Перевод: с английского на все языки

со всех языков на английский

dresden

  • 81 Beyer, Charles Frederick

    [br]
    b. 14 May 1813 Plauen, Saxony, Germany
    d. 2 June 1876 Llantysilio, Denbighshire, Wales
    [br]
    German (naturalized British in 1852) engineer, founder of locomotive builders Beyer, Peacock \& Co.
    [br]
    Beyer came from a family of poor weavers, but showed talent as an artist and draftsman and was educated at Dresden Polytechnic School. He was sent to England in 1834 to report on improvements in cotton spinning machinery and settled in Manchester, working for the machinery manufacturers Sharp Roberts \& Co., initially as a draftsman. When the firm started to build locomotives he moved to this side of the business. The Institution of Mechanical Engineers was founded at his house in 1847. In 1853 Beyer entered into a partnership with Richard Peacock, Locomotive Engineer to the Manchester, Sheffield \& Lincolnshire Railway, and Henry Robertson to establish Beyer, Peacock \& Co. The company soon established a reputation for soundly designed, elegant locomotives: it exported worldwide, and survived until the 1960s.
    [br]
    Further Reading
    Obituary, 1877, Minutes of Proceedings of the Institution of Civil Engineers 47. R.L.Hills, 1967–8 "Some contributions to locomotive development by Beyer, Peacock \& Co.", Transactions of the Newcomen Society 40 (a good description of Beyer, Peacock \& Co's locomotive work).
    PJGR

    Biographical history of technology > Beyer, Charles Frederick

  • 82 Caro, Heinrich

    [br]
    b. 13 February 1834 Poznan, Poland
    d. 11 October 1911 Dresden, Germany
    [br]
    German dyestuffi chemist.
    [br]
    Caro received vocational training as a dyer at the Gewerbeinstitut in Berlin from 1852, at the same time attending chemistry lectures at the university there. In 1855 he was hired as a colourist by a firm of calico printers in Mulheim an der Ruhr, where he was able to demonstrate the value of scientific training in solving practical problems. Two years later, the year after Perkin's discovery of aniline dyes, he was sent to England in order to learn the latest dyeing techniques. He took up a post an analytical chemist with the chemical firm Roberts, Dale \& Co. in Manchester; after finding a better way of synthesizing Perkin's mauve, he became a partner in the business. Caro was able to enlarge both his engineering experience and his chemical knowledge there, particularly by studying Hofmann's researches on the aniline dyes. He made several discoveries, including induline, Bismark brown and Martius yellow.
    Like other German chemists, however, he found greater opportunities opening up in Germany, and in 1866 he returned to take up a post in Bunsen's laboratory in Heidelberg. In 1868 Caro obtained the important directorship of Badische Anilin-Soda- Fabrik (BASF), the first true industrial research organization and leading centre of dyestuffs research. A steady stream of commercial successes followed. In 1869, after Graebe and Liebermann had showed him their laboratory synthesis of the red dye alizarin, Caro went on to develop a cheaper and commercially viable method. During the 1870s he collaborated with Adolf von Baeyer to make methylene blue and related dyes, and then went on to the azo dyes. His work on indigo was important, but was not crowned with commercial success; that came in 1897 when his successor at BASF discovered a suitable process for producing indigo on a commercial scale. Caro had resigned his post in 1889, by which time he had made notable contributions to German supremacy in the fast-developing dyestuffs industry.
    [br]
    Further Reading
    A.Bernthsen, 1912, obituary, Berichte derDeut
    schen Chemischen Gesellschaft, 45; 1,987–2,042 (a substantial obituary).
    LRD

    Biographical history of technology > Caro, Heinrich

  • 83 Ercker, Lazarus

    [br]
    b. c.1530 Annaberg, Saxony, Germany
    d. 1594 Prague, Bohemia
    [br]
    German chemist and metallurgist.
    [br]
    Educated at Wittenberg University during 1547–8, Ercker obtained in 1554, through one of his wife's relatives, the post of Assayer from the Elector Augustus at Dresden. From then on he took a succession of posts in mining and metallurgy. In 1555 he was Chief Consultant and Supervisor of all matters relating to mines, but for some unknown reason was demoted to Warden of the Mint at Annaberg. In 1558 he travelled to the Tyrol to study the mines in that region, and in the same year Prince Henry of Brunswick appointed him Warden, then Master, of the Mint at Goslar. Ercker later moved to Prague where, through another of his wife's relatives, he was appointed Control Tester at Kutna Hora. It was there that he wrote his best-known book, Die Beschreibung allfürnemisten mineralischen Ertz, which drew him to the attention of the Emperor Maximilian, who made him Courier for Mining and a clerk of the Supreme Court of Bohemia. The next Emperor, Rudolf II, a noted patron of science and alchemy, promoted Ercker to Chief Inspector of Mines and ennobled him in 1586 with the title Von Schreckenfels'. His second wife managed the mint at Kutna Hora and his two sons became assayers. These appointments gained him much experience of the extraction and refining of metals. This first bore fruit in a book on assaying, Probierbüchlein, printed in 1556, followed by one on minting, Münzbuch, in 1563. His main work, Die Beschreibung, was a systematic review of the methods of obtaining, refining and testing the alloys and minerals of gold, silver, copper, antimony, mercury and lead. The preparation of acids, salts and other compounds is also covered, and his apparatus is fully described and illustrated. Although Ercker used Agricola's De re metattica as a model, his own work was securely based on his practical experience. Die Beschreibung was the first manual of analytical and metallurgical chemistry and influenced later writers such as Glauber on assaying. After the first edition in Prague came four further editions in Frankfurt-am-Main.
    [br]
    Bibliography
    Die Beschreibung allfürnemisten mineralischen Ertz, Prague. 1556, Probierbuchlein.
    1563, Munzbuch.
    Further Reading
    P.R.Beierlein, 1955, Lazarus Ercker, Bergmann, Hüttenmann und Münzmeister im 16. Jahrhundert, Berlin (the best biography, although the chemical details are incomplete).
    J.R.Partington, 1961, History of Chemistry, London, Vol. II, pp. 104–7.
    E.V.Armstrong and H.Lukens, 1939, "Lazarus Ercker and his Probierbuch", J.Chem. Ed.
    16: 553–62.
    LRD

    Biographical history of technology > Ercker, Lazarus

  • 84 Forsmann, Werner Theodor Otto

    SUBJECT AREA: Medical technology
    [br]
    b. 29 August 1904 Berlin, Germany
    d. 1 June 1979 Schofheim, Germany
    [br]
    German cardiologist and surgeon, pioneer of cardiac catheterization in humans.
    [br]
    Forsmann studied medicine at the University of Berlin, graduating in 1929. He later became chief of the surgical clinic in Dresden-Friedrichstadt, and in 1958 he became head of the surgical division of the Evangelical Hospital in Düsseldorf.
    Intravascular catheterization had been undertaken in research with animals by Marey in 1861, and had been used in 1912 by Unger et al. in the treatment of puerperal sepsis. In 1929 Forsmann inserted a catheter into his own cubital vein and up into the heart, monitoring its position with X-rays. Continuing experiments demonstrated that it was possible to undertake radiographic studies of the heart using contrast media. Despite the outstanding potential of the technique, its immediate adoption was held to present unacceptable dangers; it was not until developments in anaesthesia and antibiotics that the technique achieved its present position as a routine investigation permitting the widespread practice of angiocardiography. Deterred by criticism, Forsmann turned his energies to urology, gaining much distinction in this field.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Medicine or Physiology (jointly with A.F.Cournand and D.W.Richards) 1956.
    Bibliography
    1929, "Die Sonderung des rechten Herzens", Klin. Woch.
    Further Reading
    J.A.Meyer, 1990, "Werner Forsmann and the catheterisation of the heart", Ann. Thorac. Surg.
    MG

    Biographical history of technology > Forsmann, Werner Theodor Otto

  • 85 Hertz, Heinrich Rudolph

    [br]
    b. 22 February 1857 Hamburg, Germany
    d. 1 January 1894 Bonn, Germany
    [br]
    German physicist who was reputedly the first person to transmit and receive radio waves.
    [br]
    At the age of 17 Hertz entered the Gelehrtenschule of the Johaneums in Hamburg, but he left the following year to obtain practical experience for a year with a firm of engineers in Frankfurt am Main. He then spent six months at the Dresden Technical High School, followed by year of military service in Berlin. At this point he decided to switch from engineering to physics, and after a year in Munich he studied physics under Helmholtz at the University of Berlin, gaining his PhD with high honours in 1880. From 1883 to 1885 he was a privat-dozent at Kiel, during which time he studied the electromagnetic theory of James Clerk Maxwell. In 1885 he succeeded to the Chair in Physics at Karlsruhe Technical High School. There, in 1887, he constructed a rudimentary transmitter consisting of two 30 cm (12 in.) rods with metal balls separated by a 7.5 mm (0.3 in.) gap at the inner ends and metallic plates at the outer ends, the whole assembly being mounted at the focus of a large parabolic metal mirror and the two rods being connected to an induction coil. At the other side of his laboratory he placed a 70 cm (27½ in.) diameter wire loop with a similar air gap at the focus of a second metal mirror. When the induction coil was made to create a spark across the transmitter air gap, he found that a spark also occurred at the "receiver". By a series of experiments he was not only able to show that the invisible waves travelled in straight lines and were reflected by the parabolic mirrors, but also that the vibrations could be refracted like visible light and had a similar wavelength. By this first transmission and reception of radio waves he thus confirmed the theoretical predictions made by Maxwell some twenty years earlier. It was probably in his experiments with this apparatus in 1887 that Hertz also observed that the voltage at which a spark was able to jump a gap was significantly reduced by the presence of ultraviolet light. This so-called photoelectric effect was subsequently placed on a theoretical basis by Albert Einstein in 1905. In 1889 he became Professor of Physics at the University of Bonn, where he continued to investigate the nature of electric discharges in gases at low pressure until his death after a long and painful illness. In recognition of his measurement of radio and other waves, the international unit of frequency of an oscillatory wave, the cycle per second, is now universally known as the Hertz.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1890.
    Bibliography
    Much of Hertz's work, including his 1890 paper "On the fundamental equations of electrodynamics for bodies at rest", is recorded in three collections of his papers which are available in English translations by D.E.Jones et al., namely Electric Waves (1893), Miscellaneous Papers (1896) and Principles of Mechanics (1899).
    Further Reading
    J.G.O'Hara and W.Pricha, 1987, Hertz and the Maxwellians, London: Peter Peregrinus. J.Hertz, 1977, Heinrich Hertz, Memoirs, Letters and Diaries, San Francisco: San Francisco Press.
    KF

    Biographical history of technology > Hertz, Heinrich Rudolph

  • 86 Loos, Adolf

    [br]
    b. 10 December 1870 Brno, Moravia (now in the Czech Republic)
    d. 23 August 1933 Vienna, Austria
    [br]
    Austrian architect who was one of the earliest pioneers of the modern school in Europe.
    [br]
    Loos was the son of a sculptor and trained as a mason before studying architecture at Dresden College of Technology between 1890 and 1893. He then spent three years in America in such diverse areas as New York, Chicago, Philadelphia and St Louis. He became a devotee of America and of building there, and he was particularly impressed by the work of Louis Sullivan. He returned to Austria in 1896 and set up practice in Vienna. His early work there was in line with the current Sezessionist mode, but he quickly came to disassociate himself from this trend and increasingly insisted upon very plain and functionalist designs: by 1908 he is quoted as saying that "the evolution of culture marches with the elimination of ornament from useful objects". By this time Loos had become the pace-setter for modern ideas and was designing houses constructed from modern materials in as severe and cubic a style as Le Corbusier (Charles-Edouard Jeanneret) was soon to do. Adolf Loos made many designs, but only a small proportion were translated into building. Of his notable interiors the Kartner Bau (1907) in Vienna had pride of place, while his Steiner Haus (1910) there is regarded as the earliest truly modern house in Europe. Cubic in form and with simplified fenestration, this was the forerunner of inter-war architecture. In 1920 Loos was appointed Chief Housing Architect for Vienna, but he resigned two years later. He spent some time in Paris mixing with avant-garde artists and architects and lectured for a time at the Sorbonne. His last commissions, after he had returned to Vienna in 1928, included some of his best work, notably the Muller House (1930) in Prague.
    [br]
    Further Reading
    Benedetto Gravagnuolo, 1982, Adolf Loos: Theory and Works, Milan: Idea Books.
    ——1986, The Architecture of Adolf Loos, Arts Council Exhibition Book (with a Foreword by Sir John Summerson).
    L.Munz and G.Kunstet, 1964, Der Architekt Adolf Loos, Vienna and Munich: Anton Schroll.
    DY

    Biographical history of technology > Loos, Adolf

  • 87 Oberth, Hermann Julius

    SUBJECT AREA: Aerospace
    [br]
    b. 25 June 1894 Nagyszeben, Transylvania (now Sibiu, Romania)
    d. 29 December 1989 Nuremberg, Germany
    [br]
    Austro-Hungarian lecturer who is usually regarded, with Robert Goddard, as one of the "fathers" of modern astronautics.
    [br]
    The son of a physician, Oberth originally studied medicine in Munich, but his education was interrupted by the First World War and service in the Austro-Hungarian Army. Wounded, he passed the time by studying astronautics. He apparently simulated weightlessness and worked out the design for a long-range liquid-propelled rocket, but his ideas were rejected by the War Office; after the war he submitted them as a dissertation for a PhD at Heidelberg University, but this was also rejected. Consequently, in 1923, whilst still an unknown mathematics teacher, he published his ideas at his own expense in the book The Rocket into Interplanetary Space. These included a description of how rockets could achieve a sufficient velocity to escape the gravitational field of the earth. As a result he gained international prestige almost overnight and learned of the work of Robert Goddard and Konstantin Tsiolkovsky. After correspondence with the Goddard and Tsiolkovsky, Oberth published a further work in 1929, The Road to Space Travel, in which he acknowledged the priority of Goddard's and Tsiolkovski's calculations relating to space travel; he went on to anticipate by more than thirty years the development of electric and ionic propulsion and to propose the use of giant mirrors to control the weather. For this he was awarded the annual Hirsch Prize of 10,000 francs. From 1925 to 1938 he taught at a college in Mediasch, Transylvania, where he carried out experiments with petroleum and liquid-air rockets. He then obtained a lecturing post at Vienna Technical University, moving two years later to Dresden University and becoming a German citizen. In 1941 he became assistant to the German rocket engineer Werner von Braun at the rocket development centre at Peenemünde, and in 1943 he began work on solid propellants. After the Second World War he spent a year in Switzerland as a consultant, then in 1950 he moved to Italy to develop solid-propellant anti-aircraft rockets for the Italian Navy. Five years later he moved to the USA to carry out advanced rocket research for the US Army at Huntsville, Alabama, and in 1958 he retired to Feucht, near Nuremberg, Germany, where he wrote his autobiography.
    [br]
    Principal Honours and Distinctions
    French Astronautical Society REP-Hirsch Prize 1929. German Society for Space Research Medal 1950. Diesel German Inventors Medal 1954. American Astronautical Society Award 1955. German Federal Republic Award 1961. Institute of Aviation and Astronautics Medal 1969.
    Bibliography
    1923, Die Rakete zu den Planetenraumen; repub. 1934 as The Rocket into Interplanetary Space (autobiography).
    1929, Wege zur Raumschiffahrt [Road to Space Travel].
    1959, Stoff und Leben [Material and Life].
    Further Reading
    R.Spangenburg and D.Moser, 1990, Space People from A to Z, New York: Facts on File. H.Wulforst, 1991, The Rocketmakers: The Dreamers who made Spaceflight a Reality, New York: Crown Publishers.
    KF / IMcN

    Biographical history of technology > Oberth, Hermann Julius

  • 88 Poelzig, Hans

    [br]
    b. 1869 Berlin, Germany
    d. June 1936 Berlin, Germany
    [br]
    German teacher and practising architect, the most notable individualistic exponent of the German Expressionist movement in the modern school.
    [br]
    In the last decade of the nineteenth century and in the first of the twentieth, Poelzig did not, like most of his colleagues in Germany and Austria, follow the Jugendstil theme or the eclectic or fundamentalist lines: he set a path to individualism. In 1898 he began a teaching career at the Breslau (now Wroclaw, Poland) Academy of Arts and Crafts, remaining there until 1916. He early introduced workshop practice into the curriculum, presaging Gropius's Bauhaus ideas by many years; the school's workshop produced much of the artisan needs for a number of his buildings. From Breslau Poelzig moved to Dresden, where he was appointed City Architect. It was there that he launched his Expressionist line: which was particularly evident in the town hall and concert hall in the city. The structure for which Poelzig is best known and with which his name will always be associated is the Großes Schauspielhaus in Berlin; he had returned to his native city after the First World War and this great theatre was his first commission there. Using modern materials, he created a fabulous interior to seat 5,000 spectators. It was in the form of a vast amphitheatre with projecting stage and with the curving area roofed by a cavernous, stalactited dome, the Arabic-style stalactites of which were utilized by Poelzig for acoustic purposes. In the 1920s Poelzig went on to design cinemas, a field for which Expressionism was especially suited; these included the Capitol Cinema in Berlin and the Deli in Breslau. For his later industrial commissions—for example, the administrative building for the chemical firm I.G.Far ben in Frankfurt—he had perforce to design in more traditional modern manner.
    Poelzig died in 1936, which spared him, unlike many of his contemporaries, the choice of emigrating or working for National Socialism.
    [br]
    Further Reading
    Dennis Sharp, 1966, Modern Architecture and Expressionism, Longmans.
    Theodor Heuss, 1966, Hans Poelzig: Lebensbild eines Baumeister, Tübingen, Germany: Wunderlich.
    DY

    Biographical history of technology > Poelzig, Hans

  • 89 Pötsch, Friedrich Hermann

    [br]
    b. 12 December 1842 Biendorf, near Köthen, Germany
    d. 9 June 1902 Dresden, Germany
    [br]
    German mine surveyor, inventor of the freezing process for sinking shafts.
    [br]
    Pötsch was the son of a forest officer and could not easily attend school, with the consequences that it took him a long time to obtain the scholarly education needed to enable him to begin work on a higher level with the mining administration in the duchy of Anhalt in 1868. Seven years later, he was licensed as a Prussian mining surveyor and in this capacity he worked with the mining inspectorate of Aschersleben. During that time he frequently came across shafts for brown-coal mines which had been sunk down to watery strata but then had to be abandoned. His solution to the problem was to freeze the quicksand with a solution of chloride; this was better than the previous attempts in England to instal cooling coils at the bottom of the shaft. Pötsch's conception implied the construction of ice walls with the means of boreholes and refrigerators. By his method a set of boreholes was driven through the watery strata, the smaller pipes contained within the main bore pipes, providing a channel through which calcium chloride was pumped, returning through the longer pipe until the ground was frozen solid. He obtained a patent in 1883 and many leading international journals reported on the method the same year.
    In 1884 he established the Internationale Gesselschaft für Schacht-, Brucken-und Tunnelbau in Magdeburg and he also became Director of the Poetsch-Sooy-Smith Freezing Company in New Jersey, which constructed the first freezing shaft in America in 1888.
    However, Pötsch was successful only for a short period of time and, being a clumsy entrepreneur, he had to dissolve his company in 1894. Unfortunately, his decision to carry out the complete shaft-sinking business did not allow him to concentrate on solving upcoming technical problems of his new process. It was Louis Gebhardt (1861–1924), his former engineer, who took care of development, especially in co-operation with French mining engineers, and thus provided the basis for the freezing process becoming widely used for shaft-sinking in complicated strata ever since.
    [br]
    Bibliography
    1886, Das Gefrierverfahren. Methode für schnelles, sicheres und lotrechtes Abteufen von Schächten im Schwimmsande und uberhaupt im wasserreichen Gebirge; für Herstellung tiefgehender Bruckenpfeiler und für TunnelBauten in rolligem und schwimmendem Gebirge, Freiberg.
    1889, Geschichtliches über die Entstehung und Herausbildung des Gefrierverfahrens, Magdeburg.
    1895, Das Gefrierverfahren und das kombinierte Schachtabbohr-und Gefrierverfahren (Patent Pötsch), Freiberg.
    Further Reading
    D.Hoffmann, 1962, AchtJahrzehnte Gefrierverfahren nach Putsch, Essen: Glückauf (the most substantial biography; also covers technological aspects).
    G.Gach, 1986, In Schacht und Strecke, Essen: Glückauf, pp. 31–53 (provides information on the development of specialized mining companies in Germany originating in the freezing process).
    WK

    Biographical history of technology > Pötsch, Friedrich Hermann

  • 90 Rammler, Erich

    [br]
    b. 9 July 1901 Tirpersdorf, near Oelsnitz, Germany
    d. 6 November 1986 Freiberg, Saxony, Germany
    [br]
    German mining engineer, developer of metallurgic coke from lignite.
    [br]
    A scholar of the Mining Academy in Freiberg, who in his dissertation dealt with the fineness of coal dust, Rammler started experiments in 1925 relating to firing this material. In the USA this process, based on coal, had turned out to be very effective in large boiler furnaces. Rammler endeavoured to apply the process to lignite and pursued general research work on various thermochemical problems as well as methods of grinding and classifying. As producing power from lignite was of specific interest for the young Soviet Union, with its large demand from its new power stations and its as-yet unexploited lignite deposits, he soon came into contact with the Soviet authorities. In his laboratory in Dresden, which he had bought from the freelance metallurgist Paul Otto Rosin after his emigration and under whom he had been working since he left the Academy, he continued his studies in refining coal and soon gained an international reputation. He opened up means of producing coke from lignite for use in metallurgical processes.
    His later work was of utmost importance after the Second World War when several countries in Eastern Europe, especially East Germany with its large lignite deposits, established their own iron and steel industries. Accordingly, the Soviet administration supported his experiments vigorously after he joined Karl Kegel's Institute for Briquetting in Freiberg in 1945. Through his numerous books and articles, he became the internationally leading expert on refining lignite and Kegel's successor as head of the Institute and Professor at the Bergakademie. Six years later, he produced for the first time high-temperature coke from lignite low in ash and sulphur for smelting in low-shaft furnaces. Rammler was widely honoured and contributed decisively to the industrial development of his country; he demonstrated new technological processes when, under austere conditions, economical and ecological considerations were neglected.
    [br]
    Bibliography
    Rammler, whose list of publications comprises more than 600 titles on various matters of his main scientific concern, also was the co-author (with E.Wächtler) of two articles on the development of briquetting brown coal in Germany, both published in 1985, Freiberger Forschungshefte, D 163 and D 169, Leipzig.
    Further Reading
    E.Wächtler, W.Mühlfriedel and W.Michel, 1976, Erich Rammler, Leipzig, (substantial biography, although packed with communist propaganda).
    M.Rasch, 1989, "Paul Rosin—Ingenieur, Hochschullehrer und Rationalisierungsfachmann". Technikgeschichte 56:101–32 (describes the framework within which Rammler's primary research developed).
    WK

    Biographical history of technology > Rammler, Erich

  • 91 Schmidt, Wilhelm

    [br]
    b. 18 February 1858 Wegeleben, Saxony, Germany
    d. 16 February 1924 Bethel, Westphalia, Germany
    [br]
    German engineer, inventor of an effective means of superheating steam in locomotive boilers.
    [br]
    Schmidt was educated at Dresden Technical High School and worked as an assistant to a locksmith. He experimented with steam engines worked at extremely high pressures and developed ideas for using superheated steam. Two early types of locomotive superheater that he designed were tried out in Prussia in the late 1890s, but his firetube type, which was eventually successful, was first used in Belgium in 1901. Within ten years of its introduction, superheating using Schmidt-type superheaters was standard practice on large locomotives worldwide.
    In the superheater, steam from the boiler is passed through tubular elements within the firetubes before passing to the cylinders. This raises the steam's temperature without increasing its pressure: advantages of doing so include increasing the volume of steam produced and reducing condensation in the cylinders, with consequent economies of fuel and water. Schmidt superheaters were first used in Britain in 1906 by George Hughes, Locomotive Superintendent of the Lancashire \& Yorkshire Railway, on two goods locomotives, and then by D.Earle Marsh on the London Brighton \& South Coast Railway; hefitted them to 4–4–2 express tank locomotives in 1908. These were conspicuously successful in comparative trials with equivalent non-superheated locomotives from the London \& North Western Railway.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    P.Ransome-Wallis (ed.), 1959, The Concise Encyclopaedia of World Railway Locomotives, London: Hutchinson, p. 501 (with references to superheaters, pp. 286, 392–4).
    C.Hamilton Ellis, 1959, British Railway History, Vol. II: 1877–1947, George Allen \& Unwin, pp. 268–71 (for the introduction of superheating to Britain).
    PJGR

    Biographical history of technology > Schmidt, Wilhelm

  • 92 Yagi, Hidetsugu

    [br]
    b. 28 January 1886 Osaka, Japan
    d. January 1976 Osaka, Japan
    [br]
    Japanese engineer who, with his student Shintaro Uda, developed the directional ultra-high frequency (UHF) aerial array that bears his name.
    [br]
    Yagi studied engineering at Tokyo Imperial University (now Tokyo University), graduating in 1910. For the next four years he taught at Engineering High School in Sendai, Honshu, then in 1914 he was sent to study resonance phenomena under Barkhausen at Dresden University. When the First World War broke out he was touring Europe, so he travelled to London to study under Ambrose Fleming at University College, London. Continuing his travels, he then visited the USA, studying at Harvard under G.W. Pierce, before returning to his teaching post at Sendai Engineering High School, which in 1919 was absorbed into Tohoku University. There, in 1921, he obtained his doctorate, and some years later he was appointed Professor of Electrical Engineering. Having heard of the invention of the magnetron, he worked with a student, Kinjiro Okabe; in 1927 they produced microwave energy at a wavelength of a few tens of centimetres. However, he is best known for his development with another student, Shintaro Uda, of a directional, multi-element ultrahigh frequency aerial, which he demonstrated during a tour of the USA in 1928. During the Second World War Yagi worked on radar systems. After his retirement he became Professor Emeritus at Tohoku and Osaka universities and formed the Yagi Antenna Company.
    [br]
    Principal Honours and Distinctions
    Yagi received various honours, including the Japanese Cultural Order of Merit 1976, and the Valdemar Poulsen Gold Medal.
    Bibliography
    1928, "Beam transmission of ultra-short waves", Proceedings of the Institute of Radio Engineers 6:715 (describes the Yagi-Uda aerial).
    Further Reading
    F.E.Terman, 1943, Radio Engineers' Handbook, New York: McGraw-Hill (provides a review of aerials, including the Yagi system).
    KF

    Biographical history of technology > Yagi, Hidetsugu

См. также в других словарях:

  • Dresden — Dresden …   Deutsch Wörterbuch

  • Dresden — • The capital of the Kingdom of Saxony and the residence of the royal family, is situated on both sides of the Elbe Catholic Encyclopedia. Kevin Knight. 2006. Dresden     Dresden      …   Catholic encyclopedia

  • DRESDEN — DRESDEN, capital of Saxony, Germany. A Jewish community existed there in the early 14th century, and its members were massacred in the black death persecutions of 1349. Jews are not mentioned in Dresden again until 1375. They were expelled in… …   Encyclopedia of Judaism

  • Dresden — Dresden, NY U.S. village in New York Population (2000): 307 Housing Units (2000): 139 Land area (2000): 0.305427 sq. miles (0.791053 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.305427 sq. miles (0.791053… …   StarDict's U.S. Gazetteer Places

  • Dresden [1] — Dresden (hierzu der Stadtplan: Dresden mit den Vororten und Innere Stadt, mit Registerblatt), Residenz und Hauptstadt des Königreichs Sachsen sowie Hauptort der gleichnamigen Kreishauptmannschaft (s. unten, S. 201), wegen ihrer anmutigen Lage… …   Meyers Großes Konversations-Lexikon

  • Dresden — Dresden. Wenn der Frühling die Fluren und Wälder des mittleren und südlichen Deutschlands früher mit seinem Grün und seinem Blüthenschnee schmückt, als jene der nördlichern Grade, dann pilgern die gebildeten und wohlhabenden Bewohner… …   Damen Conversations Lexikon

  • Dresden [1] — Dresden, 1) Kreisdirectionsbezirk od. Kreis des Königreichs Sachsen, gebildet aus dem ehemaligen M eißner Kreise (mit Ausschluß des halben Amtes Stolpen) u. den Ämtern Altenberg, Frauenstein u. Freiberg des vormaligen Erzgebirgischen Kreises, 78… …   Pierer's Universal-Lexikon

  • Dresden, KS — U.S. city in Kansas Population (2000): 51 Housing Units (2000): 28 Land area (2000): 0.943217 sq. miles (2.442922 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.943217 sq. miles (2.442922 sq. km) FIPS code:… …   StarDict's U.S. Gazetteer Places

  • Dresden, NY — U.S. village in New York Population (2000): 307 Housing Units (2000): 139 Land area (2000): 0.305427 sq. miles (0.791053 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.305427 sq. miles (0.791053 sq. km) FIPS… …   StarDict's U.S. Gazetteer Places

  • Dresden, OH — U.S. village in Ohio Population (2000): 1423 Housing Units (2000): 687 Land area (2000): 1.167008 sq. miles (3.022536 sq. km) Water area (2000): 0.043650 sq. miles (0.113052 sq. km) Total area (2000): 1.210658 sq. miles (3.135588 sq. km) FIPS… …   StarDict's U.S. Gazetteer Places

  • Dresden, TN — U.S. town in Tennessee Population (2000): 2855 Housing Units (2000): 1331 Land area (2000): 5.307737 sq. miles (13.746975 sq. km) Water area (2000): 0.010315 sq. miles (0.026717 sq. km) Total area (2000): 5.318052 sq. miles (13.773692 sq. km)… …   StarDict's U.S. Gazetteer Places

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»