Перевод: с английского на все языки

со всех языков на английский

clarendon

  • 81 Heathcote, John

    SUBJECT AREA: Textiles
    [br]
    b. 7 August 1783 Duffield, Derbyshire, England
    d. 18 January 1861 Tiverton, Devonshire, England
    [br]
    English inventor of the bobbin-net lace machine.
    [br]
    Heathcote was the son of a small farmer who became blind, obliging the family to move to Long Whatton, near Loughborough, c.1790. He was apprenticed to W.Shepherd, a hosiery-machine maker, and became a frame-smith in the hosiery industry. He moved to Nottingham where he entered the employment of an excellent machine maker named Elliott. He later joined William Caldwell of Hathern, whose daughter he had married. The lace-making apparatus they patented jointly in 1804 had already been anticipated, so Heathcote turned to the problem of making pillow lace, a cottage industry in which women made lace by arranging pins stuck in a pillow in the correct pattern and winding around them thread contained on thin bobbins. He began by analysing the complicated hand-woven lace into simple warp and weft threads and found he could dispense with half the bobbins. The first machine he developed and patented, in 1808, made narrow lace an inch or so wide, but the following year he made much broader lace on an improved version. In his second patent, in 1809, he could make a type of net curtain, Brussels lace, without patterns. His machine made bobbin-net by the use of thin brass discs, between which the thread was wound. As they passed through the warp threads, which were arranged vertically, the warp threads were moved to each side in turn, so as to twist the bobbin threads round the warp threads. The bobbins were in two rows to save space, and jogged on carriages in grooves along a bar running the length of the machine. As the strength of this fabric depended upon bringing the bobbin threads diagonally across, in addition to the forward movement, the machine had to provide for a sideways movement of each bobbin every time the lengthwise course was completed. A high standard of accuracy in manufacture was essential for success. Called the "Old Loughborough", it was acknowledged to be the most complicated machine so far produced. In partnership with a man named Charles Lacy, who supplied the necessary capital, a factory was established at Loughborough that proved highly successful; however, their fifty-five frames were destroyed by Luddites in 1816. Heathcote was awarded damages of £10,000 by the county of Nottingham on the condition it was spent locally, but to avoid further interference he decided to transfer not only his machines but his entire workforce elsewhere and refused the money. In a disused woollen factory at Tiverton in Devonshire, powered by the waters of the river Exe, he built 300 frames of greater width and speed. By continually making inventions and improvements until he retired in 1843, his business flourished and he amassed a large fortune. He patented one machine for silk cocoon-reeling and another for plaiting or braiding. In 1825 he brought out two patents for the mechanical ornamentation or figuring of lace. He acquired a sound knowledge of French prior to opening a steam-powered lace factory in France. The factory proved to be a successful venture that lasted many years. In 1832 he patented a monstrous steam plough that is reputed to have cost him over £12,000 and was claimed to be the best in its day. One of its stated aims was "improved methods of draining land", which he hoped would develop agriculture in Ireland. A cable was used to haul the implement across the land. From 1832 to 1859, Heathcote represented Tiverton in Parliament and, among other benefactions, he built a school for his adopted town.
    [br]
    Bibliography
    1804, with William Caldwell, British patent no. 2,788 (lace-making machine). 1808. British patent no. 3,151 (machine for making narrow lace).
    1809. British patent no. 3,216 (machine for making Brussels lace). 1813, British patent no. 3,673.
    1825, British patent no. 5,103 (mechanical ornamentation of lace). 1825, British patent no. 5,144 (mechanical ornamentation of lace).
    Further Reading
    V.Felkin, 1867, History of the Machine-wrought Hosiery and Lace Manufacture, Nottingham (provides a full account of Heathcote's early life and his inventions).
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (provides more details of his later years).
    W.G.Allen, 1958 John Heathcote and His Heritage (biography).
    M.R.Lane, 1980, The Story of the Steam Plough Works, Fowlers of Leeds, London (for comments about Heathcote's steam plough).
    W.English, 1969, The Textile Industry, London, and C.Singer (ed.), 1958, A History of
    Technology, Vol. V, Oxford: Clarendon Press (both describe the lace-making machine).
    RLH

    Biographical history of technology > Heathcote, John

  • 82 Heilmann, Josué (Joshua)

    SUBJECT AREA: Textiles
    [br]
    b. 1796 Alsace
    d. 1848
    [br]
    Alsatian inventor of the first machine for combing cotton.
    [br]
    Josué Heilmann, of Mulhouse, was awarded 5,000 francs offered by the cotton spinners of Alsace for a machine that would comb cotton. It was a process not hitherto applied to this fibre and, when perfected, enabled finer, smoother and more lustrous yarns to be spun. The important feature of Heilmann's method was to use a grip or nip to hold the end of the sliver that was being combed. Two or more combs passed through the protruding fibres to comb them thoroughly, and a brush cylinder and knife cleared away the noils. The combed section was passed forward so that the part held in the nip could then be combed. The combed fibres were joined up with the length already finished. Heilmann obtained a British patent in 1846, but no machines were put to work until 1851. Six firms of cotton spinners in Lancashire paid £30,000 for the cotton-combing rights and Marshall's of Leeds paid £20,000 for the rights to comb flax. Heilmann's machine was used on the European continent for combing silk as well as flax, wool and cotton, so it proved to be very versatile. Priority of his patent was challenged in England because Lister had patented a combing machine with a gripper or nip in 1843; in 1852 the parties went to litigation and cross-suits were instituted. While Heilmann obtained a verdict of infringement against Lister for certain things, Lister also obtained one against Heilmann for other matters. After this outcome, Heilmann's patent was bought on speculation by Messrs Akroyd and Titus Salt for £30,000, but was afterwards resold to Lister for the same amount. In this way Lister was able to exploit his own patent through suppressing Heilmann's.
    [br]
    Bibliography
    1846, British patent no. 11,103 (cotton-combing machine).
    Further Reading
    For descriptions of his combing machine see: W.English, 1969, The Textile Industry, London; T.K.Derry and T.I.Williams, 1960, A Short History of Technology from the Earliest Times to AD 1900, Oxford; and C.Singer (ed.), 1958, A History of Technology, Vol.
    IV, Oxford: Clarendon Press.
    RLH

    Biographical history of technology > Heilmann, Josué (Joshua)

  • 83 Howe, Elias

    [br]
    b. 9 July 1819 Spencer, Massachusetts, USA
    d. 3 October 1867 Bridgeport, Connecticut, USA
    [br]
    American inventor of one of the earliest successful sewing machines.
    [br]
    Son of Elias Howe, a farmer, he acquired his mechanical knowledge in his father's mill. He left school at 12 years of age and was apprenticed for two years in a machine shop in Lowell, Massachusetts, and later to an instrument maker, Ari Davis in Boston, Massachusetts, where his master's services were much in demand by Harvard University. Fired by a desire to invent a sewing machine, he utilized the experience gained in Lowell to devise a shuttle carrying a lower thread and a needle carrying an upper thread to make lock-stitch in straight lines. His attempts were so rewarding that he left his job and was sustained first by his father and then by a partner. By 1845 he had built a machine that worked at 250 stitches per minute, and the following year he patented an improved machine. The invention of the sewing machine had an enormous impact on the textile industry, stimulating demand for cloth because making up garments became so much quicker. The sewing machine was one of the first mass-produced consumer durables and was essentially an American invention. William Thomas, a London manufacturer of shoes, umbrellas and corsets, secured the British rights and persuaded Howe to come to England to apply it to the making of shoes. This Howe did, but he quarrelled with Thomas after less than one year. He returned to America to face with his partner, G.W.Bliss, a bigger fight over his patent (see I.M. Singer), which was being widely infringed. Not until 1854 was the case settled in his favour. This litigation threatened the very existence of the new industry, but the Great Sewing Machine Combination, the first important patent-pooling arrangement in American history, changed all this. For a fee of $5 on every domestically-sold machine and $1 on every exported one, Howe contributed to the pool his patent of 1846 for a grooved eye-pointed needle used in conjunction with a lock-stitch-forming shuttle. Howe's patent was renewed in 1861; he organized and equipped a regiment during the Civil War with the royalties. When the war ended he founded the Howe Machine Company of Bridgeport, Connecticut.
    [br]
    Further Reading
    Obituary, 1867, Engineer 24.
    Obituary, 1867, Practical Magazine 5.
    F.G.Harrison, 1892–3, Biographical Sketches of Pre-eminent Americans (provides a good account of Howe's life and achievements).
    N.Salmon, 1863, History of the Sewing Machine from the Year 1750, with a biography of Elias Howe, London (tells the history of sewing machines).
    F.B.Jewell, 1975, Veteran Sewing Machines, A Collector's Guide, Newton Abbot (a more modern account of the history of sewing machines).
    C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press (covers the mechanical developments).
    D.A.Hounshell, 1984, From the American System to Mass Production 1800–1932. The
    Development of Manufacturing Technology in the United States, Baltimore (examines the role of the American sewing machine companies in the development of mass-production techniques).
    RLH

    Biographical history of technology > Howe, Elias

  • 84 Jacquard, Joseph-Marie

    SUBJECT AREA: Textiles
    [br]
    b. 7 July 1752 Lyons, France
    d. 7 August 1834 Oullines, France
    [br]
    French developer of the apparatus named after him and used for selecting complicated patterns in weaving.
    [br]
    Jacquard was apprenticed at the age of 12 to bookbinding, and later to type-founding and cutlery. His parents, who had some connection with weaving, left him a small property upon their death. He made some experiments with pattern weaving, but lost all his inheritance; after marrying, he returned to type-founding and cutlery. In 1790 he formed the idea for his machine, but it was forgotten amidst the excitement of the French Revolution, in which he fought for the Revolutionists at the defence of Lyons. The machine he completed in 1801 combined earlier inventions and was for weaving net. He was sent to Paris to demonstrate it at the National Exposition and received a bronze medal. In 1804 Napoleon granted him a patent, a pension of 1,500 francs and a premium on each machine sold. This enabled him to study and work at the Conservatoire des Arts et Métiers to perfect his mechanism for pattern weaving. A method of selecting any combination of leashes at each shoot of the weft had to be developed, and Jacquard's mechanism was the outcome of various previous inventions. By taking the cards invented by Falcon in 1728 that were punched with holes like the paper of Bouchon in 1725, to select the needles for each pick, and by placing the apparatus above the loom where Vaucanson had put his mechanism, Jacquard combined the best features of earlier inventions. He was not entirely successful because his invention failed in the way it pressed the card against the needles; later modifications by Breton in 1815 and Skola in 1819 were needed before it functioned reliably. However, the advantage of Jacquard's machine was that each pick could be selected much more quickly than on the earlier draw looms, which meant that John Kay's flying shuttle could be introduced on fine pattern looms because the weaver no longer had to wait for the drawboy to sort out the leashes for the next pick. Robert Kay's drop box could also be used with different coloured wefts. The drawboy could be dispensed with because the foot-pedal operating the Jacquard mechanism could be worked by the weaver. Patterns could be changed quickly by replacing one set of cards with another, but the scope of the pattern was more limited than with the draw loom. Some machines that were brought into use aroused bitter hostility. Jacquard suffered physical violence, barely escaping with his life, and his machines were burnt by weavers at Lyons. However, by 1812 his mechanism began to be generally accepted and had been applied to 11,000 draw-looms in France. In 1819 Jacquard received a gold medal and a Cross of Honour for his invention. His machines reached England c.1816 and still remain the basic way of weaving complicated patterns.
    [br]
    Principal Honours and Distinctions
    French Cross of Honour 1819. National Exposition Bronze Medal 1801.
    Further Reading
    C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press.
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (covers the introduction of pattern weaving and the power loom).
    RLH

    Biographical history of technology > Jacquard, Joseph-Marie

  • 85 Kay (of Bury), John

    SUBJECT AREA: Textiles
    [br]
    b. 16 July 1704 Walmersley, near Bury, Lancashire, England
    d. 1779 France
    [br]
    English inventor of the flying shuttle.
    [br]
    John Kay was the youngest of five sons of a yeoman farmer of Walmersley, near Bury, Lancashire, who died before his birth. John was apprenticed to a reedmaker, and just before he was 21 he married a daughter of John Hall of Bury and carried on his trade in that town until 1733. It is possible that his first patent, taken out in 1730, was connected with this business because it was for an engine that made mohair thread for tailors and twisted and dressed thread; such thread could have been used to bind up the reeds used in looms. He also improved the reeds by making them from metal instead of cane strips so they lasted much longer and could be made to be much finer. His next patent in 1733, was a double one. One part of it was for a batting machine to remove dust from wool by beating it with sticks, but the patent is better known for its description of the flying shuttle. Kay placed boxes to receive the shuttle at either end of the reed or sley. Across the open top of these boxes was a metal rod along which a picking peg could slide and drive the shuttle out across the loom. The pegs at each end were connected by strings to a stick that was held in the right hand of the weaver and which jerked the shuttle out of the box. The shuttle had wheels to make it "fly" across the warp more easily, and ran on a shuttle race to support and guide it. Not only was weaving speeded up, but the weaver could produce broader cloth without any aid from a second person. This invention was later adapted for the power loom. Kay moved to Colchester and entered into partnership with a baymaker named Solomon Smith and a year later was joined by William Carter of Ballingdon, Essex. His shuttle was received with considerable hostility in both Lancashire and Essex, but it was probably more his charge of 15 shillings a year for its use that roused the antagonism. From 1737 he was much involved with lawsuits to try and protect his patent, particularly the part that specified the method of winding the thread onto a fixed bobbin in the shuttle. In 1738 Kay patented a windmill for working pumps and an improved chain pump, but neither of these seems to have been successful. In 1745, with Joseph Stell of Keighley, he patented a narrow fabric loom that could be worked by power; this type may have been employed by Gartside in Manchester soon afterwards. It was probably through failure to protect his patent rights that Kay moved to France, where he arrived penniless in 1747. He went to the Dutch firm of Daniel Scalongne, woollen manufacturers, in Abbeville. The company helped him to apply for a French patent for his shuttle, but Kay wanted the exorbitant sum of £10,000. There was much discussion and eventually Kay set up a workshop in Paris, where he received a pension of 2,500 livres. However, he was to face the same problems as in England with weavers copying his shuttle without permission. In 1754 he produced two machines for making card clothing: one pierced holes in the leather, while the other cut and sharpened the wires. These were later improved by his son, Robert Kay. Kay returned to England briefly, but was back in France in 1758. He was involved with machines to card both cotton and wool and tried again to obtain support from the French Government. He was still involved with developing textile machines in 1779, when he was 75, but he must have died soon afterwards. As an inventor Kay was a genius of the first rank, but he was vain, obstinate and suspicious and was destitute of business qualities.
    [br]
    Bibliography
    1730, British patent no. 515 (machine for making mohair thread). 1733, British patent no. 542 (batting machine and flying shuttle). 1738, British patent no. 561 (pump windmill and chain pump). 1745, with Joseph Stell, British patent no. 612 (power loom).
    Further Reading
    B.Woodcroft, 1863, Brief Biographies of Inventors or Machines for the Manufacture of Textile Fabrics, London.
    J.Lord, 1903, Memoir of John Kay, (a more accurate account).
    Descriptions of his inventions may be found in A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the
    Industrial Revolution, Manchester; and C.Singer (ed.), 1957, A History of
    Technology, Vol. III, Oxford: Clarendon Press. The most important record, however, is in A.P.Wadsworth and J. de L. Mann, 1931, The Cotton Trade and Industrial
    Lancashire, Manchester.
    RLH

    Biographical history of technology > Kay (of Bury), John

  • 86 Lister, Samuel Cunliffe, 1st Baron Masham

    SUBJECT AREA: Textiles
    [br]
    b. 1 January 1815 Calverly Hall, Bradford, England
    d. 2 February 1906 Swinton Park, near Bradford, England
    [br]
    English inventor of successful wool-combing and waste-silk spinning machines.
    [br]
    Lister was descended from one of the old Yorkshire families, the Cunliffe Listers of Manningham, and was the fourth son of his father Ellis. After attending a school on Clapham Common, Lister would not go to university; his family hoped he would enter the Church, but instead he started work with the Liverpool merchants Sands, Turner \& Co., who frequently sent him to America. In 1837 his father built for him and his brother a worsted mill at Manningham, where Samuel invented a swivel shuttle and a machine for making fringes on shawls. It was here that he first became aware of the unhealthy occupation of combing wool by hand. Four years later, after seeing the machine that G.E. Donisthorpe was trying to work out, he turned his attention to mechanizing wool-combing. Lister took Donisthorpe into partnership after paying him £12,000 for his patent, and developed the Lister-Cartwright "square nip" comber. Until this time, combing machines were little different from Cartwright's original, but Lister was able to improve on this with continuous operation and by 1843 was combing the first fine botany wool that had ever been combed by machinery. In the following year he received an order for fifty machines to comb all qualities of wool. Further combing patents were taken out with Donisthorpe in 1849, 1850, 1851 and 1852, the last two being in Lister's name only. One of the important features of these patents was the provision of a gripping device or "nip" which held the wool fibres at one end while the rest of the tuft was being combed. Lister was soon running nine combing mills. In the 1850s Lister had become involved in disputes with others who held combing patents, such as his associate Isaac Holden and the Frenchman Josué Heilmann. Lister bought up the Heilmann machine patents and afterwards other types until he obtained a complete monopoly of combing machines before the patents expired. His invention stimulated demand for wool by cheapening the product and gave a vital boost to the Australian wool trade. By 1856 he was at the head of a wool-combing business such as had never been seen before, with mills at Manningham, Bradford, Halifax, Keighley and other places in the West Riding, as well as abroad.
    His inventive genius also extended to other fields. In 1848 he patented automatic compressed air brakes for railways, and in 1853 alone he took out twelve patents for various textile machines. He then tried to spin waste silk and made a second commercial career, turning what was called "chassum" and hitherto regarded as refuse into beautiful velvets, silks, plush and other fine materials. Waste silk consisted of cocoon remnants from the reeling process, damaged cocoons and fibres rejected from other processes. There was also wild silk obtained from uncultivated worms. This is what Lister saw in a London warehouse as a mass of knotty, dirty, impure stuff, full of bits of stick and dead mulberry leaves, which he bought for a halfpenny a pound. He spent ten years trying to solve the problems, but after a loss of £250,000 and desertion by his partner his machine caught on in 1865 and brought Lister another fortune. Having failed to comb this waste silk, Lister turned his attention to the idea of "dressing" it and separating the qualities automatically. He patented a machine in 1877 that gave a graduated combing. To weave his new silk, he imported from Spain to Bradford, together with its inventor Jose Reixach, a velvet loom that was still giving trouble. It wove two fabrics face to face, but the problem lay in separating the layers so that the pile remained regular in length. Eventually Lister was inspired by watching a scissors grinder in the street to use small emery wheels to sharpen the cutters that divided the layers of fabric. Lister took out several patents for this loom in his own name in 1868 and 1869, while in 1871 he took out one jointly with Reixach. It is said that he spent £29,000 over an eleven-year period on this loom, but this was more than recouped from the sale of reasonably priced high-quality velvets and plushes once success was achieved. Manningham mills were greatly enlarged to accommodate this new manufacture.
    In later years Lister had an annual profit from his mills of £250,000, much of which was presented to Bradford city in gifts such as Lister Park, the original home of the Listers. He was connected with the Bradford Chamber of Commerce for many years and held the position of President of the Fair Trade League for some time. In 1887 he became High Sheriff of Yorkshire, and in 1891 he was made 1st Baron Masham. He was also Deputy Lieutenant in North and West Riding.
    [br]
    Principal Honours and Distinctions
    Created 1st Baron Masham 1891.
    Bibliography
    1849, with G.E.Donisthorpe, British patent no. 12,712. 1850, with G.E. Donisthorpe, British patent no. 13,009. 1851, British patent no. 13,532.
    1852, British patent no. 14,135.
    1877, British patent no. 3,600 (combing machine). 1868, British patent no. 470.
    1868, British patent no. 2,386.
    1868, British patent no. 2,429.
    1868, British patent no. 3,669.
    1868, British patent no. 1,549.
    1871, with J.Reixach, British patent no. 1,117. 1905, Lord Masham's Inventions (autobiography).
    Further Reading
    J.Hogg (ed.), c. 1888, Fortunes Made in Business, London (biography).
    W.English, 1969, The Textile Industry, London; and C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (both cover the technical details of Lister's invention).
    RLH

    Biographical history of technology > Lister, Samuel Cunliffe, 1st Baron Masham

  • 87 Martin, C.

    SUBJECT AREA: Textiles
    [br]
    fl. c. 1861 Belgium
    [br]
    Belgian maker of one of the most popular types of tape condensers.
    [br]
    The object of condensing, the last process in carding, is to obtain a roving, or slightly twisted yarn which is the same thickness and weight throughout its length. In a tape condenser, the web of fibres from the last swift of the carder is divided into the requisite number of ribbons, which are supported on tapes before being rubbed into round rovings and wound onto bobbins ready for spinning.
    It was Martin who introduced in 1861 what became the most common type of condenser on the European continent. It divided the web by a combined tearing and cutting action between leather tapes and a pair of rigid rollers. As its division of the web was more minute than with earlier machines, its product was more suitable for fine yarns, so it was accepted rapidly in Belgium and France but much more slowly in England and the United States.
    [br]
    Further Reading
    C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press (includes an account of this invention).
    L.J.Mills (ed.), 1928, The Textile Educator, Vol. III, London; and W.E.Morton, 1937, An Introduction to the Study of Spinning, London (both provide an explanation of the condenser system).
    RLH

    Biographical history of technology > Martin, C.

  • 88 Möller, Anton

    SUBJECT AREA: Textiles
    [br]
    fl. c. 1580 Danzig, Poland
    [br]
    Polish may have been involved with the invention of the ribbon loom.
    [br]
    Around 1586, Anton Möller related that he saw in Danzig a loom on which four to six pieces of ribbon could be woven at once. Some accounts say he may have invented this loom, which required no skill to use beyond the working of a bar. The city council was afraid that a great many workers might be reduced to begging because of this invention, so they had it suppressed and the inventor strangled or drowned. It seems to have been in use in London c. 1616 and at Leiden in Holland by 1620, but its spread was handicapped both by popular rioting and by restrictive legislation. By 1621 the capacity of the loom had been increased to twenty-four ribbons, and it was later increased to fifty. It made its appearance in Lancashire around 1680 and the way the shuttles were operated could have given John Kay the inspiration for his flying shuttle.
    [br]
    Further Reading
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (includes a good description and illustration of the invention).
    to AD 1900, Oxford; C.Singer (ed.), 1957, A History of Technology, Vol. III, Oxford: Clarendon Press (both provide brief accounts of the introduction of the ribbon loom).
    RLH

    Biographical history of technology > Möller, Anton

  • 89 Murdock (Murdoch), William

    [br]
    b. 21 August 1754 Cumnock, Ayrshire, Scotland
    d. 15 November 1839 Handsworth, Birmingham, England
    [br]
    Scottish engineer and inventor, pioneer in coal-gas production.
    [br]
    He was the third child and the eldest of three boys born to John Murdoch and Anna Bruce. His father, a millwright and joiner, spelled his name Murdock on moving to England. He was educated for some years at Old Cumnock Parish School and in 1777, with his father, he built a "wooden horse", supposed to have been a form of cycle. In 1777 he set out for the Soho manufactory of Boulton \& Watt, where he quickly found employment, Boulton supposedly being impressed by the lad's hat. This was oval and made of wood, and young William had turned it himself on a lathe of his own manufacture. Murdock quickly became Boulton \& Watt's representative in Cornwall, where there was a flourishing demand for steam-engines. He lived at Redruth during this period.
    It is said that a number of the inventions generally ascribed to James Watt are in fact as much due to Murdock as to Watt. Examples are the piston and slide valve and the sun-and-planet gearing. A number of other inventions are attributed to Murdock alone: typical of these is the oscillating cylinder engine which obviated the need for an overhead beam.
    In about 1784 he planned a steam-driven road carriage of which he made a working model. He also planned a high-pressure non-condensing engine. The model carriage was demonstrated before Murdock's friends and travelled at a speed of 6–8 mph (10–13 km/h). Boulton and Watt were both antagonistic to their employees' developing independent inventions, and when in 1786 Murdock set out with his model for the Patent Office, having received no reply to a letter he had sent to Watt, Boulton intercepted him on the open road near Exeter and dissuaded him from going any further.
    In 1785 he married Mary Painter, daughter of a mine captain. She bore him four children, two of whom died in infancy, those surviving eventually joining their father at the Soho Works. Murdock was a great believer in pneumatic power: he had a pneumatic bell-push at Sycamore House, his home near Soho. The pattern-makers lathe at the Soho Works worked for thirty-five years from an air motor. He also conceived the idea of a vacuum piston engine to exhaust a pipe, later developed by the London Pneumatic Despatch Company's railway and the forerunner of the atmospheric railway.
    Another field in which Murdock was a pioneer was the gas industry. In 1791, in Redruth, he was experimenting with different feedstocks in his home-cum-office in Cross Street: of wood, peat and coal, he preferred the last. He designed and built in the backyard of his house a prototype generator, washer, storage and distribution plant, and publicized the efficiency of coal gas as an illuminant by using it to light his own home. In 1794 or 1795 he informed Boulton and Watt of his experimental work and of its success, suggesting that a patent should be applied for. James Watt Junior was now in the firm and was against patenting the idea since they had had so much trouble with previous patents and had been involved in so much litigation. He refused Murdock's request and for a short time Murdock left the firm to go home to his father's mill. Boulton \& Watt soon recognized the loss of a valuable servant and, in a short time, he was again employed at Soho, now as Engineer and Superintendent at the increased salary of £300 per year plus a 1 per cent commission. From this income, he left £14,000 when he died in 1839.
    In 1798 the workshops of Boulton and Watt were permanently lit by gas, starting with the foundry building. The 180 ft (55 m) façade of the Soho works was illuminated by gas for the Peace of Paris in June 1814. By 1804, Murdock had brought his apparatus to a point where Boulton \& Watt were able to canvas for orders. Murdock continued with the company after the death of James Watt in 1819, but retired in 1830 and continued to live at Sycamore House, Handsworth, near Birmingham.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Gold Medal 1808.
    Further Reading
    S.Smiles, 1861, Lives of the Engineers, Vol. IV: Boulton and Watt, London: John Murray.
    H.W.Dickinson and R.Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    J.A.McCash, 1966, "William Murdoch. Faithful servant" in E.G.Semler (ed.), The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Murdock (Murdoch), William

  • 90 Northrop, James H.

    SUBJECT AREA: Textiles
    [br]
    fl. 1890s Keighley, Yorkshire, England
    [br]
    English-born American inventor of the first successful loom to change the shuttles automatically when the weft ran out.
    [br]
    Although attempts had been continuing since about 1840 to develop a loom on which the shuttles were changed automatically when the weft was exhausted, it was not until J.H.Northrop invented his cop-changer and patented it in the United States in 1894 that the automatic loom really became a serious competitor to the ordinary power loom. Northrop was born at Keighley in Yorkshire but emigrated to America, where he developed his loom. In about 1891 he appears to have been undecided whether to work on the shuttle-changing system or the copchanging system, for in that year he took out three patents, one of which was for a shuttle changer and the other two for cop-changers.
    A communication from W.F.Draper, Northrop's employer, was used in 1894 as a patent in Britain for a cop-or bobbin-changing automatic loom, which was in fact the Northrop loom. A further five patents for stop motions were taken out in 1895, and yet another in 1896. In one shuttle-box, a feeler was pushed through a hole in the side of the shuttle each time the shuttle entered the box. When the cop of weft was full, the loom carried on working normally. If lack of weft enabled the feeler to enter beyond a certain point, a device was activated which pushed a full cop down into the place of the old one. The full cops were contained in a rotary magazine, ready for insertion.
    The full Northrop loom comprised several basic inventions in addition to the cop-changer, namely a self-threading shuttle, a weft-fork mechanism to stop the loom, a warp let-off mechanism and a warp-stop motion. The Northrop loom revolutionized cotton weaving in America and the Northrop system became the basis for most later automatic looms. While Northrop looms were made in America and on the European continent, they never achieved much popularity in Britain, where finer cloth was usually woven.
    [br]
    Further Reading
    W.A.Hanton, 1929, Automatic Weaving, London (describes the Northrop loom and has good illustrations of the mechanism).
    W.English, 1969, The Textile Industry, London (explains the Northrop system). C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press.
    RLH

    Biographical history of technology > Northrop, James H.

  • 91 Praed, William

    SUBJECT AREA: Canals
    [br]
    b. 24 June 1747 Trevethoe, Leland, St Ives, Cornwall, England
    d. 9 October 1833 Trevethoe, Leland, St Ives, Cornwall, England
    [br]
    English banker and Member of Parliament.
    [br]
    Born into a wealthy Cornish family, he was educated at Eton and Magdalen College, Oxford. He was elected Member of Parliament for St Ives in 1774, but it was alleged that his father, who was a banker, had acted as agent for both his son and Drummond, the other candidate for the same party, in the course of which he advanced money to voters "on their notes payable with interest to the bank of Truro (Praed's bank)" but with the understanding that repayment would not be demanded from those who had voted for Praed and Drummond. Praed's election was therefore declared void on 8 May 1775. He was re-elected in 1780, by which time St Ives was virtually a Praed family monopoly. He served in successive Parliaments until 1806 and then represented Banbury until 1808. Meanwhile, in 1779 he had become a partner in his father's Truro bank, c. 1801 founded the London bank of Praed \& Co. at 189 Fleet Street.
    While in Parliament, he was instrumental in obtaining and carrying into effect the Bill for the Grand Junction Canal from Braunston to London. He was elected Chairman of the company formed for constructing the canal and proved an excellent choice, serving the company faithfully for nearly thirty years until his resignation in 1821. Upon his marriage to Elizabeth Tyringham in 1778 he made his home at Tyringham Hall in Buckinghamshire and so was very much in the Grand Junction Canal Company's area. London's Praed Street, in which Paddington Station stands, is named in his honour and the canal basin is at the rear of this street. His monument in Tyringham Church bears a relief illustrating a pair of lock gates and a canal boat.
    [br]
    Further Reading
    Alan H.Faulkner, 1972, The Grand Junction Canal, Newton Abbot: David \& Charles. L.S.Presnell, 1956, Country Banking in the Industrial Revolution, Oxford: Clarendon Press, pp. 295–6.
    G.C.Boase and W.P.Courtney, 1874, Biblio-theca Cornubiensis, Vol. II, London: Longmans, p. 524.
    JHB

    Biographical history of technology > Praed, William

  • 92 Ward, Joshua

    SUBJECT AREA: Chemical technology
    [br]
    b. 1685
    d. 21 November 1761 London, England
    [br]
    English doctor and industrial chemist.
    [br]
    Ward is perhaps better described as a "quack" than a medical doctor. His remedies, one containing a dangerous quantity of antimony, were dubious to say the least. A fraudulent attempt to enter Parliament in 1717 forced him to leave the country quickly. After his pardon in 1733, he returned to London and established a successful practice. His medical prowess is immortalized in Hogarth's picture The Harlot's Progress.
    Sulphuric acid had been an important chemical for centuries and Ward found that he needed large quantities of it to make his remedies. He set up works to manufacture it at Twickenham, near London, in 1736 and then at Richmond three years later. His process consisted of burning a mixture of saltpetre (nitre; potassium nitrate) and sulphur in the neck of a large glass globe containing a little water. Dilute sulphuric acid was thereby formed, which was concentrated by distillation. Although the method was not new, having been described in the seventeenth century by the German chemist Johann Glauber, Ward was granted a patent for his process in 1749. An important feature was the size of the globes, which had no less than fifty gallons' capacity, which must have entailed considerable skill on the part of the glassblowers. Through the adoption of Ward's process, the price of this essential commodity fell from £2 per pound to only 2 shillings. It provided the best method of manufacture until the advent of the lead-chamber process invented by John Roebuck.
    [br]
    Further Reading
    A.Clow and N.Clow, 1952, The Chemical Revolution: A Contribution to Social Technology, London: Batch worth.
    C.Singer et al. (eds), 1958, A History of Technology, 7 vols, Oxford: Clarendon Press, Vol. IV.
    LRD

    Biographical history of technology > Ward, Joshua

  • 93 Watt, James

    [br]
    b. 19 January 1735 Greenock, Renfrewshire, Scotland
    d. 19 August 1819 Handsworth Heath, Birmingham, England
    [br]
    Scottish engineer and inventor of the separate condenser for the steam engine.
    [br]
    The sixth child of James Watt, merchant and general contractor, and Agnes Muirhead, Watt was a weak and sickly child; he was one of only two to survive childhood out of a total of eight, yet, like his father, he was to live to an age of over 80. He was educated at local schools, including Greenock Grammar School where he was an uninspired pupil. At the age of 17 he was sent to live with relatives in Glasgow and then in 1755 to London to become an apprentice to a mathematical instrument maker, John Morgan of Finch Lane, Cornhill. Less than a year later he returned to Greenock and then to Glasgow, where he was appointed mathematical instrument maker to the University and was permitted in 1757 to set up a workshop within the University grounds. In this position he came to know many of the University professors and staff, and it was thus that he became involved in work on the steam engine when in 1764 he was asked to put in working order a defective Newcomen engine model. It did not take Watt long to perceive that the great inefficiency of the Newcomen engine was due to the repeated heating and cooling of the cylinder. His idea was to drive the steam out of the cylinder and to condense it in a separate vessel. The story is told of Watt's flash of inspiration as he was walking across Glasgow Green one Sunday afternoon; the idea formed perfectly in his mind and he became anxious to get back to his workshop to construct the necessary apparatus, but this was the Sabbath and work had to wait until the morrow, so Watt forced himself to wait until the Monday morning.
    Watt designed a condensing engine and was lent money for its development by Joseph Black, the Glasgow University professor who had established the concept of latent heat. In 1768 Watt went into partnership with John Roebuck, who required the steam engine for the drainage of a coal-mine that he was opening up at Bo'ness, West Lothian. In 1769, Watt took out his patent for "A New Invented Method of Lessening the Consumption of Steam and Fuel in Fire Engines". When Roebuck went bankrupt in 1772, Matthew Boulton, proprietor of the Soho Engineering Works near Birmingham, bought Roebuck's share in Watt's patent. Watt had met Boulton four years earlier at the Soho works, where power was obtained at that time by means of a water-wheel and a steam engine to pump the water back up again above the wheel. Watt moved to Birmingham in 1774, and after the patent had been extended by Parliament in 1775 he and Boulton embarked on a highly profitable partnership. While Boulton endeavoured to keep the business supplied with capital, Watt continued to refine his engine, making several improvements over the years; he was also involved frequently in legal proceedings over infringements of his patent.
    In 1794 Watt and Boulton founded the new company of Boulton \& Watt, with a view to their retirement; Watt's son James and Boulton's son Matthew assumed management of the company. Watt retired in 1800, but continued to spend much of his time in the workshop he had set up in the garret of his Heathfield home; principal amongst his work after retirement was the invention of a pantograph sculpturing machine.
    James Watt was hard-working, ingenious and essentially practical, but it is doubtful that he would have succeeded as he did without the business sense of his partner, Matthew Boulton. Watt coined the term "horsepower" for quantifying the output of engines, and the SI unit of power, the watt, is named in his honour.
    [br]
    Principal Honours and Distinctions
    FRS 1785. Honorary LLD, University of Glasgow 1806. Foreign Associate, Académie des Sciences, Paris 1814.
    Further Reading
    H.W.Dickinson and R Jenkins, 1927, James Watt and the Steam Engine, Oxford: Clarendon Press.
    L.T.C.Rolt, 1962, James Watt, London: B.T. Batsford.
    R.Wailes, 1963, James Watt, Instrument Maker (The Great Masters: Engineering Heritage, Vol. 1), London: Institution of Mechanical Engineers.
    IMcN

    Biographical history of technology > Watt, James

См. также в других словарях:

  • Clarendon — may refer to: Contents 1 Places 2 People 3 Other uses 4 See also Places In Australia: Clarendon, New …   Wikipedia

  • Clarendon — ist der Name von: Earl of Clarendon, ein erblicher britischer Adelstitel, zuerst verliehen an Edward Hyde, 1. Earl of Clarendon; Clarendon Press, ein britischer Verlag, siehe Oxford University Press; Clarendon Laboratory, ein Institut der… …   Deutsch Wikipedia

  • Clarendon — puede hacer referencia a: La fuente tipográfica Clarendon. Lugares En Australia: Clarendon, en el estado de Nueva Gales del Sur. Clarendon, en Queensland. Clarendon, en Australia Meridional. En Canadá: Clarendon, en la provincia de Quebec. En los …   Wikipedia Español

  • Clarendon — Clarendon, AR U.S. city in Arkansas Population (2000): 1960 Housing Units (2000): 925 Land area (2000): 1.826819 sq. miles (4.731440 sq. km) Water area (2000): 0.120958 sq. miles (0.313281 sq. km) Total area (2000): 1.947777 sq. miles (5.044721… …   StarDict's U.S. Gazetteer Places

  • clarendon — type face, 1845, evidently named for the Clarendon press at Oxford University, which was set up 1713 in the Clarendon Building, named for university Chancellor Edward Hyde, 1st Earl of Clarendon …   Etymology dictionary

  • Clarendon, AR — U.S. city in Arkansas Population (2000): 1960 Housing Units (2000): 925 Land area (2000): 1.826819 sq. miles (4.731440 sq. km) Water area (2000): 0.120958 sq. miles (0.313281 sq. km) Total area (2000): 1.947777 sq. miles (5.044721 sq. km) FIPS… …   StarDict's U.S. Gazetteer Places

  • Clarendon, PA — U.S. borough in Pennsylvania Population (2000): 564 Housing Units (2000): 239 Land area (2000): 0.430995 sq. miles (1.116271 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.430995 sq. miles (1.116271 sq. km)… …   StarDict's U.S. Gazetteer Places

  • Clarendon, TX — U.S. city in Texas Population (2000): 1974 Housing Units (2000): 929 Land area (2000): 2.907274 sq. miles (7.529806 sq. km) Water area (2000): 0.098926 sq. miles (0.256218 sq. km) Total area (2000): 3.006200 sq. miles (7.786024 sq. km) FIPS code …   StarDict's U.S. Gazetteer Places

  • Clarendon — Clar en*don, n. A style of type having a narrow and heave face. It is made in all sizes. [1913 Webster] Note: This line is in nonpareil Clarendon. [1913 Webster] …   The Collaborative International Dictionary of English

  • Clarendon — (spr. klärrend n), 1) Edward Hyde, Graf von, Großkanzler von England, geb. 18. Febr. 1609 zu Dinton in Wiltshire, gest. 9. Dez. 1674 in Rouen, gehörte seit 1640 im Parlament zur Reformpartei, trat aber den aufeine Änderung der Verfassung… …   Meyers Großes Konversations-Lexikon

  • Clarendon [1] — Clarendon (spr. Klärend n), Stadt in der englischen Grafschaft Wiltshire; großer Thiergarten; 2000 Ew. Hier wurden auf der Ständeversammlung 1164 unter Heinrich II. die 165, die Macht des Papstes beschränkenden alten Ordnungen (Consuetudines… …   Pierer's Universal-Lexikon

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»