manufacture components for the airborne radar developed at General Electric, but in 1946 he turned to the production of audio tape recorders developed from the German wartime Telefunken Magnetophon machine (the first tape recorder in the truest sense). In this he was supported by the entertainer Bing Crosby, who needed high-quality replay facilities for broadcasting purposes, and in 1947 he was able to offer a professional-quality product and the business prospered.
    With the rapid post-war boom in television broadcasting in the USA, a need soon arose for a video recorder to provide "time-shifting" of live TV programmes between the different US time zones. Many companies therefore endeavoured to produce a video tape recorder (VTR) using the same single-track, fixed-head, longitudinal-scan system used for audio, but the very much higher bandwidth required involved an unacceptably high tape-speed. AMPEX attempted to solve the problem by using twelve parallel tracks and a machine was demonstrated in 1952, but it proved unsatisfactory.
    The development team, which included Charles Ginsburg and Ray Dolby, then devised a four-head transverse-scan system in which a quadruplex head rotating at 14,400 rpm was made to scan across the width of a 2 in. (5 cm) tape with a tape-to-head speed of the order of 160 ft/sec (about 110 mph; 49 m/sec or 176 km/h) but with a longitudinal tape speed of only 15 in./sec (0.38 m/sec). In this way, acceptable picture quality was obtained with an acceptable tape consumption. Following a public demonstration on 14 April 1956, commercial produc-tion of studio-quality machines began to revolutionize the production and distribution of TV programmes, and the perfecting of time-base correctors which could stabilize the signal timing to a few nanoseconds made colour VTRs a practical proposition. However, AMPEX did not rest on its laurels and in the face of emerging competition from helical scan machines, where the tracks are laid diagonally on the tape, the company was able to demonstrate its own helical machine in 1957. Another development was the Videofile system, in which 250,000 pages of facsimile could be recorded on a single tape, offering a new means of archiving information. By 1986, quadruplex VTRs were obsolete, but Poniatoff's role in making television recording possible deserves a place in history.
    Poniatoff was President of AMPEX Corporation until 1955 and then became Chairman of the Board, a position he held until 1970.
    [br]
    Further Reading
    A.Abrahamson, 1953, "A short history of television recording", Part I, JSMPTE 64:73; 1973, Part II, Journal of the Society of Motion Picture and Television Engineers, 82:188 (provides a fuller background).
    Audio Biographies, 1961, ed. G.A.Briggs, Wharfedale Wireless Works, pp. 255–61 (contains a few personal details about Poniatoff's escape from Germany to join the Russian Navy).
    E.Larsen, 1971, A History of Invention.
    Charles Ginsburg, 1981, "The horse or the cowboy. Getting television on tape", Journal of the Royal Television Society 18:11 (a brief account of the AMPEX VTR story).
    KF / GB-N

    Biographical history of technology > Poniatoff, Alexander Mathew

См. также в других словарях:

  • List of Top 25 singles for 1961 in Australia — The following lists the top 25 (end of year) charting singles on the Australian Singles Charts, for the year of 1961. These were the best charting singles in Australia for 1961. The source for this year is the Kent Music Report , known from 1987… …   Wikipedia

  • 1961 NFL Championship Game — New York Giants Green Bay Packers 0 37 1 2 3 4 …   Wikipedia

  • 1961 Academy Awards — may refer to:* 33rd Academy Awards, the Academy Awards ceremony that took place in 1961 * 34th Academy Awards, the 1962 ceremony honoring the best in film for 1961 …   Wikipedia

  • 1961 Detroit Tigers season — MLB yearly infobox pre1969‎ name = Detroit Tigers season = 1961 misc = current league = American League y1 = 1901 Uniform ballpark = Tiger Stadium y4 = 1912 city = Detroit, Michigan y5 = 1901 owners = John Fetzer managers = Bob Scheffing… …   Wikipedia

  • 1961 Western Australian bushfires — In early 1961, a series of bushfires burned in the southwest of Western Australia.[1] The devastating fires burned large areas of forest in and around Dwellingup from 20 to 24 January, at Pemberton and in the Shannon River region between 11 and… …   Wikipedia

  • 1961 Pulitzer Prize — The following are the Pulitzer Prizes for 1961.Journalism Awards*Public Service: ** The Amarillo Globe Times , for exposing a breakdown in local law enforcement with resultant punitive action that swept lax officials from their posts and brought… …   Wikipedia

  • 1961 American Football League Draft — Because another league was in competition for the class of 1961 college stars, the American Football League draft for 1961 graduates was actually held in 1960, with a six round telephone draft on November 23, that saw the Buffalo Bills select… …   Wikipedia

  • 1961 American Football League All-League Players — Sporting News American Football League All League Team 1961 = The 1961 American Football League All League Team was selected by AFL players and published by the Sporting News . The 1961 All League players were augmented by other All Stars to form …   Wikipedia

  • 1961 NSWRFL season — Teams 10 Premiers St. George (8th title) Minor premiers …   Wikipedia

  • 1961 en économie — 1961 Années : 1958 1959 1960  1961  1962 1963 1964 Décennies : 1930 1940 1950  1960  1970 1980 1990 Siècles : XIXe siècle & …   Wikipédia en Français

  • 1961 Copa Libertadores — 1961 Copa de Campeones 1961 Copa de Campeones de América 1961 Copa do Campeones da América Tournament details Dates April 2 June 11 Teams 9 (from 9 confederations) Final positions Champions …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»