Перевод: с английского на все языки

со всех языков на английский

de+son+invention

  • 81 Forsyth, Alexander John

    SUBJECT AREA: Weapons and armour
    [br]
    b. 28 December 1769 Belhevie, Aberdeenshire, Scotland
    d. 11 June 1843 Belhevie, Aberdeenshire, Scotland
    [br]
    Scottish cleric and ammunition designer.
    [br]
    The son of a Scottish Presbyterian minister, Forsyth also took Holy Orders and took over his father's parish on his death. During his spare time he experimented with explosives and in 1805 he succeeded in developing mercury fulminate as a percussion cap for use in small-arms ammunition, thus paving the way for the eventual design of the self-contained metallic cartridge and contact fuse. This he did by rolling the compound into small pellets, which he placed in a nipple at the breech end of the barrel, where they could be detonated by the falling hammer of the gun. In spring 1806 he went to London, and so impressed was the Master-General of the Ordnance by Forsyth's concept that he gave him facilities in the Tower of London in order to allow him to perfect it. Unfortunately, the Master-General of the Ordnance was replaced shortly afterwards and his successor abruptly stopped the project. Forsyth returned to Scotland and his parish, and it was only after much persuasion by his friends that he eventually petitioned Parliament for recognition of his invention. He was ultimately awarded a small state pension, but died before he received any of it.
    CM

    Biographical history of technology > Forsyth, Alexander John

  • 82 Fowler, John

    SUBJECT AREA: Civil engineering
    [br]
    b. 11 July 1826 Melksham, Wiltshire, England
    d. 4 December 1864 Ackworth, Yorkshire, England
    [br]
    English engineer and inventor who developed a steam-powered system of mole land drainage, and a two-engined system of land cultivation, founding the Steam Plough Works in Leeds.
    [br]
    The son of a Quaker merchant, John Fowler entered the business of a county corn merchant on leaving school, but he found this dull and left as soon as he came of age, joining the Middlesbrough company of Gilkes, Wilson \& Hopkins, railway locomotive manufacturers. In 1849, at the age of 23, Fowler visited Ireland and was so distressed by the state of Irish agriculture that he determined to develop a system to deal with the drainage of land. He designed an implement which he patented in 1850 after a period of experimentation. It was able to lay wooden pipes to a depth of two feet, and was awarded the Silver Medal at the 1850 Royal Agriculture Show. By 1854, using a steam engine made by Clayton \& Shuttleworth, he had applied steam power to his invention and gained another award that year at the Royal Show. The following year he turned his attention to steam ploughing. He first developed a single-engined system that used a double windlass with which to haul a plough backwards and forwards across fields. In 1856 he patented his balance plough, and the following year he read a paper to the Institution of Mechanical Engineers at their Birmingham premises, describing the system. In 1858 he won the Royal Agricultural Society award with a plough built for him by Ransomes. Fowler founded the Steam Plough Works in Leeds and in 1862 production began in partnership with William Watson Hewitson. Within two years they were producing the first of a series of engines which were to make the name Fowler known worldwide. John Fowler saw little of his success because he died in 1864 at his Yorkshire home as a result of tetanus contracted after a riding accident.
    [br]
    Further Reading
    M.Lane, 1980, The Story of the Steam Plough Works, Northgate Publishing (provides biographical details of John Fowler, but is mostly concerned with the company that he founded).
    AP

    Biographical history of technology > Fowler, John

  • 83 Fox, Samson

    [br]
    b. 11 July 1838 Bowling, near Bradford, Yorkshire, England
    d. 24 October 1903 Walsall, Staffordshire, England
    [br]
    English engineer who invented the corrugated boiler furnace.
    [br]
    He was the son of a cloth mill worker in Leeds and at the age of 10 he joined his father at the mill. Showing a mechanical inclination, he was apprenticed to a firm of machine-tool makers, Smith, Beacock and Tannett. There he rose to become Foreman and Traveller, and designed and patented tools for cutting bevelled gears. With his brother and one Refitt, he set up the Silver Cross engineering works for making special machine tools. In 1874 he founded the Leeds Forge Company, acting as Managing Director until 1896 and then as Chairman until shortly before his death.
    It was in 1877 that he patented his most important invention, the corrugated furnace for steam-boilers. These furnaces could withstand much higher pressures than the conventional form, and higher working pressures in marine boilers enabled triple-expansion engines to be installed, greatly improving the performance of steamships, and the outcome was the great ocean-going liners of the twentieth century. The first vessel to be equipped with the corrugated furnace was the Pretoria of 1878. At first the furnaces were made by hammering iron plates using swage blocks under a steam hammer. A plant for rolling corrugated plates was set up at Essen in Germany, and Fox installed a similar mill at his works in Leeds in 1882.
    In 1886 Fox installed a Siemens steelmaking plant and he was notable in the movement for replacing wrought iron with steel. He took out several patents for making pressed-steel underframes for railway wagons. The business prospered and Fox opened a works near Chicago in the USA, where in addition to wagon underframes he manufactured the first American pressed-steel carriages. He later added a works at Pittsburgh.
    Fox was the first in England to use water gas for his metallurgical operations and for lighting, with a saving in cost as it was cheaper than coal gas. He was also a pioneer in the acetylene industry, producing in 1894 the first calcium carbide, from which the gas is made.
    Fox took an active part in public life in and around Leeds, being thrice elected Mayor of Harrogate. As a music lover, he was a benefactor of musicians, contributing no less than £45,000 towards the cost of building the Royal College of Music in London, opened in 1894. In 1897 he sued for libel the author Jerome K.Jerome and the publishers of the Today magazine for accusing him of misusing his great generosity to the College to give a misleading impression of his commercial methods and prosperity. He won the case but was not awarded costs.
    [br]
    Principal Honours and Distinctions
    Royal Society of Arts James Watt Silver Medal and Howard Gold Medal. Légion d'honneur 1889.
    Bibliography
    1877, British Patent nos. 1097 and 2530 (the corrugated furnace or "flue", as it was often called).
    Further Reading
    Obituary, 1903, Proceedings of the Institution of Mechanical Engineers: 919–21.
    Obituary, 1903, Proceedings of the Institution of Civil Engineers (the fullest of the many obituary notices).
    G.A.Newby, 1993, "Behind the fire doors: Fox's corrugated furnace 1877 and the high pressure steamship", Transactions of the Newcomen Society 64.
    LRD

    Biographical history of technology > Fox, Samson

  • 84 Gascoigne, William

    [br]
    b. 1612 (?) near Leeds, Yorkshire, England
    d. 2 July 1644 Marston Moor, Yorkshire, England
    [br]
    English astronomer and inventor of the micrometer.
    [br]
    As the son of a country gentleman, William Gascoigne would have had opportunities to receive reasonable schooling, but there is no record of how or where he was educated. However, by the late 1630s he had acquired a considerable knowledge of astronomy and was in correspondence with other scholars. About 1638 he invented an instrument to measure small angles in a telescope, consisting of two parallel wires in the eye piece moved by a calibrated screw. His invention remained unknown until it was reinvented thirty years later. He is said to have left the manuscript of a treatise on optics, but this did not survive. He was killed fighting for the royalist side at the battle of Marston Moor.
    [br]
    Further Reading
    C.C.Gillespie (ed.), 1970–6, Dictionary of Scientific Biography, New York, s.v.Gascoigne; Towneley.
    A.F.Burstall, 1963, A History of Mechanical Engineering, London, p. 159 (includes a drawing of Gascoigne's micrometer).
    RTS

    Biographical history of technology > Gascoigne, William

  • 85 Harrison, John

    [br]
    b. 24 March 1693 Foulby, Yorkshire, England
    d. 24 March 1776 London, England
    [br]
    English horologist who constructed the first timekeeper of sufficient accuracy to determine longitude at sea and invented the gridiron pendulum for temperature compensation.
    [br]
    John Harrison was the son of a carpenter and was brought up to that trade. He was largely self-taught and learned mechanics from a copy of Nicholas Saunderson's lectures that had been lent to him. With the assistance of his younger brother, James, he built a series of unconventional clocks, mainly of wood. He was always concerned to reduce friction, without using oil, and this influenced the design of his "grasshopper" escapement. He also invented the "gridiron" compensation pendulum, which depended on the differential expansion of brass and steel. The excellent performance of his regulator clocks, which incorporated these devices, convinced him that they could also be used in a sea dock to compete for the longitude prize. In 1714 the Government had offered a prize of £20,000 for a method of determining longitude at sea to within half a degree after a voyage to the West Indies. In theory the longitude could be found by carrying an accurate timepiece that would indicate the time at a known longitude, but the requirements of the Act were very exacting. The timepiece would have to have a cumulative error of no more than two minutes after a voyage lasting six weeks.
    In 1730 Harrison went to London with his proposal for a sea clock, supported by examples of his grasshopper escapement and his gridiron pendulum. His proposal received sufficient encouragement and financial support, from George Graham and others, to enable him to return to Barrow and construct his first sea clock, which he completed five years later. This was a large and complicated machine that was made out of brass but retained the wooden wheelwork and the grasshopper escapement of the regulator clocks. The two balances were interlinked to counteract the rolling of the vessel and were controlled by helical springs operating in tension. It was the first timepiece with a balance to have temperature compensation. The effect of temperature change on the timekeeping of a balance is more pronounced than it is for a pendulum, as two effects are involved: the change in the size of the balance; and the change in the elasticity of the balance spring. Harrison compensated for both effects by using a gridiron arrangement to alter the tension in the springs. This timekeeper performed creditably when it was tested on a voyage to Lisbon, and the Board of Longitude agreed to finance improved models. Harrison's second timekeeper dispensed with the use of wood and had the added refinement of a remontoire, but even before it was tested he had embarked on a third machine. The balance of this machine was controlled by a spiral spring whose effective length was altered by a bimetallic strip to compensate for changes in temperature. In 1753 Harrison commissioned a London watchmaker, John Jefferys, to make a watch for his own personal use, with a similar form of temperature compensation and a modified verge escapement that was intended to compensate for the lack of isochronism of the balance spring. The time-keeping of this watch was surprisingly good and Harrison proceeded to build a larger and more sophisticated version, with a remontoire. This timekeeper was completed in 1759 and its performance was so remarkable that Harrison decided to enter it for the longitude prize in place of his third machine. It was tested on two voyages to the West Indies and on both occasions it met the requirements of the Act, but the Board of Longitude withheld half the prize money until they had proof that the timekeeper could be duplicated. Copies were made by Harrison and by Larcum Kendall, but the Board still continued to prevaricate and Harrison received the full amount of the prize in 1773 only after George III had intervened on his behalf.
    Although Harrison had shown that it was possible to construct a timepiece of sufficient accuracy to determine longitude at sea, his solution was too complex and costly to be produced in quantity. It had, for example, taken Larcum Kendall two years to produce his copy of Harrison's fourth timekeeper, but Harrison had overcome the psychological barrier and opened the door for others to produce chronometers in quantity at an affordable price. This was achieved before the end of the century by Arnold and Earnshaw, but they used an entirely different design that owed more to Le Roy than it did to Harrison and which only retained Harrison's maintaining power.
    [br]
    Principal Honours and Distinctions
    Royal Society Copley Medal 1749.
    Bibliography
    1767, The Principles of Mr Harrison's Time-keeper, with Plates of the Same, London. 1767, Remarks on a Pamphlet Lately Published by the Rev. Mr Maskelyne Under the
    Authority of the Board of Longitude, London.
    1775, A Description Concerning Such Mechanisms as Will Afford a Nice or True Mensuration of Time, London.
    Further Reading
    R.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press.
    —1978, John Harrison and His Timekeepers, 4th edn, London: National Maritime Museum.
    H.Quill, 1966, John Harrison, the Man who Found Longitude, London. A.G.Randall, 1989, "The technology of John Harrison's portable timekeepers", Antiquarian Horology 18:145–60, 261–77.
    J.Betts, 1993, John Harrison London (a good short account of Harrison's work). S.Smiles, 1905, Men of Invention and Industry; London: John Murray, Chapter III. Dictionary of National Biography, Vol. IX, pp. 35–6.
    DV

    Biographical history of technology > Harrison, John

  • 86 Héroult, Paul Louis Toussaint

    SUBJECT AREA: Metallurgy
    [br]
    b. 1863 Thury-Harcourt, Caen, France
    d. 9 May 1914 Antibes, France
    [br]
    French metallurigst, inventor of the process of aluminium reduction by electrolysis.
    [br]
    Paul Héroult, the son of a tanner, at the age of 16, while still at school in Caen, read Deville's book on aluminium and became obsessed with the idea of developing a cheap way of producing this metal. After his family moved to Gentillysur-Bièvre he studied at the Ecole Sainte-Barbe in Paris and then returned to Caen to work in the laboratory of his father's tannery. His first patent, filed in February and granted on 23 April 1886, described an invention almost identical to that of C.M. Hall: "the electrolysis of alumina dissolved in molten cryolite into which the current is introduced through suitable electrodes. The cryolite is not consumed." Early in 1887 Héroult attempted to obtain the support of Alfred Rangod Pechiney, the proprietor of the works at Salindres where Deville's process for making sodium-reduced aluminium was still being operated. Pechiney persuaded Héroult to modify his electrolytic process by using a cathode of molten copper, thus making it possible produce aluminium bronze rather than pure aluminium. Héroult then approached the Swiss firm J.G.Nehe Söhne, ironmasters, whose works at the Falls of Schaffhausen obtained power from the Rhine. They were looking for a new metallurgical process requiring large quantities of cheap hydroelectric power and Héroult's process seemed suitable. In 1887 they established the Société Metallurgique Suisse to test Héroult's process. Héroult became Technical Director and went to the USA to defend his patents against those of Hall. During his absence the Schaffhausen trials were successfully completed, and on 18 November 1888 the Société Metallurgique combined with the German AEG group, Oerlikon and Escher Wyss, to establish the Aluminium Industrie Aktiengesellschaft Neuhausen. In the early electrolytic baths it was occasionally found that arcs between the bath surface and electrode could develop if the electrodes were inadvertently raised. From this observation, Héroult and M.Killiani developed the electric arc furnace. In this, arcs were intentionally formed between the surface of the charge and several electrodes, each connected to a different pole of the AC supply. This furnace, the prototype of the modern electric steel furnace, was first used for the direct reduction of iron ore at La Praz in 1903. This work was undertaken for the Canadian Government, for whom Héroult subsequently designed a 5,000-amp single-phase furnace which was installed and tested at Sault-Sainte-Marie in Ontario and successfully used for smelting magnetite ore.
    [br]
    Further Reading
    Aluminium Industrie Aktiengesellschaft Neuhausen, 1938, The History of the Aluminium-Industrie-Aktien-Gesellschaft Neuhausen 1888–1938, 2 vols, Neuhausen.
    C.J.Gignoux, Histoire d'une entreprise française. "The Hall-Héroult affair", 1961, Metal Bulletin (14 April):1–4.
    ASD

    Biographical history of technology > Héroult, Paul Louis Toussaint

  • 87 Herschel, John Frederick William

    [br]
    b. 7 March 1792 Slough, England
    d. 11 May 1871 Collingwood, England
    [br]
    English scientist who introduced "hypo" (thiosulphate) as a photographic fixative and discovered the blueprint process.
    [br]
    The only son of Sir William Herschel, the famous astronomer, John graduated from Cambridge in 1813 and went on to become a distinguished astronomer, mathematician and chemist. He left England in November 1833 to set up an observatory near Cape Town, South Africa, where he embarked on a study of the heavens in the southern hemisphere. He returned to England in the spring of 1838, and between 1850 and 1855 Herschel served as Master of the Royal Mint. He made several notable contributions to photography, perhaps the most important being his discovery in 1819 that hyposulphites (thiosulphates) would dissolve silver salts. He brought this property to the attention of W.H.F. Talbot, who in 1839 was using a common salt solution as a fixing agent for his early photographs. After trials, Talbot adopted "hypo", which was a far more effective fixative. It was soon adopted by other photographers and eventually became the standard photographic fixative, as it still is in the 1990s. After hearing of the first photographic process in January 1839, Herschel devised his own process within a week. In September 1839 he made the first photograph on glass. He is credited with introducing the words "positive", "negative" and "snapshot" to photography, and in 1842 he invented the cyanotype or "blueprint" process. This process was later to be widely adopted by engineers and architects for the reproduction of plans and technical drawings, a practice abandoned only in the late twentieth century.
    [br]
    Principal Honours and Distinctions
    Knight of the Royal Hanoverian Guelphic Order 1831. Baronet 1838. FRS 1813. Copley Medal 1821.
    Further Reading
    Dictionary of National Biography, 1968, Vol. IX, pp. 714–19.
    H.J.P.Arnold, 1977, William Henry Fox Talbot, London; Larry J.Schaaf, 1992, Out of the Shadows: Herschel, Talbot and the Invention of Photography, Newhaven and London (for details of his contributions to photography and his relationship with Talbot).
    JW

    Biographical history of technology > Herschel, John Frederick William

  • 88 Hooke, Robert

    [br]
    b. 18 July 1635 Freshwater, Isle of Wight, England
    d. 3 March 1703 London, England
    [br]
    English physicist, astronomer and mechanician.
    [br]
    Son of Revd John Hooke, minister of the parish, he was a sickly child who was subject to headaches which prevented protracted study. He devoted his time while alone to making mechanical models including a wooden clock. On the death of his father in October 1648 he was left £100 and went to London, where he became a pupil of Sir Peter Lely and then went to Westminster School under Dr Busby. There he learned the classical languages, some Hebrew and oriental languages while mastering six books of Euclid in one week. In 1653 he entered Christ Church College, Oxford, where he graduated MA in 1663, after studying chemistry and astronomy. In 1662 he was appointed Curator of Experiments to the Royal Society and was elected a Fellow in 1663. In 1665 his appointment was made permanent and he was given apartments in Gresham College, where he lived until his death in 1703. He was an indefatigable experimenter, perhaps best known for the invention of the universal joint named after him. The properties of the atmosphere greatly engaged him and he devised many forms of the barometer. He was the first to apply the spiral spring to the regulation of the balance wheel of the watch in an attempt to measure longitude at sea, but he did not publish his results until after Huygens's reinvention of the device in 1675. Several of his "new watches" were made by Thomas Tompion, one of which was presented to King Charles II. He is said to have invented, among other devices, thirty different ways of flying, the first practical system of telegraphy, an odometer, a hearing aid, an arithmetical machine and a marine barometer. Hooke was a small man, somewhat deformed, with long, lank hair, who went about stooped and moved very quickly. He was of a melancholy and mistrustful disposition, ill-tempered and sharp-tongued. He slept little, often working all night and taking a nap during the day. John Aubrey, his near-contemporary, wrote of Hooke, "He is certainly the greatest Mechanick this day in the World." He is said to have been the first to establish the true principle of the arch. His eyesight failed and he was blind for the last year of his life. He is best known for his Micrographia, or some Physiological Descriptions of Minute Bodies, first published in 1665. After the Great Fire of London, he exhibited a model for the rebuilding of the City. This was not accepted, but it did result in Hooke's appointment as one of two City Surveyors. This proved a lucrative post and through it Hooke amassed a fortune of some thousands of pounds, which was found intact after his death some thirty years later. It had never been opened in the interim period. Among the buildings he designed were the new Bethlehem (Bedlam) Hospital, the College of Physicians and Montague House.
    [br]
    Principal Honours and Distinctions
    FRS 1663; Secretary 1677–82.
    IMcN

    Biographical history of technology > Hooke, Robert

  • 89 Kay (of Bury), John

    SUBJECT AREA: Textiles
    [br]
    b. 16 July 1704 Walmersley, near Bury, Lancashire, England
    d. 1779 France
    [br]
    English inventor of the flying shuttle.
    [br]
    John Kay was the youngest of five sons of a yeoman farmer of Walmersley, near Bury, Lancashire, who died before his birth. John was apprenticed to a reedmaker, and just before he was 21 he married a daughter of John Hall of Bury and carried on his trade in that town until 1733. It is possible that his first patent, taken out in 1730, was connected with this business because it was for an engine that made mohair thread for tailors and twisted and dressed thread; such thread could have been used to bind up the reeds used in looms. He also improved the reeds by making them from metal instead of cane strips so they lasted much longer and could be made to be much finer. His next patent in 1733, was a double one. One part of it was for a batting machine to remove dust from wool by beating it with sticks, but the patent is better known for its description of the flying shuttle. Kay placed boxes to receive the shuttle at either end of the reed or sley. Across the open top of these boxes was a metal rod along which a picking peg could slide and drive the shuttle out across the loom. The pegs at each end were connected by strings to a stick that was held in the right hand of the weaver and which jerked the shuttle out of the box. The shuttle had wheels to make it "fly" across the warp more easily, and ran on a shuttle race to support and guide it. Not only was weaving speeded up, but the weaver could produce broader cloth without any aid from a second person. This invention was later adapted for the power loom. Kay moved to Colchester and entered into partnership with a baymaker named Solomon Smith and a year later was joined by William Carter of Ballingdon, Essex. His shuttle was received with considerable hostility in both Lancashire and Essex, but it was probably more his charge of 15 shillings a year for its use that roused the antagonism. From 1737 he was much involved with lawsuits to try and protect his patent, particularly the part that specified the method of winding the thread onto a fixed bobbin in the shuttle. In 1738 Kay patented a windmill for working pumps and an improved chain pump, but neither of these seems to have been successful. In 1745, with Joseph Stell of Keighley, he patented a narrow fabric loom that could be worked by power; this type may have been employed by Gartside in Manchester soon afterwards. It was probably through failure to protect his patent rights that Kay moved to France, where he arrived penniless in 1747. He went to the Dutch firm of Daniel Scalongne, woollen manufacturers, in Abbeville. The company helped him to apply for a French patent for his shuttle, but Kay wanted the exorbitant sum of £10,000. There was much discussion and eventually Kay set up a workshop in Paris, where he received a pension of 2,500 livres. However, he was to face the same problems as in England with weavers copying his shuttle without permission. In 1754 he produced two machines for making card clothing: one pierced holes in the leather, while the other cut and sharpened the wires. These were later improved by his son, Robert Kay. Kay returned to England briefly, but was back in France in 1758. He was involved with machines to card both cotton and wool and tried again to obtain support from the French Government. He was still involved with developing textile machines in 1779, when he was 75, but he must have died soon afterwards. As an inventor Kay was a genius of the first rank, but he was vain, obstinate and suspicious and was destitute of business qualities.
    [br]
    Bibliography
    1730, British patent no. 515 (machine for making mohair thread). 1733, British patent no. 542 (batting machine and flying shuttle). 1738, British patent no. 561 (pump windmill and chain pump). 1745, with Joseph Stell, British patent no. 612 (power loom).
    Further Reading
    B.Woodcroft, 1863, Brief Biographies of Inventors or Machines for the Manufacture of Textile Fabrics, London.
    J.Lord, 1903, Memoir of John Kay, (a more accurate account).
    Descriptions of his inventions may be found in A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the
    Industrial Revolution, Manchester; and C.Singer (ed.), 1957, A History of
    Technology, Vol. III, Oxford: Clarendon Press. The most important record, however, is in A.P.Wadsworth and J. de L. Mann, 1931, The Cotton Trade and Industrial
    Lancashire, Manchester.
    RLH

    Biographical history of technology > Kay (of Bury), John

  • 90 Kind, Karl Gotthelf

    [br]
    b. 6 June 1801 Linda, near Freiberg, Germany
    d. 9 March 1873 Saarbrücken, Germany
    [br]
    German engineer, pioneer in deep drilling.
    [br]
    The son of an ore miner in Saxony, Kind was engaged in his father's profession for some years before he joined Glenck's drillings for salt at Stotternheim, Thuringia. There in 1835, after trying for five years, he self-reliantly put down a 340 m (1,100 ft) deep well; his success lay in his use of fish joints of a similar construction to those used shortly before by von Oeynhausen in Westphalia. In order to improve their operational possibilities in aquiferous wells, in 1842 he developed his own free-fall device between the rod and the drill, which enabled the chisel to reach the bottom of the hole without hindrance. His invention was patented in France. Four years later, at Mondorf, Luxembourg, he put down a 736 m (2,415 ft) deep borehole, the deepest in the world at that time.
    Kind contributed further considerable improvements to deep drilling and was the first successfully to replace iron rods with wooden ones, on account of their buoyancy in water. The main reasons for his international reputation were his attempts to bore out shafts, which he carried out for the first time in the region of Forbach, France, in 1848. Three years later he was engaged in the Ruhr area by a Belgian-and English-financed mining company, later the Dahlbusch mining company in Gelsenkirchen, to drill a hole that was later enlarged to 4.4 m (14 1/2 ft) and made watertight by lining. Although he had already taken out a patent for boring and lining shafts in 1849 in Belgium, his wooden support did not qualify. It was the Belgian engineer Joseph Chaudron, in charge of the mining company, who overcame the difficulty of making the bottom of the borehole watertight. In 1854 they jointly founded a shaft-sinking company in Brussels which specialized in aquiferous formations and operated internationally.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'honneur 1849.
    Bibliography
    Further Reading
    H.G.Conrad, "Carl Gotthelf Kind", Neue deutsche Biographie 10:613–14.
    D.Hoffmann, 1959, 150 Jahre Tiefbohrungen in Deutschland, Vienna and Hamburg, pp. 20–5 (assesses his technological achievements).
    T.Tecklenburg, 1914, Handbuch der Tiefbohrkunde, 2nd end, Vol. VI, Berlin, pp. 36–9 (provides a detailed description of his equipment).
    J.Chaudron, 1862, "Über die nach dem Kindschen Erdbohrverfahren in Belgien ausgeführten Schachtbohrarbeiten", Berg-und Hüttenmännische Zeitung 21:402–4, (describes his contribution to making Kind's shafts watertight).
    WK

    Biographical history of technology > Kind, Karl Gotthelf

  • 91 Laënnec, René Théophile Hyacinthe

    SUBJECT AREA: Medical technology
    [br]
    b. 16 February 1781 Quimper, France
    d. 13 August 1826 Paris, France
    [br]
    French physician, inventor of the stethoscope.
    [br]
    Laënnec commenced his medical career assisting his uncle, a physician of Nantes, Brittany. On moving to Paris he studied under Corvisart, Napoleon's friend and personal physician, and Dupuytren. Appointed Physician to the Necker Hospital in 1816, his difficulties in examining an obese patient led him to make a roll of paper and, placing one end on the patient's chest and his ear to the other, he found that he could hear the heart sounds much more clearly; although auscultation had been practised in medicine since the time of Hippocrates (fl. 400 BC), its inconvenience and distastefulness made the stethoscope an instrument which soon gained wide acceptance. As a consequence, a large number of new auditory phenomena were reported in the immediately ensuing years. In his book, published in 1819, he described the instrument as "a cylinder of wood an inch and a half in diameter and a foot long, perforated by a bore three lines wide and hollowed out into a funnel shape at one of its extremities".
    By now he had contracted tuberculosis and retired to Brittany to recover. In 1822 he accepted the Chair of Medicine in the College of France, but he suffered a relapse and died four years later, ironically of the same disease that his invention had done so much to facilitate the diagnosis of.
    [br]
    Bibliography
    Further Reading
    W.Hale-White, 1923, Laënnec: Translation of Selected Papers from "de l"Auscultation médiate', with a Biography, London.
    H.Saintignon, 1904, Laënnec, sa vie et son oeuvre, Paris. Z.Cope, 1957, Sidelights from the History of Medicine.
    MG

    Biographical history of technology > Laënnec, René Théophile Hyacinthe

  • 92 Lebon, Philippe

    SUBJECT AREA: Public utilities
    [br]
    b. 29 May 1767 Bruchey, near Joinville, France
    d. 2 December 1804 Paris, France
    [br]
    French pioneer of gas lighting.
    [br]
    Lebon was the son of a court official under Louis XV. He entered the Ecole des Ponts et Chaussées and graduated in 1792, by which time he had acquired a considerable reputation as a scientific engineer. He is credited with the invention of the firetube steam boiler and of the superheater, and he also devised an engine to work by gas, but from 1792 until his untimely death he worked mainly on his experiments to produce an inflammable gas for lighting purposes. He submitted a paper on the subject in 1799 to the Institut National and received a patent in the same year. The patent covers the detailed making and application of gas for light, heat and power, and the recovery of by-products. It describes the production of the gas by the carbonization of coal, although Lebon in feet used only wood gas for his experiments and demonstrations. He began demonstrations in a private house in Paris, but these attracted little attention. He achieved wider public interest when he moved to the Hôtel Seignelay, where he started a series of public demonstrations in 1801, but he attracted little profit, and in fact lost his money in his experiments. He then set up a plant near Rouen to manufacture wood tar, but his career was brought to an end by his brutal murder in the Champs Elysées in Paris. William Murdock was working along similar lines in England, although Lebon knew nothing of his experiments. The German entrepreneur F.A. Winsor visited Lebon and managed to discover the essentials of his processes, which he turned to good account in England with the founding of the Gas, Light \& Coke Company.
    [br]
    Further Reading
    S.T.McCloy, 1952, French Inventors of the Eighteenth Century.
    A.Fayol, 1943, Philippe Lebon et le gaz d'éclair-age.
    LRD

    Biographical history of technology > Lebon, Philippe

  • 93 Martyn, Sir Richard

    SUBJECT AREA: Metallurgy
    [br]
    b. 1543
    d. July 1617
    [br]
    English goldsmith, Warden and later Master of the Royal Mint, entrepreneur and shareholder in Elizabethan metal industries.
    [br]
    Martyn became a leading shareholder in the Company of Mineral and Battery Works, the Elizabethan monopoly established in 1565 under the initiative William Humfrey. Its purpose was to mine lead and zinc ores and to introduce production of brass and manufacture of brass wire to England, activities in which he took an active interest. Appointed Warden of the Royal Mint in 1572, Martyn's responsibilities included the receipt of bullion and dispatch of freshly minted coins. He reported unfavourably on a new invention for producing "milled" coins by a screw press which embossed the two faces simultaneously. Considerable friction arose from his criticism of the then Master of the Mint. He was later subject to criticism himself on the irregularity of coin weights produced at the Mint. In 1580 Martyn leased Tintern wireworks, property of the Mineral and Battery Company, which was by then producing iron wire after earlier failing in the production of brass. Two years later he sought rights from the company to mine the zinc ore calamine and to make brass. When this was granted in 1587, he formed a partnership with others including William Brode, a London goldsmith who had been experimenting with the making of brass. Production started on a small scale using imported copper at Queen's Mill, Isleworth, largely financed by Martyn. Brode soon disagreed with his partners and with the Mineral and Battery Works Company and Martyn withdrew. After long and acrimonious disputes the works closed completely in 1605.
    [br]
    Principal Honours and Distinctions
    Alderman 1578. Knighted and appointed Lord Mayor of London 1589. Prime Warden of the Goldsmiths' Company 1592. Joint Master of the Mint with his son, Richard, 1599.
    Further Reading
    M.B.Donald, 1961, Elizabethan Monopolies, London: Oliver \& Boyd (provides a comprehensive account).
    JD

    Biographical history of technology > Martyn, Sir Richard

  • 94 Maxim, Sir Hiram Stevens

    [br]
    b. 5 February 1840 Brockway's Mills, Maine, USA
    d. 24 November 1916 Streatham, London, England
    [br]
    American (naturalized British) inventor; designer of the first fully automatic machine gun and of an experimental steam-powered aircraft.
    [br]
    Maxim was born the son of a pioneer farmer who later became a wood turner. Young Maxim was first apprenticed to a carriage maker and then embarked on a succession of jobs before joining his uncle in his engineering firm in Massachusetts in 1864. As a young man he gained a reputation as a boxer, but it was his uncle who first identified and encouraged Hiram's latent talent for invention.
    It was not, however, until 1878, when Maxim joined the first electric-light company to be established in the USA, as its Chief Engineer, that he began to make a name for himself. He developed an improved light filament and his electric pressure regulator not only won a prize at the first International Electrical Exhibition, held in Paris in 1881, but also resulted in his being made a Chevalier de la Légion d'honneur. While in Europe he was advised that weapons development was a more lucrative field than electricity; consequently, he moved to England and established a small laboratory at Hatton Garden, London. He began by investigating improvements to the Gatling gun in order to produce a weapon with a faster rate of fire and which was more accurate. In 1883, by adapting a Winchester carbine, he successfully produced a semi-automatic weapon, which used the recoil to cock the gun automatically after firing. The following year he took this concept a stage further and produced a fully automatic belt-fed weapon. The recoil drove barrel and breechblock to the vent. The barrel then halted, while the breechblock, now unlocked from the former, continued rearwards, extracting the spent case and recocking the firing mechanism. The return spring, which it had been compressing, then drove the breechblock forward again, chambering the next round, which had been fed from the belt, as it did so. Keeping the trigger pressed enabled the gun to continue firing until the belt was expended. The Maxim gun, as it became known, was adopted by almost every army within the decade, and was to remain in service for nearly fifty years. Maxim himself joined forces with the large British armaments firm of Vickers, and the Vickers machine gun, which served the British Army during two world wars, was merely a refined version of the Maxim gun.
    Maxim's interests continued to occupy several fields of technology, including flight. In 1891 he took out a patent for a steam-powered aeroplane fitted with a pendulous gyroscopic stabilizer which would maintain the pitch of the aeroplane at any desired inclination (basically, a simple autopilot). Maxim decided to test the relationship between power, thrust and lift before moving on to stability and control. He designed a lightweight steam-engine which developed 180 hp (135 kW) and drove a propeller measuring 17 ft 10 in. (5.44 m) in diameter. He fitted two of these engines into his huge flying machine testrig, which needed a wing span of 104 ft (31.7 m) to generate enough lift to overcome a total weight of 4 tons. The machine was not designed for free flight, but ran on one set of rails with a second set to prevent it rising more than about 2 ft (61 cm). At Baldwyn's Park in Kent on 31 July 1894 the huge machine, carrying Maxim and his crew, reached a speed of 42 mph (67.6 km/h) and lifted off its rails. Unfortunately, one of the restraining axles broke and the machine was extensively damaged. Although it was subsequently repaired and further trials carried out, these experiments were very expensive. Maxim eventually abandoned the flying machine and did not develop his idea for a stabilizer, turning instead to other projects. At the age of almost 70 he returned to the problems of flight and designed a biplane with a petrol engine: it was built in 1910 but never left the ground.
    In all, Maxim registered 122 US and 149 British patents on objects ranging from mousetraps to automatic spindles. Included among them was a 1901 patent for a foot-operated suction cleaner. In 1900 he became a British subject and he was knighted the following year. He remained a larger-than-life figure, both physically and in character, until the end of his life.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'Honneur 1881. Knighted 1901.
    Bibliography
    1908, Natural and Artificial Flight, London. 1915, My Life, London: Methuen (autobiography).
    Further Reading
    Obituary, 1916, Engineer (1 December).
    Obituary, 1916, Engineering (1 December).
    P.F.Mottelay, 1920, The Life and Work of Sir Hiram Maxim, London and New York: John Lane.
    Dictionary of National Biography, 1912–1921, 1927, Oxford: Oxford University Press.
    CM / JDS

    Biographical history of technology > Maxim, Sir Hiram Stevens

  • 95 McCormick, Cyrus

    [br]
    b. 1809 Walnut Grove, Virginia, USA
    d. 1884 USA
    [br]
    American inventor of the first functionally and commercially successful reaping machine; founder of the McCormick Company, which was to become one of the founding companies of International Harvester.
    [br]
    Cyrus McCormick's father, a farmer, began to experiment unsuccessfully with a harvesting machine between 1809 and 1816. His son took up the challenge and gave his first public demonstration of his machine in 1831. It cut a 4 ft swathe, but, wanting to perfect the machine, he waited until 1834 before patenting it, by which time he felt that his invention was threatened by others of similar design. In the same year he entered an article in the Mechanics Magazine, warning competitors off his design. His main rival was Obed Hussey who contested McCormick's claim to the originality of the idea, having patented his own machine six months before McCormick.
    A competition between the two machines was held in 1843, the judges favouring McCormick's, even after additional trials were conducted after objections of unfairness from Hussey. The rivalry continued over a number of years, being avidly reported in the agricultural press. The publicity did no harm to reaper sales, and McCormick sold twenty-nine machines in 1843 and fifty the following year.
    As the westward settlement movement progressed, so the demand for McCormick's machine grew. In order to be more central to his markets, McCormick established himself in Chicago. In partnership with C.M.Gray he established a factory to produce 500 harvesters for the 1848 season. By means of advertising and offers of credit terms, as well as production-line assembly, McCormick was able to establish himself as sole owner and also control all production, under the one roof. By the end of the decade he dominated reaper production but other developments were to threaten this position; however, foreign markets were appearing at the same time, not least the opportunities of European sales stimulated by the Great Exhibition in 1851. In the trials arranged by the Royal Agricultural Society of England the McCormick machine significantly outperformed that of Hussey's, and as a result McCormick arranged for 500 to be made under licence in England.
    In 1874 McCormick bought a half interest in the patent for a wire binder from Charles Withington, a watchmaker from Janesville, Wisconsin, and by 1885 a total of 50,000 wire binders had been built in Chicago. By 1881 McCormick was producing twine binders using Appleby's twine knotter under a licence agreement, and by 1885 the company was producing only twine binders. The McCormick Company was one of the co-founders of the International Harvester Company in 1901.
    [br]
    Bibliography
    1972, The Century of the Reaper, Johnson Reprint (the original is in the New York State Library).
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (deals in detail with McCormick's developments).
    G.H.Wendell, 1981, 150 Years of International Harvester, Crestlink (though more concerned with the machinery produced by International Harvester, it gives an account of its originating companies).
    T.W.Hutchinson, 1930, Cyrus Hall McCormick, Seedtime 1809–1856; ——1935, Cyrus Hall McCormick, Harvest 1856–1884 (both attempt to unravel the many claims surrounding the reaper story).
    Herbert N.Casson, 1908, The Romance of the Reaper, Doubleday Page (deals with McCormick, Deering and the formation of International Harvester).
    AP

    Biographical history of technology > McCormick, Cyrus

  • 96 Mergenthaler, Ottmar

    SUBJECT AREA: Paper and printing
    [br]
    b. 11 May 1854 Hachtel, Germany
    d. 28 October 1899 Baltimore, Maryland, USA
    [br]
    German/American inventor of the Linotype typesetting machine.
    [br]
    Mergenthaler came from a family of teachers, but following a mechanical bent he was apprenticed to a clockmaker. Having served his time, Mergenthaler emigrated to the USA in 1872 to avoid military service. He immediately secured work in Washington, DC, in the scientific instrument shop of August Hahl, the son of his former master. He steadily acquired a reputation for skill and ingenuity, and in 1876, when Hahl transferred his business to Baltimore, Mergenthaler went too. Soon after, they were commissioned to remedy the defects in a model of a writing machine devised by James O.Clephane of Washington. It produced print by typewriting, which was then multiplied by lithography. Mergenthaler soon corrected the defects and Clephane ordered a full-size version. This was completed in 1877 but did not work satisfactorily. Nevertheless, Mergenthaler was moved to engage in the long battle to mechanize the typesetting stage of the printing process. Clephane suggested substituting stereotyping for lithography in his device, but in spite of their keen efforts Mergenthaler and Hahl were again unsuccessful and they abandoned the project. In spare moments Mergenthaler continued his search for a typesetting machine. Late in 1883 it occurred to him to stamp matrices into type bars and to cast type metal into them in the same machine. From this idea, the Linotype machine developed and was completed by July 1884. It worked well and a patent was granted on 26 August that year, and Clephane and his associates set up the National Typographic Company of West Virginia to manufacture it. The New York Tribune ordered twelve Linotypes, and on 3 July 1886 the first of these set part of that day's issue. During the previous year the company had passed into the hands of a group of newspaper owners; increasing differences with the Board led to Mergenthaler's resignation in 1888, but he nevertheless continued to improve the machine, patenting over fifty modifications. The Linotype, together with the Monotype of Tolbert Lanston, rapidly supplanted earlier typesetting methods, and by the 1920s it reigned supreme, the former being used more for newspapers, the latter for book work.
    [br]
    Principal Honours and Distinctions
    Franklin Institute John Scott Medal, Elliott Cresson Medal.
    Bibliography
    Further Reading
    J.Moran, 1964, The Composition of Reading Matter, London.
    LRD

    Biographical history of technology > Mergenthaler, Ottmar

  • 97 Napier, David

    SUBJECT AREA: Paper and printing
    [br]
    b. 1785 Scotland
    d. 1873
    [br]
    Scottish engineer who devised printing machinery incorporating important improvements.
    [br]
    Born in Scotland, Napier moved to London to set up an engineering workshop in St Giles. In 1824 he was commissioned by Thomas Curson Hansard (1776–1833), who from 1803 began printing the debates in the Houses of Parliament, to make a perfecting press, i.e. one that printed on both sides of the paper. Known as the NayPeer, it was the first to incorporate grippers in order to improve register (the correct positioning of the paper on the inked type); the grippers took hold of a sheet of paper as it was fed on to the impression cylinder. Napier made several machines for Hansard, hand-powered at first but steam-powered from 1832. Napier did not patent the Nay-Peer, but in 1828 he took out a patent for a four-feeder press with a single impression cylinder, which had the then-usual "stop and start" action while the bed carrying the inked type passed to and fro beneath it. To speed output, two years later Napier patented a press with two cylinders revolving in the same direction in place of the single-stop cylinder. Also in 1830, the firm of Napier and Son introduced an improved form of bed and platen press, which became the most popular of its kind; one remained in use at Oxford University Press into the twentieth century. Another invention of Napier's, in 1825, was an automatic inking device, with which turning the rounce or mechanism for moving the type bed under the platen activated inking rollers working on the type. Napier is credited with being the first to introduce the printing machine to Ireland, for the Dublin Evening Post. His cylinder machine was the first of its kind in North America, where it was seen by Hoe and others.
    [br]
    Further Reading
    J.Moran, 1973, PrintingPresses, London: Faber \& Faber (contains details of Napier's printing machines).
    LRD

    Biographical history of technology > Napier, David

  • 98 Rillieux, Norbert

    [br]
    b. 1800 New Orleans, Louisiana, USA
    d. 1894 France
    [br]
    African-American inventor of a sugar-evaporation process.
    [br]
    A free black, he was the son of Vincent Rillieux, a white engineer, and Constance Vivant, a quadroon. The family was prosperous enough to send him to France to be educated, at the Ecole Centrale in Paris. There he studied engineering and later taught mechanical engineering, developing a special interest in thermodynamics and steampower. In 1830 he devised a vacuum evaporation system with industrial possibilities, but he was unable to interest any French firms in the device. He therefore returned to New Orleans and ob-tained his first patent in 1843. Two years later he was able to have the evaporation system installed on a plantation to refine sugar. It soon demonstrated its worth, for planters were able to recoup the cost of the plant within a year through raised production and reduced operating costs. It came to be the generally accepted method for processing sugar-cane juice, and the price of refined sugar fell so that white sugar ceased to be a luxury food for the rich.
    Rillieux's patents protected him from repeated efforts to counterfeit the process, which thus earned him considerable wealth. However, because of increasing hostility and discriminatory laws against blacks in New Orleans, he did not long enjoy it and he returned to France, taking up the study of egyptology.
    [br]
    Further Reading
    P.P.James, 1989, The Real McCoy: AfricanAmerican Invention and Innovation 1619– 1930, Washington, DC: Smithsonian Institution, pp. 41–3.
    LRD

    Biographical history of technology > Rillieux, Norbert

  • 99 Sholes, Christopher Latham

    SUBJECT AREA: Paper and printing
    [br]
    b. 14 February 1819 Mooresburg, Pennsylvania, USA
    d. 17 February 1890 USA
    [br]
    American inventor of the first commercially successful typewriter.
    [br]
    Sholes was born on his parents' farm, of a family that had originally come from England. After leaving school at 14, he was apprenticed for four years to the local newspaper, the Danville Intelligencer. He moved with his parents to Wisconsin, where he followed his trade as journalist and printer, within a year becoming State Printer and taking charge of the House journal of the State Legislature. When he was 20 he left home and joined his brother in Madison, Wisconsin, on the staff of the Wisconsin Enquirer. After marrying, he took the editorship of the Southport Telegraph, until he became Postmaster of Southport. His experiences as journalist and postmaster drew him into politics and, in spite of the delicate nature of his health and personality, he served with credit as State Senator and in the State Assembly. In 1860 he moved to Milwaukee, where he became Editor of the local paper until President Lincoln offered him the post of Collector of Customs at Milwaukee.
    That position at last gave Sholes time to develop his undoubted inventive talents. With a machinist friend, Samuel W.Soule, he obtained a patent for a paging machine and another two years later for a machine for numbering the blank pages of a book serially. At the small machine shop where they worked, there was a third inventor, Carlos Glidden. It was Glidden who suggested to Sholes that, in view of his numbering machine, he would be well equipped to develop a letter printing machine. Glidden drew Sholes's attention to an account of a writing machine that had recently been invented in London by John Pratt, and Sholes was so seized with the idea that he devoted the rest of his life to perfecting the machine. With Glidden and Soule, he took out a patent for a typewriter on June 1868 followed by two further patents for improvements. Sholes struggled unsuccessfully for five years to exploit his invention; his two partners gave up their rights in it and finally, on 1 March 1873, Sholes himself sold his rights to the Remington Arms Company for $12,000. With their mechanical skills and equipment, Remingtons were able to perfect the Sholes typewriter and put it on the market. This, the first commercially successful typewriter, led to a revolution not only in office work, but also in work for women, although progress was slow at first. When the New York Young Women's Christian Association bought six Remingtons in 1881 to begin classes for young women, eight turned up for the first les-son; and five years later it was estimated that there were 60,000 female typists in the USA. Sholes said, "I feel that I have done something for the women who have always had to work so hard. This will more easily enable them to earn a living."
    Sholes continued his work on the typewriter, giving Remingtons the benefit of his results. His last patent was granted in 1878. Never very strong, Sholes became consumptive and spent much of his remaining nine years in the vain pursuit of health.
    [br]
    Bibliography
    23 June 1868, US patent no. 79,265 (the first typewriter patent).
    Further Reading
    M.H.Adler, 1973, The Writing Machine, London: Allen \& Unwin.
    LRD

    Biographical history of technology > Sholes, Christopher Latham

  • 100 Singer, Isaac Merritt

    [br]
    b. 27 October 1811 Pittstown, New York, USA
    d. 23 July 1875 Torquay, Devonshire, England
    [br]
    American inventor of a sewing machine, and pioneer of mass production.
    [br]
    The son of a millwright, Singer was employed as an unskilled labourer at the age of 12, but later gained wide experience as a travelling machinist. He also found employment as an actor. On 16 May 1839, while living at Lockport, Illinois, he obtained his first patent for a rock-drilling machine, but he soon squandered the money he made. Then in 1849, while at Pittsburgh, he secured a patent for a wood-and metal-carving machine that he had begun five years previously; however, a boiler explosion in the factory destroyed his machine and left him penniless.
    Near the end of 1850 Singer was engaged to redesign the Lerow \& Blodgett sewing machine at the Boston shop of Orson C.Phelps, where the machine was being repaired. He built an improved version in eleven days that was sufficiently different for him to patent on 12 August 1851. He formed a partnership with Phelps and G.B. Zieber and they began to market the invention. Singer soon purchased Phelps's interest, although Phelps continued to manufacture the machines. Then Edward Clark acquired a one-third interest and with Singer bought out Zieber. These two, with dark's flair for promotion and marketing, began to create a company which eventually would become the largest manufacturer of sewing machines exported worldwide, with subsidiary factories in England.
    However, first Singer had to defend his patent, which was challenged by an earlier Boston inventor, Elias Howe. Although after a long lawsuit Singer had to pay royalties, it was the Singer machine which eventually captured the market because it could do continuous stitching. In 1856 the Great Sewing Machine Combination, the first important pooling arrangement in American history, was formed to share the various patents so that machines could be built without infringements and manufacture could be expanded without fear of litigation. Singer contributed his monopoly on the needle-bar cam with his 1851 patent. He secured twenty additional patents, so that his original straight-needle vertical design for lock-stitching eventually included such refinements as a continuous wheel-feed, yielding presser-foot, and improved cam for moving the needle-bar. A new model, introduced in 1856, was the first to be intended solely for use in the home.
    Initially Phelps made all the machines for Singer. Then a works was established in New York where the parts were assembled by skilled workers through filing and fitting. Each machine was therefore a "one-off" but Singer machines were always advertised as the best on the market and sold at correspondingly high prices. Gradually, more specialized machine tools were acquired, but it was not until long after Singer had retired to Europe in 1863 that Clark made the change to mass production. Sales of machines numbered 810 in 1853 and 21,000 ten years later.
    [br]
    Bibliography
    12 August 1851, US patent no. 8,294 (sewing machine)
    Further Reading
    Biographies and obituaries have appeared in Appleton's Cyclopedia of America, Vol. V; Dictionary of American Biography, Vol XVII; New York Times 25 July 1875; Scientific American (1875) 33; and National Cyclopaedia of American Biography.
    D.A.Hounshell, 1984, From the American System to Mass Production 1800–1932. The
    Development of Manufacturing Technology in the United States, Baltimore (provides a thorough account of the development of the Singer sewing machine, the competition it faced from other manufacturers and production methods).
    RLH

    Biographical history of technology > Singer, Isaac Merritt

См. также в других словарях:

  • INVENTION — L’invention est l’acte de produire par ses propres moyens un élément, un objet ou un processus original; plus généralement, de produire ou de créer en utilisant son imagination: inventer une machine, inventer une histoire. Le terme a aussi un… …   Encyclopédie Universelle

  • INVENTION (BREVET D’) — «L’invention, a dit Bergson, est la démarche essentielle de l’esprit humain, celle qui distingue l’homme de l’animal et lui a permis peu à peu d’affirmer son règne matériel sur le monde.» Sur le plan collectif, les peuples n’existent et ne valent …   Encyclopédie Universelle

  • Invention (brevet) — Brevet Propriété intellectuelle Propriété littéraire et artistique Droit d auteur et copyright Droits voisins Propriété industrielle Créations utilitaires: Brevet Secret industriel et …   Wikipédia en Français

  • Invention du cinéma — Histoire du cinéma Cet article retrace les grandes étapes qui jalonnent l histoire du cinéma. La première projection du cinématographe Lumière dans une salle prévu à cet effet (salle de cinéma) a lieu le 21 septembre 1895, à la Ciotat à …   Wikipédia en Français

  • Son de la trompette — Trompette Pour les articles homonymes, voir Trompette (homonymie). Trompette en si …   Wikipédia en Français

  • invention — (in van sion ; en vers, de quatre syllabes) s. f. 1°   Habileté d inventer, disposition à inventer. •   Ils [les poëtes trop châtiés] rampent bassement, faibles d inventions, RÉGNIER Sat. IX.. •   J ai trouvé ce nom [M. d Arles] pour ne dire ni M …   Dictionnaire de la Langue Française d'Émile Littré

  • INVENTION — s. f. Faculté d inventer, disposition de l esprit à inventer. Ce poëte, ce peintre n a point d invention. Cet homme est plein d invention.   Il se prend aussi pour L action d inventer, ou pour La chose inventée. Depuis l invention de l imprimerie …   Dictionnaire de l'Academie Francaise, 7eme edition (1835)

  • Invention De Reliques — Une inventio reliquarum est un récit portant sur la découverte « miraculeuse » d ossements d un saint, martyr ou non (singulièrement, en Palestine, un prophète), ou d un objet qui a touché ce saint. La présente liste donne quelques… …   Wikipédia en Français

  • Invention d'ivrogne — est un conte japonais des temps modernes qui a trait au mensonge. Sommaire 1 Le conte 2 Bibliographie 3 Voir aussi 4 Notes …   Wikipédia en Français

  • Son Goku (Dragon Ball) — Son Gokû (Dragon Ball) Pour les articles homonymes, voir Son Gokû. Son Goku Personnage de Dragon Bal …   Wikipédia en Français

  • Son (music) — Son cubano Stylistic origins A fusion of Spanish guitar and song, with percussion of African origin Cultural origins Cuba (late 19th C. Oriente) Typical instruments Guitar or tres, marímbula or double bass, trumpet, bongo …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»