Перевод: со всех языков на все языки

со всех языков на все языки

RLH

  • 1 RLH

    1) Военный термин: Run Like Hell
    2) Фирменный знак: Pearson Reid London House

    Универсальный англо-русский словарь > RLH

  • 2 RLH

    [relative humidity]
    относительная влажность

    English-Russian aviation meteorology dictionary > RLH

  • 3 Pearson Reid London House

    Trademark term: RLH

    Универсальный русско-английский словарь > Pearson Reid London House

  • 4 Run Like Hell

    Military: RLH

    Универсальный русско-английский словарь > Run Like Hell

  • 5 girlhood

    [girl·hood || 'gɜrlhʊd /'gɜːl-]
    n. תקופת הילדות
    * * *
    תודליה תפוקת

    English-Hebrew dictionary > girlhood

  • 6 girlhood

    noun
    девичество
    * * *
    (n) девичество
    * * *
    * * *
    [girl·hood || 'gɜrlhʊd /'gɜːl-] n. девичество
    * * *
    * * *
    девичество

    Новый англо-русский словарь > girlhood

  • 7 Adamson, Daniel

    [br]
    b. 1818 Shildon, Co. Durham, England
    d. January 1890 Didsbury, Manchester, England
    [br]
    English mechanical engineer, pioneer in the use of steel for boilers, which enabled higher pressures to be introduced; pioneer in the use of triple-and quadruple-expansion mill engines.
    [br]
    Adamson was apprenticed between 1835 and 1841 to Timothy Hackworth, then Locomotive Superintendent on the Stockton \& Darlington Railway. After this he was appointed Draughtsman, then Superintendent Engineer, at that railway's locomotive works until in 1847 he became Manager of Shildon Works. In 1850 he resigned and moved to act as General Manager of Heaton Foundry, Stockport. In the following year he commenced business on his own at Newton Moor Iron Works near Manchester, where he built up his business as an iron-founder and boilermaker. By 1872 this works had become too small and he moved to a 4 acre (1.6 hectare) site at Hyde Junction, Dukinfield. There he employed 600 men making steel boilers, heavy machinery including mill engines fitted with the American Wheelock valve gear, hydraulic plant and general millwrighting. His success was based on his early recognition of the importance of using high-pressure steam and steel instead of wrought iron. In 1852 he patented his type of flanged seam for the firetubes of Lancashire boilers, which prevented these tubes cracking through expansion. In 1862 he patented the fabrication of boilers by drilling rivet holes instead of punching them and also by drilling the holes through two plates held together in their assembly positions. He had started to use steel for some boilers he made for railway locomotives in 1857, and in 1860, only four years after Bessemer's patent, he built six mill engine boilers from steel for Platt Bros, Oldham. He solved the problems of using this new material, and by his death had made c.2,800 steel boilers with pressures up to 250 psi (17.6 kg/cm2).
    He was a pioneer in the general introduction of steel and in 1863–4 was a partner in establishing the Yorkshire Iron and Steel Works at Penistone. This was the first works to depend entirely upon Bessemer steel for engineering purposes and was later sold at a large profit to Charles Cammell \& Co., Sheffield. When he started this works, he also patented improvements both to the Bessemer converters and to the engines which provided their blast. In 1870 he helped to turn Lincolnshire into an important ironmaking area by erecting the North Lincolnshire Ironworks. He was also a shareholder in ironworks in South Wales and Cumberland.
    He contributed to the development of the stationary steam engine, for as early as 1855 he built one to run with a pressure of 150 psi (10.5 kg/cm) that worked quite satisfactorily. He reheated the steam between the cylinders of compound engines and then in 1861–2 patented a triple-expansion engine, followed in 1873 by a quadruple-expansion one to further economize steam. In 1858 he developed improved machinery for testing tensile strength and compressive resistance of materials, and in the same year patents for hydraulic lifting jacks and riveting machines were obtained.
    He was a founding member of the Iron and Steel Institute and became its President in 1888 when it visited Manchester. The previous year he had been President of the Institution of Civil Engineers when he was presented with the Bessemer Gold Medal. He was a constant contributor at the meetings of these associations as well as those of the Institution of Mechanical Engineers. He did not live to see the opening of one of his final achievements, the Manchester Ship Canal. He was the one man who, by his indomitable energy and skill at public speaking, roused the enthusiasm of the people in Manchester for this project and he made it a really practical proposition in the face of strong opposition.
    [br]
    Principal Honours and Distinctions
    President, Institution of Civil Engineers 1887.
    President, Iron and Steel Institute 1888. Institution of Civil Engineers Bessemer Gold Medal 1887.
    Further Reading
    Obituary, Engineer 69:56.
    Obituary, Engineering 49:66–8.
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (provides an illustration of Adamson's flanged seam for boilers).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (covers the development of the triple-expansion engine).
    RLH

    Biographical history of technology > Adamson, Daniel

  • 8 Allen, John F.

    [br]
    b. 1829 England
    d. 2 October 1900 New York (?), USA
    [br]
    English inventor of the Allen valve used on his pioneering high-speed engines.
    [br]
    Allen was taken to the United States from England when he was 12 years old. He became an engineer on the Curlew, a freight boat running between New York and Providence. A defect which caused the engine to race in rough weather led Allen to invent a new valve gear, but he found it could not be fitted to the Corliss engine. In 1856 he patented an improved form of valve and operating gear to reduce back-pressure in the cylinder, which was in fact the reverse of what happened in his later engines. In 1860 he repaired the engines of a New York felt-hat manufacturer, Henry Burr, and that winter he was introduced to Charles Porter. Porter realized the potential of Allen's valves for his idea of a high-speed engine, and the Porter-Allen engine became the pioneer of high-speed designs.
    Porter persuaded Allen to patent his new valves and two patents were obtained in 1862. These valves could be driven positively and yet the travel of the inlet could be varied to give the maximum expansion at different cut-offs. Also, the valves allowed an exceptionally good flow of steam. While Porter went to England and tried to interest manufacturers there, Allen remained in America and continued work on the engine. Within a few years he invented an inclined watertube boiler, but he seemed incapable of furthering his inventions once they had been placed on the market. Although he mortgaged his own house in order to help finance the factory for building the steam engine, in the early 1870s he left Porter and built a workshop of his own at Mott Haven. There he invented important systems for riveting by pneumatic machines through both percussion and pressure which led into the production of air compressors and riveting machines.
    [br]
    Further Reading
    Obituaries appeared in engineering journals at the time of his death.
    Dictionary of American Biography, 1928, Vol. I, New York: C.Scribner's Sons. C.T.Porter, 1908, Engineering Reminiscences, New York: J.Wiley \& Sons, reprint 1985, Bradley, Ill.: Lindsay Publications (provides details of Allen's valve design).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (covers the development of the Porter-Allen engine).
    RLH

    Biographical history of technology > Allen, John F.

  • 9 Anthelm, Ludwig

    SUBJECT AREA: Textiles
    [br]
    fl. 1897, Germany
    [br]
    German who used carbon tetrachloride as a dry-cleaning agent.
    [br]
    Until the mid-nineteenth century, washing with soap and water was the only way to clean clothes. Around 1850 a kind of turpentine, camphene, began to be used (see J.B. Jolly- Bellin), but this necessitated taking the garments apart and resewing together after they had been cleaned. When benzene was introduced in 1866 by Pullars of Perth, Scotland, garments no longer needed to be taken apart. In 1897 Ludwig Anthelm of Leipzig started to use carbon tetrachloride (tetrachloromethane); however this was found to corrode the equipment and was dangerous to breathe, and it was replaced in Britain with trichlorethylene in 1918.
    [br]
    Further Reading
    I.McNeil (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge, p. 854 (an account of the introduction of dry-cleaning).
    RLH

    Biographical history of technology > Anthelm, Ludwig

  • 10 Arkwright, Sir Richard

    SUBJECT AREA: Textiles
    [br]
    b. 23 December 1732 Preston, England
    d. 3 August 1792 Cromford, England
    [br]
    English inventor of a machine for spinning cotton.
    [br]
    Arkwright was the youngest of thirteen children and was apprenticed to a barber; when he was about 18, he followed this trade in Bol ton. In 1755 he married Patients Holt, who bore him a son before she died, and he remarried in 1761, to Margaret Biggins. He prospered until he took a public house as well as his barber shop and began to lose money. After this failure, he travelled around buying women's hair for wigs.
    In the late 1760s he began spinning experiments at Preston. It is not clear how much Arkwright copied earlier inventions or was helped by Thomas Highs and John Kay but in 1768 he left Preston for Nottingham, where, with John Smalley and David Thornley as partners, he took out his first patent. They set up a mill worked by a horse where machine-spun yarn was produced successfully. The essential part of this process lay in drawing out the cotton by rollers before it was twisted by a flyer and wound onto the bobbin. The partners' resources were not sufficient for developing their patent so Arkwright found new partners in Samuel Need and Jedediah Strutt, hosiers of Nottingham and Derby. Much experiment was necessary before they produced satisfactory yarn, and in 1771 a water-driven mill was built at Cromford, where the spinning process was perfected (hence the name "waterframe" was given to his spinning machine); some of this first yarn was used in the hosiery trade. Sales of all-cotton cloth were initially limited because of the high tax on calicoes, but the tax was lowered in 1774 by Act of Parliament, marking the beginning of the phenomenal growth of the cotton industry. In the evidence for this Act, Arkwright claimed that he had spent £12,000 on his machine. Once Arkwright had solved the problem of mechanical spinning, a bottleneck in the preliminary stages would have formed but for another patent taken out in 1775. This covered all preparatory processing, including some ideas not invented by Arkwright, with the result that it was disputed in 1783 and finally annulled in 1785. It contained the "crank and comb" for removing the cotton web off carding engines which was developed at Cromford and solved the difficulty in carding. By this patent, Arkwright had mechanized all the preparatory and spinning processes, and he began to establish water-powered cotton mills even as far away as Scotland. His success encouraged many others to copy him, so he had great difficulty in enforcing his patent Need died in 1781 and the partnership with Strutt ended soon after. Arkwright became very rich and financed other spinning ventures beyond his immediate control, such as that with Samuel Oldknow. It was estimated that 30,000 people were employed in 1785 in establishments using Arkwright's patents. In 1786 he received a knighthood for delivering an address of thanks when an attempt to assassinate George III failed, and the following year he became High Sheriff of Derbyshire. He purchased the manor of Cromford, where he died in 1792.
    [br]
    Principal Honours and Distinctions
    Knighted 1786.
    Bibliography
    1769, British patent no. 931.
    1775, British patent no. 1,111.
    Further Reading
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (a thorough scholarly work which is likely to remain unchallenged for many years).
    R.L.Hills, 1973, Richard Arkwright and Cotton Spinning, London (written for use in schools and concentrates on Arkwright's technical achievements).
    R.S.Fitton and A.P.Wadsworth, 1958, The Strutts and the Arkwrights, Manchester (concentrates on the work of Arkwright and Strutt).
    A.P.Wadsworth and J.de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, Manchester (covers the period leading up to the Industrial Revolution).
    F.Nasmith, 1932, "Richard Arkwright", Transactions of the Newcomen Society 13 (looks at the actual spinning invention).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (discusses the technical problems of Arkwright's invention).
    RLH

    Biographical history of technology > Arkwright, Sir Richard

  • 11 Arnold, Aza

    SUBJECT AREA: Textiles
    [br]
    b. 4 October 1788 Smithfield, Pawtucket, Rhode Island, USA
    d. 1865 Washington, DC, USA
    [br]
    American textile machinist who applied the differential motion to roving frames, solving the problem of winding on the delicate cotton rovings.
    [br]
    He was the son of Benjamin and Isabel Arnold, but his mother died when he was 2 years old and after his father's second marriage he was largely left to look after himself. After attending the village school he learnt the trade of a carpenter, and following this he became a machinist. He entered the employment of Samuel Slater, but left after a few years to engage in the unsuccessful manufacture of woollen blankets. He became involved in an engineering shop, where he devised a machine for taking wool off a carding machine and making it into endless slivers or rovings for spinning. He then became associated with a cotton-spinning mill, which led to his most important invention. The carded cotton sliver had to be reduced in thickness before it could be spun on the final machines such as the mule or the waterframe. The roving, as the mass of cotton fibres was called at this stage, was thin and very delicate because it could not be twisted to give strength, as this would not allow it to be drawn out again during the next stage. In order to wind the roving on to bobbins, the speed of the bobbin had to be just right but the diameter of the bobbin increased as it was filled. Obtaining the correct reduction in speed as the circumference increased was partially solved by the use of double-coned pulleys, but the driving belt was liable to slip owing to the power that had to be transmitted.
    The final solution to the problem came with the introduction of the differential drive with bevel gears or a sun-and-planet motion. Arnold had invented this compound motion in 1818 but did not think of applying it to the roving frame until 1820. It combined the direct-gearing drive from the main shaft of the machine with that from the cone-drum drive so that the latter only provided the difference between flyer and bobbin speeds, which meant that most of the transmission power was taken away from the belt. The patent for this invention was issued to Arnold on 23 January 1823 and was soon copied in Britain by Henry Houldsworth, although J.Green of Mansfield may have originated it independendy in the same year. Arnold's patent was widely infringed in America and he sued the Proprietors of the Locks and Canals, machine makers for the Lowell manufacturers, for $30,000, eventually receiving $3,500 compensation. Arnold had his own machine shop but he gave it up in 1838 and moved the Philadelphia, where he operated the Mulhausen Print Works. Around 1850 he went to Washington, DC, and became a patent attorney, remaining as such until his death. On 24 June 1856 he was granted patent for a self-setting and self-raking saw for sawing machines.
    [br]
    Bibliography
    28 June 1856, US patent no. 15,163 (self-setting and self-raking saw for sawing machines).
    Further Reading
    Dictionary of American Biography, Vol. 1.
    W.English, 1969, The Textile Industry, London (a description of the principles of the differential gear applied to the roving frame).
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830, Oxford (a discussion of the introduction and spread of Arnold's gear).
    RLH

    Biographical history of technology > Arnold, Aza

  • 12 Austin, John

    SUBJECT AREA: Textiles
    [br]
    fl. 1789 Scotland
    [br]
    Scottish contributor to the early development of the power loom.
    [br]
    On 6 April 1789 John Austin wrote to James Watt, seeking advice about patenting "a weaving loom I have invented to go by the hand, horse, water or any other constant power, to comb, brush, or dress the yarn at the same time as it is weaving \& by which one man will do the work of three and make superior work to what can be done by the common loom" (Boulton \& Watt Collection, Birmingham, James Watt Papers, JW/22). Watt replied that "there is a Clergyman by the name of Cartwright at Doncaster who has a patent for a similar contrivance" (Boulton \& Watt Collection, Birmingham, Letter Book 1, 15 April 1789). Watt pointed out that there was a large manufactory running at Doncaster and something of the same kind at Manchester with working power looms. Presumably, this reply deterred Austin from taking out a patent. However, some members of the Glasgow Chamber of Commerce continued developing the loom, and in 1798 one that was tried at the spinning mill of J.Monteith, of Pollokshaws, near Glasgow, answered the purpose so well that a building was erected and thirty of the looms were installed. Later, in 1800, this number was increased to 200, all of which were driven by a steam engine, and it was stated that one weaver and a boy could tend from three to five of these looms.
    Austin's loom was worked by eccentrics, or cams. There was one cam on each side with "a sudden beak or projection" that drove the levers connected to the picking pegs, while other cams worked the heddles and drove the reed. The loom was also fitted with a weft stop motion and could produce more cloth than a hand loom, and worked at about sixty picks per minute. The pivoting of the slay at the bottom allowed the loom to be much more compact than previous ones.
    [br]
    Further Reading
    A.Rees, 1819, The Cyclopaedia: or Universal Dictionary of Arts, Sciences and Literature, London.
    A.P.Usher, 1958, A History of Mechanical Inventions.
    W.English, 1969, The Textile Industry, London.
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester.
    RLH

    Biographical history of technology > Austin, John

  • 13 Bauer, H.

    SUBJECT AREA: Textiles
    [br]
    fl. c.1885
    [br]
    German (?) inventor of a press-stud fastener.
    [br]
    Fastenings are an essential component of the majority of garments. Great advances were made in Germany with press studs in the late nineteenth century after the original invention by Louis Hannart in 1863. In 1885, Bauer patented a spring and stud fastener.
    [br]
    Further Reading
    I.McNeil (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge, pp. 852–3 (provides an account of the development of fastenings).
    RLH

    Biographical history of technology > Bauer, H.

  • 14 Bell, Thomas

    SUBJECT AREA: Paper and printing
    [br]
    fl. 1770–1785 Scotland
    [br]
    Scottish inventor of a calico printing machine with the design engraved on rollers.
    [br]
    In November 1770, John Mackenzie, owner of a bleaching mill, took his millwright Thomas Bell to Glasgow to consult with James Watt about problems they were having with the calico printing machine invented by Bell some years previously. Bell rolled sheets of copper one eighth of an inch (3 mm) thick into cyliders, and filled them with cement which was held in place by cast iron ends. After being turned true and polished, the cylinders were engraved; they cost about £10 each. The printing machines were driven by a water-wheel, but Bell and Mackenzie appeared to have had problems with the doctor blades which scraped off excess colour, and this may have been why they visited Watt.
    They had, presumably, solved the technical problems when Bell took out a patent in 1783 which describes him as "the Elder", but there are no further details about the man himself. The machine is described as having six printing rollers arranged around the top of the circumference of a large central bowl. In later machines, the printing rollers were placed all round a smaller cylinder. All of the printing rollers, each printing a different colour, were driven by gearing to keep them in register. The patent includes steel doctor blades which would have scraped excess colour off the printing rollers. Another patent, taken out in 1784, shows a smaller three-colour machine. The printing rollers had an iron core covered with copper, which could be taken off at pleasure so that fresh patterns could be cut as desired. Bell's machine was used at Masney, near Preston, England, by Messrs Livesey, Hargreaves, Hall \& Co in 1786. Although copper cylinders were difficult to make and engrave, and the soldered seams often burst, these machines were able to increase the output of the cheaper types of printed cloth.
    [br]
    Bibliography
    1783, patent no. 1,378 (calico printing machine with engraved copper rollers). 1784, patent no. 1,443 (three-colour calico printing machine).
    Further Reading
    W.E.A.Axon, 1886, Annals of Manchester, Manchester (provides an account of the invention).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (provides a brief description of the development of calico printing).
    RLH

    Biographical history of technology > Bell, Thomas

  • 15 Bevan, Edward John

    [br]
    b. 11 December 1856 Birkenhead, England
    d. 17 October 1921 London, England
    [br]
    English co-inventor of the " viscose rayon " process for making artificial silk.
    [br]
    Bevan began his working life as a chemist in a soap works at Runcorn, but later studied chemistry at Owens College, Manchester. It was there that he met and formed a friendship with C.F. Cross, with whom he started to work on cellulose. Bevan moved to a paper mill in Scotland but then went south to London, where he and Cross set up a partnership in 1885 as consulting and analytical chemists. Their work was mainly concerned with the industrial utilization of cellulose, and with the problems of the paper and jute industries. Their joint publication, A Text-book of Paper-making, which first appeared in 1888 and went into several editions, became the standard reference and textbook on the subject. The book has a long introductory chapter on cellulose.
    In 1892 Cross, Bevan and Clayton Beadle discovered viscose, or sodium cellulose xanthate, and took out the patent which was to be the foundation of the "viscose rayon" industry. They had their own laboratory at Station Avenue, Kew Gardens, where they carried out much work that eventually resulted in viscose: cellulose, usually in the form of wood pulp, was treated first with caustic soda and then with carbon disulphide to form the xanthate, which was then dissolved in a solution of dilute caustic soda to produce a viscous liquid. After being aged, the viscose was extruded through fine holes in a spinneret and coagulated in a dilute acid to regenerate the cellulose as spinnable fibres. At first there was no suggestion of spinning it into fibre, but the hope was to use it for filaments in incandescent electric light bulbs. The sheen on the fibres suggested their possible use in textiles and the term "artificial silk" was later introduced. Cross and Bevan also discovered the acetate "Celanese", which was cellulose triacetate dissolved in acetone and spun in air, but both inventions needed much development before they could be produced commercially.
    In 1892 Bevan turned from cellulose to food and drugs and left the partnership to become Public Analyst to Middlesex County Council, a post he held until his death, although in 1895 he and Cross published their important work Cellulose. He was prominent in the affairs of the Society of Public Analysts and became one of its officials.
    [br]
    Bibliography
    1888, with C.F.Cross, A Text-book of Papermaking.
    1892, with C.F.Cross and C.Beadle, British patent no. 8,700 (viscose). 1895, with C.F.Cross, Cellulose.
    Further Reading
    Obituary, 1921, Journal of the Chemical Society.
    Obituary, 1921, Journal of the Society of Chemical Industry.
    Edwin J.Beer, 1962–3, "The birth of viscose rayon", Transactions of the Newcomen Society 35 (an account of the problems of developing viscose rayon; Beer worked under Cross in the Kew laboratories).
    RLH

    Biographical history of technology > Bevan, Edward John

  • 16 Bigelow, Erastus Brigham

    SUBJECT AREA: Textiles
    [br]
    b. 2 April 1814 West Boyleston, Massachusetts, USA
    d. 6 December 1879 USA
    [br]
    American inventor of power looms for making lace and many types of carpets.
    [br]
    Bigelow was born in West Boyleston, Massachusetts, where his father struggled as a farmer, wheelwright, and chairmaker. Before he was 20, Bigelow had many different jobs, among them farm labourer, clerk, violin player and cotton-mill employee. In 1830, he went to Leicester Academy, Massachusetts, but he could not afford to go on to Harvard. He sought work in Boston, New York and elsewhere, making various inventions.
    The most important of his early inventions was the power loom of 1837 for making coach lace. This loom contained all the essential features of his carpet looms, which he developed and patented two years later. He formed the Clinton Company for manufacturing carpets at Leicester, Massachusetts, but the factory became so large that its name was adopted for the town. The next twenty years saw various mechanical discoveries, while his range of looms was extended to cover Brussels, Wilton, tapestry and velvet carpets. Bigelow has been justly described as the originator of every fundamental device in these machines, which were amongst the largest textile machines of their time. The automatic insertion and withdrawal of strong wires with looped ends was the means employed to raise the looped pile of the Brussels carpets, while thinner wires with a knife blade at the end raised and then severed the loops to create the rich Wilton pile. At the Great Exhibition in 1851, it was declared that his looms made better carpets than any from hand looms. He also developed other looms for special materials.
    He became a noted American economist, writing two books about tariff problems, advocating that the United States should not abandon its protectionist policies. In 1860 he was narrowly defeated in a Congress election. The following year he was a member of the committee that established the Massachusetts Institute of Technology.
    [br]
    Further Reading
    National Cyclopedia of American Biography III (the standard account of his life). F.H.Sawyer, 1927, Clinton Item (provides a broad background to his life).
    C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press (describes Bigelow's inventions).
    RLH

    Biographical history of technology > Bigelow, Erastus Brigham

  • 17 Bloch, Jacob

    SUBJECT AREA: Textiles
    [br]
    fl. 1888
    [br]
    European inventor of a machine for cutting layers of cloth.
    [br]
    In mass production of garments, layers of cloth are laid out on top of each other and multiples of each different part are cut out at the same time. The first portable cutting machine was invented by Joseph Bloch in 1888. It was operated from a DC electricity supply and had a circular knife, which was difficult to use when cutting round curves. Therefore the cloth had to be raised on curves so that it would reach the furthest part of the circular blade. In the same year in the USA, G.P.Eastman produced a vertically reciprocating cutting machine with a straight blade.
    [br]
    Further Reading
    C.Singer (ed.), 1978, A History of Technology, Vol. VI, Oxford: Clarendon Press (describes Bloch's invention).
    I.McNeil (ed.), 1990, An Encyclopaedia of the History of Technology, London: Routledge, pp. 850–2 (provides a brief description of the making-up trade).
    D.Sinclair, "The current climate for research and development in the European-clothing industry with particular reference to single ply cutting", unpublished MSc thesis, Salford University (discusses developments in garment production).
    RLH

    Biographical history of technology > Bloch, Jacob

  • 18 Bouchon, Basile

    SUBJECT AREA: Textiles
    [br]
    fl. c.1725 Lyon, France
    [br]
    French pioneer in automatic pattern selection for weaving.
    [br]
    In the earliest draw looms, the pattern to be woven was selected by means of loops of string that were loosely tied round the appropriate leashes, which had to be lifted to make that pick of the pattern by raising the appropriate warp threads. In Isfahan, Persia, looms were seen in the 1970s where a boy sat in the top of the loom. Before the weaver could weave the next pick, the boy selected the appropriate loop of string, pulled out those leashes which were tied in it and lifted them up by means of a forked stick. The weaver below him held up these leashes by a pair of wooden sticks and sent the shuttle through that shed while the boy was sorting out the next loop of string with its leashes. When the pick had been completed, the first loop was dropped further down the leashes and, presumably, when the whole sequence of that pattern was finished, all the loops had be pushed up the leashes to the top of the loom again.
    Models in the Conservatoire National des Arts et Métiers, Paris, show that in 1725 Bouchon, a worker in Lyon, dispensed with the loops of string and selected the appropriate leashes by employing a band of pierced paper pressed against a row of horizontal wires by the drawboy using a hand-bar so as to push forward those which happened to lie opposite the blank spaces. These connected with loops at the lower extremity of vertical wires linked to the leashes at the top of the loom. The vertical wires could be pulled down by a comb-like rack beside the drawboy at the side of the loom in order to pull up the appropriate leashes to make the next shed. Bouchon seems to have had only one row of needles or wires, which must have limited the width of the patterns. This is an early form of mechanical memory, used in computers much later. The apparatus was improved subsequently by Falcon and Jacquard.
    [br]
    Further Reading
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (a brief description of Bouchon's apparatus).
    M.Daumas (ed.), 1968, Histoire générale des techniques Vol. III: L'Expansion du
    machinisme, Paris (a description of this apparatus, with a diagram). Conservatoire National des Arts et Métiers, 1942, Catalogue du musée, section T, industries textiles, teintures et apprêts, Paris (another brief description; a model can be seen in this museum).
    C.Singer, (ed.), 1957, A History of Technology, Vol. III, Oxford: Clarendon Press (provides an illustration of Bouchon's apparatus).
    RLH

    Biographical history of technology > Bouchon, Basile

  • 19 Bourn, Daniel

    SUBJECT AREA: Textiles
    [br]
    fl. 1744 Lancashire, England
    [br]
    English inventor of a machine with cylinders for carding cotton.
    [br]
    Daniel Bourn may well have been a native of Lancashire. He set up a fourth Paul-Wyatt cotton-spinning mill at Leominster, Herefordshire, possibly in 1744, although the earliest mention of it is in 1748. His only known partner in this mill was Henry Morris, a yarn dealer who in 1743 had bought a grant of spindles from Paul at the low rate of 30 shillings or 40 shillings per spindle when the current price was £3 or £4. When Bourn patented his carding engine in 1748, he asked Wyatt for a grant of spindles, to which Wyatt agreed because £100 was offered immedi-ately. The mill, which was probably the only one outside the control of Paul and his backers, was destroyed by fire in 1754 and was not rebuilt, although Bourn and his partners had considerable hopes for it. Bourn was said to have lost over £1,600 in the venture.
    Daniel Bourn described himself as a wool and cotton dealer of Leominster in his patent of 1748 for his carding engine. The significance of this invention is the use of rotating cylinders covered with wire clothing. The patent drawing shows four cylinders, one following the other to tease out the wool, but Bourn was unable to discover a satisfactory method of removing the fibres from the last cylinder. It is possible that Robert Peel in Lancashire obtained one of these engines through Morris, and that James Hargreaves tried to improve it; if so, then some of the early carding engines in the cotton industry were derived from Bourn's.
    [br]
    Bibliography
    1748, British patent no. 628 (carding engine).
    Further Reading
    A.P.Wadsworth and J.de Lacy Mann, 1931, The Cotton Trade and Industrial Lancashire 1600–1780, Manchester (the most significant reference to Bourn).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (provides an examination of the carding patent).
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (mentions Bourn in his survey of the textile scene before Arkwright).
    R.Jenkins, 1936–7, "Industries of Herefordshire in Bygone Times", Transactions of the Newcomen Society 17 (includes a reference to Bourn's mill).
    C.Singer (ed.), 1957, A History of Technology, Vol. III, Oxford: Clarendon Press; ibid., 1958, Vol, IV (brief mentions of Bourn's work).
    RLH

    Biographical history of technology > Bourn, Daniel

  • 20 Branca, Giovanni de

    [br]
    b. 1571 Italy
    d. 1640 Italy
    [br]
    Italian architect who proposed what has been suggested as an early turbine, using a jet of steam to turn a wheel.
    [br]
    Branca practised architecture at Loretto. In 1629 he published Le Machine: volume nuovo et di molto artificio, in which he described various mechanisms. One was the application of rolls for working copper, lead or the precious metals gold and silver. The rolls were powered by a form of smokejack with the gases from the fire passing up a long tube forming a chimney which, through gearing, turned the rolls. Another device used a jet of steam from a boiler issuing from a mouthpiece shaped like the head of a person to impinge upon blades around the circumference of a horizontal wheel, connected through triple reduction gearing to drop stamps, for pounding drugs. This was a form of impulse turbine and has been claimed as the first machine worked by steam to do a particular operation since Heron's temple doors.
    [br]
    Further Reading
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (includes a description and picture of the turbine).
    C.Singer (ed.), 1957, A History of Technology, Vols III and IV, Oxford University Press (provides notes on Branca).
    RLH

    Biographical history of technology > Branca, Giovanni de

См. также в других словарях:

  • RLH — may stand for: * Run Like Hell (video game) * Run Like Hell Pink Floyd song * Regent Low Height AEC Regent III London bus …   Wikipedia

  • RLH — Run Like Hell (Business » General) Run Like Hell (Governmental » Military) Run Like Hell (Community » Sports) * Pearson Reid London House (Business » Firms) * Robert L. Handwerk & Associates, L. L. C. (Business » Firms) …   Abbreviations dictionary

  • RLH — abbr. Run Like Hell …   Dictionary of abbreviations

  • Unitrans RLH21 & RLH34 — Unitrans RLH 21 and RLH 34 were ex London Transport double decker buses owned by Unitrans in Davis, California. These buses were purchased by Unitrans only for spare parts and were never used in regular service. Having been sold in 1981, they are …   Wikipedia

  • Hackney Wick — infobox UK place official name= Hackney Wick map type= Greater London region= London country= England london borough= Hackney constituency westminster= Hackney South and Shoreditch post town= LONDON postcode area= E postcode district= E9,E15 dial …   Wikipedia

  • Run Like Hell (video game) — Infobox VG title = Run Like Hell: Hunt or Be Hunted developer = Digital Mayhem publisher = Interplay Capcom (JPN) distributor = designer = engine = RenderWare version = released = PlayStation 2 [http://www.gamefaqs.com/console/ps2/data/339445.html… …   Wikipedia

  • Riordan, Lewis & Haden — Infobox Company company company name = Riordan, Lewis Haden company type = Private Ownership founder = Richard Riordan, Chris Lewis and Pat Haden foundation = 1988 location = industry = Private Equity products = Private equity funds, Growth… …   Wikipedia

  • Peak District National Park — Der Peak District Nationalpark (engl. Peak District National Park) ist ein Naturpark in Nordengland. Man unterscheidet zwischen dem nördlichen Dark Peak, der den größten Teil der unbewohnten Hochmoore umfasst und dem südlichen White Peak, in dem… …   Deutsch Wikipedia

  • AEC Regent III — The AEC Regent III (also known as Regent 3 or Regent Mark III) was a type of double decker bus chassis manufactured by AEC.It was mainly built for operation outside London and the overseas. It could be fitted with AEC s 9.6 litre diesel engine… …   Wikipedia

  • Metro Cammell Weymann — Super Metrobus von Weymann Die Metro Cammell Weymann, kurz MCW war einer der bedeutendsten Herstellern in der britischen Transportindustrie. Das Unternehmen wurde 1932 gegründet und bestand bis 1989. Inhaltsverzeichnis 1 Geschichte …   Deutsch Wikipedia

  • Timebus Travel — is a bus operator based just North of London, United Kingdom specializing only in heritage ex London buses for private hire. History Timebus Travel began in October 1987 solely to operate a 1952 Regent Low Height bus (fleet number RLH 23) in… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»